

1

Cisco UCS Infrastructure with Contiv and

Docker Enterprise Edition for Container

Management

Design and Deployment Guide for Cisco UCS Infrastructure

with Contiv Container Networking and Docker Enterprise

Edition 17.06

Last Updated: May 1, 2018

2

About the Cisco Validated Design (CVD) Program

The CVD program consists of systems and solutions designed, tested, and documented to facilitate faster,

more reliable, and more predictable customer deployments. For more information visit

http://www.cisco.com/go/designzone.

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS

(COLLECTIVELY, "DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND

ITS SUPPLIERS DISCLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM

A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE

LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,

WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR

INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR

THEIR APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER

PROFESSIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR

OWN TECHNICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON

FACTORS NOT TESTED BY CISCO.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco

WebEx, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We

Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS,

Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the

Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the

Cisco Systems logo, Cisco Unified Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers,

Cisco UCS C-Series Rack Servers, Cisco UCS S-Series Storage Servers, Cisco UCS Manager, Cisco UCS

Management Software, Cisco Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000

Series, Cisco Nexus 7000 Series. Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco

MDS Series, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step,

Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study,

LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking

Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet,

Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and

the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and

certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The

use of the word partner does not imply a partnership relationship between Cisco and any other company.

(0809R)

© 2017 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/designzone

3

Table of Contents

Executive Summary ... 7

Business Challenges .. 7

Our Solution ... 8

Implementation Overview .. 9

Solution Benefits .. 9

Audience ... 10

Purpose of this Document .. 10

Solution Overview .. 11

Introduction ... 11

 ... 12

Solution Components .. 12

Technology Overview .. 14

Cisco Unified Computing System ... 14

Cisco UCS Manager .. 15

Cisco UCS Fabric Interconnects .. 15

Cisco UCS 5108 Blade Server Chassis .. 16

Cisco UCS B200 M5 Blade Server ... 16

Cisco UCS C220 M5 Rack-Mount Server .. 17

Cisco UCS Fabric Extenders .. 17

Cisco VIC Interface Cards .. 18

Cisco UCS Differentiators .. 18

Cisco Nexus 9000 Switches .. 20

Cisco Contiv .. 20

Docker Enterprise Edition ... 22

Docker EE Engine .. 24

Docker Universal Control Plane (UCP) ... 26

Docker Trusted Registry (DTR) .. 31

Ansible .. 35

Solution Design .. 38

Architectural Overview ... 38

Cisco UCS and Docker Enterprise Edition .. 38

Cisco Contiv .. 39

Physical Topology .. 40

Logical Topology ... 43

Ansible Playbook ... 46

Ansible Playbook Tree Structure .. 47

Ansible Playbook Global Variables (group_vars) .. 48

4

Ansible Playbook Roles ... 51

Sizing Considerations .. 52

Software and Hardware Versions ... 53

Solution Deployment .. 57

Cisco Nexus 9372PX ... 57

Initial Configuration and Setup ... 57

Feature Enablement ... 58

VLAN Creation ... 58

Configure VPC ... 58

Configure Network Interfaces .. 60

Cisco UCS Manager - Administration .. 63

Initial Setup of Cisco Fabric Interconnects ... 63

Configure Ports for Server, Network and Storage Access .. 63

Cisco UCS Manager Synchronize to NTP .. 64

Upgrading Cisco UCS Manager ... 64

Assigning Block of IP addresses for KVM Access .. 64

Editing Chassis Discovery Policy .. 65

Acknowledging Cisco UCS Chassis ... 65

Enabling Server Ports .. 65

Enabling Uplink Ports to Cisco Nexus 9000 Series Switches .. 66

Configuring Port Channels on Uplink Ports to Cisco Nexus 9000 Series Switches ... 67

Cisco UCS Configuration LAN ... 69

Creating VLANs ... 69

Creating LAN Pools ... 71

Creating LAN Policies .. 72

Creating vNIC Templates ... 72

Cisco UCS Configuration Server .. 74

Creating Server Policies ... 74

Creating BIOS Policy .. 74

Creating Boot Policy .. 75

Creating Host Firmware Package Policy .. 76

Creating UUID Suffix Pool .. 77

Creating Server Pools .. 78

Cisco UCS Configuration Storage .. 80

Creating Storage Profile .. 80

Creating Service Profile Templates .. 87

Creating Service Profile Template for UCP Manager/Master Nodes ... 87

Creating Service Profile Template for DTR Nodes .. 100

Creating Service Profile Template for UCP Worker Nodes ... 101

5

Configuring PXE-less Automated OS Installation Infra with UCSM vMedia Policy ... 102

Prerequisites ... 102

Web Server Installation and Configuration ... 102

Create Images ... 103

Service Profile Instantiation and Association .. 108

Service Profile Instantiation .. 108

Installation of Red Hat Enterprise Linux Operating System ... 111

Docker Enterprise Edition Installation ... 115

Configuring Firewall Ports for Docker EE .. 115

Ansible Installation ... 117

Ansible Playbook Execution ... 119

Verifying Docker Enterprise Edition Installation ... 123

Contiv Installation .. 127

Validation ... 132

Application Container Deployment Using Contiv .. 132

Contiv Network Back-end without Contiv Policy Rules ... 132

Contiv Network Back-end with Contiv Policy Rules .. 139

Test Plan ... 141

Functional Test Scenarios Docker EE/ Contiv .. 142

Scale Tests .. 142

High-Availability Tests ... 146

Bill of Materials .. 150

Addendum ... 153

UCS with Contiv and DEE - Hybrid cluster with Baremetal and VMs ... 153

Mixed Cluster Solution Components .. 153

Solution Design ... 153

Physical Topology .. 153

Technical Requirements for Virtual Environment .. 155

Logical topology .. 157

Solution Deployment .. 158

UCS Manager Configuration .. 158

VMware ESXi Installation and Virtual Machine Deployment .. 163

Docker EE Installation on Virtual Machines and Adding them to Existing UCP Cluster .. 173

Contiv Installation on New Nodes and Adding them to Existing Contiv Cluster ... 174

Testing and Validation for mixed cluster environment .. 175

Bill of Material - Additional Components for Bare Metal and Virtual Machine Cluster ... 177

Summary ... 179

Appendix ... 180

Appendix I: HAProxy Example Configuration for External Load-Balancer ... 180

6

Appendix 2: Ansible Playbook Host Inventory and Task Execution YAML File .. 183

Appendix 3: Contiv Data Path Troubleshooting ... 185

About the Authors .. 192

Acknowledgements ... 192

Executive Summary

7

Executive Summary

Cisco Validated Design program consists of systems and solutions that are designed, tested, and

documented to enable end-to-end customer deployments. These designs incorporate a wide range of

technologies and products into solution portfolios that have been developed to address the business needs

of our customers.

Cisco Unified Computing System (Cisco UCS®) servers adapt to meet rapidly changing business needs,

including just-in-time deployment of new computing resources to meet requirements and improve business

outcomes. With Cisco UCS, you can tune your environment to support the unique needs of each application

while powering all your server workloads on a centrally managed, highly scalable system. Cisco UCS brings

the flexibility of non-virtualized and virtualized systems in a way that no other server architecture can,

lowering costs and improving your return on investment (ROI).

Docker Enterprise Edition (EE) is an efficient platform for developers and IT operations to use to build, ship,

and run distributed applications anywhere. With microservices architecture shaping the next generation of IT,

enterprises with large investments in monolithic applications are finding ways to adopt the Docker EE

platform as a strategy for modernizing their application architectures and keeping the organization

competitive and cost effective. Containerization provides the agility, control, and portability that developers

and IT operations require to build and deploy applications across any infrastructure. The Docker EE platform

allows distributed applications to be easily composed into a lightweight application container that can

change dynamically yet non-disruptively. This capability makes the applications portable across

development, test, and production environments running on physical or virtual machines locally, in data

centers, and across the networks of different cloud service providers. Docker Enterprise Edition provides

native container management tools, including the Docker Trusted Registry (DTR) and Universal Control Plane

(UCP) which included Docker Swarm as an orchestration component. It can be deployed on an

systems such as storage and Lightweight Directory Access Protocol (LDAP) or Microsoft Active Directory

(AD) services (LDAP/AD services).

Contiv unifies containers, bare metal and virtual machine environments with a single networking fabric. This

allows container network to be addressable from existing bare metal and/or virtual machine networks. Cisco

UCS servers with Contiv network plugin for Docker containers provide rich policy framework for container

networking for the enterprise grade application environment. Contiv is an open source Docker certified

network plugin and is available through Apache 2 license. Contiv can be sourced either from Docker store or

Contiv github.

Cisco and Docker have joined hands to offer Container Management Solution on Cisco UCS Infrastructure

with Docker Enterprise Edition. This enables enterprises to modernize traditional applications and build

microservices architecture using the Docker EE platform Cisco UCS Integrated

Infrastructure. The combination of Docker EE and Cisco UCS server hardware enables a highly scalable,

resilient, and elastic application deployment environment with the simplicity of the on-premises cloud like

experience.

Business Challenges

Technological revolution has created new opportunities and challenges for businesses in this digital world.

Many startups or smaller competitors are using disruptive innovations such as microservices architecture to

quickly develop and deploy applications and services to rapidly adopt changing markets and meet customer

8

needs. These innovations also provide a path to modernize traditional business critical applications providing

agility, flexibility and portability to reduce operational and management costs while improving performance

and security. In order to keep up with new technologies or stay one step ahead, enterprises will have to

overcome key challenges to accelerate product development, add value and compete better at lower cost.

Key Challenges:

 Policy Management: Large enterprises have redundant processes and policies in place, and are

reluctant to adopt new technologies due to fear of breaking compliance causing delays in new

development/release cycle.

 Portability: Applications have dependencies around OS versions, libraries, Java versions, etc. Any

changes to these dependencies can break portability which means applications developed on a

specific environment may behave differently on a production environment hosted on-premises or

cloud. Changing code and rebuilding/testing code leads to delay in product or service offering and

loss of market share.

 Agility: Enterprises have many legacy applications, tools and complex development process slowing

innovation significantly as product release cycle takes days to weeks due to complex flow from

development to production.

 Resource Utilization: Engineering and hardware resources in large enterprises are not used efficiently

due to various organizations operating in silos. These silos that worked in the past are causing a

huge overhead in development/release cycle and resource under-utilization as technology changes

rapidly.

Our Solution

This Cisco Validated Design focuses on Cisco UCS Integrated Infrastructure with Contiv Container

Networking for Docker Enterprise Edition that enables enterprises to rapidly deploy and manage production

ready Container as a Service environment on a highly available and secure platform. Contiv provides a

higher-level of networking abstraction for containerized applications and microservices. It secures

applications using rich policy framework with built-in service discovery and service routing features for scale

out services. Additionally, it helps automate DevOps process with an integrated security from development

to production, accelerating product release cycle and better resource utilization. The solution is well tested

for high-availability, performance and scalability, optimizing time and resources to bring the system and

solution online quickly. Cisco and Docker collaborated to deploy Docker Enterprise Edition (which includes

Docker Universal Control Plane, Docker Trusted Registry and Docker Engine on Cisco UCS platform.

This solution covers production ready installation, provisioning, configuring and deploying application

containers using Docker Enterprise Edition container platform on Cisco UCS B-Series and C-Series servers

in two separate topologies for production and dev/test use cases. Contiv is being used as plugin for

 Universal

Control Plane provide clustering of Docker Engine Nodes and clustering services, automates cluster and

application container life cycle management and integrates with Docker Trusted Registry services for

application container image services. Cisco UCS infrastructure provides the converged platform for the

compute, network, storage and entire hardware lifecycle management through a single management control

plane. The solution demonstrates:

 Automated, quick and easy installation of Cisco UCS Integrated Infrastructure, Docker Enterprise

Edition and Contiv Network Plugin and Application Containers

9

 Application Container Management through Docker Enterprise Edition on compute nodes irrespective

of form factors by utilizing Cisco UCS Manager capabilities

 Create and configuring tenants, networks, isolation policies and storage across complete

infrastructure for Application Containers

 High-Availability test inducing nodes, network devices, Contiv components and container engine

failures

 Scalability apropos of networks, subnets, storage access, containers, and compute/infra nodes

 Performance with regard to reducing the bring-up time of container seen with DTR integration in the

stack

The combination of Cisco UCS, Contiv and Docker Enterprise Edition allows organizations to build and

deploy containerized applications on an open, highly available and scalable platform leveraging existing

hardware investments to provide an end-end secure platform to meet SLAs.

Implementation Overview

Cisco UCS Integrated Infrastructure with Contiv for Docker Enterprise Edition solution is an integrated and

validated design and deployment guide for the enterprise to run application containers and microservices at

production grade. This solution is implemented on Cisco UCS B- and C-Series servers and Cisco Nexus

switch platforms with Contiv network plugin. The architecture covers high level install/configuration,

provisioning process and the solution testing required for CVD. Cisco UCS blade and rack servers are

provisioned through Service Profiles templates, Policies for network access and Storage access to run bare

metal OSes. Operating System installation, post OS install configuration, Docker Enterprise Edition

installation and Contiv network plugin installation, all such tasks are automated through Ansible automation

framework and playbooks. The end-to-end stack is tested for compatibility and interoperability

(recommended software stack), performance, and scalability, high-availability and security policies for

application containers for network access through Contiv network plugin. The containers are deployed and

managed through Docker tools like Docker Compose, UCP CLI/UI etc. The deployment guide provides step

by step instructions on setting up the complete stack and solution validation test results.

Solution Benefits

The benefits of Cisco UCS and Contiv with Docker Enterprise Edition include the following:

 Contiv

 Rich Policy Framework: Set bandwidth and isolation policies in a multi-tenant environment

 Multi-Infrastructure: Bare Metal, Virtual Machines and Containers

 Multi-Network Support: Layer 2, Layer 3, BGP and ACI

 Multi-Platforms: Docker, Kubernetes, OpenShift and more

 Open Source: Available under Apache 2 License on GitHub

 Cisco UCS

 Simplicity: Reduced datacenter complexities through Cisco UCS infrastructure with a single

management control plane for hardware lifecycle management

10

 Rapid Deployment: Easily deploy and scale the solution

 High Availability: Superior scalability and high-availability

 Flexibility: Compute form factor agnostic

 Faster ROI: Better response with optimal ROI

 Resource Utilization: Optimized hardware footprint for production and dev/test deployments

 Docker Enterprise Edition

 Agility: Gain the freedom to define environments and create and deploy applications quickly and

easily, providing flexibility of IT operations that respond quickly to change

 Control: Enable developers to own the code from the infrastructure to the application and quickly

move from the build to the production environment. IT operations manageability features enable

organizations to standardize, secure, and scale the operating environment

 Portability: Docker Containers are self-contained and independent units that are portable between

private infrastructure and public cloud environments without complexity or disruption

Audience

The audience for this document includes, but is not limited to, sales engineers, field consultants, professional

services, IT managers, partner engineers, IT architects, and customers who want to take advantage of an

infrastructure that is built to deliver IT efficiency and enable IT innovation. The reader of this document is

expected to have the necessary training and background to install and configure Red Hat Enterprise Linux,

Cisco Unified Computing System (UCS) and Cisco Nexus Switches as well as high level understanding of

Docker Container components. External references are provided where applicable and it is recommended

that the reader be familiar with these documents.

Readers are also expected to be familiar with the infrastructure, network and security policies of the

customer installation.

Purpose of this Document

This document highlights the benefits of using Cisco UCS infrastructure with Contiv for Docker Enterprise

Edition to efficiently deploy, scale, and manage a production-ready application container environment for

enterprise customers. While Cisco UCS infrastructure provides a platform for compute, network and storage

needs, Contiv delivers policy based networking for the containers. The goal of this document is to

demonstrate the value that Cisco UCS brings to the data center, such as single-point hardware lifecycle

management and highly available compute and network infrastructure for application container deployments

using Docker Enterprise Edition and Contiv.

Solution Overview

11

Solution Overview

Introduction

Cisco UCS Integrated Infrastructure solutions speed up IT operations today and create the modern

technology foundation you need for initiatives like private cloud, big data, and desktop virtualization. With

Cisco UCS Manager and Cisco Single Connect Technology, hardware is automatically configured by

application-centric policies ushering in a new era of speed, consistency, and simplicity for datacenter

operations. UCS brings the flexibility of virtualized systems to the physical world in a way no other server

architecture can, lowering costs and improving your ROI.

Leveraging the centralized management of Cisco UCS Manager, this solution provides unified, embedded,

policy-driven management to programmatically control server, network, and storage resources you can

efficiently manage the scale-up/ -out infrastructure. Furthermore, Cisco Nexus - unified Fabric is a holistic

network architecture comprising switching, security, and services that are designed for physical, virtual, and

cloud environments. It uniquely integrates with servers, storage, and orchestration platforms for more

efficient operations and greater scalability.

Cisco has partnered with Docker to provide Container Management solution to accelerate the IT

transformation by enabling easy and faster deployments, greater flexibility of choice, business agility,

efficiency, lower risk.

Docker has become the industry standard for developers and IT operations to build, ship and run distributed

applications in bare metal, virtualized and cloud environments. As organizations adopt public, private or

Hybrid cloud, Docker makes it easy to move applications between on premise and cloud environments.

Docker can significantly improve hardware resource utilization, accelerate application lifecycle and reduce

overall cost by automating IT processes and deploying containerized applications on-premise or in cloud

environment.

Figure 1 Build Secure Software Supply Chain with Docker

Solution Overview

12

Docker Enterprise Edition delivers an integrated platform for developers and IT operations to collaborate in

the enterprise software supply chain. Bringing security, policy and controls to the application lifecycle

without sacrificing any agility or application portability. Docker Enterprise Edition integrates to enterprise

business from on-premises and VPC deployment models, open APIs and interfaces, to flexibility for

supporting a wide variety of workflows.

With the advent of containers and microservices architecture, there is a need of automated or programmable

network infrastructure specifically catering to dynamic workloads which can be formed using containers.

With container and microservices technologies, speed and scale becomes critical. Because of these

requirements, Automation becomes a critical component in the Network provisioning for future workloads.
Contiv unifies containers, VMs, and bare metal with a single networking fabric, allowing container networks

to be addressable from VM and bare metal networks. Contiv combines strong network performance, support

for industry-leading hardware, and an application-oriented policy that can move across networks with the

application. Multi-tenancy and separate data path for application container/microservices I/O are the key

feature of Contiv.

Automation need for deploying and configuring infrastructure for Docker Enterprise Edition and Contiv has

been addressed in this solution via built-in UCSM features for operating system deployment. And post

installation configuration tasks and DEE stack including Contiv is being provisioned through open source

Ansible automation engine. Users are free to create their own Ansible playbook to achieve the same results

or can download the entire playbook for readymade use cases from Cisco UCS GitHub site.

 Automated bare metal operating system provisioning

 Ansible Play books and installer for Storage configuration, Docker Enterprise Edition stack and Contiv

deployments

 Automated scale-up/down infrastructure and Docker & Contiv stacks

Solution Components

The solution offers redundant architecture from a compute, network, and storage perspective. The solution

consists of the following key components:

 Cisco Unified Computing System (UCS)

 Cisco UCS Manager

 Cisco UCS 6332-16UP Fabric Interconnects

 Cisco 2304XP IO Module or Cisco UCS Fabric Extenders

 Cisco B200 M5 Servers

 Cisco C220 M5S Servers

 Cisco VIC 1340

 Cisco VIC 1385

Solution Overview

13

 Cisco Nexus 9396PX Switches

 Docker Enterprise Edition (DEE)

 Docker EE Engine

 Docker Universal Control Plane (UCP)

 Docker Trusted Repository (DTR)

 Red Hat Enterprise Linux 7.3

 Contiv v2plugin 1.1.7

Technology Overview

14

Technology Overview

This section provides a brief introduction of the various hardware/ software components used in this

solution.

Cisco Unified Computing System

The Cisco Unified Computing System is a next-generation solution for blade and rack server computing. The

system integrates a low-latency; lossless 10 Gigabit Ethernet unified network fabric with enterprise-class,

x86-architecture servers. The system is an integrated, scalable, multi-chassis platform in which all resources

participate in a unified management domain. The Cisco Unified Computing System accelerates the delivery

of new services simply, reliably, and securely through end-to-end provisioning and migration support for

both virtualized and non-virtualized systems. Cisco Unified Computing System provides:

 Comprehensive Management

 Radical Simplification

 High Performance

The Cisco Unified Computing System consists of the following components:

 Compute - The system is based on an entirely new class of computing system that incorporates rack

mount and blade servers based on Intel® Xeon® scalable processors product family.

 Network - The system is integrated onto a low-latency, lossless, 40-Gbps unified network fabric.

and high-performance computing networks which are separate networks today. The unified fabric

lowers costs by reducing the number of network adapters, switches, and cables, and by decreasing

the power and cooling requirements.

 Virtualization - The system unleashes the full potential of virtualization by enhancing the scalability,

performance, and operational control of virtual environments. Cisco security, policy enforcement, and

diagnostic features are now extended into virtualized environments to better support changing

business and IT requirements.

 Storage access - The system provides consolidated access to both SAN storage and Network

Attached Storage (NAS) over the unified fabric. It is also an ideal system for Software defined

Storage (SDS). Combining the benefits of single framework to manage both the compute and

Storage servers in a single pane, Quality of Service (QOS) can be implemented if needed to inject IO

throttling in the system. In addition, the server administrators can pre-assign storage-access policies

to storage resources, for simplified storage connectivity and management leading to increased

productivity. In addition to external storage, both rack and blade servers have internal storage which

can be accessed through built-in hardware RAID controllers. With storage profile and disk

configuration policy configured in Cisco UCS Manager, storage needs for the host OS and

application data gets fulfilled by user defined RAID groups for high availability and better

performance.

Technology Overview

15

 Management - the system uniquely integrates all system components to enable the entire solution to

be managed as a single entity by the Cisco UCS Manager. The Cisco UCS Manager has an intuitive

graphical user interface (GUI), a command-line interface (CLI), and a powerful scripting library

module for Microsoft PowerShell built on a robust application programming interface (API) to manage

all system configuration and operations.

Cisco Unified Computing System (Cisco UCS) fuses access layer networking and servers. This high-

performance, next-generation server system provides a data center with a high degree of workload agility

and scalability.

Cisco UCS Manager

Cisco Unified Computing System (UCS) Manager provides unified, embedded management for all software

and hardware components in the Cisco UCS. Using Single Connect technology, it manages, controls, and

administers multiple chassis for thousands of virtual machines. Administrators use the software to manage

the entire Cisco Unified Computing System as a single logical entity through an intuitive GUI, a command-

line interface (CLI), or an XML API. The Cisco UCS Manager resides on a pair of Cisco UCS 6300 Series

Fabric Interconnects using a clustered, active-standby configuration for high-availability.

UCS Manager offers unified embedded management interface that integrates server, network, and storage.

UCS Manager performs auto-discovery to detect inventory, manage, and provision system components that

are added or changed. It offers comprehensive set of XML API for third part integration, exposes 9000

points of integration and facilitates custom development for automation, orchestration, and to achieve new

levels of system visibility and control.

Service profiles benefit both virtualized and non-virtualized environments and increase the mobility of non-

virtualized servers, such as when moving workloads from server to server or taking a server offline for

service or upgrade. Profiles can also be used in conjunction with virtualization clusters to bring new

resources online easily, complementing existing virtual machine mobility.

For more Cisco UCS Manager Information, refer to: http://www.cisco.com/c/en/us/products/servers-

unified-computing/ucs-manager/index.htmlhttp://www.cisco.com/c/en/us/products/servers-unified-

computing/ucs-manager/index.html

Cisco UCS Fabric Interconnects

The Fabric interconnects provide a single point for connectivity and management for the entire system.

Typically deployed as an active-

single, highly-available management domain controlled by Cisco UCS Manager. The fabric interconnects

manage all I/O efficiently and securely at a single point, resulting in deterministic I/O latency regardless of a

Cisco UCS 6300 Series Fabric Interconnects support the bandwidth up to 2.43-Tbps unified fabric with low-

latency, lossless, cut-through switching that supports IP, storage, and management traffic using a single set

of cables. The fabric interconnects feature virtual interfaces that terminate both physical and virtual

connections equivalently, establishing a virtualization-aware environment in which blade, rack servers, and

virtual machines are interconnected using the same mechanisms. The Cisco UCS 6332-16UP is a 1-RU

Fabric Interconnect that features up to 40 universal ports that can support 24 40-Gigabit Ethernet, Fiber

Channel over Ethernet, or native Fiber Channel connectivity. In addition to this it supports up to 16 1- and

10-Gbps FCoE or 4-, 8- and 16-Gbps Fibre Channel unified ports.

http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-manager/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-manager/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-manager/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-manager/index.html

Technology Overview

16

For more information, visit the following link: https://www.cisco.com/c/en/us/products/servers-unified-

computing/ucs-6332-16up-fabric-interconnect/index.html

Cisco UCS 5108 Blade Server Chassis

The Cisco UCS 5100 Series Blade Server Chassis is a crucial building block of the Cisco Unified Computing

System, delivering a scalable and flexible blade server chassis. The Cisco UCS 5108 Blade Server Chassis is

six rack units (6RU) high and can mount in an industry-standard 19-inch rack. A single chassis can house up

to eight half-width Cisco UCS B-Series Blade Servers and can accommodate both half-width and full-width

blade form factors. Four single-phase, hot-swappable power supplies are accessible from the front of the

chassis. These power supplies are 92 percent efficient and can be configured to support non-redundant, N+

1 redundant and grid-redundant configurations. The rear of the chassis contains eight hot-swappable fans,

four power connectors (one per power supply), and two I/O bays for Cisco UCS 2304 Fabric Extenders. A

passive mid-plane provides multiple 40 Gigabit Ethernet connections between blade serves and fabric

interconnects. The Cisco UCS 2304 Fabric Extender has four 40 Gigabit Ethernet, FCoE-capable, Quad

Small Form-Factor Pluggable (QSFP+) ports that connect the blade chassis to the fabric interconnect. Each

Cisco UCS 2304 can provide one 40 Gigabit Ethernet ports connected through the midplane to each half-

width slot in the chassis, giving it a total eight 40G interfaces to the compute. Typically configured in pairs

for redundancy, two fabric extenders provide up to 320 Gbps of I/O to the chassis.

For more information, please refer to the following link: http://www.cisco.com/c/en/us/products/servers-

unified-computing/ucs-5100-series-blade-server-chassis/index.html

Cisco UCS B200 M5 Blade Server

The Cisco UCS B200 M5 Blade Server delivers performance, flexibility, and optimization for deployments in

data centers, in the cloud, and at remote sites. This enterprise-class server offers market-leading

performance, versatility, and density without compromise for workloads including Virtual Desktop

Infrastructure (VDI), web infrastructure, distributed databases, converged infrastructure, and enterprise

applications such as Oracle and SAP HANA. The B200 M5 server can quickly deploy stateless physical and

virtual workloads through programmable, easy-to-use Cisco UCS Manager Software and simplified server

access through Cisco SingleConnect technology. The Cisco UCS B200 M5 server is a half-width blade. Up

to eight servers can reside in the 6-Rack-Unit (6RU) Cisco UCS 5108 Blade Server Chassis, offering one of

the highest densities of servers per rack unit of blade chassis in the industry. You can configure the B200 M5

to meet your local storage requirements without having to buy, power, and cool components that you do not

need. The B200 M5 provides you these main features:

 Up to two Intel Xeon Scalable CPUs with up to 28 cores per CPU

 24 DIMM slots for industry-standard DDR4 memory at speeds up to 2666 MHz, with up to 3 TB of

total memory when using 128-GB DIMMs

 Modular LAN On Motherboard (mLOM) card with Cisco UCS Virtual Interface Card (VIC) 1340, a 2-

port, 40 Gigabit Ethernet, Fibre Channel over Ethernet (FCoE) capable mLOM mezzanine adapter

 Optional rear mezzanine VIC with two 40-Gbps unified I/O ports or two sets of 4 x 10-Gbps unified

I/O ports, delivering 80 Gbps to the server; adapts to either 10- or 40-Gbps fabric connections

 Two optional, hot-pluggable, Hard-Disk Drives (HDDs), Solid-State Disks (SSDs), or NVMe 2.5-inch

drives with a choice of enterprise-class RAID or pass-through controllers

https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-6332-16up-fabric-interconnect/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-6332-16up-fabric-interconnect/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-5100-series-blade-server-chassis/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-5100-series-blade-server-chassis/index.html

Technology Overview

17

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-b-series-blade-servers/datasheet-c78-739296.html

Cisco UCS C220 M5 Rack-Mount Server

The Cisco UCS C220 M5 Rack Server is among the most versatile general-purpose enterprise infrastructure

and application servers in the industry. It is a high-density 2-socket rack server that delivers industry-leading

performance and efficiency for a wide range of workloads, including virtualization, collaboration, and bare

metal applications. The Cisco UCS C-Series Rack Servers can be deployed as standalone servers or as part

 -based unified

business agility. The Cisco UCS C220 M5 server extends the capabilities of the Cisco UCS portfolio in a 1-

Rack-Unit (1RU) form factor. It incorporates the Intel® Xeon® Scalable processors, supporting up to 20

percent more cores per socket, twice the memory capacity, 20 percent greater storage density, and five

times more PCIe NVMe Solid-State Disks (SSDs) compared to the previous generation of servers. These

improvements deliver significant performance and efficiency gains that will improve your application

performance. The C220 M5 delivers outstanding levels of expandability and performance in a compact

package, with:

 Latest Intel Xeon Scalable CPUs with up to 28 cores per socket

 Up to 24 DDR4 DIMMs for improved performance

 Up to 10 Small-Form-Factor (SFF) 2.5-inch drives or 4 Large-Form-Factor (LFF) 3.5-inch drives (77

TB storage capacity with all NVMe PCIe SSDs)

 Support for 12-Gbps SAS modular RAID controller in a dedicated slot, leaving the remaining PCIe

Generation 3.0 slots available for other expansion cards

 Modular LAN-On-Motherboard (mLOM) slot that can be used to install a Cisco UCS Virtual Interface

Card (VIC) without consuming a PCIe slot

 Dual embedded Intel x550 10GBASE-T LAN-On-Motherboard (LOM) ports

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-c-series-rack-servers/datasheet-c78-739281.html

Cisco UCS Fabric Extenders

Cisco UCS 2304 Fabric Extender brings the unified fabric into the blade server enclosure, providing multiple

40 Gigabit Ethernet connections between blade servers and the fabric interconnect, simplifying diagnostics,

cabling, and management. It is a third-generation I/O Module (IOM) that shares the same form factor as the

second-generation Cisco UCS 2200 Series Fabric Extenders and is backward compatible with the shipping

Cisco UCS 5108 Blade Server Chassis. The Cisco UCS 2304 connects the I/O fabric between the Cisco UCS

6300 Series Fabric Interconnects and the Cisco UCS 5100 Series Blade Server Chassis, enabling a lossless

and deterministic Fibre Channel over Ethernet (FCoE) fabric to connect all blades and chassis together.

Because the fabric extender is similar to a distributed line card, it does not perform any switching and is

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/datasheet-c78-739296.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/datasheet-c78-739296.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739281.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739281.html

Technology Overview

18

managed as an extension of the fabric interconnects. This approach reduces the overall infrastructure

complexity and enabling Cisco UCS to scale to many chassis without multiplying the number of switches

needed, reducing TCO and allowing all chassis to be managed as a single, highly available management

domain.

The Cisco UCS 2304 Fabric Extender has four 40 Gigabit Ethernet, FCoE-capable, Quad Small Form-Factor

Pluggable (QSFP+) ports that connect the blade chassis to the fabric interconnect. Each Cisco UCS 2304

can provide one 40 Gigabit Ethernet ports connected through the midplane to each half-width slot in the

chassis, giving it a total eight 40G interfaces to the compute. Typically configured in pairs for redundancy,

two fabric extenders provide up to 320 Gbps of I/O to the chassis.

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-6300-series-fabric-interconnects/datasheet-c78-675243.html

Cisco VIC Interface Cards

The Cisco UCS Virtual Interface Card (VIC) 1340 is a 2-port 40-Gbps Ethernet or dual 4 x 10-Gbps Ethernet,

Fiber Channel over Ethernet (FCoE) capable modular LAN on motherboard (mLOM) designed exclusively for

the M4 generation of Cisco UCS B-Series Blade Servers. All the blade servers for both Controllers and

Computes will have MLOM VIC 1340 card. Each blade will have a capacity of 40 Gb of network traffic. The

underlying network interfaces like will share this MLOM card.

