

Catalyst 4500 Series Switch Cisco IOS Command Reference

Release IOS-XE 3.2.0 SG

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Catalyst 4500 Series Switch Cisco IOS Command Reference
Copyright © 2011 Cisco Systems, Inc. All rights reserved

Catalyst 4500 Series IOS Commands

New Commands

hw-module system max-queue-limit
ip admission proxy http refresh-all
port-channel standalone-disable
power inline four-pair forced
qos account layer-all encapsulation
source-interface
source-ip-address

Revised Commands

authentication event
private-vlan
show interfaces switchport
show vlan private-vlan

A Commands

aaa accounting dot 1 x default start-stop group radius
aaa accounting system default start-stop group radius
access-group mode
access-list hardware capture mode
access-list hardware entries
access-list hardware region
action
apply
arp access-list
attach module
authentication control-direction
authentication critical recovery delay
authentication event
authentication fallback
authentication host-mode
authentication open
authentication order
authentication periodic
authentication port-control
authentication priority
authentication timer
auto qos voip
auto-sync

C Commands

call-home (global configuration)
call-home request
call-home send
call-home send alert-group
call-home test
channel-group
channel-protocol
class-map
clear counters
clear errdisable
clear hw-module slot password
clear interface gigabitethernet
clear interface vlan
clear ip access-template
clear ip arp inspection log
clear ip arp inspection statistics
clear ip dhcp snooping binding
clear ip dhcp snooping database
clear ip dhcp snooping database statistics
clear ip igmp group
clear ip mfib counters
clear ip mfib fastdrop
clear lacp counters
clear mac-address-table dynamic
clear pagp
clear port-security
clear qos
clear vlan counters
clear vmps statistics
counter
control-plane

D Commands

debug adjacency
debug backup
debug condition interface
debug condition standby
debug condition vlan
debug $\operatorname{dot} 1 \mathrm{x}$
debug etherchnl
debug interface
debug ip dhcp snooping event
debug ip dhcp snooping packet
debug ip verify source packet
debug ipc
debug lacp
debug monitor
debug nvram
debug pagp
debug platform packet protocol lacp
debug platform packet protocol pagp
debug pm
debug port-security
debug redundancy
debug spanning-tree
debug spanning-tree backbonefast
debug spanning-tree switch
debug spanning-tree uplinkfast

```
debug sw-vlan
debug sw-vlan ifs
debug sw-vlan notification
debug sw-vlan vtp
debug udld
debug vqpc
define interface-range
deny
diagnostic start
diagnostic monitor action
dot1x auth-fail max-attempts
dot1x auth-fail vlan
dot1x critical
dot1x critical eapol
dot1x critical recovery delay
dot1x critical vlan
dot1x control-direction
dot1x guest-vlan
dot1x guest-vlan supplicant
dot1x host-mode
dot1x initialize
dot1x mac-auth-bypass
dot1x max-reauth-req
dot1x max-req
dot1x port-control
dot1x re-authenticate
dot1x re-authentication
dot1x system-auth-control
dot1x timeout
duplex
```


E Commands

erase
errdisable detect
errdisable recovery

F Commands

flowcontrol

H Commands

hardware statistics
hw-module port-group
hw-module power
hw-module system max-queue-limit
hw-module uplink mode shared-backplane
hw-module uplink select

I Commands

instance
interface
interface port-channel
interface range
interface vlan
ip admission proxy http refresh-all
ip arp inspection filter vlan
ip arp inspection limit (interface)
ip arp inspection log-buffer
ip arp inspection trust
ip arp inspection validate
ip arp inspection vlan
ip arp inspection vlan logging
ip cef load-sharing algorithm
ip dhcp snooping
ip dhep snooping binding
ip dhcp snooping database
ip dhcp snooping information option
ip dhep snooping information option allow-untrusted
ip dhep snooping limit rate
ip dhcp snooping trust
ip dhcp snooping vlan
ip igmp filter
ip igmp max-groups
ip igmp profile
ip igmp query-interval
ip igmp snooping
ip igmp snooping report-suppression
ip igmp snooping vlan
ip igmp snooping vlan explicit-tracking
ip igmp snooping vlan immediate-leave
ip igmp snooping vlan mrouter
ip igmp snooping vlan static
ip local-proxy-arp
ip mfib fastdrop
ip route-cache flow
ip source binding
ip sticky-arp
ip verify header vlan all
ip verify source
ip verify unicast source reachable-via
ipv6 mld snooping
ipv6 mld snooping last-listener-query-count
ipv6 mld snooping last-listener-query-interval
ipv6 mld snooping listener-message-suppression
ipv6 mld snooping robustness-variable
ipv6 mld snooping ten
ipv6 mld snooping vlan
issu abortversion
issu acceptversion
issu changeversion
issu commitversion
redundancy config-sync mismatched-commands