The Cisco UCS VIC 1340 enables a policy-based, stateless, agile server infrastructure that can present over

256 PCIe standards-compliant interfaces to the host that can be dynamically configured as either network

interface cards (NICs) or host bus adapters (HBAs).

For more information, see: http://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-

interface-card-1340/index.html

The Cisco UCS Virtual Interface Card 1385 improves flexibility, performance, and bandwidth for Cisco UCS

C-Series Rack Servers. It offers dual-port Enhanced Quad Small Form-Factor Pluggable (QSFP+) 40 Gigabit

Ethernet and Fibre Channel over Ethernet (FCoE) in a half-height PCI Express (PCIe) adapter. The 1385 card

works with Cisco Nexus 40 Gigabit Ethernet (GE) and 10 GE switches for high-performance applications.

The Cisco VIC 1385 implements the Cisco Data Center Virtual Machine Fabric Extender (VM-FEX), which

unifies virtual and physical networking into a single infrastructure. The extender provides virtual-machine

visibility from the physical network and a consistent network operations model for physical and virtual

servers.

For more information, see: https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-

interface-card-1385/index.html

Cisco UCS Differentiators

-center. Following

are the unique differentiators of UCS and UCS Manager:

1. Embedded Management In UCS, the servers are managed by the embedded firmware in the Fabric

Interconnects, eliminating need for any external physical or virtual devices to manage the servers.

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-6300-series-fabric-interconnects/datasheet-c78-675243.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-6300-series-fabric-interconnects/datasheet-c78-675243.html
http://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1340/index.html
http://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1340/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1385/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1385/index.html

Technology Overview

19

2. Unified Fabric In UCS, from blade server chassis or rack servers to FI, there is a single Ethernet ca-

ble used for LAN, SAN and management traffic. This converged I/O results in reduced cables, SFPs

and adapters which in turn reduce capital and operational expenses of the overall solution.

3. Auto Discovery By simply inserting the blade server in the chassis or connecting rack server to the

fabric interconnect, discovery and inventory of compute resource occurs automatically without any

management intervention. The combination of unified fabric and auto-discovery enables the wire-

once architecture of UCS, where compute capability of UCS can be extended easily while keeping

the existing external connectivity to LAN, SAN and management networks.

4. Policy Based Resource Classification Once a compute resource is discovered by UCS Manager, it

can be automatically classified to a given resource pool based on policies defined. This capability is

useful in multi-tenant cloud computing. This CVD showcases the policy based resource classification

of UCS Manager.

5. Combined Rack and Blade Server Management UCS Manager can manage B-Series blade servers

and C-Series rack server under the same UCS domain. This feature, along with stateless computing

makes compute resources truly hardware form factor agnostic.

6. Model based Management Architecture UCS Manager Architecture and management database is

model based and data driven. An open XML API is provided to operate on the management model.

This enables easy and scalable integration of UCS Manager with other management systems.

7. Policies, Pools, Templates The management approach in UCS Manager is based on defining poli-

cies, pools and templates, instead of cluttered configuration, which enables a simple, loosely cou-

pled, data driven approach in managing compute, network and storage resources.

8. Loose Referential Integrity In UCS Manager, a service profile, port profile or policies can refer to

other policies or logical resources with loose referential integrity. A referred policy cannot exist at the

time of authoring the referring policy or a referred policy can be deleted even though other policies

are referring to it. This provides different subject matter experts to work independently from each-

other. This provides great flexibility where different experts from different domains, such as network,

storage, security, server and virtualization work together to accomplish a complex task.

9. Policy Resolution In UCS Manager, a tree structure of organizational unit hierarchy can be created

that mimics the real-life tenants and/or organization relationships. Various policies, pools and tem-

plates can be defined at different levels of organization hierarchy. A policy referring to another policy

by name is resolved in the organization hierarchy with closest policy match. If no policy with specific

searched. This policy resolution practice enables automation friendly management APIs and provides

great flexibility to owners of different organizations.

10. Service Profiles and Stateless Computing a service profile is a logical representation of a server,

carrying its various identities and policies. This logical server can be assigned to any physical com-

pute resource as far as it meets the resource requirements. Stateless computing enables procure-

ment of a server within minutes, which used to take days in legacy server management systems.

11. Built-in Multi-Tenancy Support The combination of policies, pools and templates, loose referential

integrity, policy resolution in organization hierarchy and a service profiles based approach to com-

pute resources makes UCS Manager inherently friendly to multi-tenant environment typically ob-

served in private and public clouds.

12. Extended Memory the enterprise-class Cisco UCS B200 M5 blade server extends the capabilities

-width blade form factor. The Cisco UCS

B200 M5 harnesses the power of the latest Intel® Xeon® scalable processors product family CPUs

with up to 3 TB of RAM allowing huge VM to physical server ratio required in many deployments, or

allowing large memory operations required by certain architectures like Big-Data.

Technology Overview

20

13. Virtualization Aware Network VM-FEX technology makes the access network layer aware about

host virtualization. This prevents domain pollution of compute and network domains with virtualization

when virtual network is managed by port- -

FEX also off-loads hypervisor CPU by performing switching in the hardware, thus allowing hypervisor

CPU to do more virtualization related tasks. VM-FEX technology is well integrated with VMware

vCenter, Linux KVM and Hyper-V SR-IOV to simplify cloud management.

14. Simplified QoS Even though Fiber Channel and Ethernet are converged in UCS fabric, built-in sup-

port for QoS and lossless Ethernet makes it seamless. Network Quality of Service (QoS) is simplified

in UCS Manager by representing all system classes in one GUI panel.

Cisco Nexus 9000 Switches

The Cisco Nexus 9000 Series delivers proven high performance and density, low latency, and exceptional

power efficiency in a broad range of compact form factors. Operating in Cisco NX-OS Software mode or in

Application Centric Infrastructure (ACI) mode, these switches are ideal for traditional or fully automated data

center deployments.

The Cisco Nexus 9000 Series Switches offer both modular and fixed 10/40/100 Gigabit Ethernet switch

configurations with scalability up to 30 Tbps of non-blocking performance with less than five-microsecond

latency, 1152 x 10 Gbps or 288 x 40 Gbps non-blocking Layer 2 and Layer 3 Ethernet ports and wire speed

VXLAN gateway, bridging, and routing.

For more information, see: https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-

series-switches/datasheet-c78-736967.html

Cisco Contiv

Cisco Contiv delivers policy-based Networking for Containers. Contiv makes it easier to deploy micro-

services environment. Contiv provides a higher-level of networking abstraction for microservices and

secures application using a rich policy framework. It provides built-in service discovery and service routing

for scale out services. With the advent of containers and microservices architecture, there is a need of

automated or programmable network infrastructure specifically catering for dynamic workloads which can be

formed using containers. Contiv fulfils these requirements in a multi-tenancy model with scale-up and -out

architectures with a built-in automated network provisioning.

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-736967.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-736967.html

Technology Overview

21

Figure 2 Basic network types for containers with Contiv

Contiv provides an IP address for each container and eliminates the need for host-based port Network

Address Translation (NAT). It works with different types of networks such as pure layer 3 networks, overlay

networks, and layer 2 networks, and provides the same virtual network view to containers regardless of the

underlying technology. Contiv works with all major schedulers like Kubernetes and Docker Swarm. These

schedulers provide compute resources to the containers and Contiv provides networking to them. Contiv

supports both CNM (Docker networking Architecture) and CNI (CoreOS, the Kubernetes networking

architecture). Contiv supports L2, L3 (BGP), Overlay (VXLAN) and ACI modes. It has built-in east-west

service load balancing.

One of the major features of Contiv is to isolate management control plane traffic and application container

data traffic. With Cisco VIC in the mix, it becomes easier to provision dedicated physical paths for these

traffic types. On top one can apply QOS policies based on their needs of prioritizing traffic types at the

hardware level.

Contiv encompasses two major components:

 Netmaster: Netmaster is one binary that performs multiple tasks for Contiv. It's a REST API server

that can handle multiple requests simultaneously. It learns routes and distributes them to Netplugin

nodes. It acts as resource manager which does allocation of IP addresses, VLAN and VXLAN IDs for

networks. It uses distributed state store `etcd` to save all the desire runtime for Contiv objects. This

makes Contiv completely stateless, scalable, and restart-able. Netmaster has in-built heartbeat

mechanism, through which it can talk to peer Netmasters. This avoids the risk of a single point

failure. Netmaster can work with external SDN Controllers/policy engines like ACI.

 Netplugin (Contiv Host Agent): Each host agent (Netplugin) implements CNI or CNM networking

model adopted by popular container orchestration engines like Kubernetes and Docker Swarm. It

does communicate with Netmaster over REST API. In addition to this, Contiv uses json-rpc to

distribute endpoints from Netplugin to Netmaster. Netplugin handles Up/Down events from Contiv

networks and groups. It coordinates with other entities like fetching policies, creating container

interface, requesting IP allocation, programming host forwarding. Netplugin uses Contiv's custom

open-flow based pipeline on Linux host. It communicates with Open vSwitch (OVS) over the OVS

driver. Contiv currently uses OVS for their data path. Plugin architecture of Contiv, makes it very easy

to plug in any data path (for example: VPP, BPF etc.).

Technology Overview

22

Figure 3 Contiv architecture diagram showing Netmaster and Netplugin components

Docker Enterprise Edition

Docker - a containerization platform developed to simplify and standardize deployment in various

environments. It is largely instrumental in spurring the adoption of this style of service design and

management. Docker containers encapsulate all application components, such as dependencies and

services. When all dependencies are encapsulated, applications become portable and can be dependably

moved between development, test, and production environments. Docker makes container creation and

management simple and integrates with many open source projects. Docker Enterprise Edition comprises an

enterprise container orchestration, application management and enterprise-grade security.

Docker Enterprise Edition (EE) is a Containers-as-a-Service platform for IT that manages and secures

diverse applications across disparate infrastructure, both on-premises and in the cloud. Docker EE fuels

innovation by bringing traditional applications and microservices built on Windows, Linux or Linux-on-

mainframe into a single, secure software supply chain. With Docker, organizations can modernize

applications, infrastructure and operational models by bringing forward existing IT investments while

integrating new technology at the rate of business.

Technology Overview

23

Figure 4 Following figure illustrates high-level Docker Enterprise Edition architecture

Docker Enterprise Edition includes leading Docker open source projects, commercial software, integrations

with validated and supported configurations:

 Docker Enterprise Edition Engine for a robust container runtime

 Universal Control Plane (UCP) with embedded Swarm scheduler for integrated management and

orchestration of the Docker environment

 Trusted Registry (DTR) for Docker image management, security, and collaboration.

 Security must be a multi-layered approach; content Trust provides the ability to sign images with

digital keys and then verify the signature of those images.

Figure 5 Following figure shows overall security aspects of entire Docker echo-system

Technology Overview

24

Docker EE Engine

Docker Enterprise Edition engine is the building block for the modern application platform. The Docker EE

Engine is commercially supported version of Docker Engine for the enterprise. It's a lightweight container

runtime and robust tooling that runs and build containers. Docker allows us to package the application code

and dependencies together in an isolated container that shares the OS kernel on the host system. The in-

host daemon communicates with Docker Client to execute commands to build, ship and run containers.

Docker Engine is a client-server application with these major components:

 A server which is a type of long-running program called a daemon process (the dockerd command).

 A REST API which specifies interfaces that programs can use to talk to the daemon and instruct it

what to do.

 A command line interface (CLI) client (the Docker command).

Following figures illustrate the different Docker components that interact with Docker Engine/ Docker

daemon and Docker host

Figure 6 All about Docker Daemon to Docker Host

The CLI uses the Docker REST API to control or interact with the Docker daemon through scripting or direct

CLI commands. Many other Docker applications use the underlying API and CLI. The daemon creates and

manages Docker objects, such as images, containers, networks, and volumes.

Docker uses a client-server architecture. Docker client communicates with the Docker daemon, which is

responsible for building, running, and distributing the container workloads. The Docker client and

daemon can run on the same system, or you can connect a Docker client to a remote Docker daemon. The

Docker client and daemon communicate using a REST API, over UNIX sockets or a network interface.

Technology Overview

25

Figure 7 Key Docker Components

Docker Daemon

The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects such as images,

containers, networks, and volumes. A daemon can also communicate with other daemons to manage Docker

services.

Docker Client

The Docker client is the primary way in which many Docker users interact with Docker. When using

commands such as `Docker run` or `Docker service`, the client sends these commands to dockerd, which in

turn does the necessary job. The Docker commands use the Docker API. The Docker client can

communicate with more than one daemon.

Docker Registries

A Docker registry stores Docker images. Docker Hub and Docker Cloud are public registries that anyone can

use, and Docker is configured to look for images on Docker Hub by default. One can run their own private

registry. Docker Enterprise Edition includes Docker Trusted Registry (DTR) by default.

When using the `Docker pull`, `Docker run` and `Docker service` commands, the required images are pulled

from configured registry. When using the `Docker push` command, image is pushed to the configured

registry.

Docker Objects

Docker container platform essentially comprises a certain components referred to as objects. This section

gives a brief overview of these objects.

Technology Overview

26

 Images

An image is a read-only template with instructions for creating a Docker container. Often, an image

is based on another image, with some additional customization. For example, Ubuntu image can be

used, and Apache web server can be installed along with the configuration details needed to run the

application.

You can create your own image or can use the ones that were already created and published in a

registry. To build your own image, create a `Dockerfile` with a simple syntax for defining the steps to

create and run the image. Note that each instruction in a `Dockerfile` creates a layer in the image.

When we change the Dockerfile and rebuild the image, only those layers which have changed get

rebuilt. This way the images thus created are lightweight, small, and fast, when compared to other

virtualization technologies.

 Containers

A container is a runnable instance of an image. One can create, start, stop, move, or delete a

container using the Docker API or CLI. One can connect a container to one or more networks, attach

storage to it, or even create a new image based on its current state.

By default, a container is relatively well isolated from other containers and its host machine. You can

ing subsystems are from other

containers or from the host machine.

A container is defined by its image as well as any configuration options you provide to it when you

create or start it. When a container is removed, any changes to its state that are not stored in

persistent storage disappear.

 Services

Services allow us to scale containers across multiple Docker daemons, which all work together as

a swarm with multiple managers and workers. Each member of a swarm is a Docker daemon, and the

daemons all communicate using the Docker API. A service allows you to define the desired state, such

as the number of replicas of the service that must be available at any given time. By default, the

service is load-balanced across all worker nodes. To the consumer, the Docker service appears to be

a single application.

Docker Universal Control Plane (UCP)

Universal Control Plane is a containerized application that runs on Docker Enterprise Edition and extends its

functionality to make it easier to deploy, configure, and monitor your applications at scale. UCP also secures

Docker with role-based access control so that only authorized users can make changes and deploy

applications to your Docker cluster. It integrates with the existing enterprise LDAP/AD for High-Availability,

security and compliance. Docker UCP enables IT operation teams to deploy and manage the containerized

applications.

Once Universal Control Plane (UCP) instance is deployed, development and IT operations no longer interact

with Docker Engine directly, but interact with UCP instead. Since the Docker UCP exposes the standard

Docker API transparently, you can use the tools like the Docker CLI client and Docker Compose. Docker UCP

leverages the clustering and orchestration functionality provided by Docker.

https://docs.docker.com/enterprise/

Technology Overview

27

Figure 8 High level architecture of Docker UCP

A swarm is a collection of nodes that are in the same Docker cluster. Nodes in a Docker swarm operate in

one of two modes: Manager or Worker. If nodes are not already running in a swarm when installing UCP,

nodes will be configured to run in swarm mode. When Docker UCP gets deployed, the globally scheduled

service called ucp-agent is executed

the UCP services, based on whether the node is a manager or a worker node.

 Manager: the ucp-agent service automatically starts serving all UCP components, including the

Docker UCP web UI and data stores used by UCP. The ucp-agent accomplishes this by deploying

several containers on the node. By promoting a node to manager, Docker UCP automatically

becomes highly available and fault tolerant.

 Worker: on worker nodes, the ucp-agent service starts serving a proxy service that ensures only

authorized users and other UCP services can run Docker commands on the node. The ucp-

agent deploys a subset of containers on worker nodes.

Docker UCP administrators have a choice of restricting the scheduling of application containers on manager

nodes only. By default all the nodes irrespective of their roles, gets the application containers scheduled

based on resource availability.

https://docs.docker.com/datacenter/ucp/2.2/guides/architecture/#ucp-components-in-manager-nodes
https://docs.docker.com/datacenter/ucp/2.2/guides/architecture/#ucp-components-in-manager-nodes
https://docs.docker.com/datacenter/ucp/2.2/guides/architecture/#ucp-components-in-worker-nodes

Technology Overview

28

Figure 9 Docker UCP leverages the clustering and orchestration functionality provided by Docker

Docker UCP Internal Components

The core component of UCP is a globally-scheduled service called ucp-agent. Installing UCP on a node, or

 ucp-agent service starts running on that node.

Once this service starts, it deploys containers with other UCP components, and it ensures they keep running.

The UCP components that are deployed on a node depend on whether the node is a manager or worker.

Table 1 These are the UCP services running on manager nodes

Name Description

ucp-agent Monitors the node and ensures the right UCP services are

running

ucp-controller The UCP web server

ucp-swarm-

manager

Used to provide backwards-compatibility with Docker Swarm

ucp-reconcile When ucp-agent detects that the node is not running the right

UCP components, it starts the ucp-reconcile container to

converge the node to its desired state. It is expected for the

ucp-reconcile container to remain in an exited state when the

node is healthy.

ucp-auth-api The centralized API for identity and authentication used by

UCP and DTR

ucp-auth-worker Performs scheduled LDAP synchronizations and cleans data

on the ucp-auth-store

ucp-auth-store Stores authentication configurations, and data for users,

organizations, and teams

ucp-kv Used to store the UCP configurations. Do not use it in your

Technology Overview

29

he internal use only.

ucp-cluster-root-

ca

A certificate authority used for TLS communication between

UCP components

ucp-client-root-ca A certificate authority to sign user bundles

ucp-dsinfo Docker system information script to assist in troubleshooting

ucp-metrics Used to collect and process metrics for a node, like the disk

space available

ucp-proxy A TLS proxy. It allows secure access to the local Docker

Engine to UCP components.

UCP Components in worker nodes Worker nodes are dedicated for taking application workloads.

Table 2 Docker UCP services running on worker nodes

Name Description

ucp-agent Monitors the node and ensures the right UCP services are

running

ucp-reconcile When ucp-agent detects that the node is not running the right

UCP components, it starts the ucp-reconcile container to

converge the node to its desired state. It is expected for the

ucp-reconcile container to remain in an exited state when the

node is healthy.

ucp-dsinfo Docker system information script to assist in troubleshooting

ucp-proxy A TLS proxy. It allows secure access to the local Docker

Engine to UCP components.

Docker UCP Storage Volume Usage

While installing Docker UCP storage volumes get created with default volume driver. Volume drivers used for

these volumes can be customized, by creating the volumes before installing UCP. In this solution, Docker

device-mapper driver in direct-lvm mode is used for creating volumes. During installation, Docker UCP

checks for the volumes that do not exist on the node, and creates them using the default volume driver. By

default, the data for these volumes can be found at `/var/lib/docker/volumes/<volume_name>/_data`.

Table 3 Docker UCP uses these named volumes for providing data persistency

Volume name Description

ucp-auth-api-

certs

Certificate and keys for the authentication and

authorization service

ucp-auth-store-

certs

Certificate and keys for the authentication and

authorization store

ucp-auth-store- Data of the authentication and authorization store,

Technology Overview

30

data replicated across managers

ucp-auth-

worker-certs

Certificate and keys for authentication worker

ucp-auth-

worker-data

Data of the authentication worker

ucp-metrics-

data

Monitoring data gathered by UCP

ucp-metrics-

inventory

Configuration file used by the ucp-metrics service

ucp-client-root-

ca

Root key material for the UCP root CA that issues client

certificates

ucp-cluster-

root-ca

Root key material for the UCP root CA that issues

certificates for swarm members

ucp-controller-

client-certs

Certificate and keys used by the UCP web server to

communicate with other UCP components

ucp-controller-

server-certs

Certificate and keys for the UCP web server running in

the node

ucp-kv UCP configuration data, replicated across managers

ucp-kv-certs Certificates and keys for the key-value store

ucp-node-certs Certificate and keys for node communication

User Interaction with Docker UCP

There are two ways to interact with UCP: the web UI and the CLI. You can use the UCP web UI to manage

your swarm, grant and revoke user permissions, deploy, configure, manage, and monitor your applications.

UCP also exposes the standard Docker API, so that you can continue using the existing tools like the Docker

CLI client. Since UCP secures your cluster with role-based access control, you need to configure your

Docker CLI client and other client tools to authenticate your requests using client certificates that you can

download from the UCP profile page.

Technology Overview

31

Figure 10 User interface with Docker UCP

Docker Universal Control Plane works in high-availability mode. Adding replicas to first Manager node makes

the cluster HA ready. A minimum three-node cluster is needed to tolerate one node failure. Adding replica

nodes to the cluster allows user request to get load-balanced across controller master and replica nodes.

Docker UCP does not include external load-balancer for its management services. It needs external load-

balancer to balance user requests across all master nodes for UCP and/or DTR access in highly-available

mode.

 In this solution, `ha-proxy`, a Linux based software external load-balancer is used to validate high-

availability of UCP, DTR and Contiv UI services. Example `ha-proxy` configuration is shown in the appendix

section in this document. You can choose any external software/hardware load-balancer of your choice

which meets Docker configuration prerequisites.

Docker Trusted Registry (DTR)

Docker Trusted Registry (DTR) is the enterprise-grade image storage solution from Docker. Installation can

be done behind firewall so that it can securely store and manage the Docker images for the use in

applications. DTR can be installed on-premises, or on a virtual private cloud. And with it, one can store

Docker images securely, behind the firewall. DTR can be used as part of continuous integration, and

continuous delivery processes to build, ship, and run applications. DTR has a web based user interface that

allows authorized users from the organization to browse Docker images. It provides information about who

pushed what image at what time. It even allows you to see what `dockerfile` lines were used to produce the

image and, if security scanning is enabled, to see a list of all of the software installed in your images.

DTR is highly available through the use of multiple replicas of all containers and metadata such that if a

machine fails, DTR continues to operate and can be repaired. DTR has the ability to cache images closer to

Technology Overview

32

users to reduce the amount of bandwidth used during Docker pulls. DTR has the ability to clean up

unreferenced manifests and layers.

DTR uses the same authentication mechanism as Docker Universal Control Plane. Users can be managed

manually or synched from LDAP or Active Directory. DTR uses Role Based Access Control (RBAC) to allow

implementing fine-grained access control policies for who has access to Docker images.

Figure 11 Docker Trusted Registry (DTR) a containerized application on Docker UCP cluster

For high-availability, DTR deployment is done with a minimum 3 replicas, one on each UCP worker nodes.

All DTR replicas run the same set of services and the configuration changes are automatically propagated to

other DTR replicas.

Figure 12 Highly-available Docker EE architecture showing infrastructure services distributed across

cluster nodes

Docker DTR Internal Components

Following application containers gets deployed on installing DTR.

Table 4 DTR service application containers and their functional roles

Name Description

dtr-api-<replica_id> Execute the DTR business logic. It serves the DTR web

application and API

dtr-garant-<replica_id> Manages DTR authentication

dtr-jobrunner-<replica_id> Runs the cleanup jobs in the back-ground

Technology Overview

33

dtr-nginx-<replica_id> Receives HTTP and HTTPS requests and proxies them to

other DTR components. Default listening ports are 80 and

443 on the host

dtr-notary-server-

<replica_id>

Receives, validates, and serves content trust metadata, and

is consulted when pushing or pulling to DTR with content

trust enabled

dtr-notary-signer-

<replica_id>

Performs server-side timestamp and snapshot signing for

content trust metadata

dtr-registry-<replica_id> Implements the functionality for pulling and pushing Docker

images. It also handles how images are stored

dtr-rethinkdb-<replica_id> A database of persisting repository metadata

dtr-scanningstore-

<replica_id>

Stores security scanning data

DTR service application containers communicate with each other on cluster nodes via `dtr-ol` network. This

overlay network is created as part of DTR installation and allows DTR data replication with the DTR cluster

nodes.

Docker UCP Storage Volume Usage

Table 5 List of named volumes for DTR data persistency

Volume name Description

dtr-ca-<replica_id> Root key material for the DTR root CA that

issues certificates

dtr-notary-<replica_id> Certificates and keys for the Notary

components

dtr-postgress-<replica_id> Vulnerability scan data

dtr-registry-<replica_id> Docker images data, if DTR is configured to

store images on the local filesystem

dtr-rethink-<replica_id> Repository metadata

dtr-nfs-registry-<replica_id> Docker images data, if DTR is configured to

store images on NFS

By default, Docker Trusted Registry stores images on the filesystem of the node where it is running, but for

the enterprise grade deployment it is recommended to be configured with a centralized storage backend.

Technology Overview

34

Figure 13 DTR Integration with storage backend

DTR supports following storage back-ends:

 NFS

 Amazon S3

 Cleversafe

 Google Cloud Storage

 OpenStack Swift

 Microsoft Azure

User Interfaces with Docker DTR

DTR has a web UI which gets installed and configured as part of DTR installation. DTR UI can be accessed

from any of the DTR nodes and presents same repository data, irrespective of from which node its being

accessed. In order to achieve highly available access, DTR can be front-ended with an external load-

balancer, same as in the case of Docker UCP. Users can push and pull images using standard Docker cli

client or other tools.

Technology Overview

35

Figure 14 User interface with Docker UCP and DTR

 In this solution, `ha-proxy`, a Linux based software external load-balancer is used to validate high-

availability of UCP, DTR and Contiv UI services. Example `ha-proxy` configuration is shown in the appendix

section in this document. You can choose the external software/hardware load-balancer of your choice

which meets Docker configuration prerequisites.

Ansible

Ansible is a radically simple IT automation engine that automates cloud provisioning, configuration

management, application deployment, intra-service orchestration, and many other IT needs.

Designed for multi-tier deployments since day one, Ansible models your IT infrastructure by orchestrating all

the systems rather than just managing one system at a time.

Ansible is a simple automation language that can p

easy-to-learn, self-documenting, and uses no agents, no additional custom security infrastructure, so it's

easy to deploy - and most importantly, it uses a very simple language (YAML, in the form of Ansible

Playbooks) that allow you to describe your automation jobs.

Technology Overview

36

Figure 15 Ansible Orchestration Engine

Ansible

programs are written to be resource models of the desired state of the system. Ansible executes these

modules over SSH by default.

Your library of modules can reside on any machine, and there are no servers, daemons, or databases

required. Typically, you work with the favorite terminal program, a text editor, and probably a version control

system to keep track of changes to your content.

Figure 16 Ansible automation engine

By default, Ansible represents what machines it manages using a very simple INI file that puts all of managed

machines in groups of our own choosing. Once inventory hosts are listed, variables can be assigned to them

in simple text files (in a subdirectory called 'group_vars/' or 'host_vars/') or directly in the inventory file.

Technology Overview

37

Ansible is from Red Hat and becoming a de facto open source automation technology, and is available

through Extra Packages for Enterprise Linux (EPEL).

Solution Design

38

Solution Design

This section provides an overview of the hardware and software components used in this solution, as well as

the design factors to be considered in order to make the system work as a single, highly available solution.

Architectural Overview

This section provides information on the architectural details of Cisco UCS infrastructure, Cisco Contiv and

Docker Enterprise Edition. This section also illustrates the software and hardware solution components and

discusses the details on obtaining the optimal, high-performance and highly-available infrastructure for

creating application containers and microservices in production environment.

Cisco UCS and Docker Enterprise Edition

This solution consists of two alternate topologies, targeted for production and dev/test deployments. For

production environment, Cisco UCS B200 M5 Blade Servers are leveraged, with nodes dedicated for Docker

Universal Control Plane (UCP) and Docker Trusted Registry (DTR) services within Docker Enterprise Edition.

This document also provides a second architecture with a minimal number of servers to implement Docker

Enterprise Edition on Cisco UCS using C220 M5 Rack-Mount Servers. The second alternative (referred to as

second architecture in this solution) is a best fit for typical dev/test deployment environments. Cisco UCS

Fabric Interconnects and Cisco Nexus TOR switches are used in both these topologies. The Docker

Enterprise Edition runs on bare metal nodes running Red Hat Enterprise Linux Operating System. Cisco UCS

servers provide highly-available hardware platform centrally managed by Cisco UCS Manager Software

residing on Cisco Fabric Interconnects. As an important component of the Docker Enterprise Edition (Docker

EE), Docker Universal Control Plane (Docker UCP) provides the redundancy and high-availability of the

Docker EE Engines and management control plane. This solution holistically offers container management for

diverse application environment to be deployed in DevOps and Production environments.

Compute nodes for Docker are configured to run on Cisco B- and C-Series servers based on the selected

reference architecture. In some cases, compute node resources could be shared between the control plane

software stack and the container engine. For production deployments, Docker UCP services are spread over

three B-Series servers for providing management control plane redundancy and high-availability; also, DTR

services are configured to run on three dedicated B-Series servers for providing high-availability to the

image repository.

In the second architecture Docker UCP and DTR services are co-hosted on three C-Series rack

servers. Docker UCP administrator can make a choice to allow distribution of application container workload

to be spread across the Docker UCP manager nodes as well along with the worker nodes.

Both Docker UCP and DTR dashboards require an external load balancer to access management interfaces

to make them operate in a highly available mode. External load balancer provides virtual IP address to front-

end the UCP and DTR management dashboards separately. External load balancer is out of the scope of this

document n follows a standard

procedure.

 In this solution, `ha-proxy`, a Linux based software external load-balancer is used to validate high-

availability of UCP, DTR and Contiv UI services. Example `ha-proxy` configuration is shown in the appendix

Solution Design

39

section in this document. You can choose the external software/hardware load-balancer of your choice

which meets Docker configuration prerequisites.

To achieve DTR shared storage high-availability for image repository within the DTR cluster nodes, Docker

EE requires an external NFS setup. This solution uses NFS shared volume configuration for the DTR shared

storage.

Cisco Contiv

Contiv provides networking to containers natively to the physical network. It supports both major networking

models:

 The libnetwork/Container Network Model (CNM)

 The Container Network Interface (CNI)

Contiv provides a pluggable networking option to Docker and Kubernetes echo systems. In this solution, we

have used Contiv network driver to work with Docker EE cluster in native Swarm mode. It gets plugged in to

the libnetwork/Container Network Model (CNM).

Container N are

listed below:

 A network is a collection of arbitrary endpoints



 A container can belong to multiple endpoints and therefore multiple networks

 CNM allows for co-existence of multiple drivers each managing their own networks

 Network driver APIs allow to create/delete network, create/delete/join/leave endpoints

 IPAM Driver APIs allow to create/delete pool, Allocate/Free IP Addresses

Contiv has L2, L3 (BGP), Overlay (VXLAN) and ACI modes. It has built in east-west service load balancing.

Contiv also provides traffic isolation through control and data traffic. Contiv provides an IP address per

container and eliminates the need for host-based port NAT. Since it gives native networking capabilities to

the containers, it can work with different types of physical networks like pure layer 3 networks, overlay

networks, and layer 2 networks and provides the same virtual network view to containers regardless of the

underlying technology.

This solution recommends using Contiv Network driver plugin in L2 VLAN - Bridge forwarding mode. Contiv

L2 VLAN mode addresses following use cases:

 Native/Underlay visibility troubleshooting and monitoring easy with legacy tool sets

 No changes needed - in the existing well-understood and good-old classic topology

 Easy migration possibilities from BM/VM to containers works without configuration, topology and

existing security policies

Solution Design

40

 Multi-Tenancy top level object to achieve Data-path isolation and integration for external

connectivity

Solution lays emphasis on using Contiv Network driver for container networking by following high level steps

as given below:

 A VLAN or small set of VLANs pre-configured once on physical devices for the containers

 Each container gets an IP, which is accessible from anywhere

 ARP broadcast get suppressed at the host level

 Configurations of static SVI, VLANs and VPC on physical devices

 Contiv host agent applies the policy on the host

A typical workflow is as described below:

1. Configure switched virtual interfaces (SVIs) on switches

2. Create VLAN networks with subnets and gateways

3. Start containers on networks created on hosts using Contiv

4. Verify IP address, routes, and connectivity between containers

Physical Topology

This solution is designed and proposes two separate topologies based on Docker EE production as well as

dev/test deployment requirements for the Enterprise. The two topologies make use of Cisco UCS server

hardware form factor optimally. Where there is a need for higher local storage and compute resource to be

made available for application containers UCS C-series server topology fits best. It can either be used for

high density dev/test environment or even for production use cases, where the need for scaling up the

environment are less and as such Docker EE infra services can be co-hosted on controller nodes and can

take up the application container workloads. Cisco UCS B-series topology fits best for the use cases where

there is a strong need to scale out the environment in future and Docker EE infra services are to be hosted

separately. This topology is a best fit for application container environment for production use cases.

The following figures illustrate the two types of reference architectures and the physical back-end

connectivity of the hardware components:

Solution Design

41

Figure 17 Physical Topology First Architecture

Solution Design

42

Figure 18 Cabling Diagram First Architecture

Solution Design

43

Figure 19 Physical Topology Second Architecture

Logical Topology

This section provides details on how Cisco VIC with Contiv enables application containers to use dedicated

I/O path for network access in a secured environment with multi-tenancy. With Contiv and Cisco VIC,

containers get a dedicated physical path to a classic L2 VLAN topology with better line rate efficiency.

This solution focuses on Contiv L2 VLAN forwarding mode in a multi-tenant environment. Contiv takes

advantage of Cisco VIC to segregate container i/o from the management/control plane traffic. It provides

dedicated physical path for container application network. To further enhance the value of Cisco UCS by

optimizing the infrastructure utilization, the traffic paths were configured to segregate all

management/control traffic through fabric interconnect A, and container data traffic through fabric

interconnect B.

Solution Design

44

Figure 20 Docker Enterprise Edition cluster with Contiv Network layout per host

Following Figures 22 through 26 explain data path isolation for multi-tenant and L2 VLAN packet flow use

cases.

Figure 21 Data path isolation between multi-tenants with Contiv

Solution Design

45

Figure 22 Case-1: Data Packet from one container to another container within same host

Figure 23 Case-

Solution Design

46

Figure 24 Case-3: Data packet from one container to another container on different host

Figure 25 Case-4: Data packet to/from container to outside

Ansible Playbook

In this solution Ansible playbook is designed and developed to deploy Docker Enterprise Edition on Cisco

UCS servers for both the architectures (the first and second architectures) as called out in the earlier

sections. The playbook not only deploys but also meets the prerequisites on OS configuration and Storage

considerations. Following are the prerequisites to run the Ansible playbook:

Solution Design

47

 Playbook is recommended to be executed from a build server having an Ansible version 2.3.2 or

greater if the YUM role need to be executed, else the playbook can be run on any of the cluster

nodes itself and a separate build server is not needed. Ensure that the password-less SSH access

from the node on which the playbook is run, to itself, and to the rest of the nodes is configured.

 The playbook is designed to accept some of the environment variables to be setup as group_vars,

see the playbook tree structure below.

 This playbook is designed for the environments that works behind proxy, if proxy is not required

certain be skipped.

 The environmental files like /etc/hosts, Cisco VIC enic driver RPM etc are predefined and are

; as the name suggests these are common to all the nodes.

 All required configuration files for DEE installation has been supplied through Ansible templates.

 Playbook does all the post OS installation tasks including storage configurations, firewall and

Docker EE installation.

 Playbook is created with the UCS-Manager version 3.2(2b) and corresponding Cisco VIC - enic

driver for RHEL7.3.

 Ansible Playbook created for Docker EE install on Cisco UCS bare metal servers can be downloaded from:

https://github.com/CiscoUcs/DockerEE_UCS_BM

Ansible Playbook Tree Structure

The following code tree structure shows the various roles defined in our Ansible playbook:

.

├── ansible.cfg

├── DEE-C-Nodes

├── DEE-C-Nodes.yml

├── DEE-Nodes

├── DEE-Nodes.yml

├── group_vars

│ └── all

├── hosts

└── roles

 ├── common

 │ ├── files

 │ │ ├── kmod-enic-2.3.0.39-rhel7u3.el7.x86_64.rpm

 │ │ └── kmod-enic-2.3.0.44-rhel7u3.el7.x86_64.rpm

 │ ├── tasks

 │ │ └── main.yml

 │ └── templates

 │ ├── bash_profile.j2

 │ ├── environment.j2

 │ ├── hosts.j2

 │ ├── ntp.conf.j2

 │ └── rhsm.conf.j2

 ├── docker

 │ ├── files

 │ │ └── daemon.json

 │ ├── tasks

https://github.com/CiscoUcs/DockerEE_UCS_BM

Solution Design

48

 │ │ └── main.yml

 │ └── templates

 │ └── http-proxy.conf.j2

 ├── firewall

 │ └── tasks

 │ └── main.yml

 ├── ntp

 │ └── tasks

 │ └── main.yml

 ├── storage

 │ └── tasks

 │ └── main.yml

 ├── UCPdtr

 │ └── tasks

 │ └── main.yml

 ├── UCPdtr-r1

 │ └── tasks

 │ └── main.yml

 ├── UCPdtr-r2

 │ └── tasks

 │ └── main.yml

 ├── UCPreplica

 │ ├── files

 │ └── tasks

 │ └── main.yml

 ├── UCPswarm

 │ ├── files

 │ │ └── docker_subscription.lic

 │ └── tasks

 │ └── main.yml

 ├── UCPworker

 │ ├── files

 │ └── tasks

 │ └── main.yml

 └── yum

 └── tasks

 └── main.yml

33 directories, 29 files

Ansible Playbook Global Variables (group_vars)

Ansible group_vars/all is defined for all the roles and tasks, details of where it is applicable are shown in the

following table:

Table 6 Ansible global variables (group_vars)

Variables Values Purpose and Usage

dee_url <URL as given

by Docker>

Used for downloading and installing Docker EE engine on

cluster nodes

docker/tasks/main.yml: echo {{dee_url}} >

/etc/yum/vars/dockerurl

docker/tasks/main.yml: yum-config-manager --add-repo

{{dee_url}}/docker-ee.repo

ntp_server/ntp_se <NTP server IP> To configure NTPd services on the cluster nodes

Solution Design

49

rver2 common/templates/ntp.conf.j2:server {{ ntp_server }}

common/templates/ntp.conf.j2:server {{ ntp_server2 }}

ntp/tasks/main.yml: ntpdate -q {{ntp_server}}

ntp/tasks/main.yml: ntpdate {{ntp_server}}

ntp/tasks/main.yml: ntpdate -q {{ntp_server}}

http_proxy/https_

proxy/no_proxy/pr

oxy_port

<URL/port> Used for proxy/environment settings for Docker Engine

common/templates/rhsm.conf.j2:proxy_hostname = {{

http_proxy_hostname }}

common/templates/bash_profile.j2:export http_proxy={{

http_proxy }}

common/templates/environment.j2:export http_proxy={{

http_proxy }}

docker/templates/http-

proxy.conf.j2:Environment="HTTP_PROXY={{ http_proxy

}}"

common/templates/rhsm.conf.j2:proxy_port = {{ proxy_port

}}

node*/node*_fqdn <node_name>/<n

ode_fqdn>

For creating a common /etc/hosts file across all the cluster

nodes

common/templates/hosts.j2:{{ node01 }} {{

node01_fqdn }} {{ node01_name }}

rhsm_user/rhsm_

password

<user

name/password>

User name/password for RHSM registration of the cluster

nodes

yum/tasks/main.yml: subscription-manager register --

username={{rhsm_user}} --password={{rhsm_password}}

pool_id <subscription

pool id for

RHSM>

Needed for repo attachments

yum/tasks/main.yml: subscription-manager attach --

pool={{pool_id}}

UCP_Manager <IP address of

the first UCP

manage host>

First UCP manage node identification

UCPreplica/tasks/main.yml: docker swarm join --token {{

hostvars[groups['UCP-Mgr'][0]]['mgrtoken']['stdout'] }} {{

UCP_Manager }}:2377

UCPswarm/tasks/main.yml: --host-address

{{UCP_Manager}} --controller-port {{UCP_Port}} --admin-

username {{UCP_Admin}} --admin-password

Solution Design

50

{{UCP_Admin_Pass}} \

UCPworker/tasks/main.yml: docker swarm join --token {{

hostvars[groups['UCP-Mgr'][0]]['wrktoken']['stdout'] }} {{

UCP_Manager }}:2377

UCP_Admin/UCP_

Admin_Pass

<user

name/password>

UCP Admin name and password

UCPdtr/tasks/main.yml: --nfs-storage-url

{{DTR_NFS_URL}} --ucp-password {{UCP_Admin_Pass}} -

-ucp-url {{UCP_URL}} --ucp-username {{UCP_Admin}}

UCPdtr-r1/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} join --ucp-node `hostname` --ucp-

insecure-tls --ucp-password {{UCP_Admin_Pass}} --ucp-

url {{UCP_URL}} \

UCPdtr-r1/tasks/main.yml: --ucp-username

{{UCP_Admin}} --existing-replica-id

{{hostvars[groups['UCP-DTR'][0]]['replicaid']['stdout']}}

UCPdtr-r2/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} join --ucp-node `hostname` --ucp-

insecure-tls --ucp-password {{UCP_Admin_Pass}} --ucp-

url {{UCP_URL}} \

UCPdtr-r2/tasks/main.yml: --ucp-username

{{UCP_Admin}} --existing-replica-id

{{hostvars[groups['UCP-DTR'][0]]['replicaid']['stdout']}}

UCPswarm/tasks/main.yml: --host-address

{{UCP_Manager}} --controller-port {{UCP_Port}} --admin-

username {{UCP_Admin}} --admin-password

{{UCP_Admin_Pass}} \

DTR_NFS_URL <NFS file share

URL>

For configuring common NFS file system for DTR storge

access

UCPdtr/tasks/main.yml: --nfs-storage-url

{{DTR_NFS_URL}} --ucp-password {{UCP_Admin_Pass}} -

-ucp-url {{UCP_URL}} --ucp-username {{UCP_Admin}}

UCP_URL <UCP URL value> For DTR installation and integration with UCP Swarm cluster

UCPdtr/tasks/main.yml: --nfs-storage-url

{{DTR_NFS_URL}} --ucp-password {{UCP_Admin_Pass}} -

-ucp-url {{UCP_URL}} --ucp-username {{UCP_Admin}}

UCPdtr-r1/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} join --ucp-node `hostname` --ucp-

insecure-tls --ucp-password {{UCP_Admin_Pass}} --ucp-

Solution Design

51

url {{UCP_URL}} \

UCPdtr-r2/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} join --ucp-node `hostname` --ucp-

insecure-tls --ucp-password {{UCP_Admin_Pass}} --ucp-

url {{UCP_URL}} \

UCP_Port <port> For UCP URL port config, for second architecture where

UCP/DTR services are co-hosted, this needs to set to other

than 443, as DTR by default uses 443 port

firewall/tasks/main.yml: firewall-cmd --zone=public --

add-port={{ UCP_Port }}/tcp

firewall/tasks/main.yml: firewall-cmd --zone=public --

add-port={{ UCP_Port }}/tcp --permanent

UCPswarm/tasks/main.yml: --host-address

{{UCP_Manager}} --controller-port {{UCP_Port}} --admin-

username {{UCP_Admin}} --admin-password

{{UCP_Admin_Pass}} \

UCP_Ver/DTR_Ver <version values> For fixing UCP/DTR version values

UCPswarm/tasks/main.yml: docker container run --rm -t

--name ucp -v /var/run/docker.sock:/var/run/docker.sock

docker/ucp:{{UCP_Ver}} install \

UCPdtr/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} install --ucp-node `hostname` --

ucp-insecure-tls \

UCPdtr-r1/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} join --ucp-node `hostname` --ucp-

insecure-tls --ucp-password {{UCP_Admin_Pass}} --ucp-

url {{UCP_URL}} \

UCPdtr-r2/tasks/main.yml: docker run -t --rm

docker/dtr:{{DTR_Ver}} join --ucp-node `hostname` --ucp-

insecure-tls --ucp-password {{UCP_Admin_Pass}} --ucp-

url {{UCP_URL}} \

Ansible Playbook Roles

This file contains a list of roles that gets configured on the Docker EE cluster nodes. They include following

tasks:

1. Common This role takes care of all common tasks across the cluster nodes which include setting

up environment values, proxy settings, files which are common to all nodes. Users need to tweak

these values inside roles/common/templates and roles/common/files to suit their environment.

Solution Design

52

 hosts.j2 file is a template and has cluster node details, which gets populated on cluster nodes as

/etc/hosts.

2. Yum This role includes tasks for registering cluster nodes to RHSM network, attach to pool_id, re-

pos, update enic driver and do `yum update`. This task also takes care for host rebooting post yum

update and handing over control over to following roles/tasks execution.

3. Ntp For configuring NTPd services on cluster nodes. NTP services are critical for DEE services

functioning.

4. Firewall This role takes care of setting hosts firewall ports for Docker Enterprise Edition infra-

services requirements.

5. Storage

local storage disks for Docker Enterprise Edition. This gives RAID-1 and RAID-10 configuration for

redundancies and performance out of storage sub-system. Device Mapper is a kernel-based frame-

 device-

mapper storage driver leverages the thin provisioning and snapshotting capabilities of this framework

for image and container management. The preferred configuration for production deployments

is direct-lvm. This mode uses block devices to create the thin pool. This Ansible role is responsible

for storage configuration.

6. Docker This role takes care of installing Docker EE engine on all the cluster nodes with required

version and dependencies.

7. UCPswarm This role is for initializing Swarm on first node of the cluster and installing/configuring

UCP services. This also includes attaching Docker EE license file to be configured to the UCP install.

File can be copied to `files` under the role/UCPswarm.

8. UCPreplica This role joins other manager nodes into Swarm and makes a cluster of managers. It al-

so clusters UCP services.

9. UCPworker Role for joining rest of the nodes into Swarm cluster as worker nodes.

10. UCP-DTR For installing DTR stack on designated UCP worker nodes. It also takes care of configur-

ing common NFS share file system for image repository.

11. UCP-DTR-R1/R2 Roles for DTR replicas on worker nodes.

Sizing Considerations

For the production grade Docker Enterprise Edition deployment Docker recommends infrastructure services

to be run on dedicated hosts. There are two infrastructure components, namely Docker UCP Managers and

DTR. Container workloads are to run on dedicated node termed as Docker UCP Workers. For production

requirements, one each of Docker UCP Manager and DTR service node should be running in cluster of bare

metal servers. In order to sustain a minimum of one node failure, it is recommended to have three-nodes for

running both UCP Manager and DTR services separately. Based on this recommendation, Docker UCP

Manager and DTR services will run on three node clusters separately within the swarm cluster. This solution

proposes a ten node setup, where six nodes are consumed by the Docker

and DTR) services and the remaining four nodes take up the Container workload. Administrators have an

option to configure the UCP Manager nodes to take the container workload based on the deployment

requirements. With this configurable item, the entire infrastructure is well optimized for running container

workloads.

Cisco C-Series servers have ample memory and CPU resources that allow us to run the Docker UCP and

DTR service containers on the same three-node cluster. With this design, the overall Docker Enterprise

Solution Design

53

Edition deployment gets optimized to a four node cluster configuration. The fourth node runs as a UCP

Worker node to take the container workload. The scheduler configuration settings allow administrators and

users to deploy containers on the UCP Manger all

the nodes will be available for container deployment.

Maximum number of containers deployed per node depends on the type of containers and the applications

that are run within the containers. This solution is designed and validated to spin 300 containers on each pf

the UCP Nodes.

Adding another node to the cluster follows a simple procedure with a minimal manual intervention. With a

policy based logical server model, achieved through Cisco UCS Manager, scaling-up the bare metal nodes

are just a few clicks away. Service profile templates associated with configured server pool help in automatic

deployment of service profiles, as long as there is an additional hardware available in the server pool. Node

addition workflow is covered later in the Scale Tests section.

Software and Hardware Versions

The following tables provide software and hardware versions used in this solution for both the architectures.

Following table lists the Cisco UCS infrastructure components used in the solution for production

deployment.

Table 7 Solution Component Details for the first architecture

Component Model Quantity Comments

UCP mangers, UCP

Worker and UCP

Worker hosting DTR

services

Cisco UCS B200

M5 Servers

10 CPU 2 x Intel Xeon Gold E7 6130@2.1GHz

Memory 12 x 16GB@2666 MHz RDIMM

DIMMs total of 192GB

Local Disks 2 x 300 GB SAS disks for OS

Boot and Docker Engine

Network Card 1x1340 VIC

Raid Controller Cisco MRAID 12 G SAS

Controller

Chassis Cisco UCS 5108

Chassis

2

IO Modules Cisco UCS

2304XP Fabric

Extenders

4

Fabric Interconnects Cisco UCS 6332-

16-UP Fabric

Interconnects

2

TOR Switches Cisco Nexus

9396PX Switches

2

List of hardware platform and software versions used in the first architecture.

Solution Design

54

Table 8 Hardware and Software versions for the first architecture

Layer Device Image Comments

Computing Cisco UCS B200 M5

Servers

Version 3.2 (2b) Cisco UCS server

Network Adapter Cisco UCS 1340 Virtual

Interface Card (VIC)

Version 3.2 (2b) Cisco VIC firmware

Network

Cisco UCS 6332-16UP

Fabric Interconnects

Version 3.2 (2b) Cisco UCS Fabric

Interconnect

Cisco Nexus 9396PX

Switches

Version 7.0(3)I4(7) Cisco Nexus TOR Switch

Cisco Software Cisco UCS Manager Version 3.2 (2b) Cisco UCS Manager

Contiv Contiv Netplugin 1.1.7 Contiv v2plugin for DEE

Docker Enterprise Edition

Docker EE Engine Version 17.06.2-ee-5 Docker Enterprise Edition

Engine

Note: This solution has

been validated on this

version of Docker Engine.

Docker Swarm Version 2.2.4 Docker Swarm Scheduler

is embedded in UCP

Note: Docker Swarm

version is appropriately

picked during the UCP

install.

Docker Universal Control

Plane (UCP)

Version 2.2.4 Docker Environment

Orchestrator and

Management Interface

Note: This solution has

been validated on this

version of Docker UCP.

Docker Trusted

Repository (DTR)

Version 2.4.0 Docker Image Store for

Enterprise

Note: This solution has

been validated on this

version of DTR

Operating System (OS) Red Hat Enterprise Linux Version 7.3 Red Hat Linux for bare

metal OS

NIC Driver Cisco UCS 1340 Virtual

Interface Card (VIC)

Version 2.3.0.44 Cisco eNIC device driver

for RHEL 7.3 OS

Below lists the Cisco UCS infrastructure components used in the solution for second architecture.

Solution Design

55

Table 9 Solution Component Details for Second Architecture

Component Model Quantity Comments

UCP Manager, UCP

and DTR worker

nodes

Cisco UCS C220

M5 Servers

4 CPU 2 x Intel Xeon Gold E7 6130@2.1GHz

Memory 12 x 16GB@2666 MHz RDIMM DIMMs

 total of 192GB

Local Disks 8 x 600 GB SAS disks for OS Boot

and Docker Engine

Network Card 1x1385 VIC

Raid Controller Cisco MRAID 12 G SAS

Controller

Fabric Interconnects Cisco UCS 6332-

16UP Fabric

Interconnects

2

TOR Switches Cisco Nexus

9396PX Switches

2

List of hardware platform and software versions used in the second architecture.

Table 10 Hardware and Software Versions for the second architecture

Layer Device Image Comments

Computing Cisco UCS C220 M5

Servers

Version 3.2 (2b) Cisco UCS server

Network Adapter Cisco UCS 1385 Virtual

Interface Card (VIC)

Version 3.2 (2b) Cisco VIC firmware

Network

Cisco UCS 6332-16UP

Fabric Interconnects

Version 3.2 (2b) Cisco UCS Fabric

Interconnect

Cisco Nexus 9396PX

Switches

Version 7.0(3)I4(7) Cisco N9K TOR Switch

Cisco Software Cisco UCS Manager Version 3.2 (2b) Cisco UCS Manager

Contiv Contiv Netplugin 1.1.7 Contiv v2plugin for DEE

Docker Enterprise Edition

Docker EE Engine Version 17.06.2-ee-5 Docker Enterprise Edition

Engine

Note: This solution has

been validated on this

version of Docker Engine.

Docker Swarm Version 2.2.4 Docker Swarm Scheduler

is embedded in UCP

Note: Docker Swarm

version is appropriately

picked during the UCP

Solution Design

56

install.

Docker Universal Control

Plane (UCP)

Version 2.2.4 Docker Environment

Orchestrator and

Management Interface

Note: This solution has

been validated on this

version of Docker UCP.

Docker Trusted

Repository (DTR)

Version 2.4.0 Docker Image Store for

Enterprise

Note: This solution has

been validated on this

version of DTR

Operating System (OS) Red Hat Enterprise Linux Version 7.3 Red Hat Linux for bare

metal OS

NIC Driver Cisco UCS 1340 Virtual

Interface Card (VIC)

Version 2.3.0.44 Cisco eNIC device driver

for RHEL 7.3 OS

Solution Deployment

57

Solution Deployment

Cisco Nexus 9372PX

Initial Configuration and Setup

This section outlines the initial configuration necessary for bringing up a new Cisco Nexus 9000.

Cisco Nexus A

To set up the initial configuration for the first Cisco Nexus switch complete the following steps:

1. Connect to the serial or console port of the switch
Enter the configuration method: console

Abort Auto Provisioning and continue with normal setup? (yes/no[n]: y

---- System Admin Account Setup ----

Do you want to enforce secure password standard (yes/no[y] :

Enter the password for "admin":

Confirm the password for "admin":

---- Basic System Configuration Dialog VDC: 1 ----

This setup utility will guide you through the basic configuration of the system. Setup

configures only enough connectivity for management of the system.

Please register Cisco Nexus9000 Family devices promptly with your supplier. Failure to

register may affect response times for initial service calls. Nexus9000 devices must be

registered to receive entitled support services.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining

dialogs.

Would you like to enter the basic configuration dialog (yes/no): y

Create another login account (yes/no) [n]: n

Configure read-only SNMP community string (yes/no) [n]:

Configure read-write SNMP community string (yes/no) [n]:

Enter the switch name: Docker-N9K-A

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:

Mgmt0 IPv4 address: 10.65.121.54

Mgmt0 IPv4 netmask: 255.255.255.0

 Configure the default gateway? (yes/no) [y]:

IPv4 address of the default gateway: 192.168.155.1

Configure advanced IP options? (yes/no) [n]:

Enable the telnet service? (yes/no) [n]:

Enable the ssh service? (yes/no) [y]:

Type of ssh key you would like to generate (dsa/rsa) [rsa]:

Number of rsa key bits <1024-2048> [1024]: 2048

Configure the ntp server? (yes/no) [n]: y

NTP server IPv4 address: 10.65.121.54

Configure default interface layer (L3/L2) [L2]:

Configure default switchport interface state (shut/noshut) [noshut]:

Configure CoPP system profile (strict/moderate/lenient/dense/skip) [strict]:

2. Review the settings printed to the console. If they are correct, answer yes to apply and save the

configuration

3. Wait for the login prompt to make sure that the configuration has been saved prior to proceeding.

Solution Deployment

58

Cisco Nexus B

To set up the initial configuration for the second Cisco Nexus switch complete the following steps:

1. Connect to the serial or console port of the switch

2. The Cisco Nexus B switch should present a configuration dialog identical to that of Cisco Nexus A

shown above. Provide the configuration parameters specific to Cisco Nexus B for the following con-

figuration variables. All other parameters should be identical to that of Cisco Nexus A.

 Admin password

 Nexus B Hostname: Docker-N9K-B

 Nexus B mgmt0 IP address: 10.65.121.55

 Nexus B mgmt0 Netmask: 255.255.255.0

 Nexus B mgmt0 Default Gateway: 192.168.155.1

Feature Enablement

The following commands enable the IP switching feature and set default spanning tree behaviors:

1. On each Nexus 9000, enter the configuration mode:
 config terminal

2. Use the following commands to enable the necessary features:
feature udld

feature lacp

feature vpc

feature interface-vlan

3. Configure the spanning tree and save the running configuration to start-up:
spanning-tree port type network default

spanning-tree port type edge bpduguard default

spanning-tree port type edge bpdufilter default

copy run start

VLAN Creation

To create the necessary virtual local area networks (VLANs), complete the following step on both switches:

From the configuration mode, run the following commands:

vlan 603

name vlan603

Configure VPC

Configuring VPC Domain

Cisco Nexus A

To configure virtual port channels (vPCs) for switch A, complete the following steps:

Solution Deployment

59

1. From the global configuration mode, create a new vPC domain:
vpc domain 10

2. Make Cisco Nexus A the primary vPC peer by defining a low priority value:
role priority 10

3. Use the management interfaces on the supervisors of the Cisco Nexus switches to establish a

keepalive link:
peer-keepalive destination 10.65.121.55 source 10.65.121.54

4. Enable following features for this vPC domain:
peer-switch

delay restore 150

peer-gateway

ip arp synchronize

auto-recovery

5. Save the configuration.
copy run start

Cisco Nexus B

To configure vPCs for switch B, complete the following steps:

1. From the global configuration mode, create a new vPC domain:
vpc domain 10

2. Make Cisco Nexus A the primary vPC peer by defining a higher priority value on this switch:
role priority 20

3. Use the management interfaces on the supervisors of the Cisco Nexus switches to establish a

keepalive link:
peer-keepalive destination 10.65.121.54 source 10.65.121.55

4. Enable following features for this vPC domain:
peer-switch

delay restore 150

peer-gateway

ip arp synchronize

auto-recovery

5. Save the configuration:
copy run start

Configuring Network Interfaces for VPC Peer Links

Cisco Nexus A

1. Define a port description for the interfaces connecting to VPC Peer Docker-N9K-B.
interface Eth1/9

description VPC Peer Docker-N9K-B:e1/10

interface Eth1/10

description VPC Peer Docker-N9K-B:e1/9

2. Apply a port channel to both VPC Peer links and bring up the interfaces.
interface Eth1/9,Eth1/10

channel-group 11 mode active

no shutdown

3. Enable UDLD on both interfaces to detect unidirectional links.
udld enable

4. Define a description for the port-channel connecting to Docker-N9K-B.
interface port-channel 11

description vPC peer-link

Solution Deployment

60

5. Make the port-channel a switchport, and configure a trunk to allow in-band management, VM traffic,

and the native VLAN.
switchport

switchport mode trunk

switchport trunk native vlan 603

spanning-tree port type network

6. Make this port-channel the VPC peer link and bring it up.
vpc peer-link

no shutdown

copy run start

Cisco Nexus B

1. Define a port description for the interfaces connecting to VPC Peer Docker-N9K-A.
interface Eth1/9

description VPC Peer Docker-N9K-A:e1/10

interface Eth1/10

description VPC Peer Docker-N9K-A:e1/9

2. Apply a port channel to both VPC Peer links and bring up the interfaces.
interface Eth1/9,Eth1/10

channel-group 11 mode active

no shutdown

3. Enable UDLD on both interfaces to detect unidirectional links.
udld enable

4. Define a description for the port-channel connecting to Docker-N9K-A.
interface port-channel 11

description vPC peer-link

5. Make the port-channel a switchport, and configure a trunk to allow in-band management, VM traffic,

and the native VLAN.
switchport

switchport mode trunk

switchport trunk native vlan 603

spanning-tree port type network

6. Make this port-channel the VPC peer link and bring it up.
vpc peer-link

no shutdown

copy run start

Configure Network Interfaces

Cisco Nexus A

1. Define a description for the port-channel connecting to Docker-FI-A.
interface port-channel 12

description Docker-FI-A

2. Make the port-channel a switchport, and configure a trunk to allow in-band management, VM traffic,

and the native VLANs.
switchport mode trunk

switchport trunk native vlan 603

Solution Deployment

61

3. Make the port channel and associated interfaces spanning tree edge ports.
spanning-tree port type edge trunk

spanning-tree guard root

no lacp graceful-convergence

4. Make this a VPC port-channel and bring it up.
vpc 12

no shutdown

5. Define a port description for the interface connecting to Docker-FI-A.
interface Eth1/11

6. Apply it to a port channel and bring up the interface.
channel-group 12 mode active

no shutdown

7. Enable UDLD to detect unidirectional links.
udld enable

8. Define a description for the port-channel connecting to Docker-FI-B.
interface port-channel

description Docker-FI-B

9. Make the port-channel a switchport, and configure a trunk to allow in-band management, VM traffic

VLANs and the native VLAN.
switchport mode trunk

switchport trunk native vlan 603

10. Make the port channel and associated interfaces spanning tree edge ports.
spanning-tree port type edge trunk

spanning-tree guard root

no lacp graceful-convergence

11. Make this a VPC port-channel and bring it up.
vpc 13

no shutdown

12. Define a port description for the interface connecting to Docker-FI-B.
interface Eth1/12

13. Apply it to a port channel and bring up the interface.
channel-group 13 mode active

no shutdown

14. Enable UDLD to detect unidirectional links.
udld enable

copy run start

Cisco Nexus B

1. Define a description for the port-channel connecting to Docker-FI-B.
interface port-channel 12

description Docker-FI-B

2. Make the port-channel a switchport, and configure a trunk to allow in-band management, VM traffic,

and the native VLANs.

Solution Deployment

62

switchport mode trunk

switchport trunk native vlan 603

3. Make the port channel and associated interfaces spanning tree edge ports.
spanning-tree port type edge trunk

spanning-tree guard root

no lacp graceful-convergence

4. Make this a VPC port-channel and bring it up.
vpc 12

no shutdown

5. Define a port description for the interface connecting to Docker-FI-B.
interface Eth1/11

6. Apply it to a port channel and bring up the interface.
channel-group 12 mode active

no shutdown

7. Enable UDLD to detect unidirectional links.
udld enable

8. Define a description for the port-channel connecting to Docker-FI-A.
interface port-channel 13

description Docker-FI-A

9. Make the port-channel a switchport, and configure a trunk to allow in-band management, and VM

traffic VLANs and the native VLAN.
switchport mode trunk

switchport trunk native vlan 603

10. Make the port channel and associated interfaces spanning tree edge ports.
spanning-tree port type edge trunk

spanning-tree guard root

no lacp graceful-convergence

11. Make this a VPC port-channel and bring it up.
vpc 13

no shutdown

12. Define a port description for the interface connecting to Docker-N9K-A.
interface Eth1/12

13. Apply it to a port channel and bring up the interface.
channel-group 13 mode active

no shutdown

14. Enable UDLD to detect unidirectional links.
udld enable

copy run start

Solution Deployment

63

Cisco UCS Manager - Administration

Initial Setup of Cisco Fabric Interconnects

A pair of Cisco UCS 6332-16UP Fabric Interconnects is used in this design. The minimum configuration

required for bringing up the FIs and the embedded Cisco UCS Manager (UCSM) is outlined below. All

configurations after this will be done using Cisco UCS Manager.

Cisco UCS 6332-16UP FI Primary (FI-A)

1. Connect to the console port of the primary Cisco UCS FI.
Enter the configuration method: console

Enter the setup mode; setup newly or restore from backup.(setup/restore)? Setup You

have chosen to setup a new fabric interconnect? Continue? (y/n): y

Enforce strong passwords? (y/n) [y]: y

Enter the password for "admin": <Enter Password>

Enter the same password for "admin": <Enter Password>

Is this fabric interconnect part of a cluster (select 'no' for standalone)? (yes/no)

[n]: y

Which switch fabric (A|B): A

Enter the system name: Docker-FI

Physical switch Mgmt0 IPv4 address: 10.65.122.130

Physical switch Mgmt0 IPv4 netmask: 255.255.255.0

IPv4 address of the default gateway: 10.65.122.1

Cluster IPv4 address: 10.65.122.132

Configure DNS Server IPv4 address? (yes/no) [no]: y

DNS IPv4 address: 171.70.168.183

Configure the default domain name? y

Default domain name: <domain name>

Join centralized management environment (UCS Central)? (yes/no) [n]: <Enter>

2. Review the settings printed to the console. If they are correct, answer yes to apply and save the con-

figuration.

3. Wait for the login prompt to make sure that the configuration has been saved prior to proceeding.

Cisco UCS 6332-16UP FI Secondary (FI-B)

1. Connect to the console port on the second FI on Cisco UCS 6332-16UP FI.
Enter the configuration method: console

Installer has detected the presence of a peer Fabric interconnect. This Fabric inter-

connect will be added to the cluster. Do you want to continue {y|n}? y

Enter the admin password for the peer fabric interconnect: <Enter Password>

Peer Fabric interconnect Mgmt0 IPv4 address: 10.65.122.130

Peer Fabric interconnect Mgmt0 IPv4 netmask: 255.255.255.0

Cluster IPv4 address: 10.65.122.131

Apply and save the configuration (select ‘no’ if you want to re-enter)?(yes/no): y

2. Verify the above configuration by using Secure Shell (SSH) to login to each FI and verify the cluster

status. Status should be as follows if the cluster is up and running properly.
Docker-FI-A# show cluster state

Now you are ready to log into Cisco UCS Manager using either the individual or cluster IPs of the Cisco UCS

Fabric Interconnects.

Configure Ports for Server, Network and Storage Access

Logging into Cisco UCS Manager

To log into the Cisco Unified Computing System (UCS) environment, complete the following steps:

Solution Deployment

64

1. Open a web browser and navigate to the Cisco UCS 6332-16UP Fabric Interconnect cluster IP ad-

dress configured in earlier step.

3. Click Launch Cisco UCS Manager link to download the Cisco UCS Manager software.

4. If prompted, accept security certificates as necessary.

5. When prompted, enter admin as the user name and enter the administrative password.

6. Click Login to log in to Cisco UCS Manager.

7. Select Yes or No to authorize Anonymous Reporting if desired and click OK.

Cisco UCS Manager Synchronize to NTP

To synchronize the Cisco UCS environment to the NTP server, complete the following steps:

1. From Cisco UCS Manager, click Admin tab in the navigation pane.

2. Select All > Timezone Management > Timezone.

3. Right-click and select Add NTP Server.

4. Specify NTP Server IP (for example, 171.68.38.66) and click OK twice to save edits. The Time Zone

can also be specified in the Properties section of the Time Zone window.

Upgrading Cisco UCS Manager

This document assumes that the Cisco UCS Manager is running the version outlined in the Software Matrix. If

an upgrade is required, follow the procedures outlined in the Cisco UCS Install and Upgrade Guides.

Assigning Block of IP addresses for KVM Access

To create a block of IP addresses for in-band access to servers in the Cisco UCS environment, complete the

following steps. The addresses are used for Keyboard, Video, and Mouse (KVM) access to individual servers

managed by Cisco UCS Manager.

 This block of IP addresses should be in the same subnet as the management IP addresses for the Cisco

UCS Manager. And should be configured for out-of-band access.

1. From Cisco UCS Manager, click LAN tab in the navigation pane.

2. Select LAN > Pools > root > IP Pools.

3. Right-click and select Create IP Pool.

4. Specify a Name (for example, ext-mgmt) for the pool. Click Next.

5. Click [+] Add to add a new IP Block. Click Next.

6. Enter the starting IP address (From), the number of IP addresses in the block (Size), the Subnet

Mask, Default Gateway and DNS information. Click OK.

7. Click Finish to create the IP block.

http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-manager/products-installation-guides-list.html

Solution Deployment

65

Editing Chassis Discovery Policy

Setting the discovery policy simplifies the addition of Cisco UCS Blade Server chassis and Cisco Fabric

Extenders. To modify the chassis discovery policy, complete the following steps:

1. From Cisco UCS Manager, click Equipment tab in the navigation pane and select Equipment in the

list on the left.

2. In the right pane, click Policies tab.

3. Under Global Policies, set the Chassis/FEX Discovery Policy to match the number of uplink ports that

are cabled between the chassis or fabric extenders (FEXes) and the fabric interconnects.

4. Set the Link Grouping Preference to Port Channel.

5. Click Save Changes and then OK to complete.

Acknowledging Cisco UCS Chassis

To acknowledge all Cisco UCS chassis, complete the following steps:

1. From Cisco UCS Manager, click Equipment tab in the navigation pane.

2. Expand Chassis and for each chassis in the deployment, right-click and select Acknowledge Chas-

sis.

3. In the Acknowledge Chassis pop-up, click Yes and then click OK.

Enabling Server Ports

To configure ports connected to Cisco UCS servers as Server ports, complete the following steps:

Solution Deployment

66

1. From Cisco UCS Manager, click Equipment tab in the navigation pane.

2. Select Equipment > Fabric Interconnects > Fabric Interconnect A (primary) > Fixed Module.

3. Expand Ethernet Ports.

4. Select the ports that are connected to Cisco UCS Blade server chassis. Right-click and select Con-

figure as Server Port.

5. Click Yes and then OK to confirm the changes.

6. Repeat above steps for Fabric Interconnect B (secondary) ports that connect to servers.

7. Verify that the ports connected to the servers are now configured as server ports. The view below is

filtered to only show Server ports.

Enabling Uplink Ports to Cisco Nexus 9000 Series Switches

To configure ports connected to Cisco Nexus switches as Network ports, complete the following steps:

1. From Cisco UCS Manager, click Equipment tab in the navigation pane.

2. Select Equipment > Fabric Interconnects > Fabric Interconnect A (primary) > Fixed Module.

3. Expand Ethernet Ports.

4. Select the first port (for example, Port 11) that connects to Cisco Nexus A switch, right-click and se-

lect Configure as Uplink Port > Click Yes to confirm the uplink ports and click OK. Repeat for second

port (for example, Port 16) that connects to Cisco Nexus B switch.

5. Repeat above steps for Fabric Interconnect B (secondary) uplink ports that connect to Cisco Nexus A

and B switches.

6. Verify that the ports connected to the servers are now configured as server ports. The view below is

filtered to only show Network ports.

Solution Deployment

67

Configuring Port Channels on Uplink Ports to Cisco Nexus 9000 Series Switches

In this procedure, two port channels are created, one from Fabric A to both the Cisco Nexus switches and

one from Fabric B to both the Cisco Nexus switches.

To configure port channels on Uplink/Network ports connected to Cisco Nexus switches, complete the

following steps:

1. From Cisco UCS Manager, click LAN tab in the navigation pane.

2. Select LAN > LAN Cloud > Fabric A > Port Channels.

3. Right-click and select Create Port Channel.

4. In the Create Port Channel window, specify a Name and unique ID.

Solution Deployment

68

5. In the Create Port Channel window, select the ports to put in the channel (for example, Eth1/33 and

Eth1/34). Click Finish to create the port channel.

Solution Deployment

69

6. Verify the resulting configuration.

7. Repeat above steps for Fabric B and verify the configuration.

Cisco UCS Configuration LAN

Creating VLANs

Complete these steps to create necessary VLANs.

1. From Cisco UCS Manager, click LAN tab in the navigation pane.

2. Select LAN > LAN Cloud > VLANs.

3. Right-click and select Create VLANs. Specify a name (for example, vlan604) and VLAN ID (for ex-

ample, 604).

Solution Deployment

70

4. If the newly created VLAN is a native VLAN, select VLAN, right-click and select Set as Native VLAN

from the list. Either option is acceptable, but it needs to match what the upstream switch is set to.

As this solution uses Contiv Network plugin in L2 VLAN mode, pre-provisioning of user VLANs is important.

There are 2 sets of VLAN needed:

 Externally accessible VLAN for DEE/Contiv hosts in the cluster

 VLAN range to be used for Contiv networking backplane to be consumed by container work-load

Host access VLAN will be used on vNIC1 while Contiv VLANs will be consumed on vNIC2. Users can define

the range of VLAN to be used based on their need.

 Unless VLANs are configured on appropriate vNIC, to be used for Contiv data-path, data forwarding will

not happen. All the Contiv VLANs configured should always be non-native.

An example of Contiv VLANs configured for Container data-path on vNIC2 is given below:

Solution Deployment

71

Creating LAN Pools

Creating MAC Address Pools

The MAC addresses in this pool will be used for traffic through Fabric Interconnect A and Fabric Interconnect

B.

1. From Cisco UCS Manager, click LAN tab in the navigation pane.

2. Select LAN > Pools > root > MAC Pools.

3. Right-click and select Create Mac Pool.

4. Specify a name (for example, Docker-EE) that identifies this pool.

5. Leave the Assignment Order as Default and click Next.

6. Click [+] Add to add a new MAC pool.

7. For ease-of-troubleshooting, change the 4th and 5th octet to 99:99 traffic using Fabric Interconnect

A. Generally speaking, the first three octets of a mac-address should not be changed.

8. Select a size (for example, 500) and select OK and then click Finish to add the MAC pool.

Solution Deployment

72

Creating LAN Policies

Creating vNIC Templates

To create virtual network interface card (vNIC) templates for Cisco UCS hosts, complete the following steps.

Two vNICs are created for redundancy one through Fabric A and another through Fabric B. All host traffic

is carried across these two vNICs in this design.

Creating vNIC Template for Fabric B Contiv Data-path

1. From Cisco UCS Manager, select LAN tab in the navigation pane.

2. Select LAN > Policies > root > vNIC Templates.

3. Right-click and select Create vNIC Template.

4. Specify a template Name (for example, Docker-eth0) for the policy.

5. Keep Fabric A selected and keep Enable Failover checkbox checked.

6. Under Target, make sure that the VM checkbox is NOT selected.

7. Select Updating Template as the Template Type.

8. Under VLANs, select the checkboxes for all VLAN traffic that a host needs to see (for example, 603)

and select the Native VLAN radio button.

9. For CDN Source, select User Defined radio button. This option ensures that the defined vNIC name

10. For CDN Name, enter a suitable name.

11. Keep the MTU as 1500.

12. For MAC Pool, select the previously configured LAN pool (for example, Docker).

13. Choose the default values in the Connection Policies section.

Solution Deployment

73

Solution Deployment

74

14. Click OK to create the vNIC template.

Creating vNIC Template for Fabric A Host Access Path

Repeat the above steps to create a vNIC template (for example, Docker-vNIC1) through Fabric A.

Cisco UCS Configuration Server

Creating Server Policies

In this section creation of various server policies that are used in this solution are shown.

Creating BIOS Policy

To create a server BIOS policy for Cisco UCS hosts, complete the following steps:

Solution Deployment

75

1. In Cisco UCS Manager, click Servers tab in the navigation pane.

2. Select Policies > root > BIOS Policies.

3. Right-click and select Create BIOS Policy.

4. In the Main screen, enter BIOS Policy Name (for example, Docker) and change the Consistent Device

Naming to enabled state. Click Next.

5. Keep the other options in all the other tabs at Platform Default.

6. Click Finish and OK to create the BIOS policy.

Creating Boot Policy

This solution uses scriptable vMedia feature for UCS Manager to install bare metal OSes on DEE cluster

nodes. This option is fully automated and does not require PXE boot and any other manual intervention.

vMedia policy and boot policy are two major configuration items in order to get it working.

To create the boot policy, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.

2. Select Policies > root > Boot Policies.

3. Right-click and select Create Boot Policy.

4. In the Create Boot Policy window, enter the policy name (for example, DEE-vMedia).

5. Boot mode should be set to Legacy and rest of the options should be left at default.

6. Now select Add Local LUN under Add Local Disk. In the pop-up window select Primary radio button

and for the LUN Name, enter the boot lun name (for example, Boot-LUN). Click OK to add the local

lun image. This device will be the target device for bare metal OS install and will be used for host

boot-up.

 LUN name here should match with the LUN name defined in the storage profile to be used in service pro-

file templates.

7. Add CIMC mounted CD/DVD under CIMC Mounted vMedia section, next to the local LUN definition.

This device will be mounted for accessing boot images required during installation.

8. Add again CIMC mounted HDD from the section device class which is CIMC Mounted vMedia. This

device will be mounted for bare metal operating system installation configuration.

9. After the creation Boot Policy, you can view the created boot options as shown.

Solution Deployment

76

Creating Host Firmware Package Policy

Firmware management policies allow the administrator to select the corresponding packages for a given

server configuration. These policies often include packages for adapter, BIOS, board controller, FC adapters,

host bus adapter (HBA) option ROM, and storage controller properties. To create a firmware management

policy for a given server configuration in the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click Servers tab in the navigation pane.

2. Select Policies > root > Host Firmware Packages.

3. Right-click on Host Firmware Packages and select Create Host Firmware Package.

4. Enter the name of the host firmware package (for example, 3.2.2b).

5. Leave Simple selected.

6. Select the package versions for the different type of servers (Blade, Rack) in the deployment (for ex-

ample, 3.2(2b) for Blade and Rack servers.

7. Click OK twice to create the host firmware package.

Solution Deployment

77

Creating UUID Suffix Pool

To configure the necessary universally unique identifier (UUID) suffix pool for the Cisco UCS environment,

complete the following steps:

1. From Cisco UCS Manager, select Servers tab in the navigation pane.

2. Select Servers > Pools > root > UUID Suffix Pools.

3. Right-click and select Create UUID Suffix Pool.

4. Specify a Name (for example, Docker) for the UUID suffix pool and click Next.

5. Click [+] Add to add a block of UUIDs. Alternatively, you can also modify the default pool and allo-

cate/modify a UUID block.

6. Keep the From field at the default setting. Specify a block size (for example, 100) that is sufficient to

support the available blade or server resources.

7. Click OK, click Finish and click OK again to create UUID Pool.

Solution Deployment

78

Creating Server Pools

Three server pools are created, one each for DTR nodes, UCP master/controller nodes, and UCP worker

nodes. Since there are three DTR nodes, three UCP-Master nodes and 4 UCP-Worker nodes in this solution,

separate pools are created for each of these categories coming from two different chassis. This enables you

to expand the cluster based on your requirements. Any of these categories of nodes can be scaled up,

adding blade/s to the respective pool and creating new service profile from the corresponding template to

add the new node to the DEE/Contiv cluster.

To configure the necessary server pool for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click Servers tab in the navigation pane.

2. Select Pools > root.

3. Right-click Server Pools and select Create Server Pool.

4. Enter name of the server pool (for example, DEE-Ctrl).

5. Optional: Enter a description for the server pool.

6. Click Next.

7. Select two (or more) servers to be added and click >> to add them to the server pool.

Solution Deployment

79

8. Click Finish to complete.

9. Similarly create two more Server Pools (for example, DEE-DTR and DEE-Wrk). The created Server

Pools can be viewed under Server Pools.

Solution Deployment

80

 For second architecture one server pool (for example, Docker) is created using above steps and selecting

rack servers into the pool:

Cisco UCS Configuration Storage

Creating Storage Profile

Storage Profiles provide a systematic way to automate the steps for provisioning Disk Groups, RAID Levels,

LUNs, boot drives, hot spares, and other related resources. They are used in combination with Service

Profile Templates to map the associations between logically defined storage resources and servers.

Having a storage profile created will reduce the task of configuring two virtual disks in the RAID Controller

Option ROM or create a custom file system layout at the time of OS installation.

Storage profile is created with two local LUNs one each for boot and data. Complete the following to create

a storage profile:

1. In Cisco UCS Manager, click Storage tab in the navigation pane.

2. Select Storage > Storage Profiles.

3. Right-click Storage Profiles and select Create Storage Profile.

4. Enter the name for the Storage Profile (for example, Docker-StgProf).

Solution Deployment

81

5. In the Local LUNs tab, click + on the right plane of the Create Storage Profile Window.

6. Create Local LUN window appears. Keep the Create Local LUN radio button selected.

7. Enter the LUN name (for example, Boot-LUN) and specify the desired size (for example, 60GB).

Solution Deployment

82

8. For select Disk Group configuration, Click Create Disk Group Policy.

9. Enter the Disk Group name (for example, Docker-DG). Keep the RAID Level as RAID 1 Mirrored,

since blades come with only 2 disks.

10. Select Disk Group Configuration (Manual) radio button. Click + to add two slots; one for Boot-LUN

and the other for Data-LUN. Keep the other fields as is and click OK.

Solution Deployment

83

11. Repeat step 10 to select another slot which is 2 for blade servers. Click OK.

12. Select the created disk group from the Select Disk Group Configuration drop-down (for example,

Docker-DG). Click OK to create Boot-LUN.

Solution Deployment

84

13. Repeat step 7 to create Data-LUN. Enter the appropriate name (for example, Data-LUN) and size (for

example, 200GB) and select Disk Group Configuration (for example, Docker-DG). Click OK to create

Data-LUN.

14. Press OK to create storage profile with 2 LUNs Boot and Data.

Solution Deployment

85

15. The created Local LUNs can be view under Storage Profiles and Disk Group Policy under Storage

Policies.

Solution Deployment

86

 For second architecture with C-Series rack servers, Boot-LUN and Data-LUN is created with 100GB and

3000GB size:

 For second architecture Disk Group Policy uses RAID-10 with Automatic configuration option by selecting

all 6 internal disks:

 RAID-10 provides mirrored and stripped pair of disks thereby giving redundancy and performance. RAID-

10 requires a minimum of 4 disks, in our solution there are 6 disks on each of the C-Series servers. This

gives us about 3TB of storage space for Docker run-time and local image store and allows greater storage

scalability.

Solution Deployment

87

Creating Service Profile Templates

In this procedure, three service profile templates are created: one each for DTR nodes, UCP

manager/controller nodes and UCP worker nodes. The first profile template is created, then cloned and

renamed for the second and third profiles. Since there are three DTR, three UCP manager/controller and four

UCP worker nodes, service profiles are instantiated for these categories from the three different service

profile templates.

Creating Service Profile Template for UCP Manager/Master Nodes

To create service profile templates (for example, controller nodes), complete the following steps:

1. From Cisco UCS Manager, click Servers tab in the navigation pane.

2. Select Servers > Service Profile Template > root.

3. Right-click root and select Create Service Profile Template to open the Create Service Profile

Template wizard.

4. In the Identify the Service Profile Template screen, configure the following:

a. Enter name (for example, DEE-Ctrl) for the service profile template.

b. Select Updating Template radio button.

c. Under UUID, select the previously configured UUID pool (for example, Docker).

d. Click Next.

5. In the Storage Provisioning screen, configure the following:

a. Go to Storage Profile Policy tab.

Solution Deployment

88

b. In the Storage profile drop-down, select a policy. Choose the previously configured policy (for

example, Docker-StgProf). Local LUNs tab lists the previously configured Local LUNs.

c. Click Next.

6. In the Networking screen, configure the following:

a. Restore the default setting for Dynamic vNIC Connection Policy.

b. Click Expert radio button to configure the LAN connectivity.

Solution Deployment

89

c. Click on [+] Add, to add a vNIC to the template.

d. In the Create vNIC dialog box:

 Enter the name (for example, eth1) of the vNIC.

 Check the Use vNIC Template check box.

 In the vNIC Template list, choose the previously created vNIC Template for Fabric A boot (for

example, Docker-Eth1).

 In the Adapter Policy list, choose Linux.

 Click OK to add this vNIC to the template.

Solution Deployment

90

e. Click on [+] Add to add a second vNIC to the template.

f. In the Create vNIC dialog box:

 Enter the name (for example, eth2) of the vNIC.

 Check the Use vNIC Template check box.

 In the vNIC Template list, choose the previously created vNIC Template for Fabric B boot (for

example, Contiv-Eth2).

 In the Adapter Policy list, choose Linux.

 Click OK to add this vNIC to the template.

Solution Deployment

91

g. Review the configuration on the Networking screen of the wizard. Make sure that both the vNICs

are created. Click Next.

Solution Deployment

92

7. Click Next in the SAN Connectivity after selecting `No vHBAs`, skip Zoning and vNIC/vHBA Place-

ment sections by pressing Next.

8. Under vMedia Policy, click Create vMedia Policy. This policy will enable us to install bare metal oper-

ating system using PXE less automated environment through scripted vMedia policy feature in UCS

Manager.

Solution Deployment

93

9. Name vMedia policy, keep `Retry on Mount Failure` to default, which `yes`. Click on [+] Add for add-

ing CIMC mounted media

a. Mount point name can be of your choice, RHEL7 is used in this guide, as the solution is based on

RHEL7.x OS version.

b. Device type for boot images should be set to `CDD` as an ISO image will be mounted during in-

stall time.

c. Protocol should be set to HTTP, as kernel and installer configuration are hosted on web-server

kick-start file.

d. Hostname/IP Address of the HTTP server host.

e. For boot kernel images, set Image Name Variable as `None`.

f. ISO file name which will be mounted for installing boot images.

Solution Deployment

94

10. Press OK to move forward to configure mounting of Kickstart file. Press [+] Add again.

a. Use `ksimage` as the mount point name.

b. Select device type for second mount as `HDD`.

c. Keep the protocol as `HTTP`, as this image is hosted on the same server as for the first mount

point.

d. Host address is same as before `10.65.122.80`, which is the web-server hostname.

e. Image variable name should be selected as `Service Profile Name`. This will enable you to cus-

tomize kickstart file for each Docker EE cluster nodes. Setting ip address and hostname for indi-

vidual nodes are the two major items for customization.

 Here kickstart file must be named to match with the service profile names of the cluster nodes.

f. Remote path should be the same as before - `install`. This is the directory served by the web-

server containing boot kernel images and kickstart files.

Solution Deployment

95

11. Click OK to continue finishing vMedia policy creation.

Solution Deployment

96

12. Select the vMedia policy that was created in the service profile template as shown below. Click Next.

Solution Deployment

97

13. In the Set Boot Order screen, select the previously created boot policy from the Boot Policy drop-

down (for example, DEE-vMedia).

Solution Deployment

98

14. Click Next.

15. Click Next in Maintenance Policy screen after selecting maintenance policy as `default`.

16. In the Server Assignment screen, configure the following:

a. For Pool Assignment, choose the previously created server pools from the list (for example, DEE-

Ctrl).

b. Leave the Power State as UP for when the Profile is applied to a server

c. For Server Pool Qualification, select the previously created policy from the list (for example, all-

chassis).

d. Expand the Firmware Management section. For the Host Firmware Package, select the previously

selected policy from the list (for example, 3.2.2b).

e. Click Next.

 Assigning template to server pool results in automatic association of service profiles whenever they get

instantiated from the templates.

Solution Deployment

99

17. In the Operation Policies screen, configure the following:

a. For the BIOS Policy list, select the previously configured policy (for example, Docker).

b. Expand Management IP Address, select the IP address pool (for example, ext-mgmt (0/15)) from

the management IP Address policy drown-down under outband IP4 option.

Solution Deployment

100

18. Click Finish to complete the creation of the Service Profile Template. Created service profile tem-

plate will get listed under Service Profile Templates as shown in the below figure.

Creating Service Profile Template for DTR Nodes

Repeat the steps 1 to 18 detailed in the previous sub-section for creating a service profile template for DTR

nodes using already created policies and pools previously. For example, vMedia policy Docker-EE and boot

Solution Deployment

101

policy DEE-vMedia. After creating the service profile template, the template for DTR nodes will look similar

to the below screenshot.

Creating Service Profile Template for UCP Worker Nodes

Repeat the steps 1 to 18 detailed in the previous sub-section for creating a service profile template for UCP

worker nodes using already created policies and pools previously. For example, vMedia policy Docker-EE

and boot policy DEE-vMedia. After creating the service profile template, the template for UCP worker nodes

will look similar to the below screenshot.

Solution Deployment

102

Configuring PXE-less Automated OS Installation Infra with UCSM vMedia Policy

UCSM vMedia policy applied with CIMC mounted vMedia devices in boot policy give us a way to creates an

automated operating system installation infrastructure for DEE cluster bare metal nodes. This does not

require combination of PXE and TFTP servers for doing the same job. This section provides details on

configuring vMedia policy to create an automated environment to provision bare metal Red Hat 7.3

installations required for Docker EE cluster nodes.

 PXE-less automated OS installation infra with UCS Manager vMedia policy is not an essential deployment

step for this solution. It is being documented here with an intention to provide users a quick and effective

way to automate bare metal provisioning especially at scale. Users of this guide are free to choose any of

the methods they are familiar with, including manual method using CD/DVD.

Prerequisites

To use UCS Manager vMedia policy for automated provisioning of operating system following essential pre-

requisites are needed:

1. A build server with Red Hat OS version 7 and above is needed. This solution uses a RHEL 7.3 host.

 Build server is not part of the solution BOM, as users/administrators are free to use any of the existing RH

based system which meets the requirements.

2. Web service, which can be run on the same build server, with bare minimum configuration to host

and serve boot kernel ISO, kickstart configuration image files and installation media.

3. Web services should be running on the same management vLAN as that of the UCS Manager. It

should also be configured with IP address from the same subnet as that of UCS Manager VIP.

 If having a web-server on the same vLAN and subnet as that of UCS Manager can be a challenge, then it

should at least run a subnet having inter-vLAN routing configured -server

should be accessible from the UCS Manager subnet. However, for an optimal performance on automated

installation, it is recommended to have a web-server and UCS Manager on the same subnet.

Web Server Installation and Configuration

1. On a server designated as build server install Apache http server. It can either be installed at the time

of build server provisioning or post to it by issuing following command:
yum install http

<snip>

Running transaction

 Installing : mailcap-2.1.41-2.el7.noarch 1/3

 Installing : httpd-tools-2.4.6-45.el7_3.4.x86_64 2/3

 Installing : httpd-2.4.6-45.el7_3.4.x86_64 3/3

 Verifying : httpd-tools-2.4.6-45.el7_3.4.x86_64 1/3

 Verifying : mailcap-2.1.41-2.el7.noarch 2/3

 Verifying : httpd-2.4.6-45.el7_3.4.x86_64 3/3

Installed:

httpd.x86_64 0:2.4.6-45.el7_3.4

Dependency Installed:

Solution Deployment

103

 httpd-tools.x86_64 0:2.4.6-45.el7_3.4

mailcap.noarch 0:2.1.41-2.el7

Complete!

2. Open /etc/httpd/conf/httpd.conf in an editor and change following parameters:
Listen <ip address of the server>:80

ServerName <ip address of the server>:80

3. Enable and start httpd.service:
systemctl enable httpd.service

systemctl start httpd.service

firewall-cmd --zone=public -–permanent --add-service=http

4. Create directories inside http document root
mkdir /var/www/html/ISO

mkdir /var/www/html/vMedia

mkdir /var/www/html/install

5. Comment out all lines inside /etc/httpd/conf.d/welcome.conf
#<LocationMatch "^/+$">

Options -Indexes

ErrorDocument 403 /.noindex.html

#</LocationMatch>

#<Directory /usr/share/httpd/noindex>

AllowOverride None

Require all granted

#</Directory>

#Alias /.noindex.html /usr/share/httpd/noindex/index.html

6. Restart httpd.service
systemctl restart httpd.service

7. Web server should show following directory structure, that shown earlier

Create Images

Two images are needed for bootstrapping the operating system on the bare metal DEE cluster nodes:

1. ISOLINUX Boot ISO Image This image is common for all the DEE cluster nodes. To prevent clogging

the network at one go with entire OS distribution while bootstrapping the cluster nodes, bare minimal

Solution Deployment

104

files and configs along with vmlinuz and initrd images are part of this boot IOS image. Rest of the in-

stallation media is served separately.

2. Kickstart Disk Image This consists of kickstart file only, to be mounted on the bootstrapped nodes

via vMedia policy. This unique disk image is created for each cluster nodes and named as the UCSM

service profile names of each of them. Each disk image differs with each other only by host-names

and IP address of the bare metal nodes getting installed with operating system. Rest of the configu-

ration remains same.

Creating Boot ISO Image

The boot ISO image requires specific binaries and other files to be extracted out of OS installation media.

1. Copy RHEL 7.3 installation DVD ISO file to the root of the build/web-server

2. Mount ISO to the web-
mount -o loop RHEL-7.3-20161019.0-Server-x86_64-dvd.iso /var/www/html/ISO/

3. Extract following files from mounted ISO to /var/www/html/vMedia
cd /var/www/html/vMedia/

cp -a ../ISO/isolinux .

cp ../ISO/.discinfo isolinux/

cp ../ISO/.treeinfo isolinux/

cp -a ../ISO/LiveOS isolinux/

cp -a ../ISO/images isolinux/

chmod 664 isolinux/isolinux.bin

4. Edit isolinux/isolinux.cfg file to change the first label entry to look as below:
label linux

 menu label ^Install Red Hat Enterprise Linux 7.3

 menu default

 kernel vmlinuz

 append initrd=initrd.img inst.stage2=hd:LABEL=RHEL-7.3\x20Server.x86_64

inst.ks=hd:LABEL=Docker:ks.cfg quiet

 Follow these steps to create boot iso image for the C-Series/ Second architecture:

 1. RHEL7.3 base operating system distribution media does not include driver for raid controller

(UCSC-RAID-M5) with C220 M5 servers. Copy megaraid_sas driver ISO file to

/var/www/html/vMedia/isolinux directory

 2. The driver ISO for C220 M5 megaraid_sas driver can be downloaded from Cisco.com:

https://software.cisco.com/download/release.html?mdfid=283862063&softwareid=283853158&re

lease=3.1(2)&relind=AVAILABLE&rellifecycle=&reltype=latest

 3. The required megaraid_sas driver ISO can be extracted by navigating to the path: ISO -> stor-

age -> LSI -> UCS-RAID-M5 -> RHEL -> RHEL7.3 -> megaraid_sas-07.701.19.00_el7.3-

1.x86_64.iso

 4. Edit Isolinux/isolinux.cfg file for C-Series architecture as:

 label linux

 menu label ^Install Red Hat Enterprise Linux 7.3

 menu default

 kernel vmlinuz

 append initrd=initrd.img inst.dd=path:/run/install/repo/megaraid_sas-07.701.19.00_el7.3-

1.x86_64.iso inst.stage2=hd:LABEL=RHEL-7.3\x20Server.x86_64

inst.ks=hd:LABEL=Docker:ks.cfg quiet

 5. The required megaraid_sas driver ISO can be extracted by navigating to the path: ISO -> stor-

https://software.cisco.com/download/release.html?mdfid=283862063&softwareid=283853158&release=3.1(2)&relind=AVAILABLE&rellifecycle=&reltype=latest
https://software.cisco.com/download/release.html?mdfid=283862063&softwareid=283853158&release=3.1(2)&relind=AVAILABLE&rellifecycle=&reltype=latest

Solution Deployment

105

age -> LSI -> UCS-RAID-M5 -> RHEL -> RHEL7.3 -> megaraid_sas-07.701.19.00_el7.3-

1.x86_64.iso

 `menu default` is added, the text following `label check` is commented out, which is a default media

check option. `inst.ks` makes the installation process automatic. `Docker` label attached to ks.cfg

allows us to use a unique kickstart files for each of the cluster nodes enabling us to customize

them.

5. Edit isolinux/isolinux.cfg file to change the timeout value on lower side, so that system starts the in-

stallation process without delay:
 timeout 10

6. Build ISO image using following command:
mkisofs -o redhat7.3-boot.iso -b isolinux.bin -c boot.cat -no-emul-boot -V 'RHEL-7.3

Server.x86_64' -boot-load-size 4 -boot-info-table -r -J -v -T isolinux/

<snip>

<snip>

Total translation table size: 6694

Total rockridge attributes bytes: 2601

Total directory bytes: 6144

Path table size(bytes): 54

Done with: The File(s) Block(s) 254532

Writing: Ending Padblock Start Block 254571

Done with: Ending Padblock Block(s) 150

Max brk space used 1c000

254721 extents written (497 MB)

7. vMedia directory shows the boot ISO image ready. Copy this image to `install` directory, as this di-

rectory path is used in the vMedia policy created in UCS Manager:
vMedia]# ls -ltr

total 509444

dr-xr-xr-x. 4 root root 279 Dec 2 04:56 isolinux

-rw-r--r--. 1 root root 521668608 Dec 2 04:59 redhat7.3-boot.iso

cp redhat7.3-boot.iso ../install/

Creating Kickstart Images

In order to mount kickstart configuration file for continuing the installation after boot images are loaded on to

the bare metal cluster nodes, the HDD image should be provided which has the embedded ks.cfg.

1. Following is a sample kickstart file which is best suited for Docker EE cluster with minimal operating

system requirements:
#version=DEVEL

System authorization information

auth --enableshadow --passalgo=sha512

#repo --name="Server-HighAvailability" --

baseurl=file:///run/install/repo/addons/HighAvailability

#repo --name="Server-ResilientStorage" --

baseurl=file:///run/install/repo/addons/ResilientStorage

Use CDROM installation media

#cdrom

Use graphical install

graphical

Run the Setup Agent on first boot

firstboot --disable

ignoredisk --only-use=sda

Solution Deployment

106

Keyboard layouts

keyboard --vckeymap=us --xlayouts='us'

System language

lang en_US.UTF-8

Network information

install

url --url=http://<web-server ip>/ISO

#network --device eno6 --bootproto dhcp

#network --bootproto=dhcp --device=eno6 --onboot=off --ipv6=auto

network --device=eno5 --activate --bootproto=static --ip=<ip address> --

netmask=<netmask> --gateway=<gateway ip> --nameserver=<name server ip>

network --hostname=<hostname>

Root password

rootpw --iscrypted <your encrypted root password>

System services

services --disabled="chronyd"

System timezone

timezone Asia/Kolkata --isUtc --nontp

user --name=cluster-admin --password=<your encrypted password> --iscrypted --

gecos="cluster-admin"

X Window System configuration information

xconfig --startxonboot

System bootloader configuration

bootloader --append="crashkernel=auto" --location=mbr --boot-drive=sda

autopart --type=lvm

Partition clearing information

clearpart --none --initlabel

reboot after the installation.

reboot

%packages

@base

@compat-libraries

@core

@desktop-debugging

@development

@dial-up

@file-server

@fonts

@gnome-desktop

@guest-agents

@guest-desktop-agents

@input-methods

@internet-browser

@java-platform

@multimedia

@network-file-system-client

@print-client

@x11

kexec-tools

%end

%post

echo "search cisco.com" > /etc/resolv.conf

echo "nameserver <name server ip>" >> /etc/resolv.conf

#---- Install our SSH key ----

mkdir -m0700 /root/.ssh/

cat <<EOF >/root/.ssh/authorized_keys

<< your ssh-rsa public key >>

Solution Deployment

107

EOF

set permissions

chmod 0600 /root/.ssh/authorized_keys

addon com_redhat_kdump --enable --reserve-mb='auto'

%end

 The above kickstart file needs user input values to be updated as per your environment. Following input

values need to to be updated -

1. Installation Media hosting url - url --url=http://<replace with your web host ip>/ISO

2. Host name, ip address, gateway, netmask and name servers should be replaced with applicable ones.

3. Network device name (eno5) should have remained same between the B-series servers and C-series

servers from both the architectures, as long as there are no additional h/w installed and BIOS policy with

Consistent Device Names (CDN) enablement have been used

4. For B-Series/first architecture under # System bootloader configuration, `--boot-drive=sda` should be

used. On the other hand, for C-Series/second architecture this should be modified as `--boot-drive=sdd`.

Also, for second architecture under # Run the Setup Agent on first boot, `ignoredisk --only-use=sda`

should be changed to `sdd`. However, for first architecture, make sure to keep `ignoredisk --only-

use=sda`.

5. Root password should be replaced with encrypted root password of your choice. To generate `openssl

passwd -1` can be used to encrypt root password

6. Non-root user name and password should be changed also. Same method as given above can be used

to generate encrypted password for the non-root user

7. In order to allow password-less ssh access to DEE cluster nodes from build/web-server, %post section

should have copy pasted authorized_keys for root user. This will help in subsequent automated post-

installation tasks using Ansible playbook

2. Following are the steps to generate .img file for a given ks.cfg:
cp /root/ks.cfg /var/www/html/install/

cd /var/www/html/install/

fallocate -l 1M DEE-Ctrl-1.img

ls -ltr

total 510472

-rw-r--r--. 1 root root 521668608 Dec 2 05:04 redhat7.3-boot.iso

-rwxr-xr-x. 1 root root 2594 Dec 2 05:48 ks.cfg

-rw-r--r--. 1 root root 1048576 Dec 2 05:49 DEE-Ctrl-1.img

dd if=/dev/zero of=DEE-Ctrl-1.img bs=1M count=1 <<< where DEE-Ctrl-1 is the hostname

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.001038 s, 1.0 GB/s

mkfs -t ext4 DEE-Ctrl-1.img

mke2fs 1.42.9 (28-Dec-2013)

DEE-Ctrl-1.img is not a block special device.

Proceed anyway? (y,n) y

Filesystem too small for a journal

Discarding device blocks: done

Filesystem label=

Solution Deployment

108

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

Stride=0 blocks, Stripe width=0 blocks

128 inodes, 1024 blocks

51 blocks (4.98%) reserved for the super user

First data block=1

Maximum filesystem blocks=1048576

1 block group

8192 blocks per group, 8192 fragments per group

128 inodes per group

Allocating group tables: done

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

mkdir mnt

mount -o loop DEE-Ctrl-1.img mnt/

cp ks.cfg mnt/

umount mnt/

e2label DEE-Ctrl-1.img Docker <<<< This should match exactly with isolinux.cfg entry

blkid DEE-Ctrl-1.img

DEE-Ctrl-1.img: LABEL="Docker" UUID="ee1fa4d2-2ae2-4318-8706-d5bc0ae0be62" TYPE="ext4"

<<< this verifies that image file labeled correctly.

 The kickstart file name must match with the cluster node service profile name.

Service Profile Instantiation and Association

Service Profile Instantiation

In these steps, service profiles are instantiated for DTR, UCP manager/controller and UCP worker nodes

from their respective templates.

To create service profiles from template, complete the following steps:

1. From Cisco UCS Manager, click Servers tab in the navigation pane.

3. Expand Servers > Service Profile Templates.

4. Right-click on the specific template (for example, DEE-Ctrl) and select Create Service Profiles from

Template to open the Create Service Profile window.

5. In the Create Service Profile window, enter the profile name (for example, DEE-Ctrl-), enter the suffix

to start the instances and enter the number of instances to be instantiated.

Solution Deployment

109

 This will automatically associate service profiles to the servers, present in the pools.

6. Similarly instantiate other two service profiles (for example, DEE-DTR and DEE-Wrk nodes).

Solution Deployment

110

7. After the server pool association and service profile association gets completed, you can see all the

services profiles shown in the associated state as shown below.

Solution Deployment

111

 For second architecture only one common template (for example, Docker) is created and service profiles

are instantiated and associated on all the four nodes:

Installation of Red Hat Enterprise Linux Operating System

UCS Manager vMedia policy feature is used in this solution to enable automated bare metal OS installation.

The installation process gets initialized automatically once the service profiles are associated.

1. vMedia policy at UCS Manager for CIMC mounted CD/DVD and HDD image files, needed for bare

metal install

2. A web server hosting Boot ISO, Kickstart HDD image and rest of the installation media

3. Boot policy having vMedia devices to be available for bootstrapping and subsequent operating sys-

tem install

Solution Deployment

112

Following steps shows the automated OS install workflow in various stages:

1. Once the service profiles get associated, boot ISO gets picked up for booting kernel

2. RHEL 7.3 installation is in progress

3. Post installation tasks progress indication

Solution Deployment

113

4. Server reboots post OS installation

5. Host OS is up and running

Solution Deployment

114

At the UCS Manager level, CIMC mounted boot ISO and kickstart HDD image gets mounted at the boot time

on the host as shown below, when it boots up for the first time. Need Cisco UCS Manager CLI access to

monitor the boot process:

 Docker-A# scope server 1/1
 Docker-A /chassis/server # scope cimc

 Docker-A /chassis/server/cimc # show vmedia-mapping-list expand detail

 Vmedia Mapping List:

 Full Name: sys/chassis-1/blade-1/mgmt/actual-mount-list

 Vmedia Mapping:

 Vdisk Id: 1

 Mapping Name: RHEL7

 Device Type: Cdd

 Remote IP: 10.65.122.80

 Image Path: install

 Image File Name: redhat7.3-boot.iso

 Mount Protocol: Http

 Port Number: 80

 Mount Status: Mounted

 Error: None

 Password:

 User ID:

 Authentication Protocol: None

 Remap Mount on Host OS Eject: No

 Vdisk Id: 2

 Mapping Name: ksimage

 Device Type: Hdd

 Remote IP: 10.65.122.80

 Image Path: install

 Image File Name: DEE-Ctrl-2.img

Solution Deployment

115

 Mount Protocol: Http

 Port Number: 80

 Mount Status: Mounted

 Error: None

 Password:

 User ID:

 Authentication Protocol: None

 Remap Mount on Host OS Eject: No

 Installation workflow remains the same for both the architectures.

Docker Enterprise Edition Installation

This section provides detailed instructions on installing Docker Enterprise Edition cluster nodes. Ansible

playbook holds a comprehensive list of post OS installation tasks. On running the Ansible playbook post OS

install tasks get executed step by step to get the Docker EE up and running on all the cluster nodes along

with their defined node roles. Following steps are executed on running the Ansible playbook:

1. Post installation configurations, which include:

a. Setting up environment, example: proxy settings

b. Updating Cisco VIC enic driver to the latest async driver compatible with UCS Manager release

c. Registering system to Red Hat Subscription Management, attaching to rhel-7-server repo and

completing Yum update

d. Configuring NTP and firewall required for Docker EE cluster

e. Configuring Storage for Docker v-

f. Installing Docker EE engine

g. Installing Docker UCP Manager, Manager replicas, workers, DTR and DTR replicas

2. Setting up Ansible on a build server which is used for automated OS install

3. Setting up Ansible playbook for configuring all the above mentioned tasks required for Docker EE

Configuring Firewall Ports for Docker EE

Docker Enterprise Edition requires some TCP and UDP ports to be opened to facilitate communication

between its container infrastructure services running on cluster nodes. This needs to be done before

installing Docker EE Engine and the Docker UCP. For opening ports on hosts, a separate task has been

created in the Ansible playbook. For every port type such as TCP and UDP, refer the table below to see the

specific ports to be opened with details.

Table 11 TCP and UDP ports to be opened on hosts for Docker UCP

Hosts Direction Port Purpose

managers, workers in TCP 443

(configurable)

Web app and CLI

client access to UCP

Solution Deployment

116

managers in TCP 2376

(configurable)

Port for the Docker

Swarm manager.

Used for backwards

compatibility

managers, workers In, out TCP 2377 Port for

communication

between Swarm

nodes

managers, workers in, out UDP 4789 Overlay networking

managers, workers in, out TCP + UDP 7946 Port for Gossip-

based clustering

managers, workers in TCP 12376 Proxy for TLS,

provides access to

UCP, Swarm, and

Engine

managers in TCP 12379 Internal node

configuration, cluster

configuration, and HA

managers in TCP 12380 Internal node

configuration, cluster

configuration, and HA

managers in TCP 12381 Port for certificate

authority

managers in TCP 12382 Port for UCP

certificate authority

managers in TCP 12383 Used by the

authentication

storage backend

managers in TCP 12384 Used by

authentication

storage backend for

replication across

controllers

managers in TCP 12385 The port where the

authentication API is

exposed

managers in TCP 12386 Used by the

authentication worker

Solution Deployment

117

Ansible Installation

Ansible is an open source automation tool for configuration management and provisioning. Drudgery tasks

such as post installation tasks can be quickly achieved using Ansible. This powerful tool needs a very few

steps to configure a large cluster nodes to get them -

stalled through rhel-7-server-extra-rpms

repo.

Ansible controller node does not require any additional software or packages. It's the node from where

Ansible commands/playbook is executed for automated configuration of all the nodes including the

controller nodes itself. Note that the Ansible controller node can be part of Docker EE cluster nodes itself.

 This solution uses a build/web-server node for automated PXE-less OS installation. With a separate build

node yum update is run on all the cluster nodes at once and all the nodes are rebooted after the update is

complete. Once the nodes have rebooted, the Ansible playbook tasks will resume from the point where it

had stopped to reboot the nodes.

You can choose to not use a build/web-server and use one of the cluster nodes itself as an Ansible con-

troller node and execute the playbook from that node. But with this, you need to do a `yum update` manu-

ally on all the cluster nodes separately.

Following are the steps to install and configure Ansible:

1. Attach extra-rpm repo on the node from where you plan to run the playbook
yum-config-manager --enable rhel-7-server-extras-rpms

yum info ansible

Loaded plugins: langpacks, product-id, search-disabled-repos, subscription-manager

Available Packages

Name : ansible

Arch : noarch

Version : 2.4.1.0

Release : 1.el7

Size : 7.6 M

Repo : rhel-7-server-extras-rpms/x86_64

Summary : SSH-based configuration management, deployment, and task execution system

URL : http://ansible.com

License : GPLv3+

Description :

 : Ansible is a radically simple model-driven configuration management,

 : multi-node deployment, and remote task execution system. Ansible works

 : over SSH and does not require any software or daemons to be installed

 : on remote nodes. Extension modules can be written in any language and

 : are transferred to managed machines automatically.

yum install Ansible

<snip>

<snip>

Installed:

 ansible.noarch 0:2.4.1.0-1.el7

Dependency Installed:

 python-babel.noarch 0:0.9.6-8.el7 python-cffi.x86_64 0:1.6.0-5.el7

python-enum34.noarch 0:1.0.4-1.el7 python-httplib2.noarch 0:0.9.2-1.el7

 python-idna.noarch 0:2.0-1.el7 python-ipaddress.noarch 0:1.0.16-2.el7

python-jinja2.noarch 0:2.7.2-2.el7 python-markupsafe.x86_64 0:0.11-10.el7

 python-paramiko.noarch 0:2.1.1-2.el7 python-passlib.noarch 0:1.6.5-2.el7

python-ply.noarch 0:3.4-10.el7 python-pycparser.noarch 0:2.14-1.el7

Solution Deployment

118

 python2-cryptography.x86_64 0:1.3.1-3.el7 python2-jmespath.noarch 0:0.9.0-3.el7

python2-pyasn1.noarch 0:0.1.9-7.el7 sshpass.x86_64 0:1.06-2.el7

Complete!

2. Generate and populate ssh key on the Ansible controller node (build/web-server) to rest of the

nodes in the cluster. This is required for password-less ssh login to all the nodes in order to execute

configuration tasks.
ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa): y

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in y.

Your public key has been saved in y.pub.

The key fingerprint is:

81:7a:0b:35:81:76:1b:fe:76:d8:9d:e3:0d:7a:89:a8 root@DEE-Wrk-C-1.cisco.com

The key's randomart image is:

+--[RSA 2048]----+

| .. |

| o oo |

| . o+o. |

| oo. . |

| o ..So . . |

| o .+ o = |

| .. o + = |

| . o + . |

| E. . |

+-----------------+

 SSH key is generated on the build/web-server and is included in kickstart file ks.cfg. In this way the key

got distributed on all the cluster nodes as part of OS install itself.

3. Edit /etc/ansible/hosts file on the build/web-server, to include hostnames of DEE cluster nodes at

the end of the file
[DEE-Nodes]

DEE-Ctrl-1

DEE-Ctrl-2

DEE-Ctrl-3

DEE-DTR-1

DEE-DTR-2

DEE-DTR-3

DEE-Wrk-1

DEE-Wrk-2

DEE-Wrk-3

DEE-Wrk-4

4. Verify you can login to cluster-nodes with password-less ssh access
ansible DEE-Nodes -m shell -a "uptime"

DEE-Ctrl-2 | SUCCESS | rc=0 >>

 17:33:52 up 5:51, 2 users, load average: 0.01, 0.04, 0.05

DEE-Ctrl-1 | SUCCESS | rc=0 >>

 17:34:18 up 2:48, 2 users, load average: 0.13, 0.09, 0.06

DEE-Ctrl-3 | SUCCESS | rc=0 >>

 17:34:10 up 5:50, 2 users, load average: 0.23, 0.11, 0.07

DEE-DTR-1 | SUCCESS | rc=0 >>

 17:34:02 up 2:49, 2 users, load average: 0.06, 0.06, 0.05

Solution Deployment

119

DEE-DTR-2 | SUCCESS | rc=0 >>

 17:34:04 up 2:47, 2 users, load average: 0.00, 0.01, 0.05

DEE-Wrk-1 | SUCCESS | rc=0 >>

 17:34:01 up 2:02, 2 users, load average: 0.03, 0.05, 0.05

DEE-Wrk-3 | SUCCESS | rc=0 >>

 17:34:05 up 2:03, 2 users, load average: 0.04, 0.10, 0.08

DEE-DTR-3 | SUCCESS | rc=0 >>

 17:35:10 up 2:47, 2 users, load average: 0.12, 0.15, 0.11

DEE-Wrk-4 | SUCCESS | rc=0 >>

 17:34:02 up 2:48, 2 users, load average: 0.09, 0.11, 0.13

DEE-Wrk-2 | SUCCESS | rc=0 >>

 17:34:14 up 2:47, 2 users, load average: 0.27, 0.14, 0.13

Ansible Playbook Execution

To run the playbook, you need to download the entire directory structure on a build node and run the

playbook command, after editing DEE-Nodes/DEE-C-Nodes files with cluster node details, enter the

variables in the group_vars/all file.

Configuration details on DEE-Nodes/DEE-C-Nodes along with the YAML file used for executing the Ansible

playbook are shown in the Appendix section.

 For first architecture group_var/all variables would be:
ntp_server: "<your NTP server IP>"

http_proxy: http://<Proxy IP>:<port>/

https_proxy: https:// ://<Proxy IP>:<port>/

http_proxy_hostname: <Proxy host IP>

proxy_port: <proxy port>

node01: <node01 IP>

node01_name: <node01_name>

node01_fqdn: <FQDN node01 name>

rhsm_user: "<user_name>"

rhsm_password: "<password>"

pool_id: "<your entitiled pool-id>"

UCP_Manager: "<your designated first Manager Node IP>"

UCP_Admin: "admin"

UCP_Admin_Pass: "<your choosen password>"

DTR_NFS_URL: "nfs://<NFS Host IP>/DTR-NFS"

UCP_URL: "https://<your designated first Manager Node IP>:443"

UCP_Port: "443"

UCP_Ver: "2.2.4"

DTR_Ver: "2.4.0"

 For second architecture group_var/all variables would be, same except for below. As there will co-hosting

for UCP/DTR services on the common nodes:
UCP_URL: "https://<your designated first Manager Node IP>:4443"

UCP_Port: "4443"

ansible-playbook -verbose -i /etc/ansible/DEE-Nodes DEE-Nodes.yml -u root

Using /etc/ansible/ansible.cfg as config file

Solution Deployment

120

PLAY [DEE-Nodes]

**

<snip>

<snip>

TASK [common : Copying rhsm conf]

**

changed: [DEE-Ctrl-1] => {"changed": true, "checksum":

"8823ab9f7a5968660aaadfb5b2a7c3bec41a4574", "dest": "/etc/rhsm/rhsm.conf", "gid": 0,

"group": "root", "md5sum": "9fdb176428244189b6cb3a509474529e", "mode": "0644", "owner":

"root", "secontext": "system_u:object_r:etc_t:s0", "size": 1680, "src":

"/root/.ansible/tmp/ansible-tmp-1512223789.57-58261853961485/source", "state": "file",

"uid": 0}

<snip>

<snip>

TASK [common : Copying NTP conf]

**

changed: [DEE-Ctrl-1] => {"changed": true, "checksum":

"8b0ef00a20b0de2714dd3f5784f0c942a5ffc218", "dest": "/etc/ntp.conf", "gid": 0, "group":

"root", "md5sum": "2ac3062f4c954f63d5caf1b707ce5fcf", "mode": "0644", "owner": "root",

"secontext": "system_u:object_r:net_conf_t:s0", "size": 2187, "src":

"/root/.ansible/tmp/ansible-tmp-1512223790.86-29764737763044/source", "state": "file",

"uid": 0}

<snip>

<snip>

TASK [common : Copying enic driver]

**

changed: [DEE-Ctrl-1] => {"changed": true, "checksum":

"a5036b36c083492b28fd04e8ac884a5417f5fc71", "dest": "/root/kmod-enic-2.3.0.44-

rhel7u3.el7.x86_64.rpm", "gid": 0, "group": "root", "md5sum":

"e86fd8cb351ae5bdb4781aa0eabbbea7", "mode": "0644", "owner": "root", "secontext":

"system_u:object_r:admin_home_t:s0", "size": 770700, "src": "/root/.ansible/tmp/ansible-

tmp-1512223793.39-31250091169693/source", "state": "file", "uid": 0}

<snip>

<snip>

TASK [yum : Registering System to RHSM]

**

changed: [DEE-Ctrl-3] => {"changed": true, "cmd": "subscription-manager register --

username=cisco_rkharya --password=qwerty123", "delta": "0:00:21.886475", "end": "2017-12-

02 19:41:49.373390", "rc": 0, "start": "2017-12-02 19:41:27.486915", "stderr": "",

"stderr_lines": [], "stdout": "Registering to:

subscription.rhn.redhat.com:443/subscription\nThe system has been registered with ID:

80a3e8f4-46ed-4681-ba24-5d863a5fc285 ", "stdout_lines": ["Registering to:

subscription.rhn.redhat.com:443/subscription", "The system has been registered with ID:

80a3e8f4-46ed-4681-ba24-5d863a5fc285 "]}

<snip>

<snip>

TASK [yum : Refresh Subscription Manager DB]

**

changed: [DEE-Ctrl-1] => {"changed": true, "cmd": "subscription-manager refresh", "delta":

"0:00:06.599053", "end": "2017-12-02 19:42:26.407339", "rc": 0, "start": "2017-12-02

19:42:19.808286", "stderr": "", "stderr_lines": [], "stdout": "All local data refreshed",

"stdout_lines": ["All local data refreshed"]}

<snip>

<snip>

TASK [yum : Subscribing to Pool]

**

changed: [DEE-Ctrl-1] => {"changed": true, "cmd": "subscription-manager attach --

pool=8a85f9815ab5216e015ab56c80c3636c", "delta": "0:00:20.794736", "end": "2017-12-02

19:42:55.457214", "rc": 0, "start": "2017-12-02 19:42:34.662478", "stderr": "",

"stderr_lines": [], "stdout": "Successfully attached a subscription for: Red Hat

Enterprise Linux Server with Smart Management, Premium (Physical or Virtual Nodes)",

Solution Deployment

121

"stdout_lines": ["Successfully attached a subscription for: Red Hat Enterprise Linux

Server with Smart Management, Premium (Physical or Virtual Nodes)"]}

<snip>

<snip>

TASK [yum : Setting RHEL release version]

**

changed: [DEE-Ctrl-3] => {"changed": true, "cmd": "subscription-manager release --

set=7.3", "delta": "0:00:06.754070", "end": "2017-12-02 19:43:18.344113", "rc": 0,

"start": "2017-12-02 19:43:11.590043", "stderr": "", "stderr_lines": [], "stdout":

"Release set to: 7.3", "stdout_lines": ["Release set to: 7.3"]}

<snip>

<snip>

TASK [yum : Enabling Repos]

**

changed: [DEE-Ctrl-1] => {"changed": true, "cmd": "subscription-manager repos --

enable=rhel-7-server-rpms", "delta": "0:00:22.388693", "end": "2017-12-02

19:43:55.139522", "rc": 0, "start": "2017-12-02 19:43:32.750829", "stderr": "",

"stderr_lines": [], "stdout": "Repository 'rhel-7-server-rpms' is enabled for this

system.", "stdout_lines": ["Repository 'rhel-7-server-rpms' is enabled for this system."]}

<snip>

<snip>

TASK [yum : install enic rpm from a local file]

**

changed: [DEE-DTR-2] => {"changed": true, "msg": "", "rc": 0, "results": ["Loaded plugins:

langpacks, product-id, search-disabled-repos, subscription-\n :

manager\nExamining /root/kmod-enic-2.3.0.44-rhel7u3.el7.x86_64.rpm: kmod-enic-2.3.0.44-

rhel7u3.el7.x86_64\nMarking /root/kmod-enic-2.3.0.44-rhel7u3.el7.x86_64.rpm to be

installed\nResolving Dependencies\n--> Running transaction check\n---> Package kmod-

enic.x86_64 0:2.3.0.44-rhel7u3.el7 will be installed\n--> Finished Dependency

Resolution\n\nDependencies

Resolved\n\n==

==\n Package\n Arch Version Repository

Size\n==\nIn

stalling:\n kmod-enic\n x86_64 2.3.0.44-rhel7u3.el7 /kmod-enic-2.3.0.44-

rhel7u3.el7.x86_64 4.3 M\n\nTransaction

Summary\n==\

nInstall 1 Package\n\nTotal size: 4.3 M\nInstalled size: 4.3 M\nDownloading

packages:\nRunning transaction check\nRunning transaction test\nTransaction test

succeeded\nRunning transaction\n Installing : kmod-enic-2.3.0.44-rhel7u3.el7.x86_64

1/1 \n/sbin/dracut: line 649: warning: setlocale: LC_CTYPE: cannot change locale (): No

such file or directory\n/sbin/dracut: line 649: warning: setlocale: LC_CTYPE: cannot

change locale (): No such file or directory\n Verifying : kmod-enic-2.3.0.44-

rhel7u3.el7.x86_64 1/1 \n\nInstalled:\n kmod-enic.x86_64

0:2.3.0.44-rhel7u3.el7 \n\nComplete!\n"]}

<snip>

<snip>

TASK [yum : Yum Update]

**

<snip>

<snip>

TASK [yum : Check for reboot hint]

**

changed: [DEE-Ctrl-2] => {"changed": true, "cmd": "LAST_KERNEL=$(rpm -q --last kernel |

perl -pe 's/^kernel-(\\S+).*/$1/' | head -1);\n CURRENT_KERNEL=$(uname -r);\n if [

$LAST_KERNEL != $CURRENT_KERNEL];\n then\n echo 'reboot'; else echo 'no';\n fi\n exit 0",

"delta": "0:00:00.113086", "end": "2017-12-02 20:41:05.089307", "rc": 0, "start": "2017-

12-02 20:41:04.976221", "stderr": "", "stderr_lines": [], "stdout": "reboot",

"stdout_lines": ["reboot"]}

changed: [DEE-Ctrl-1] => {"changed": true, "cmd": "LAST_KERNEL=$(rpm -q --last kernel |

perl -pe 's/^kernel-(\\S+).*/$1/' | head -1);\n CURRENT_KERNEL=$(uname -r);\n if [

$LAST_KERNEL != $CURRENT_KERNEL];\n then\n echo 'reboot'; else echo 'no';\n fi\n exit 0",

"delta": "0:00:00.127061", "end": "2017-12-02 20:41:30.301489", "rc": 0, "start": "2017-

Solution Deployment

122

12-02 20:41:30.174428", "stderr": "", "stderr_lines": [], "stdout": "reboot",

"stdout_lines": ["reboot"]}

<snip>

<snip>

TASK [yum : Rebooting ...]

**

changed: [DEE-Ctrl-1] => {"ansible_job_id": "583666472427.28160", "changed": true, "fin-

ished": 0, "results_file": "/root/.ansible_async/583666472427.28160", "started": 1}

changed: [DEE-Ctrl-2] => {"ansible_job_id": "105260474277.6348", "changed": true, "fin-

ished": 0, "results_file": "/root/.ansible_async/105260474277.6348", "started": 1}

<snip>

<snip>

TASK [yum : Wait for host to boot]

**

ok: [DEE-DTR-1 -> localhost] => {"changed": false, "elapsed": 360, "path": null, "port":

22, "search_regex": null, "state": "started"}

ok: [DEE-Ctrl-1 -> localhost] => {"changed": false, "elapsed": 360, "path": null, "port":

22, "search_regex": null, "state": "started"}

<snip>

<snip>

TASK [storage : Device Mapper Driver Configuration - Logical Volume Creation]

changed: [DEE-DTR-1] => {"changed": true, "cmd": "lvcreate --wipesignatures y -n thin-

poolmeta Docker -l 1%VG", "delta": "0:00:00.087190", "end": "2017-12-02 20:55:24.414561",

"rc": 0, "start": "2017-12-02 20:55:24.327371", "stderr": "", "stderr_lines": [],

"stdout": " Logical volume \"thinpoolmeta\" created.", "stdout_lines": [" Logical volume

\"thinpoolmeta\" created."]}

changed: [DEE-Ctrl-1] => {"changed": true, "cmd": "lvcreate --wipesignatures y -n thin-

poolmeta Docker -l 1%VG", "delta": "0:00:00.100413", "end": "2017-12-02 20:55:24.426827",

"rc": 0, "start": "2017-12-02 20:55:24.326414", "stderr": "", "stderr_lines": [],

"stdout": " Logical volume \"thinpoolmeta\" created.", "stdout_lines": [" Logical volume

\"thinpoolmeta\" created."]}

<snip>

<snip>

TASK [storage : Device Mapper Driver Configuration - Thinpool conversion]

**

changed: [DEE-Ctrl-1] => {"changed": true, "cmd": "lvconvert -y --zero n -c 512K --

thinpool Docker/thinpool --poolmetadata Docker/thinpoolmeta", "delta": "0:00:00.244574",

"end": "2017-12-02 20:55:25.307003", "rc": 0, "start": "2017-12-02 20:55:25.062429",

"stderr": " WARNING: Converting logical volume Docker/thinpool and Docker/thinpoolmeta to

thin pool's data and metadata volumes with metadata wiping.\n THIS WILL DESTROY CONTENT

OF LOGICAL VOLUME (filesystem etc.)", "stderr_lines": [" WARNING: Converting logical vol-

ume Docker/thinpool and Docker/thinpoolmeta to thin pool's data and metadata volumes with

metadata wiping.", " THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)"],

"stdout": " Converted Docker/thinpool to thin pool.", "stdout_lines": [" Converted Dock-

er/thinpool to thin pool."]}

<snip>

<snip>

TASK [docker : Install Docker Enterprise Edition]

**

changed: [DEE-Ctrl-3] => {"changed": true, "msg": "warning:

/var/cache/yum/x86_64/7Server/docker-ee-stable-17.06/packages/docker-ee-17.06.2.ee.6-

3.el7.rhel.x86_64.rpm: Header V4 RSA/SHA512 Signature, key ID 76682bc9: NOKEY\nImporting

GPG key 0x76682BC9:\n Userid : \"Docker Release (EE rpm) <docker@docker.com>\"\n Fin-

gerprint: 77fe da13 1a83 1d29 a418 d3e8 99e5 ff2e 7668 2bc9\n From :

https://storebits.docker.com/ee/linux/sub-3a55d8be-ded8-497f-97ca-

ee3289a7cdcd/rhel/gpg\n", "rc": 0, "results": ["Loaded plugins: langpacks, product-id,

search-disabled-repos, subscription-\n : manager\nResolving Dependencies\n-->

Running transaction check\n---> Package docker-ee.x86_64 0:17.06.2.ee.6-3.el7.rhel will be

installed\n--> Finished Dependency Resolution\n\nDependencies Re-

solved\n\n==

\n Package Arch Version Repository

Size\n==\nIn

Solution Deployment

123

stalling:\n docker-ee x86_64 17.06.2.ee.6-3.el7.rhel docker-ee-stable-17.06 25

M\n\nTransaction Sum-

mary\n==\nIn

stall 1 Package\n\nTotal download size: 25 M\nInstalled size: 79 M\nDownloading packag-

es:\nPublic key for docker-ee-17.06.2.ee.6-3.el7.rhel.x86_64.rpm is not in-

stalled\nRetrieving key from https://storebits.docker.com/ee/linux/sub-3a55d8be-ded8-497f-

97ca-ee3289a7cdcd/rhel/gpg\nRunning transaction check\nRunning transaction

test\nTransaction test succeeded\nRunning transaction\n Installing : docker-ee-

17.06.2.ee.6-3.el7.rhel.x86_64 1/1 \n Verifying : docker-ee-

17.06.2.ee.6-3.el7.rhel.x86_64 1/1 \n\nInstalled:\n docker-ee.x86_64

0:17.06.2.ee.6-3.el7.rhel \n\nComplete!\n"]}

<snip>

<snip>

PLAY [UCP-Mgr]

**

TASK [UCPswarm : copy the ucp license to the remote machine]

**

changed: [DEE-Ctrl-1] => {"changed": true, "checksum":

"74ce90955cbc50e9d9b5bd84fd50e2e83495d0d6", "dest": "/tmp/docker_subscription.lic", "gid":

0, "group": "root", "md5sum": "1a39823db1747ce6ce18be8e4241deca", "mode": "0644", "owner":

"root", "secontext": "unconfined_u:object_r:admin_home_t:s0", "size": 3013, "src":

"/root/.ansible/tmp/ansible-tmp-1512228739.15-240326800829239/source", "state": "file",

"uid": 0}

TASK [UCPswarm : download and install ucp images]

**

<snip>

<snip>

PLAY [UCP-DTR]

**

TASK [UCPdtr : download and install DTR]

**

TASK [UCPdtr : capture DTR replica ID]

**

changed: [DEE-DTR-1] => {"changed": true, "cmd": "docker ps|grep dtr-nginx|awk '{print

$NF}' | cut -d'-' -f3", "delta": "0:00:00.023095", "end": "2017-12-02 22:09:02.729974",

"rc": 0, "start": "2017-12-02 22:09:02.706879", "stderr": "", "stderr_lines": [],

"stdout": "3092b164a12a", "stdout_lines": ["3092b164a12a"]}

PLAY [UCP-DTR-R1]

**

TASK [UCPdtr-r1 : Adding Manager Replicas] *****

The PLAY-RECAP screen shot above shows no failures, indicating that the installation was sucessful. After

this, Verify Docker UCP and DTR - UI dashboards and CLI interfaces are up and running.

Verifying Docker Enterprise Edition Installation

This section shows the validation of the entire Docker EE through Ansible playbook.

Solution Deployment

124

Docker UCP UI

The following figure shows the UCP dashboard with all the 10 nodes seen as healthy.

Figure 26 Docker UCP dashboard

DTR UI

The following figures show the DTR UI.

Solution Deployment

125

Figure 27 DTR landing page

Figure 28 DTR Storage Configuration: NFS file-system shared across 3 DTR replicas

 NFS shared volume configuration for the DTR nodes are shown below. NFS back-end and configuration

details have been omitted for simplicity.

Solution Deployment

126

Docker UCP Client Bundle

Client bundle is downloaded and check overall DEE cluster status.

unzip ucp-bundle-admin.zip

Archive: ucp-bundle-admin.zip

 extracting: ca.pem

 extracting: cert.pem

 extracting: key.pem

 extracting: cert.pub

 extracting: env.cmd

 extracting: env.sh

 extracting: env.ps1

docker node ls

ID HOSTNAME STATUS AVAILABILITY

MANAGER STATUS

90v3go6w08rdciwknel7e22sd * DEE-Ctrl-1.cisco.com Ready Active

Leader

e9jenb4er830ypaekfixqg4ew DEE-Ctrl-2.cisco.com Ready Active

Reachable

96ej63lez1y3du9yzwqoqsaj0 DEE-Ctrl-3.cisco.com Ready Active

Reachable

pnfyt1rhh3obzgue39vwza4v4 DEE-DTR-1.cisco.com Ready Active

v3m2einlpfridrmmt77si1n9d DEE-DTR-2.cisco.com Ready Active

yom7k0oog2dby754zhe9l4o5x DEE-DTR-3.cisco.com Ready Active

6deagroubnz0pqnslbabtlnxv DEE-Wrk-1.cisco.com Ready Active

klaun7oufkwwur9199jr6whce DEE-Wrk-2.cisco.com Ready Active

qgmwrg58bxjkl0w8zismht5hc DEE-Wrk-3.cisco.com Ready Active

pwydytsdik4inzzj5grb3kj72 DEE-Wrk-4.cisco.com Ready Active

docker info

Containers: 121

 Running: 74

 Paused: 0

 Stopped: 47

Images: 66

Server Version: ucp/2.2.4

Role: primary

Strategy: spread

Filters: health, port, containerslots, dependency, affinity, constraint, whitelist

Nodes: 10

<snip>

<snip>

Cluster Managers: 3

 DEE-Ctrl-1.cisco.com: Healthy

 └ Orca Controller: https://10.65.122.61:443

 └ Classic Swarm Manager: tcp://10.65.122.61:2376

 └ Engine Swarm Manager: tcp://10.65.122.61:12376

 └ KV: etcd://10.65.122.61:12379

 DEE-Ctrl-2.cisco.com: Healthy

 └ Orca Controller: https://10.65.122.62:443

 └ Classic Swarm Manager: tcp://10.65.122.62:2376

 └ Engine Swarm Manager: tcp://10.65.122.62:12376

 └ KV: etcd://10.65.122.62:12379

 DEE-Ctrl-3.cisco.com: Healthy

 └ Orca Controller: https://10.65.122.63:443

 └ Classic Swarm Manager: tcp://10.65.122.63:2376

 └ Engine Swarm Manager: tcp://10.65.122.63:12376

 └ KV: etcd://10.65.122.63:12379

Solution Deployment

127

<snip>

<snip>

Contiv Installation

There are two methods to install Contiv on a pre-installed Docker EE cluster nodes in native Swarm mode.

One method is to download Contiv v2pluging image from the Docker store and complete the installation as

per the installation steps. In this method of installation, etcd cluster and Open V-Switch (OVS) should be

configured on the Docker EE cluster nodes prior to the v2plugin installation. The other recommended method

is to use Contiv Installer sourced from Contiv GitHub. The Contiv Installer is inclusive of all the dependencies

such as etcd cluster and OVS configurations. The installer pulls Contiv v2plugin image from the Docker store,

which runs as Docker plugin on the Docker EE cluster nodes. The installer pulls the other Contiv binaries

such as `netctl` from Contiv GitHub and installs those on the cluster nodes depending on the roles assigned

to the nodes.

Contiv installer can be run either from a build/web-server or from one of the cluster nodes itself. While

installing Contiv from one of the cluster nodes, make sure it can connect to all other nodes through

password-less SSH access. Contiv installer comes with Ansible playbook and is executed via installer

scripts. Installation program runs as a container and requires Docker Engine to be available on the host on

which the installer runs.

 Docker has certified Contiv v2plugin 1.1.7 and is available for download at:

https://store.docker.com/plugins/contiv

Contiv installer release versions are maintained at: https://github.com/contiv/install/releases

https://store.docker.com/plugins/contiv
https://github.com/contiv/install/releases

Solution Deployment

128

Figure 29 Contiv Installation Process

For steps on installing Contiv in the recommended method using the Contiv installer, complete the following:

1. Generate SSH keys on one of the Swarm cluster node and populate it rest of the nodes:

5. [root@DEE-Ctrl-1 ~]# ssh-keygen

2. Copy SSH key to rest of the cluster nodes
for i in 61 62 63 64 65 66 67 68 69 70;do echo 10.65.122.$i;ssh-copy-id

root@10.65.122.$i;done;

for i in 61 62 63 64 65 66 67 68 69 70;do echo 10.65.122.$i;ssh root@10.65.122.$i

uptime;done;

10.65.122.61

 23:52:01 up 3:08, 2 users, load average: 0.20, 0.21, 0.27

<snip>

3. Download the installer bundle. Download the full Contiv install and unzip the bundle -
curl -L -O https://github.com/contiv/install/releases/download/1.1.7/contiv-full-

1.1.7.tgz

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

 100 611 0 611 0 0 410 0 --:--:-- 0:00:01 --:--:-- 411

 100 113M 100 113M 0 0 151k 0 0:12:42 0:12:42 --:--:-- 96411

 # tar -zxvf contiv-full-1.1.7.tgz

4. Navigate to contiv-1.1.7/install/ansible directory and edit `cfg.yml` to define cluster host inventory

and connection information. In this file, Contiv master and worker nodes are defined along with their

mailto:root@10.65.122.$i;done

Solution Deployment

129

control and container data path network interface. As described in the earlier sections, second

interface is used for container data path exclusively

 CONNECTION_INFO:

 10.65.122.61:

 role: master

 control: eno5

 data: eno6

 10.65.122.62:

 role: master

 control: eno5

 data: eno6

 10.65.122.63:

 role: master

 control: eno5

 data: eno6

 10.65.122.64:

 control: eno5

 data: eno6

 10.65.122.65:

 control: eno5

 data: eno6

 10.65.122.66:

 control: eno5

 data: eno6

 10.65.122.67:

 control: eno5

 data: eno6

 10.65.122.68:

 control: eno5

 data: eno6

 10.65.122.69:

 control: eno5

 data: eno6

 10.65.122.70:

 control: eno5

 data: eno6

5. On the same location the environmental variables are added to `env.json` file with proxy settings (if

any).

Proxy settings are required in our environment
"env":{ "http_proxy":"http://64.102.255.40:8080",

"HTTP_PROXY":"http://64.102.255.40:8080", "https_proxy":"http://64.102.255.40:8080",

"no_proxy":"127.0.0.1,localhost,netmaster,10.65.122.61,10.65.122.62,10.65.122.63,10.65.

122.64,10.65.122.65,10.65.122.66,10.65.122.67,10.65.122.68,10.65.122.69,10.65.122.70,DE

E-Ctrl-1,DEE-Ctrl-2,DEE-Ctrl-3,DEE-DTR-1,DEE-DTR-2,DEE-DTR-3,DEE-Wrk-1,DEE-Wrk-2,DEE-

Wrk-3,DEE-Wrk-4"},

6. Install Contiv on the existing Swarm cluster nodes. Contiv v2Plungin is installed using host definition

as captured in cfg.yml
#./install/ansible/install_swarm.sh -f install/ansible/cfg.yml -u root -e ~/.ssh/id_rsa

–p

Installation is complete

===

Please export DOCKER_HOST=tcp://10.65.122.61:2375 in your shell before proceeding

Contiv UI is available at https://10.65.122.61:10000

Please use the first run wizard or configure the setup as follows:

Configure forwarding mode (optional, default is bridge).

netctl global set --fwd-mode routing

Configure ACI mode (optional)

Solution Deployment

130

netctl global set --fabric-mode aci --vlan-range <start>-<end>

Create a default network

netctl net create -t default --subnet=<CIDR> default-net

For example, netctl net create -t default --subnet=20.1.1.0/24 default-net

===

7. Validate Contiv plugin status
cat /var/log/contiv/plugin_bootup.log

2017-12-02T18:56:13Z|00001|vlog|INFO|opened log file /var/log/contiv/ovs-db.log

2017-12-02T18:56:13Z|00001|vlog|INFO|opened log file /var/log/contiv/ovs-vswitchd.log

Waiting for netmaster to be ready for connections

Netmaster ready for connections, setting forward mode to bridge

Forward mode is set

n-if=eno6 -cluster-store=etcd://localhost:2379 -ctrl-ip=10.65.122.61

/netmaster -plugin-name=contiv/v2plugin:1.1.7 -cluster-mode=swarm-mode -cluster-

store=etcd://localhost:2379 -control-url=10.65.122.61:9999

netctl global info

Fabric mode: default

Forward mode: bridge

ARP mode: proxy

Vlan Range: 1-4094

Vxlan range: 1-10000

Private subnet: 172.19.0.0/16

ansible DEE-Nodes -m shell -a "docker plugin ls"

DEE-Ctrl-1 | SUCCESS | rc=0 >>

ID NAME DESCRIPTION

ENABLED

7d63297e3b61 docker/telemetry:1.0.0.linux-x86_64-stable Docker Inc. metrics

exporter true

413db4eb861e contiv/v2plugin:1.1.7 Contiv network plugin

for Docker true

DEE-Ctrl-2 | SUCCESS | rc=0 >>

ID NAME DESCRIPTION

ENABLED

850835e60af1 docker/telemetry:1.0.0.linux-x86_64-stable Docker Inc. metrics

exporter true

2ac2ae595179 contiv/v2plugin:1.1.7 Contiv network plugin

for Docker true

DEE-Ctrl-3 | SUCCESS | rc=0 >>

ID NAME DESCRIPTION

ENABLED

1a551fe25efa contiv/v2plugin:1.1.7 Contiv network plugin

for Docker true

8. Validate etcd cluster state
ansible DEE-Nodes -m shell -a "etcdctl cluster-health"

DEE-Ctrl-1 | SUCCESS | rc=0 >>

member 7ebc124ca61e9cf1 is healthy: got healthy result from http://10.65.122.62:2379

member 948a257d00473f21 is healthy: got healthy result from http://10.65.122.63:2379

member e836c74d6a6071c4 is healthy: got healthy result from http://10.65.122.61:2379

cluster is healthy

ansible DEE-Nodes -m shell -a "etcdctl member list"

DEE-Ctrl-3 | SUCCESS | rc=0 >>

7ebc124ca61e9cf1: name=node3 peerURLs=http://10.65.122.62:2380 clien-

tURLs=http://10.65.122.62:2379,http://10.65.122.62:4001 isLeader=false

948a257d00473f21: name=node2 peerURLs=http://10.65.122.63:2380 clien-

tURLs=http://10.65.122.63:2379,http://10.65.122.63:4001 isLeader=false

Solution Deployment

131

e836c74d6a6071c4: name=node1 peerURLs=http://10.65.122.61:2380 clien-

tURLs=http://10.65.122.61:2379,http://10.65.122.61:4001 isLeader=true

9. Validate Contiv UI/auth_proxy Access

 At times there could be issues while installing Contiv v2plugin. Follow this GitHub entry for latest fixes:

https://github.com/contiv/install/issues/340

https://github.com/contiv/install/issues/340

Validation

132

Validation

To validate this solution, tests were conducted on functional, HA and Scale aspects. Feature functional tests

include routine container life-cycle management operations (create/delete and start/stop containers)

through Docker UCP client bundle and UI.

Contiv provides interfaces to interact with its services through `netctl` CLI and `auth_proxy` UI. This

solution document is focused on using CLI interface. Contiv UI was used only to validate that it covers the

workflow without any issues. Contiv CLI can be executed from any of the Contiv masters, as masters share

complete state information among the cluster members seamlessly. Contiv UI can also be accessed via any

of the master IPs as URL `https://<any of the master node IP>:10000`. Contiv UI needs to be

configured with external load balancer, same as Docker UCP and DTR. Example configuration of external

load-balancer - haproxy is shown in the Appendix section.

 You can find the Contiv documentation on concepts, user guide and administration guide at:

http://contiv.github.io/documents/

Docker UCP client requires Docker Toolbox to be installed on Mac or Windows client machine. Docker

Toolbox provides tools such as Docker Compose, Docker command line environment along with the others.

The following test validation tasks were accomplished using these tools whenever required. Docker Toolbox

can be obtained from the following URLs:

 Docker Toolbox Overview - https://docs.docker.com/toolbox/overview/

 Docker for Mac or Windows - https://www.docker.com/products/docker-toolbox

 For newer versions of Mac or Windows use: https://docs.docker.com/docker-for-mac/install/ or

https://docs.docker.com/docker-for-windows/install/

Application Container Deployment Using Contiv

Contiv Network Back-end without Contiv Policy Rules

In this section, Contiv network is created without the network policy applied to the created network. The

deployed containers consuming this network were tested in a multi-host environment for network

connectivity.

Docker Enterprise Edition with native swarm mode uses third party driver developed with CNM model. This

requires driver specific options to be set through `opt` tags. Setting the tag enables Docker to create a

network, which is mapped with the third-party network through a plugin.

When a Contiv back-end network is used for creating Docker network, the Contiv policy framework will not

be applicable on the Docker network. Use case for this scenario exists when users want to use only Contiv

back-end network without a policy model.

All Contiv CLI commands works on any of the Contiv master nodes.

http://contiv.github.io/documents/
https://docs.docker.com/toolbox/overview/
https://www.docker.com/products/docker-toolbox
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/

Validation

133

1. First setting up Contiv global settings
netctl global info

Fabric mode: default

Forward mode: bridge

ARP mode: proxy

Vlan Range: 1-4094

Vxlan range: 1-10000

Private subnet: 172.19.0.0/16

2. Allowed VLAN list on the Contiv vNIC is 1001-1005. VLAN range can be changed in Contiv global

parameters as shown below
netctl global set --vlan-range 1001-1005

netctl global info

Fabric mode: default

Forward mode: bridge

ARP mode: proxy

Vlan Range: 1001-1005

Vxlan range: 1-10000

Private subnet: 172.19.0.0/16

 Fabric mode = default which is for standalone, non-ACI mode

Forwarding mode = bridge as against L3 routed mode

 This solution uses default mode for both Fabric and Forwarding.

3. Create Contiv network as below with default tenant -
netctl tenant list

Name

default

netctl network create --nw-type data --encap vlan --pkt-tag 1001 --subnet

100.100.100.0/24 --gateway 100.100.100.254 --nw-tag default.test contiv.test

Creating network default:contiv.test

netctl network list

Tenant Network Nw Type Encap type Packet tag Subnet Gateway

IPv6Subnet IPv6Gateway Cfgd Tag

------ ------- ------- ---------- ---------- ------- ------

---------- ----------- ---------

default contiv.test data vlan 1001 100.100.100.0/24

100.100.100.254 default.test

 Important point to note -

--encap = vlan - This can be either vlan or vxlan. In our solution, L2 VLAN forwarding

mode preferred mode

--nw-type = data - either data or infra. We will be using for all Contiv networks, type

as data only

--pkt-tag = 1001 - vLAN ID

--nw-tag = default.test - For all Contiv network to be consumed by `docker service` in

native swarm mode, network-tag is essential for mapping Contiv network back-end with

Docker network

--gateway = SVI interface IP, as created at aggregation layer

contiv.test = is the network name

netctl network create --nw-type data --encap vlan --pkt-tag 1002 --subnet

101.101.101.0/24 --gateway 101.101.101.254 --nw-tag default.test1 contiv.test1

Creating network default:contiv.test1

netctl network ls

Tenant Network Nw Type Encap type Packet tag Subnet Gateway

IPv6Subnet IPv6Gateway Cfgd Tag

------ ------- ------- ---------- ---------- ------- ------

---------- ----------- ---------

Validation

134

default contiv.test data vlan 1001 100.100.100.0/24

100.100.100.254 default.test

default contiv.test1 data vlan 1002 101.101.101.0/24

101.101.101.254 default.test1

4. Create Docker network to use Contiv network at the back-end with network-tag as a mapping pa-

rameter
docker network create -d contiv/v2plugin:1.1.7 -o contiv-tag=default.test --ipam-opt

contiv-tag=default.test --ipam-driver contiv/v2plugin:1.1.7 contiv-test

17dgqztwf8y8qwqvz6616g4c1

docker network create -d contiv/v2plugin:1.1.7 -o contiv-tag=default.test1 --ipam-opt

contiv-tag=default.test1 --ipam-driver contiv/v2plugin:1.1.7 contiv-test1

0eh5rw54kj458hb146e8ik5kj

 For docker network create command, following parameters are needed

-d = driver – which is Contiv in our case

-o = Option map for mapping into Contiv/driver network

--ipam-driver & opt = Which is again Contiv driver

5. Verify docker network so created has the correct driver
docker network ls

NETWORK ID NAME DRIVER SCOPE

7cc18d93bdc4 bridge bridge local

17dgqztwf8y8 contiv-test contiv/v2plugin:1.1.7 swarm

0eh5rw54kj45 contiv-test1 contiv/v2plugin:1.1.7 swarm

1f3eff4e534f docker_gwbridge bridge local

syep5e2tgy8v dtr-ol overlay swarm

7f75047d8776 host host local

iazyhpf0vtpg ingress overlay swarm

29369da55420 none null local

`contiv-test/test1` network is showing the correct driver and SCOPE is set to swarm. This means that

the network can be used across all the cluster nodes.

6. Inspect the created Docker network and verify if the correct IPAM driver is shown
docker network inspect contiv-test

[

 {

 "Name": "contiv-test",

 "Id": "17dgqztwf8y8qwqvz6616g4c1",

 "Created": "0001-01-01T00:00:00Z",

 "Scope": "swarm",

 "Driver": "contiv/v2plugin:1.1.7",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "contiv/v2plugin:1.1.7",

 "Options": {

 "com.docker.network.ipam.serial": "true",

 "contiv-tag": "default.test"

 },

 "Config": []

 },

 "Internal": false,

 "Attachable": false,

 "Ingress": false,

 "ConfigFrom": {

 "Network": ""

 },

 "ConfigOnly": false,

 "Containers": null,

Validation

135

 "Options": {

 "contiv-tag": "default.test"

 },

 "Labels": null

 }

]

netctl network inspect contiv.test

{

 "Config": {

 "key": "default:contiv.test",

 "cfgdTag": "default.test",

 "encap": "vlan",

 "gateway": "100.100.100.254",

 "networkName": "contiv.test",

 "nwType": "data",

 "pktTag": 1001,

 "subnet": "100.100.100.0/24",

 "tenantName": "default",

 "link-sets": {},

 "links": {

 "Tenant": {

 "type": "tenant",

 "key": "default"

 }

 }

 },

 "Oper": {

 "allocatedIPAddresses": "100.100.100.254",

 "availableIPAddresses": "100.100.100.1-100.100.100.253",

 "networkTag": "default.test",

 "pktTag": 1001

 }

}

7. Now create an SVI on the aggregation layer. In the topology, Nexus 9000 switch is configured and

has the SVIs created on them -
Docker-B# config t

Enter configuration commands, one per line. End with CNTL/Z.

Docker-B(config)# interface vlan 1001

Docker-B# config t

Enter configuration commands, one per line. End with CNTL/Z.

Docker-B(config)# interface vlan 1002

Docker-B(config-if)# ip address 101.101.101.254 255.255.255.0

Docker-B(config-if)# no shutdown

Docker-B(config-if)# end

Docker-B#

8. Now provision services for both of these networks to verify connectivity
$ docker service create --name alpine-1 --network contiv-test alpine sleep 10000

tgq7wukhan05bcw599ca51fyv

$ docker service create --name alpine-2 --network contiv-test1 alpine sleep 10000

udjr1m2us2aovgifsxkgu2ou2

So, two services were created with both the Contiv network back-ends: contiv-test and contiv-test1.

9. Now scale the services so that containers are running on multiple nodes
$ docker service ls

ID NAME MODE REPLICAS IMAGE

PORTS

tgq7wukhan05 alpine-1 replicated 1/1 al-

pine:latest

Validation

136

udjr1m2us2ao alpine-2 replicated 1/1 al-

pine:latest

qonpj1o5gtpy ucp-agent global 10/10 dock-

er/ucp-agent:2.2.4

myha6e10r41u ucp-agent-s390x global 0/0 dock-

er/ucp-agent-s390x:2.2.4

jt6nuoq68hla ucp-agent-win global 0/0 dock-

er/ucp-agent-win:2.2.4

$ docker service scale alpine-1=2

alpine-1 scaled to 2

$ docker service scale alpine-2=2

alpine-2 scaled to 2

$ docker service ls

ID NAME MODE REPLICAS IMAGE

PORTS

tgq7wukhan05 alpine-1 replicated 2/2 al-

pine:latest

udjr1m2us2ao alpine-2 replicated 2/2 al-

pine:latest

qonpj1o5gtpy ucp-agent global 10/10 dock-

er/ucp-agent:2.2.4

myha6e10r41u ucp-agent-s390x global 0/0 dock-

er/ucp-agent-s390x:2.2.4

jt6nuoq68hla ucp-agent-win global 0/0 dock-

er/ucp-agent-win:2.2.4

10. Find out where the individual containers are running
$ docker service ps alpine-1

ID NAME IMAGE NODE DE-

SIRED STATE CURRENT STATE ERROR PORTS

khhh2j5ehtxt alpine-1.1 alpine:latest DEE-Wrk-3.cisco.com Run-

ning Running 7 minutes ago

v9eut1z7z4p5 alpine-1.2 alpine:latest DEE-Wrk-4.cisco.com Run-

ning Running about a minute ago

$ docker service ps alpine-2

ID NAME IMAGE NODE DE-

SIRED STATE CURRENT STATE ERROR PORTS

1uil2mfkjply alpine-2.1 alpine:latest DEE-Wrk-2.cisco.com Run-

ning Running 6 minutes ago

q1j7huqfrbsh alpine-2.2 alpine:latest DEE-Wrk-1.cisco.com Run-

ning Running about a minute ago

 From the above example it is clear that the containers are distributed across all 4 worker nodes.

11. To cross verify the IP addresses these containers have obtained, login to the containers from both

the alpine 1 and alpine 2 services on different Contiv networks as shown below
$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

7f08a6dd48de alpine:latest "sleep 10000" 7 minutes

ago Up 7 minutes DEE-

Wrk-1.cisco.com/alpine-2.2.q1j7huqfrbshaymftk6xgyrcl

a8bf50b6ece6 alpine:latest "sleep 10000" 7 minutes

ago Up 7 minutes DEE-

Wrk-4.cisco.com/alpine-1.2.v9eut1z7z4p5dhlx1ck2qdt65

6b64685a7055 alpine:latest "sleep 10000" 11

minutes ago Up 11 minutes

DEE-Wrk-2.cisco.com/alpine-2.1.1uil2mfkjplyws5351apjldz3

Validation

137

f1c2293f1f78 alpine:latest "sleep 10000" 12

minutes ago Up 12 minutes

DEE-Wrk-3.cisco.com/alpine-1.1.khhh2j5ehtxt53zg00q2kcm3y

$ docker exec -it 7f08a6dd48de /bin/sh

/ # ifconfig -a

eth0 Link encap:Ethernet HWaddr 02:02:65:65:65:03

 inet addr:101.101.101.3 Bcast:0.0.0.0 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1450 Metric:1

 RX packets:8 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:648 (648.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

/ #

$ docker exec -it a8bf50b6ece6 /bin/sh

/ # ifconfig -a

eth0 Link encap:Ethernet HWaddr 02:02:64:64:64:04

 inet addr:100.100.100.4 Bcast:0.0.0.0 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1450 Metric:1

 RX packets:8 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:648 (648.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

/ #

12. The IP addresses from respective subnets are obtained correctly. And are reachable on the

SVI/Gateway as expected

Container Alpine-1.2

/ # ping 100.100.100.254

PING 100.100.100.254 (100.100.100.254): 56 data bytes

64 bytes from 100.100.100.254: seq=1 ttl=255 time=0.416 ms

64 bytes from 100.100.100.254: seq=2 ttl=255 time=0.270 ms

64 bytes from 100.100.100.254: seq=3 ttl=255 time=0.257 ms

64 bytes from 100.100.100.254: seq=4 ttl=255 time=0.401 ms

^C

Container Alpine-2.2

/ # ping 101.101.101.254

PING 101.101.101.254 (101.101.101.254): 56 data bytes

64 bytes from 101.101.101.254: seq=1 ttl=255 time=0.466 ms

64 bytes from 101.101.101.254: seq=2 ttl=255 time=0.363 ms

64 bytes from 101.101.101.254: seq=3 ttl=255 time=0.423 ms

Validation

138

^C

13. Check connectivity between the containers on different subnets. Since they are natively visible on

the fabric, packet forwarding will happen at the SVI device as shown below
/ # ifconfig eth0

eth0 Link encap:Ethernet HWaddr 02:02:65:65:65:03

 inet addr:101.101.101.3 Bcast:0.0.0.0 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1450 Metric:1

 RX packets:27 errors:0 dropped:0 overruns:0 frame:0

 TX packets:28 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:2244 (2.1 KiB) TX bytes:2520 (2.4 KiB)

/ # ping 100.100.100.4

PING 100.100.100.4 (100.100.100.4): 56 data bytes

64 bytes from 100.100.100.4: seq=0 ttl=63 time=0.715 ms

64 bytes from 100.100.100.4: seq=1 ttl=63 time=0.155 ms

64 bytes from 100.100.100.4: seq=2 ttl=63 time=0.130 ms

64 bytes from 100.100.100.4: seq=3 ttl=63 time=0.095 ms

^C

--- 100.100.100.4 ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max = 0.095/0.273/0.715 ms

/ #

/ # ifconfig eth0

eth0 Link encap:Ethernet HWaddr 02:02:64:64:64:04

 inet addr:100.100.100.4 Bcast:0.0.0.0 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1450 Metric:1

 RX packets:21 errors:0 dropped:0 overruns:0 frame:0

 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:1808 (1.7 KiB) TX bytes:1162 (1.1 KiB)

/ # ping 101.101.101.3

PING 101.101.101.3 (101.101.101.3): 56 data bytes

64 bytes from 101.101.101.3: seq=0 ttl=63 time=0.718 ms

64 bytes from 101.101.101.3: seq=1 ttl=63 time=0.166 ms

64 bytes from 101.101.101.3: seq=2 ttl=63 time=0.148 ms

^C

--- 101.101.101.3 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.148/0.344/0.718 ms

/ #

Both the containers residing on the two different subnets are able to reach.

14. Validate if Containers using Contiv networks are visible on the fabric
Container alpine-2.2 Mac-address

/ # ifconfig eth0

eth0 Link encap:Ethernet HWaddr 02:02:65:65:65:03

Container alpine-1.2 Mac-address

/ # ifconfig eth0

eth0 Link encap:Ethernet HWaddr 02:02:64:64:64:04

Docker-B# sho ip arp

Flags: * - Adjacencies learnt on non-active FHRP router

 + - Adjacencies synced via CFSoE

 # - Adjacencies Throttled for Glean

 CP - Added via L2RIB, Control plane Adjacencies D - Static Adjacencies at-

tached to down interface

Validation

139

IP ARP Table for context default

Total number of entries: 2

Address Age MAC Address Interface

100.100.100.4 00:02:32 0202.6464.6404 Vlan1001

101.101.101.3 00:00:19 0202.6565.6503 Vlan1002

 Mac-addresses are natively learned on aggregation layer, which is Nexus 9000 switch.

 And additionally, these mac-addresses are learned on Fabric Interconnects as well

Docker-B(nxos)# show mac address-table vlan 1001

Legend:

 * - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC

 age - seconds since last seen,+ - primary entry using vPC Peer-Link

 VLAN MAC Address Type age Secure NTFY Ports/SWID.SSID.LID

---------+-----------------+--------+---------+------+----+------------------

* 1001 0202.6464.6402 dynamic 0 F F Veth1848

* 1001 0202.6464.6403 dynamic 0 F F Veth1848

* 1001 0202.6464.6404 dynamic 0 F F Veth1824

Docker-B(nxos)# show mac address-table vlan 1002

Legend:

 * - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC

 age - seconds since last seen,+ - primary entry using vPC Peer-Link

 VLAN MAC Address Type age Secure NTFY Ports/SWID.SSID.LID

---------+-----------------+--------+---------+------+----+------------------

* 1002 0202.6565.6502 dynamic 0 F F Veth1836

* 1002 0202.6565.6503 dynamic 0 F F Veth1844

Contiv Network Back-end with Contiv Policy Rules

Docker Enterprise Edition with native swarm mode requires third-party driver support through `opt` map for

driver specific options. This enables Contiv to apply policy model to the network it provides to the

application containers. For this Contiv allows you apply `nw-tag` to the Contiv groups associated with Contiv

network. Subsequently any policy associated with group allows us to apply network forwarding rule sets for

the application containers. Contiv back-end network for Docker EE with policy model is the use case here.

For more information on Contiv Policy Model, refer:

http://contiv.github.io/documents/networking/policies.html

Following is the validation with results on Contiv policy model workflow:

1. Created Contiv network without tag
netctl network create --nw-type data --encap vlan --pkt-tag 1001 --subnet

100.100.100.0/24 --gateway 100.100.100.254 contiv-test

Creating network default:contiv-test

2. Created network policy and applied rules to it. In this example a policy was created to allow inbound

access to tcp/80 and tcp/443 and deny all other traffic -
netctl policy create web-policy

Creating policy default:web-policy

netctl policy rule-add web-policy 1 -direction=in -protocol=tcp -action=deny

netctl policy rule-add web-policy 2 -direction=in -protocol=tcp -port=80 -

action=allow -priority=10

netctl policy rule-add web-policy 3 -direction=in -protocol=tcp -port=443 -

action=allow -priority=10

http://contiv.github.io/documents/networking/policies.html

Validation

140

3. After defining a policy, it was associated with a group on an existing Contiv network
netctl group create -p web-policy -tag test-tag contiv-test web-group

Creating EndpointGroup default:web-group

4. Verified all Contiv objects are configured as expected
netctl network ls

Tenant Network Nw Type Encap type Packet tag Subnet Gateway

IPv6Subnet IPv6Gateway Cfgd Tag

------ ------- ------- ---------- ---------- ------- ------

---------- ----------- ---------

default contiv-test data vlan 1001 100.100.100.0/24

100.100.100.254

netctl group ls

Tenant Group Network IP Pool CfgdTag Policies Network profile

------ ----- ------- ------- ------- -------- ---------------

default web-group contiv-test test-tag web-policy

netctl policy ls

Tenant Policy

------ ------

default web-policy

netctl policy rule-ls web-policy

Incoming Rules:

Rule Priority From EndpointGroup From Network From IpAddress To IpAddress Proto-

col Port Action

---- -------- ------------------ ------------ --------- ------------ -------

- ---- ------

1 1 tcp

0 deny

2 10 tcp

80 allow

3 10 tcp

443 allow

Outgoing Rules:

Rule Priority To EndpointGroup To Network To IpAddress Protocol Port Action

---- -------- ---------------- ---------- --------- -------- ---- ------

5. Created Docker network with contiv-tag
docker network create contiv-test -o contiv-tag=test-tag -d contiv/v2plugin:1.1.7 --

ipam-opt contiv-tag=test-tag --ipam-driver contiv/v2plugin:1.1.7

xawzx51r9teryajb395lrtvtj

6. See the list of Docker network to check if the Docker network is created with Contiv driver
docker network ls

NETWORK ID NAME DRIVER SCOPE

7cc18d93bdc4 bridge bridge local

xawzx51r9ter contiv-test contiv/v2plugin:1.1.7 swarm

1f3eff4e534f docker_gwbridge bridge local

syep5e2tgy8v dtr-ol overlay swarm

7f75047d8776 host host local

iazyhpf0vtpg ingress overlay swarm

29369da55420 none null local

7. Deployed `docker service` with Contiv network and scaled it to spread on multi-host
$ docker service create --name contiv-alpine --network contiv-test alpine sleep 10000

i7y7qdh8se2mw9y2ukco08vgr

$ docker service scale contiv-alpine=4

contiv-alpine scaled to 4

$ docker service ls

Validation

141

ID NAME MODE REPLICAS IMAGE

PORTS

i7y7qdh8se2m contiv-alpine replicated 4/4 al-

pine:latest

qonpj1o5gtpy ucp-agent global 11/11 dock-

er/ucp-agent:2.2.4

myha6e10r41u ucp-agent-s390x global 0/0 dock-

er/ucp-agent-s390x:2.2.4

jt6nuoq68hla ucp-agent-win global 0/0 dock-

er/ucp-agent-win:2.2.4

$ docker service ps contiv-alpine

ID NAME IMAGE NODE DE-

SIRED STATE CURRENT STATE ERROR PORTS

dmto0ghi2c5j contiv-alpine.1 alpine:latest DEE-Wrk-5.cisco.com Run-

ning Running about a minute ago

ze9rbtypems2 contiv-alpine.2 alpine:latest DEE-Ctrl-1.cisco.com Run-

ning Running 40 seconds ago

pgfr1fky9aqz contiv-alpine.3 alpine:latest DEE-Wrk-1.cisco.com Run-

ning Running about a minute ago

a5b8hka3evsd contiv-alpine.4 alpine:latest DEE-Wrk-2.cisco.com Run-

ning Running about a minute ago

8. Logged in to containers deployed and validated Contiv policy rules for network resource access
Container contiv-alpine.4

$ docker exec -it 208258a9265d /bin/sh

ifconfig -a

eth0 Link encap:Ethernet HWaddr 02:02:64:64:64:05

 inet addr:100.100.100.5 Bcast:0.0.0.0 Mask:255.255.255.0

nc -vl -p 80

listening on [::]:80 ...

connect to [::ffff:100.100.100.5]:80 from contiv-

alpine.3.pgfr1fky9aqzimc3j9872gzw8.contiv-test:45899 ([::ffff:100.100.100.4]:45899)

Container contiv-alpine.3

nc -nzvw 1 100.100.100.5 80

100.100.100.5 (100.100.100.5:80) open

nc -nzvw 1 100.100.100.5 81

nc: 100.100.100.5 (100.100.100.5:81): Operation timed out

This validates that the Containers cannot connect to each other, when they try to connect on the ports

other than the allowed ports.

9. Container contiv-alpine.4, ran `nc` on port 81
nc -vl -p 81

listening on [::]:81 ...

10. Container contiv-alpine.3, tried to connect to `nc` on port 81 on contiv-alpine.4
/ # nc -nzvw 1 100.100.100.5 81

nc: 100.100.100.5 (100.100.100.5:81): Operation timed out

Test Plan

Following feature functional, high-availability and scale tests were executed as part of the solution validation.

Validation

142

Functional Test Scenarios Docker EE/ Contiv

1. Create network, subnet, VLAN, application profile and policy constructs

2. Create and deploy containers with Contiv network

3. Test the connectivity with all possible scenarios for L2 VLAN mode of operation under Contiv work-

flow

4. Create Container-Application-Groups for Contiv network, Define Policies, Associate Policies to con-

tainer-groups, ensure that the policies were enforced

5. Validate discovery of new end-points (new containers etc) at the fabric

6. While configuring various policies, networks, tenants, etc. validate the error messages and appropri-

ate warning messages on CLI/GUI

7. Isolation policy and Bandwidth policy tests and validation

8. Service discovery tests DNS/IPAM driver basic validation

 Currently t do not get the DNS names. A defect

has been raised with both Docker/Contiv.

For the issue on Contiv, see: https://github.com/contiv/netplugin/issues/968

For the issue on Docker, see: https://github.com/docker/libnetwork/pull/1855

9. Container data path and connectivity tests between different subnet via SVI/inter-vLAN routing at

TOR switch

10. Multi-tier application container stack deployment with Contiv policy on different subnet and validate

connectivity between the application stack components

11. Contiv workflow through Contiv UI with Docker EE Swarm mode validation

 Contiv network deployment workflow currently works with Contiv CLI and Docker UCP client bun-

dle. Contiv UI can also be used for creating Contiv backend network. However, the support for

creating Contiv backend network on Docker UCP GUI is a feature currently under development;

ticket number #9068 is prioritized to support this feature. Therefore, the workflows are currently

validated using Docker UCP CLI in this CVD.

Scale Tests

Cisco UCS infrastructure has a built-in mechanism to scale the deploy application environment through

service profile templates and server pool concepts. It is very easy to scale-up the infrastructure. By inserting

new blade hardware and adding it into the server pool, gets discovered automatically and gets a new service

profile associated to it. Once the service profile is associated the blade gets a new node entity to be

included in the Docker Enterprise pod. This procedure remains the same for any type of nodes, be it a UCP

master, UCP worker or DTR node till the point where OS and Docker Engine is installed. Blade discovery at

the UCS Manager level is common; however, in order to differentiate and distribute in the two-different

chassis we have created three service profile templates one each for UCP master/controllers, UCP/DTR

worker nodes. Service profiles are instantiated from one of these service profile templates based on the

need for scale of a particular type of node.

Ansible playbook completes post OS installation tasks including adding the node to the existing cluster

based on node role. After Docker EE is up and running on the new node, Contiv installation is done, which

adds the new node to the Contiv cluster. Currently, Contiv supports Contiv worker node addition seamlessly.

https://github.com/contiv/netplugin/issues/968
https://github.com/docker/libnetwork/pull/1855

Validation

143

1. Insert a new blade in any available chassis slot and get it discovered:

2. After successfully adding the node to the server pool, create new service profile (for example, DEE-

Wrk-5) from the specific template based on the node type (for example, DEE-Wrk):

Validation

144

3. Service profile association will automatically kick-in as the template was already associated to the

server pool:

4. While service profile is getting associated, kickstart HDD image was created for the new node. Steps

outlined for the same in earlier sections.

5. After completion of successful service profile association our automated OS installation workflow will

commence and install OS through vMedia mounted boot and kickstart images:

Validation

145

6. For post OS install tasks, modify the Ansible playbook to include roles/tasks for DEE-Worker node

role to get the node attached to the existing Docker EE Swarm cluster:

Validation

146

7. Once node joins the existing DEE Swarm cluster, the node is added to the Contiv inventory file

`cfg.yml` and run the installer to get Contiv installed on it.

High-Availability Tests

This solution is designed to provide service availability for running the container applications in the event of a

failure at the hardware and/or software stack. Performance impact is expected in the service degraded

state. To test these scenarios and their impact on system performance, faults were injected on an up and

running setup. Docker EE UCP master/controllers, UCP and DTR worker nodes were subjected to the various

failure scenarios and their performance was observed. Node failure was simulated by rebooting and shutting

of one node at a time and removal of the node from the chassis.

Tests Performed on Docker Enterprise Edition

1. UCP worker node reboot/shutdown:

 Tests passed with all the running containers coming up online without any delay.

Validation

147

2. DTR node reboot:

 Tests passed with DTR application containers coming up online without any delay.

3. UCP Manager Master/Replica node reboot:

 Tests passed. UCP management control plane through CLI/GUI was available for

cluster/application container administration. UCP master node reboot did not impact

container data-path and subsequent re-convergence of the cluster.

 Same tests were performed with HAProxy external load-balancer in the mix. And UCP/DTR

UI were accessible from the rest of the UCP master and DTR worker node, there were no

service disruptions.

4. UCP Manager Master/Replica node shutdown:

 Tests passed. Master/Controller node shutdown does not impact cluster and application

container management operations and associated data path. All such activities remain

unaffected and were serviced by surviving controller nodes. Cluster re-convergence

succeeded when the node was up.

 Containers were deployed and the applications running on them were not disrupted on the

UCP worker nodes during the unavailability of the UCP master node.

 Same tests were performed with HAProxy external load-balancer in the mix. And UCP/DTR

UI were accessible from the rest of the UCP master and DTR worker node, there were no

service disruptions.

5. Docker Engine Service Restart on UCP worker nodes:

 Tests passed with the infrastructure containers and deployed application containers coming

up online without any delay.

6. Docker Engine Service Restart on DTR nodes:

 Tests passed with DTR application containers coming up without any delay.

7. Docker Engine Service Restart on Controller Master/Replica Nodes:

 Tests passed.

8. Infrastructure component level service/process restart:

 Docker EE services runs on cluster nodes as infrastructure containers except for the Docker

EE Engine, which is a the operating system level through

 tests have been covered in step 7. As part of

this test case, the key services and components of the software stack on each node type

came up gracefully.

Tests Performed with Contiv

1. Contiv worker node reboot/shutdown:

While container applications were running using Contiv network and policies, Contiv worker node was

rebooted. Swarm scheduler restarted those application containers on the surviving Contiv worker

nodes. There was no delay or failure seen. Also `docker plugin ls` showed Contiv NetPlugin was

coming back to enabled state after reboot/shutdown.

2. Contiv master node reboot/shutdown:

Validation

148

Same test as above performed on the Contiv master node. Contiv master nodes run `etcd` cluster as

well for the state store KV database. In a 3 node master HA cluster only one master node failure can

be sustained. With one master node reboot/shutdown scenarios were tested. All the services ran

normally and no delay or failure seen in moving application containers and infrastructure services on

the surviving master nodes. With one master node in failed state, new Contiv networks were

successfully deployed and containers were able to consume them. Also with `etcd` cluster leader

reboot/shutdown test, leadership/master role successfully migrated to one of the surviving master

nodes. After the master node reboot/shutdown, when the node came up, the node was able to

successfully join the cluster.

Tests Performed on Cisco UCS Infrastructure

Cisco UCS provides a robust system which has no single point of failure, right from Cisco Fabric

Interconnects to adapters on Cisco UCS blade servers. However, there are failures which cannot be handled

at the system level, such failures are:

 CPU failures

 Memory or DIMM failures

 Cisco VIC failures

 Motherboard failures

CPU/Motherboard/VIC (if only one present) failures results in blade/node getting out of service thereby

causing the cluster to operate in a reduced capacity. Application containers running on them will have to be

started on the other surviving nodes manually in case such a failure is encountered. A fully loaded cluster

can also be on a performance tax till the required capacity is restored.

Hardware failures that are addressed at the system level include:

1. Cisco Nexus Switch Cisco UCS Fabric interconnects are connected to upstream Cisco Nexus 9000

Series switches in a vPC mode with redundant uplinks in a portchannel configuration. It is observed

that Cisco Nexus 9000 Series switch failure did not impact the application data path. Tests passed

without any issues.

2. Cisco UCS Fabric Interconnect Cisco UCS has Fabric Interconnects in redundant mode to provide

no-single point of failure for the application contai

Fabric failover, in the event of any uplink, upstream Cisco Nexus 9000 Series switch and Cisco Fab-

ric Interconnect failure data path of the application containers fails over automatically to the redun-

dant fabric interconnect. Following tests were performed and have passed with no impact on the

 While a container was pinging to the external gateway address, uplink ports on the primary

Fabric Interconnect were disabled.

 Primary Cisco Fabric Interconnect was shutdown.

 Cisco Nexus 9000 Series switch was shutdown.

3. Cisco UCS Fabric Extenders (IOM) Cisco UCS chassis has two IOMs providing converged connec-

tivity to the blade and Fabric Interconnects. It carries both management control and data plane traffic

to the upstream switch and acts as an extension to fabric interconnect for the blade IO. Tests were

performed to test if there were any interruptions in traffic. When the containers were pinging inter-

Validation

149

nally to each other between the blades and to the gateway address, the IOM-A was removed and in-

serted back. No packet loss observed.

4. Hard Disk All the blade nodes have RAID-1 configured for both OS boot LUN and Docker data LUN.

While nodes were up and were running containers, one of t n-

serted back. Test passed with no outage at any level - OS/ DDC/ Containers.

Bill of Materials

150

Bill of Materials

The following infrastructure components are needed for UCS B-Series first architecture:

Table 12 BOM for first architecture

Component Model Quantity Comments

Docker Enterprise

Edition UCP

Master/Controller

Nodes

B200 M5 (UCSB-

B200-M5-U)

3 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G1RS-H)

Local Disks 2 x 300 GB SAS disks for

OS Boot & Docker Engine (UCS-

HD300G10K12G)

Network Card 1x1340 VIC (UCSB-

MLOM-40G-03)

Raid Controller Cisco MRAID 12 G

SAS Controller (UCSB-MRAID12G)

Docker Enterprise

Edition DTR Nodes

B200 M5 (UCSB-

B200-M5-U)

3 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G1RS-H)

Local Disks 2 x 300 GB SAS disks for

OS Boot & Docker Engine (UCS-

HD300G10K12G)

Network Card 1x1340 VIC (UCSB-

MLOM-40G-03)

Raid Controller Cisco MRAID 12 G

SAS Controller (UCSB-MRAID12G)

Docker Enterprise

Edition UCP Worker

Nodes

B200 M5 (UCSB-

B200-M5-U)

4 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G1RS-H)

Local Disks 2 x 300 GB SAS disks for

OS Boot & Docker Engine (UCS-

HD300G10K12G)

Network Card 1x1340 VIC (UCSB-

MLOM-40G-03)

Bill of Materials

151

Raid Controller Cisco MRAID 12 G

SAS Controller (UCSB-MRAID12G)

Chassis UCS 5108 (N20-

C6508)

2

IO Modules IOM 2304 (UCS-

IOM-2304)

4

Fabric Interconnects UCS 6332-16UP

(UCS-FI-6332-

16UP)

2

Switches Nexus 9396PX

(N9K-C9396PX)

2

Docker Server/On-Prem

Subscription

Docker Enterprise

Edition Subscription

1  PIDs for Docker EE Standard for

Linux Server with Business Critical

Support/ Business Day Support:

DSUB-EE-STANDARD-BC/ DSUB-

EE-STANDARD-BD

 PIDs for Docker EE Advanced for

Linux Server with Business Critical

Support/ Business Day Support:

DSUB-EE-ADVANCED-BC/

DSUB-EE-ADVANCED-BD

The following infrastructure components are needed for UCS C-Series second architecture:

Table 13 BOM for second architecture

Component Model Quantity Comments

Docker Enterprise

Edition UCP

Master/Controller + DTR

Nodes

C220 M5 (UCSC-

C220-M5SX)

3 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G2RS-H)

Local Disks 8 x 600 GB SAS disks for

OS Boot and Docker Engine (UCS-

HD600G15K12N)

Network Card 1x1385 VIC (UCSC-

PCIE-C40Q-03)

Bill of Materials

152

Raid Controller Cisco MRAID 12 G

SAS Controller (UCSC-RAID-M5)

Docker Enterprise

Edition UCP Worker

Nodes

C220 M5 (UCSC-

C220-M5SX)

1 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G2RS-H)

Local Disks 8 x 600 GB SAS disks for

OS Boot and Docker Engine (UCS-

HD600G15K12N)

Network Card 1x1385 VIC (UCSC-

PCIE-C40Q-03)

Raid Controller Cisco MRAID 12 G

SAS Controller (UCSC-RAID-M5)

Fabric Interconnects UCS 6332-16UP

(UCS-FI-6332-

16UP)

2

Switches Nexus 9396PX

(N9K-C9396PX)

2

Docker Server/On-Prem

Subscription

Docker Enterprise

Edition Subscription

1  PIDs for Docker EE Standard for

Linux Server with Business Critical

Support/ Business Day Support:

DSUB-EE-STANDARD-BC/ DSUB-

EE-STANDARD-BD

 PIDs for Docker EE Advanced for

Linux Server with Business Critical

Support/ Business Day Support:

DSUB-EE-ADVANCED-BC/

DSUB-EE-ADVANCED-BD

Addendum

153

Addendum

UCS with Contiv and DEE - Hybrid cluster with Baremetal and VMs

This solution has also been validated on Cisco UCS hardware platform running Docker/Contiv Manager and

Worker nodes part of a mixed cluster having both bare metal and virtual machine hosts. This part of the

, which is to unify containers, VMs and bare metal hosts with a single

networking fabric allowing container networks to be addressable from VMs and bare metal host networks.

This enable us to move application work -

oriented network policies across legacy bare metal and virtual hosting environments.

Mixed Cluster Solution Components

Solution validation on mixed cluster topology requires virtualization platform in addition to the base

components listed omponents . Solution validation on mixed cluster topology

requires the following additional virtualization components:

 VMWare ESXi v6.5

 VMWare VCenter v6.5

Solution Design

For the mixed cluster topology, solution envisages VMWare ESXi hypervisor nodes to be added to the

existing Docker UCP swarm mode cluster running on baremetal nodes. This solution uses two ESXi nodes

with the same hardware and software components for provisioning virtual machines. Management of ESXi

nodes, compute, network and storage needs for virtual machines are administered through VMWare

vCenter.

Physical Topology

Following figures illustrate physical topologies for both Cisco UCS Blade and Rack server architectures.

Addendum

154

Figure 30 Mixed cluster with B-series servers - First Architecture

Figure 31 Mixed cluster with C-series servers Second Architecture

Addendum

155

Technical Requirements for Virtual Environment

As we know the scheduling of application containers on the cluster nodes is handled through Docker UCP in

swarm mode; which takes away the need for migrating VMs around the ESXi nodes. Additionally, the primary

usecase of this solution is to demonstrate the statelessness of container application without storage

persistency, which eliminates the need for DRS/Fault-tolerant ESXi cluster. ESXi nodes provide virtualization

platform without having them to form a cluster with shared external storage for virtual machine datastore.

These VMs join the existing Docker swarm mode cluster as either worker or manager nodes. Each of these

VMs runs Docker Engine separately which enables them to join the Docker swarm cluster managed by

Docker UCP.

Virtual Machine Sizing

For running application container workloads on the VMs, we have created four VMs per ESXi node. Each VM

per ESXi node is sized with 10 vCPU and 60GB of memory footprint. In order to restrict oversubscription of

resources among the VMs on an ESXi node, memory reservation is set to 100% per VM.

Figure 32 VM Sizing

Storage Considerations for Virtual Environment

All storage needs for ESXi hosts, virtual machines and Docker EE engine is being provisioned locally through

the use of a specific UCS Manager Storage Profile. Local storage devices per ESXi nodes for ESXi

hypervisor, virtual machine disk image and guest operating system storage have been exposed through

VMWare data store units. Storage needs for Docker Engine and local containers is being exposed to each of

the four VMs through RDM (Raw Device Mappings). This is essential as each VM would need a raw device

for guest operating system to be configured as LVM thinpool for running Docker EE engine. Following figures

show the storage configurations at the ESXi and VM level.

Figure 33 ESXi Storage Devices

Addendum

156

Figure 34 ESXi Datastore

Figure 35 VM Storage Configuration

Network Considerations for Virtual Environment with Contiv

Standard VM network is used behind vSwitch to manage vmkernel interfaces and vm ports for ESXi and

guest operating system host access. For Contiv container network data path, a dedicated physical network

device per virtual machine is configured in passthrough mode.

Figure 36 Standard vSwitch for ESXi host/Guest OS Access and VM network

Addendum

157

Figure 37 Passthrough network device configuration per VM for Contiv Container datapath

Logical topology

Following figures illustrate the networking configuration and logical data path.

Addendum

158

Figure 38 Logical network paths on mixed cluster topology

Solution Deployment

This essentially comprises four main tasks to extend the existing Docker EE cluster for including additional

worker nodes running on virtual machines.

 UCS Manager configuration tasks for provisioning compute, storage and network for the two ESXi

host additions

 Installing ESXi, discovering them on vCenter and deploying virtual machine

 Configuring post install OS, installing Docker EE engine and adding Docker hosts as worker nodes to

the existing cluster

 Installing Contiv on newely added worker nodes to the cluster as Contiv worker nodes

UCS Manager Configuration

This solution uses manual method of deploying ESXi/Guest OS on two additional blade/rack servers for

simplicity and avoiding use of additional tool sets for automating virtual infrastructure. UCS Manager

configuration tasks are simple right from discovering additional blade/rack servers to associating them to the

service profiles, to make them ready for the ESXi/VM/GuestOS deployment. Procedure remains the same as

explained in the previous sections, except for following differences:

1. Create a new server pool for adding new blade/rack servers for virtual environment.

Addendum

159

Figure 39 ESXi server pool

2. Create a new storage profile for ESXi hosts. Disk group policy remains the same as explained previ-

ously: RAID1 for the first architecture with blade servers and RAID10 for the second architecture with

rack mount servers. Create nine LUNs as shown below. Boot-Lun is for ESXi boot, VM* Luns are for

each of the VMs and corresponding guest operating systems and VMData-* are for storage for

Docker EE engines running on each of the VMs.

Figure 40 Storage profile for ESXi servers

3. Create a Boot Policy with a. CD/DVD for ESXi installation through vMedia mount and b. Local LUN

with LUN name matching with that defined in the storage profile created earlier, for example -

ervisor bootup.

Figure 41 Boot policy for manually installing ESXi

Addendum

160

4. This solution uses dedicated data path per VM for Contiv to provide native fabric connectivity for the

containers running on the cluster. Each ESXi node hosts four VMs, so create four vNIC templates for

the Contiv use and two vNIC templates for ESXi management/VM network. A total of six vNIC tem-

plates are required. vNIC templates for Contiv should have vLANs configured for Contiv tenants. In

this example, user defined vLANs are ranged from 2001-2005 as shown.

 Make sure that the vLANs for Contiv in the allowed vLAN list within the

-checked. This is essential to avoid double tagging of the network packets exchanged between

the containers, as Contiv does add appropriate vLAN IDs tags on per tenant/network basis created for its

own host based network provisioning. Also, please note vNICs provisioned for Contiv will be made availa-

ble to the VMs in the passthrough mode and they do not get plumbed into any other software switch at the

hypervisor layer. Contiv uses this network data path for its own OVS (Open Virtual Switch).

Figure 42 vNIC template list used for ESXi nodes

5. Create vNIC template for ESXi, do not check Fabric Failover. Make sure one vNIC is assigned to each

of the Fabric A/B ids.

Addendum

161

Figure 43 VMware ESXi management/VM Network vNIC template details

6. Create vNIC template for Contiv datapath. This is provisioned using passthrough mode to each of the

VMs on the ESXi nodes.

Addendum

162

Figure 44 vNIC template for Contiv

7. Create service profile template for ESXi nodes using storage profile, boot policy and vNIC templates

as created in the previous steps and associate it with DockerVM server pool. For Contiv datapath

vNICs, make sure to choose VMWarePassThrough adapter policy while creating SP template for

ESXi. Rest of the policies and pools remains the same as that created for the bare metal nodes pre-

viously.

8. Instantiate two service profiles from the template created previously and associate to the servers

available in the DockerVM server pool.

Addendum

163

Figure 45 Successfully associated service profiles for mixed cluster

VMware ESXi Installation and Virtual Machine Deployment

Installation workflow for ESXi nodes follows the standard vMedia mount of the custom Cisco ISO for ESXi.

Steps are listed below:

1. Reboot the server and mount the vMedia CD/DVD option with ESXi6.5 Cisco custom ISO.

Figure 46 Mounting of vMedia

Figure 47 Cisco Custom ISO for ESXi

2. Select the boot lun of size 30GB which was created for ESXi install through UCS Manager Storage

Profile.

Addendum

164

Figure 48 Boot lun selection

3. Press Enter to reboot after the installation is complete.

Figure 49 Install completion

4. Configure management ip address after rebooting the ESXi nodes by pressing F2 and restarting

management nework.

Addendum

165

Figure 50 ESXi management network configuration

5. Add newly installed ESXi nodes to vCenter by following Getting Started link for creating datacenter

and adding host to datacenter.

Figure 51 ESXi node addition

6. After adding ESXi nodes to the datacenter in vCenter, proceed with creating datastores for guest vir-

tual machines. This datastore is needed for each VM running on the ESXi node. This will be used for

guest operating system and VMDK file storage.

Figure 52 Creation of new datastore on the ESXi node

7. Select VMFS filesystem and keep the version at 6.5.

Addendum

166

Figure 53 Selecting VMFS filesystem for the new datastore

8. Select the correct local disk. We have provisioned two LUNs for each of the ESXi nodes.

Figure 54 Selecting LUN

9. Keep rest of the settings to default options and complete datastore creation.

10. Convert additional vNICs into passthrough devices. We have provisioned vNICs for container

datapath managed by Contiv for each of the virtual machines running per ESXi hosts. We have provi-

sioned six vNICs in UCS Manager Service Profile for each of the ESXi hosts. Two vNICs are used for

management and VM data path while rest of the four vNICs provisioned for each virtual machine for

Contiv datapath.

11. To select PCI device option, select the Configure tab for the ESXi node, click edit and select PCI de-

vices for passthrough.

Addendum

167

Figure 55 Selecting PCI device option

Figure 56 Selecting PCI devices for passthrough configuration

12. Reboot ESXi hosts to complete passthrough configuration.

Figure 57 Passthrough configuration

Addendum

168

13. Deploy virtual machine by selecting the datacenter where ESXi hosts were added. Follow the stand-

ard procedure to create a virtual machine with specific configuration as needed for RDM and PCI de-

vices as shown in the following figures.

Figure 58 Creating a new VM

Figure 59 Selecting an appropriate datacenter

Figure 60 Selecting ESXi node within the datacenter

Addendum

169

Figure 61 Selecting an appropriate datastore

Figure 62 Selecting a guest operating system

Figure 63 Customizing hardware RDM disk for Docker Storage

Addendum

170

Figure 64 Selecting storage device for RDM disk to be exposed to guest OS for Docker storage

Figure 65 Selecting PCI device for Contiv datapath

Addendum

171

Figure 66 Choose one of the available Cisco VIC PCI device as passthrough additional vNIC for Contiv

datapath

Figure 67 Complete VM deployment

14. Power on virtual machine and install OS through CD/DVD drive option by selecting ISO image from

content library

Addendum

172

Figure 68 Choosing CD/DVD drive and ISO from previously populated content library

Figure 69 Select RHEL7.3 from the list to install Guest OS

15. Complete the RHEL7.3 operating system installation with standard options.

Addendum

173

Figure 70 OS installation final stage

Docker EE Installation on Virtual Machines and Adding them to Existing UCP Cluster

The next step after guest OS installation is to complete the post install configuration and Docker EE

installation. Add the newly created Docker host running on virtual machine to the existing Docker EE swarm

cluster. For this, add newly provisioned virtual machines under `DEE-Nodes` and `UCP-Wrk` host group in

the host inventory file used in the Ansible playbook and follow rest o

 section.

Figure 71 Ansible playbook host inventory file with new worker nodes

Addendum

174

After successful completion of the Ansible playbook for adding new nodes into the existing cluster, final

state can be verified via UCP dashboard.

Figure 72 UCP dashboard showing addition of new worker nodes running on VMs

Contiv Installation on New Nodes and Adding them to Existing Contiv Cluster

Once Docker EE cluster has all the new VM worker nodes added, next step is to bring them in Conti cluster

by installation Contiv with the role as Contiv worker. For this, we need to edit `cfg.yml` file inside

install/ansible folder to include new nodes as worker nodes. We can find out the interface names for

control/data path by logging into virtual machines and running `ifconfig -a` command. Interface with no IP

address will be used for Contiv data path.

Figure 73 Sample `cfg.yml` file with newly added worker nodes

Addendum

175

Run the installation command as is using edited `cfg.yml`.

Figure 74 Contiv installation

Validate successful Contiv installation by issuing `docker plugin ls` command.

Figure 75 Contiv Plugin status

Testing and Validation for mixed cluster environment

Feature functional and high-availability test routines were performed to validate the solution and design.

Tests were mainly focused on highlighting Cisco UCS, Contiv and Docker EE capabilities to manage

containers and its datapath irrespective of whether they run on bare metal nodes or virtual machines.

Following sample tests were validated on bare metal and virtual machine mixed cluster:

 Functional Test Scenarios Docker EE with Contiv on a Mixed Cluster Environment

1. Create network, subnet, VLAN, application profile and policy constructs

2. Create and deploy containers with Contiv network

3. Test the connectivity with all possible scenarios for L2 VLAN mode of operation under Contiv work-

flow

4. Create Container-Application-Groups for Contiv network, Define Policies, Associate Policies to con-

tainer-groups, ensure that the policies were enforced

5. Validate discovery of new end-points (new containers etc) on the fabric

6. While configuring various policies, networks, tenants, etc. validate the error messages and appropri-

ate warning messages on CLI/GUI

7. Isolation policy tests and validation

8. Service discovery tests DNS/IPAM driver basic validation

Addendum

176

9. Container datapath and connectivity tests between different subnet via SVI/inter-vLAN routing at

TOR switch

High-Availability Tests

Following set of high-availability tests were performed on the mixed cluster environment the same way as

that were done on the baremetal cluster nodes. Docker EE UCP master/controllers, UCP and DTR worker

nodes were subjected to the various failure scenarios and their performance was observed. Node failure was

simulated by rebooting and shutting down a node and removal of that node from the chassis.

Tests Performed on Docker Enterprise Edition

1. UCP worker node reboot/shutdown:

 Tests passed with all the running containers coming up online without any delay.

2. DTR node reboot:

 Tests passed with DTR application containers coming up online without any delay.

3. UCP Manager Master/Replica node reboot:

 Tests passed. UCP management control plane through CLI/GUI was available for

cluster/application container administration. UCP master node reboot did not impact

container datapath and subsequent re-convergence of the cluster.

 Same tests were performed with HAProxy external load-balancer in the mix. And UCP/DTR

UI were accessible from the rest of the UCP master and DTR worker node, there were no

service disruptions.

4. UCP Manager Master/Replica node shutdown:

 Tests passed. Master/Controller node shutdown does not impact cluster and application

container management operations and associated data path. All such activities remain

unaffected and were serviced by surviving controller nodes. Cluster re-convergence

succeeded when the node was up.

 Containers were deployed and the applications running on them were not disrupted on the

UCP worker nodes during the unavailability of the UCP master node.

 Same tests were performed with HAProxy external load-balancer in the mix. And UCP/DTR

UI were accessible from the rest of the UCP master and DTR worker node, there were no

service disruptions.

5. Docker Engine Service Restart on UCP worker nodes:

 Tests passed with the infrastructure containers and deployed application containers coming

up online without any delay.

6. Docker Engine Service Restart on DTR nodes:

 Tests passed with DTR application containers coming up without any delay.

7. Docker Engine Service Restart on Controller Master/Replica Nodes:

 Tests passed.

8. Infrastructure component level service/process restart:

Addendum

177

 Docker EE services runs on cluster nodes as infrastructure containers except for the Docker

EE Engine, which is a the operating system level through

 tests have been covered in step 7. As part of

this test case, the key services and components of the software stack on each node type

came up gracefully.

Tests Performed with Contiv

1. Contiv worker node reboot/shutdown:

While container applications were running using Contiv network and policies, Contiv worker node was

rebooted. Swarm scheduler restarted those application containers on the surviving Contiv worker

nodes. There was no delay or failure seen. Also `docker plugin ls` showed Contiv NetPlugin was

coming back to enabled state after reboot/shutdown.

 When a VM worker node reboots, subsequent Docker Service deployment on a Swarm mode

cluster gets significantly delayed. Follow this GitHub entry for further updates:

https://github.com/contiv/netplugin/issues/1112

2. Contiv master node reboot/shutdown:

Same test as above performed on the Contiv master node. Contiv master nodes run `etcd` cluster as

well for the state store KV database. In a 3 node master HA cluster only one master node failure can

be sustained. With one master node reboot/shutdown scenarios were tested. All the services ran

normally and no delay or failure seen in moving application containers and infrastructure services on

the surviving master nodes. With one master node in a failed state, new Contiv networks were

successfully deployed and containers were able to consume them. Also with `etcd` cluster leader

reboot/shutdown test, leadership/master role successfully migrated to one of the surviving master

nodes. After the master node reboot/shutdown, when the node came up, the node was able to

successfully join the cluster.

Bill of Material - Additional Components for Bare Metal and Virtual Machine Cluster

Following additional hardware/software components are needed for mixed cluster environment:

Table 14 BOM for first architecture

Component Model Quantity Comments

Docker Enterprise

Edition UCP Worker

Nodes

B200 M5 (UCSB-

B200-M5-U)

2 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G1RS-H)

Local Disks 2 x 300 GB SAS disks for

OS Boot & Docker Engine (UCS-

HD300G10K12G)

Network Card 1x1340 VIC (UCSB-

MLOM-40G-03)

Raid Controller Cisco MRAID 12 G

https://github.com/contiv/netplugin/issues/1112

Addendum

178

SAS Controller (UCSB-MRAID12G)

VMWare vCenter

Enterprise Plus

VMWare vCenter

Enterprise Plus

Subscription

1 Needed for ESXi host and vCenter

The following infrastructure components are needed for UCS C-Series second architecture:

Table 15 BOM for second architecture

Component Model Quantity Comments

Docker Enterprise

Edition UCP Worker

Nodes

C220 M5 (UCSC-

C220-M5SX)

2 CPU 2 x Intel Xeon Gold E7

6130@2.1GHz (UCS-CPU-6130)

Memory 12 x 16GB@2666 MHz

RDIMM DIMMs total of 192GB (UCS-

MR-X16G2RS-H)

Local Disks 8 x 600 GB SAS disks for

OS Boot and Docker Engine (UCS-

HD600G15K12N)

Network Card 1x1385 VIC (UCSC-

PCIE-C40Q-03)

Raid Controller Cisco MRAID 12 G

SAS Controller (UCSC-RAID-M5)

VMWare vCenter

Enterprise Plus

VMWare vCenter

Enterprise Plus

Subscription

1 Needed for ESXi host and vCenter

Summary

179

Summary

The emergence of the Docker platform and the underlying support in the Linux and Windows has enabled a

shift in the way that traditional applications are managed and new applications are designed and built,

moving to more efficient micro services architectures. Microservices architectures are an approach to

modernize and build complex applications through small, independent components that communicate with

each other over language-independent APIs.

Docker Enterprise Edition on Cisco UCS platform enabled through automation tools like UCS Python SDK and

Ansible provides container application platform to get deployed and managed quickly at scale. With Contiv,

higher-level of networking abstraction can be achieved which secures application using a rich policy

framework. A built-in service discovery and service routing for scale out services makes Contiv an

indispensable component on Cisco UCS servers for container technology and microservices platform.

Cisco UCS with Contiv and Docker Enterprise Edition provides a seamless platform to run cloud native

applications with containers on bare metal and virtual machine hosts homogeneously. It gives a single

management control plane for administering compute, storage and network resources needed for container

applications.

Invariably, Docker Enterprise Edition and Contiv on Cisco UCS infrastructure brings in a best of breed

container solution for the Enterprise to run production grade application containers and microservices. While

Docker EE gives us a robust container platform, Contiv provides variety of network feature sets and

functionality for the applications, Cisco UCS provides a programmable infrastructure story best suited for

DevOps with automation as a key feature. This solution can accelerate your IT transformation by enabling

easier and faster deployments, greater flexibility, heightened business agility, increased efficiency with

lowered risk and higher ROI for enterprise customers.

Appendix

180

Appendix

Appendix I: HAProxy Example Configuration for External Load-Balancer

HAProxy is a free, very fast and reliable solution offering high availability, load balancing, and proxying for

TCP and HTTP-based applications. It is particularly suited for very high traffic web sites and powers quite a

number of the world's most visited ones. Over the years it has become the de-facto standard opensource

load balancer, is now shipped with most mainstream Linux distributions, and is often deployed by default in

cloud platforms.

Its software external load-balancer, which can be installed on any of the Linux host, if not selected to be

installed during operating system installation. In this solution, RHEL 7 build/web-server is used for running

external load balancer services for UCP, DTR and Contiv Dash boards.

 Users of this guide are free to choose any of the external load-balancer of their choice, be it hardware

and/or software based.

1. HAProxy is available through rhel-7-server-rpms repo. To install HAProxy

yum install haproxy

<snip>

Running transaction

 Installing : haproxy-1.5.18-3.el7_3.1.x86_64

1/1

 Verifying : haproxy-1.5.18-3.el7_3.1.x86_64

1/1

Installed:

 haproxy.x86_64 0:1.5.18-3.el7_3.1

2. Edit /etc/haproxy/haproxy.cfg with below entries
global

 log /dev/log local0

 log /dev/log local1 notice

defaults

 log global

 mode tcp

 option tcplog

 option dontlognull

 timeout connect 5000

 timeout client 50000

 timeout server 50000

frontends

For UCP Dash board front-end VIP Config

frontend ucp_443

 mode tcp

 bind 10.65.122.77:443

 redirect scheme https code 301 if !{ ssl_fc }

 default_backend ucp_upstream_servers

For DTR Dash board front-end VIP Config

frontend dtr_443

 mode tcp

 bind 10.65.122.78:443

Appendix

181

 redirect scheme https code 301 if !{ ssl_fc }

 default_backend dtr_upstream_servers_443

For Contiv UI front-end VIP config

frontend contiv_10000

 mode tcp

 bind 10.65.122.79:443

 redirect scheme https code 301 if !{ ssl_fc }

 default_backend contiv_upstream_servers_10000

backends

Backend hosts(UCP Master Nodes) serving UCP Dash-board, which will be load balanced

backend ucp_upstream_servers

 mode tcp

 server DEE-Ctrl-1 10.65.122.61:443 check

 server DEE-Ctrl-2 10.65.122.62:443 check

 server DEE-Ctrl-3 10.65.122.63:443 check

Backend hosts(DTR Nodes) serving DTR Dach-board, which will be load balanced

backend dtr_upstream_servers_443

 mode tcp

 server DEE-DTR-1 10.65.122.64:443 check

 server DEE-DTR-2 10.65.122.65:443 check

 server DEE-DTR-3 10.65.122.66:443 check

Backend hosts(Contiv Master Nodes) serving Contiv UI, which will be load balanced

backend contiv_upstream_servers_10000

 mode tcp

 server DEE-Ctrl-1 10.65.122.61:10000 check

 server DEE-Ctrl-2 10.65.122.62:10000 check

 server DEE-Ctrl-3 10.65.122.63:10000 check

3. Enable and start haproxy.service
systemctl enable haproxy.service

Created symlink from /etc/systemd/system/multi-user.target.wants/haproxy.service to

/usr/lib/systemd/system/haproxy.service.

4. Verify haproxy.service status
systemctl status haproxy.service

 haproxy.service - HAProxy Load Balancer

 Loaded: loaded (/usr/lib/systemd/system/haproxy.service; enabled; vendor preset:

disabled)

 Active: active (running) since Sun 2017-12-03 11:28:57 IST; 5s ago

 Main PID: 5907 (haproxy-systemd)

 Memory: 2.2M

 CGroup: /system.slice/haproxy.service

 ├─5907 /usr/sbin/haproxy-systemd-wrapper -f /etc/haproxy/haproxy.cfg -

/run/haproxy.pid

 ├─5909 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid -Ds

 └─5910 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid -Ds

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy dtr_443 started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy dtr_443 started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy contiv_10000 started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy contiv_10000 started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy ucp_upstream_servers started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy ucp_upstream_servers started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy dtr_upstream_servers_443 started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy dtr_upstream_servers_443 started.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy contiv_upstream_servers_10000 start-

ed.

Dec 03 11:28:57 NFS.cisco.com haproxy[5909]: Proxy contiv_upstream_servers_10000 start-

ed.

5. Verify by accessing the UIs via configured HAProxy URLs as shown below:

Appendix

182

Figure 76 UCP UI accessed via HAProxy VIP (10.65.122.77):

Figure 77 DTR UI accessed via HAProxy VIP (10.65.122.78):

Appendix

183

Figure 78 Contiv UI accessed via HAProxy VIP (10.65.122.79):

Appendix 2: Ansible Playbook Host Inventory and Task Execution YAML File

 Ansible Playbook Host Inventory

To execute Ansible play book tasks, host inventory file is essential. DEE-Nodes/DEE-C-Nodes are the

inventory files used in our solution for both the architecture. Host grouping of the cluster nodes have been

done based on the following task categories:

 Post OS install tasks including storage, firewall and Docker EE engine install are part of the

 This is applicable to all nodes about to form DEE cluster; hence the name common

 First UCP Manager instance configuration tasks on the first node of the cluster is managed by the

 Applicable to first node in the cluster (DEE-Ctrl-1)

 UCP Manager replica configuration tasks are

 Applicable to next 2 nodes in the cluster (DEE-Ctrl-2 and DEE-Ctrl-3)

 UCP Worker node configuration tasks

 Applicable to all the worker nodes in the cluster (DEE-Wrk-1, DEE-Wrk-2, DEE-Wrk-3 and DEE-

Wrk-4)

Appendix

184

 DTR node configuration tasks

 Applicable to first node of the DTR nodes (DEE-DTR-1)

 First DTR replica configuration tasks -

 Applicable to second DTR nodes in the cluster (DEE-DTR-2)

 Second DTR replica configuration tasks -

 Applicable to third DTR nodes in the cluster (DEE-DTR-3)

 Sample host inventory file for the first architecture with 10-nodes -

[DEE-Nodes]

DEE-Ctrl-1

DEE-Ctrl-2

DEE-Ctrl-3

DEE-DTR-1

DEE-DTR-2

DEE-DTR-3

DEE-Wrk-1

DEE-Wrk-2

DEE-Wrk-3

DEE-Wrk-4

DEE-Wrk-5

[UCP-Mgr]

DEE-Ctrl-1

[UCP-Mgr-Replicas]

DEE-Ctrl-2

DEE-Ctrl-3

[UCP-Wrk]

DEE-DTR-1

DEE-DTR-2

DEE-DTR-3

DEE-Wrk-1

DEE-Wrk-2

DEE-Wrk-3

DEE-Wrk-4

DEE-Wrk-5

[UCP-DTR]

DEE-DTR-1

[UCP-DTR-R1]

DEE-DTR-2

[UCP-DTR-R2]

DEE-DTR-3

 Sample host inventory file for the second architecture having 4-node cluster -

[DEE-Nodes]

DEE-Ctrl-C-1

DEE-Ctrl-C-2

DEE-Ctrl-C-3

DEE-Wrk-C-1

[UCP-Mgr]

DEE-Ctrl-C-1

[UCP-Mgr-Replicas]

DEE-Ctrl-C-2

DEE-Ctrl-C-3

[UCP-Wrk]

DEE-Wrk-C-1

[UCP-DTR]

DEE-Ctrl-C-1

Appendix

185

[UCP-DTR-R1]

DEE-Ctrl-C-2

[UCP-DTR-R2]

DEE-Ctrl-C-3

Ansible Playbook Task Execution YAML File Configuration

Based on the host inventory files, a task execution YAML file is configured as shown below. This YAML has

all the roles defined. Ansible playbook executes individual tasks as coded for each of the roles defined. This

file can be used for both the architectures discussed in this solution.

Sample YAML used in this solution -

- hosts: DEE-Nodes

 gather_facts: no

 roles:

 - common

 - yum

 - ntp

 - firewall

 - storage

 - docker

- hosts: UCP-Mgr

 gather_facts: no

 roles:

 - UCPswarm

- hosts: UCP-Mgr-Replicas

 gather_facts: no

 roles:

 - UCPreplica

- hosts: UCP-Wrk

 gather_facts: no

 roles:

 - UCPworker

- hosts: UCP-DTR

 gather_facts: no

 roles:

 - UCPdtr

- hosts: UCP-DTR-R1

 gather_facts: no

 roles:

 - UCPdtr-r1

- hosts: UCP-DTR-R2

 gather_facts: no

 roles:

 - UCPdtr-r2

Appendix 3: Contiv Data Path Troubleshooting

Contiv supports VLAN and VxLAN mode for forwarding the data traffic. VLAN/ Bridge mode is used in this

soluiton. Contiv uses open vswitch (OVS) to provide forwarding plane for container data path. OVS kernel

module is built into the base RHEL 7.3 bare metal operating system. Contiv installer installs v2plugin as a

container to run OVS user space deamon (ovs-vswitchd), OVS database (ovsdb-server) and startup

services. Contiv v2plugin container is part of default Docker runtime `docker-runc` services.

Verifying the Contiv global config mode

Run the command ‘netctl global info’ to see the Contiv netctl global configuration:

Appendix

186

[root@DEE-Ctrl-1 ~]# netctl global info

Fabric mode: default

Forward mode: bridge

ARP mode: proxy

Vlan Range: 1-4094

Vxlan range: 1-10000

Private subnet: 172.19.0.0/16

Note that the Forward mode is "bridge", which is the right mode for L2 VLAN forwarding.

Setting OVS Tool to Query the OVS Datapath

By default, the Contiv cluster nodes does not have the ovs tool set (for example, ovs-vsctl, ovsdb-tool and

so on) installed. The OVS tool set is built into the v2plugin container. For Contiv OVS bridge inspection and

finding the OVS datapath, login to the v2plugin container and run OVS tool set within the container. For this

identify the v2plugin container first. All the third party plugins reside at ‘/var/lib/docker/plugin’ directory

on the cluster nodes. To see the ovs-vsctl within in the v2plugin container, run:

[root@DEE-Ctrl-1 ~]# cd /var/lib/docker/plugins/

[root@DEE-Ctrl-1 plugins]# ls -ltr

total 0

drwx------. 3 root root 19 Dec 12 20:20 storage

drwx------. 4 root root 63 Dec 12 20:20

f9d57a0003e54ece3372342c0e7aa0a0f2a2c60225049b15cc7317265b7243a8

drwx------. 2 root root 6 Dec 13 21:27 tmp

drwx------. 3 root root 39 Dec 13 21:27

fce04ff433c14d188af992ec3481137ac33aea027ba4e7313d81d18721f24da6

docker plugin ls

ID NAME DESCRIPTION

ENABLED

f9d57a0003e5 docker/telemetry:1.0.0.linux-x86_64-stable Docker Inc. metrics ex-

porter true

fce04ff433c1 contiv/v2plugin:1.1.7 Contiv network plugin for

Docker true

 First 12 charactres of container ID matches with Contiv plugin directory inside the /var/lib/docker/plugins

directory and this is the Contiv v2plugins container ID.

docker-runc exec fce04ff433c14d188af992ec3481137ac33aea027ba4e7313d81d18721f24da6 ovs-vsctl

show

For example:

[root@DEE-Ctrl-1 plugins]# docker-runc exec

fce04ff433c14d188af992ec3481137ac33aea027ba4e7313d81d18721f24da6 ovs-vsctl show

d84f36b2-eb43-4f79-b600-bea009d77aa0

Manager "ptcp:6640"

Bridge contivVxlanBridge

Controller "tcp:127.0.0.1:6633"

is_connected: true

fail_mode: secure

Port "vxif106512269"

Interface "vxif106512269"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.69", tos=inherit}

port "vxif106512263"

Interface "vxif106512263"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.63", tos=inherit}

Port "vxif106512262"

Appendix

187

 Interface "vxif106512262"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.62", tos=inherit}

Port "vxif106512267"

Interface "vxif106512267"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.67", tos=inherit}

Port "vxif106512265"

Interface "vxif106512265"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.65", tos=inherit}

Port "vxif106512264"

Interface "vxif106512264"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.64", tos=inherit}

Port "vxif106512270"

Interface "vxif106512270"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.70", tos=inherit}

Port "vxif106512266"

Interface "vxif106512266"

type: vxlan

 options: {dst_port="8472", key=flow, remote_ip="10.65.122.66", tos=inherit}

Port "vxif106512268"

Interface "vxif106512268"

type: vxlan

options: {dst_port="8472", key=flow, remote_ip="10.65.122.68", tos=inherit}

Port "contivh0"

tag: 2

Interface "contivh0"

type: internal

Bridge contivVlanBridge

Controller "tcp:127.0.0.1:6634"

is_connected: true

fail_mode: secure

Port "eno6"

Interface "eno6"

Contiv OVS Bridge

Contiv relies on two main OVS bridges: contivVlanBridge and contivVxlanBridge.

Contiv will add OVS port on contivVlanBridge when you create container with VLAN network. Similarly, when

you create container with VxLAN network, Contiv will add OVS port on contivVxlanBridge.

#docker-runc exec fce04ff433c14d188af992ec3481137ac33aea027ba4e7313d81d18721f24da6 ovs-

vsctl show

d84f36b2-eb43-4f79-b600-bea009d77aa0

 Manager "ptcp:6640"

 Bridge contivVxlanBridge

 <snip>

 Bridge contivVlanBridge

 Controller "tcp:127.0.0.1:6634"

 is_connected: true

 fail_mode: secure

 Port "eno6"

 Interface "eno6"

 Port "vvport1"

 tag: 1001

 Interface "vvport1"

Appendix

188

In the above example, note that the vlan tag is 1001; this is the vlan used for contiv network for deploying

containers.

The port/ interface is eno6, which is the physical port assigned for container datapath. Interface vvport1is

the virtual port which pairs up with the virtual Ethernet (veth), which the containers use for network

connectivity.

When you have multiple containers, you will find multiple vvport interfaces shown under the same

contivVlanBridge.

For example:

Bridge contivVlanBridge

 Controller "tcp:127.0.0.1:6634"

 is_connected: true

 fail_mode: secure

 Port "eno6"

 Interface "eno6"

 Port "vvport2"

 tag: 1001

 Interface "vvport2"

 Port "vvport1"

 tag: 1001

 Interface "vvport1"

[root@DEE-Ctrl-1 plugins]# docker ps|grep alpine

753a6c59c74f alpine:latest "sleep 10000" 3 minutes

ago Up 3

minutes

 alpine-1.15.t0o2k9s510zlv2n7f9hezlq36

5cb287578752 alpine:latest "sleep 10000" 2 hours

ago Up 2

hours

 alpine-1.1.pb9w2mkodi912ps1xcmmr0144

Correlating OVS Ports with Container Ports

For identifying the vvport connection with its respective container, follow the steps to get the interface id of

the host and OVS port:

To identify the veth on the container, run ‘ip a’ inside the running container as shown below:

[root@DEE-Ctrl-1 plugins]# docker exec -it 753a6c59c74f ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

122: eth0@if121: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue state UP

 link/ether 02:02:64:64:64:09 brd ff:ff:ff:ff:ff:ff

 inet 100.100.100.9/24 scope global eth0

 valid_lft forever preferred_lft forever

 inet 100.100.100.1/32 scope global eth0

 valid_lft forever preferred_lft forever

network.

[root@DEE-Ctrl-1 plugins]# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

Appendix

189

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eno5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000

 link/ether 00:25:b5:99:99:8f brd ff:ff:ff:ff:ff:ff

 inet 10.65.122.61/24 brd 10.65.122.255 scope global eno5

 valid_lft forever preferred_lft forever

 inet6 fe80::225:b5ff:fe99:998f/64 scope link

 valid_lft forever preferred_lft forever

3: eno6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq master ovs-system state UP

qlen 1000

 link/ether 00:25:b5:99:99:9f brd ff:ff:ff:ff:ff:ff

<snip>

119: vvport1@if120: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master ovs-

system state UP

 link/ether 7a:2a:43:65:8b:82 brd ff:ff:ff:ff:ff:ff link-netnsid 1

 inet6 fe80::782a:43ff:fe65:8b82/64 scope link

 valid_lft forever preferred_lft forever

121: vvport2@if122: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master ovs-

system state UP

 link/ether 66:d8:74:d9:f3:b1 brd ff:ff:ff:ff:ff:ff link-netnsid 5

 inet6 fe80::64d8:74ff:fed9:f3b1/64 scope link

 valid_lft forever preferred_lft forever

From the above example, the correlation beween container veth and vvport on the OVS bridge managed by

Contiv can be seen.

Dumping OVS Flow

Contiv supports a policy which internally translates into OVS flows. You can dump the flow tables with the

following command (keep in mind you have to use OPENFLOW13):

[root@DEE-Ctrl-1 plugins]# docker-runc exec

fce04ff433c14d188af992ec3481137ac33aea027ba4e7313d81d18721f24da6 ovs-ofctl dump-flows con-

tivVlanBridge -O OPENFLOW13

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x20, duration=407005.286s, table=0, n_packets=0, n_bytes=0, priori-

ty=102,udp,in_port=1,tp_dst=53 actions=goto_table:1

cookie=0x1e, duration=407006.286s, table=0, n_packets=0, n_bytes=0, priori-

ty=101,udp,dl_vlan=4093,dl_src=02:02:00:00:00:00/ff:ff:00:00:00:00,tp_dst=53 ac-

tions=pop_vlan,goto_table:1

cookie=0x1c, duration=407006.286s, table=0, n_packets=12282, n_bytes=783768, priori-

ty=100,arp,arp_op=1 actions=CONTROLLER:65535

cookie=0x1d, duration=407006.286s, table=0, n_packets=0, n_bytes=0, priori-

ty=100,udp,dl_src=02:02:00:00:00:00/ff:ff:00:00:00:00,tp_dst=53 actions=CONTROLLER:65535

cookie=0x1a, duration=407006.286s, table=0, n_packets=0, n_bytes=0, priority=1 ac-

tions=goto_table:1

cookie=0x21, duration=407005.286s, table=1, n_packets=0, n_bytes=0, priority=100,in_port=1

actions=goto_table:6

cookie=0x2b, duration=7252.292s, table=1, n_packets=0, n_bytes=0, priority=10,in_port=2

actions=write_metadata:0x100000000/0xff00000000,goto_table:3

cookie=0x32, duration=1942.451s, table=1, n_packets=0, n_bytes=0, priority=10,in_port=3

actions=write_metadata:0x100000000/0xff00000000,goto_table:3

cookie=0x1b, duration=407006.286s, table=1, n_packets=0, n_bytes=0, priority=1 ac-

tions=goto_table:4

cookie=0x19, duration=407006.286s, table=3, n_packets=0, n_bytes=0, priority=1 ac-

tions=goto_table:4

Appendix

190

cookie=0x2c, duration=7252.292s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.2 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x2d, duration=7208.685s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.5 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x2e, duration=7208.586s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.3 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x2f, duration=7207.043s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.4 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x30, duration=1943.191s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.13 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x31, duration=1942.758s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.7 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x33, duration=1942.451s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.9 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x34, duration=1942.322s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.14 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x35, duration=1914.977s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.10 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x36, duration=1914.459s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.15 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x37, duration=1913.657s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.8 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x38, duration=1912.201s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.11 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x39, duration=1912.132s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.12 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x3a, duration=1910.787s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.16 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x3b, duration=1910.205s, table=4, n_packets=0, n_bytes=0, priori-

ty=100,ip,metadata=0x100000000/0xff00000000,nw_dst=100.100.100.6 ac-

tions=write_metadata:0/0xfffe,goto_table:5

cookie=0x17, duration=407006.286s, table=4, n_packets=0, n_bytes=0, priority=1 ac-

tions=goto_table:5

cookie=0x18, duration=407006.286s, table=5, n_packets=0, n_bytes=0, priority=1 ac-

tions=goto_table:6

cookie=0x16, duration=407006.286s, table=6, n_packets=0, n_bytes=0, priority=1 ac-

tions=goto_table:9

cookie=0x1f, duration=407006.286s, table=9, n_packets=0, n_bytes=0, priority=1 ac-

tions=NORMAL

Contiv Handling ARP Requests

Contiv handles ARP request through ARP proxy mechanism.

Before understanding how Contiv deals with ARP request, it is important to know Contiv has an internal in-

memory database which stores all the endpoint (container) information such as IP, MAC, location and so on.

That is, whenever user boot up a container, Contiv will automatically add the endpoint information to the in-

memory database.

Appendix

191

Use case #1: Container send ARP request to another container under same VLAN. (Proxy ARP mode)

Suppose container1 want to send a ping packet to container2 for the first time, then:

 Container will send an ARP request out to OVS contivVlanBridge

 Since the system is running Proxy ARP mode, OVS will follow the packet to the Contiv OVS controller

 OVS controller will look up the in-memory db

 If the destination is in the same VLAN, controller will reply the ARP regardless the target container

is in the same host or not

 If the destination is not found, controller will forward the ARP request to uplink and let the upstream

device to deal with the arp request

Use case #2: Container send ARP request to another container under same VLAN (Flood mode)

Suppose container1 wants to send a ping packet to container2 for the first time, then:

 Container will send an ARP request to the OVS contivVlanBridge

 Since the system is not running Proxy ARP mode, OVS will broadcast the ARP request to all other

host; it will work like regular ARP request

About the Authors

192

 About the Authors

Rajesh Kharya, Technical Marketing Engineering, Cisco UCS Solutions Engineering, Cisco Systems Inc.

Seasoned data center Infrastructure professional specializing in Unix/Linux, Networking, Unix File systems,

Storage Management and Cisco's Converged compute/storage/network/virtualization platform Cisco UCS.

Functional roles include Unix/Linux administration, Software Feature QA leadership to Solutions Development

and Architecture. Currently involved in Solution development projects Containers on UCS bare metal and

OpenStack on UCS platform. With over 15 years of experience in the domain, excited and glad to be part of

technological transitions happening in the datacenter.

Sindhu Sudhir, Technical Marketing Engineering, Cisco UCS Solutions Engineering, Cisco Systems Inc.

Sindhu Sudhir is part of Cisco UCS Solutions Engineering team. In her current role she is focusing on

Container technologies and infrastructure automation on Cisco UCS platform.

Acknowledgements

 Cisco Systems: Ka Hou Lei, Vishwanath Jakka, Babu Mahadevan, Meenakshi Kaushik, John Day

 Docker: Uday Shetty, Bradley Wong

	Executive Summary
	Business Challenges
	Our Solution
	Implementation Overview
	Solution Benefits

	Audience
	Purpose of this Document

	Solution Overview
	Introduction
	What’s New?
	Solution Components

	Technology Overview
	Cisco Unified Computing System
	Cisco UCS Manager
	Cisco UCS Fabric Interconnects
	Cisco UCS 5108 Blade Server Chassis
	Cisco UCS B200 M5 Blade Server
	Cisco UCS C220 M5 Rack-Mount Server
	Cisco UCS Fabric Extenders
	Cisco VIC Interface Cards
	Cisco UCS Differentiators

	Cisco Nexus 9000 Switches
	Cisco Contiv
	Docker Enterprise Edition
	Docker EE Engine
	Docker Daemon
	Docker Client
	Docker Registries
	Docker Objects

	Docker Universal Control Plane (UCP)
	Docker UCP Internal Components
	Docker UCP Storage Volume Usage
	User Interaction with Docker UCP

	Docker Trusted Registry (DTR)
	Docker DTR Internal Components
	Docker UCP Storage Volume Usage
	User Interfaces with Docker DTR

	Ansible

	Solution Design
	Architectural Overview
	Cisco UCS and Docker Enterprise Edition
	Cisco Contiv
	Physical Topology
	Logical Topology

	Ansible Playbook
	Ansible Playbook Tree Structure
	Ansible Playbook Global Variables (group_vars)
	Ansible Playbook Roles

	Sizing Considerations
	Software and Hardware Versions

	Solution Deployment
	Cisco Nexus 9372PX
	Initial Configuration and Setup
	Cisco Nexus A
	Cisco Nexus B

	Feature Enablement
	VLAN Creation
	Configure VPC
	Configuring VPC Domain
	Configuring Network Interfaces for VPC Peer Links

	Configure Network Interfaces
	Cisco Nexus A
	Cisco Nexus B

	Cisco UCS Manager - Administration
	Initial Setup of Cisco Fabric Interconnects
	Cisco UCS 6332-16UP FI – Primary (FI-A)
	Cisco UCS 6332-16UP FI – Secondary (FI-B)

	Configure Ports for Server, Network and Storage Access
	Logging into Cisco UCS Manager

	Cisco UCS Manager – Synchronize to NTP
	Upgrading Cisco UCS Manager
	Assigning Block of IP addresses for KVM Access
	Editing Chassis Discovery Policy
	Acknowledging Cisco UCS Chassis
	Enabling Server Ports
	Enabling Uplink Ports to Cisco Nexus 9000 Series Switches
	Configuring Port Channels on Uplink Ports to Cisco Nexus 9000 Series Switches

	Cisco UCS Configuration – LAN
	Creating VLANs
	Creating LAN Pools
	Creating MAC Address Pools

	Creating LAN Policies
	Creating vNIC Templates
	Creating vNIC Template for Fabric B – Contiv Data-path
	Creating vNIC Template for Fabric A – Host Access Path

	Cisco UCS Configuration – Server
	Creating Server Policies
	Creating BIOS Policy
	Creating Boot Policy
	Creating Host Firmware Package Policy
	Creating UUID Suffix Pool
	Creating Server Pools

	Cisco UCS Configuration – Storage
	Creating Storage Profile

	Creating Service Profile Templates
	Creating Service Profile Template for UCP Manager/Master Nodes
	Creating Service Profile Template for DTR Nodes
	Creating Service Profile Template for UCP Worker Nodes

	Configuring PXE-less Automated OS Installation Infra with UCSM vMedia Policy
	Prerequisites
	Web Server – Installation and Configuration
	Create Images
	Creating Boot ISO Image
	Creating Kickstart Images

	Service Profile Instantiation and Association
	Service Profile Instantiation

	Installation of Red Hat Enterprise Linux Operating System
	Docker Enterprise Edition Installation
	Configuring Firewall Ports for Docker EE
	Ansible Installation
	Ansible Playbook Execution
	Verifying Docker Enterprise Edition Installation
	Docker UCP UI
	DTR UI
	Docker UCP Client Bundle

	Contiv Installation

	Validation
	Application Container Deployment Using Contiv
	Contiv Network Back-end without Contiv Policy Rules
	Contiv Network Back-end with Contiv Policy Rules

	Test Plan
	Functional Test Scenarios – Docker EE/ Contiv
	Scale Tests
	High-Availability Tests
	Tests Performed on Docker Enterprise Edition
	Tests Performed with Contiv
	Tests Performed on Cisco UCS Infrastructure

	Bill of Materials
	Addendum
	UCS with Contiv and DEE - Hybrid cluster with Baremetal and VMs
	Mixed Cluster Solution Components
	Solution Design
	Physical Topology
	Technical Requirements for Virtual Environment
	Virtual Machine Sizing
	Storage Considerations for Virtual Environment
	Network Considerations for Virtual Environment with Contiv

	Logical topology
	Solution Deployment
	UCS Manager Configuration
	VMware ESXi Installation and Virtual Machine Deployment
	Docker EE Installation on Virtual Machines and Adding them to Existing UCP Cluster
	Contiv Installation on New Nodes and Adding them to Existing Contiv Cluster
	Testing and Validation for mixed cluster environment
	Functional Test Scenarios – Docker EE with Contiv on a Mixed Cluster Environment
	High-Availability Tests
	Tests Performed on Docker Enterprise Edition
	Tests Performed with Contiv

	Bill of Material - Additional Components for Bare Metal and Virtual Machine Cluster

	Summary
	Appendix
	Appendix – I: HAProxy Example Configuration for External Load-Balancer
	Appendix – 2: Ansible Playbook Host Inventory and Task Execution YAML File
	Ansible Playbook Host Inventory
	Ansible Playbook Task Execution YAML File Configuration

	Appendix – 3: Contiv Data Path Troubleshooting
	Verifying the Contiv global config mode
	Setting OVS Tool to Query the OVS Datapath
	Contiv OVS Bridge
	Correlating OVS Ports with Container Ports
	Dumping OVS Flow
	Contiv Handling ARP Requests

	About the Authors
	Acknowledgements

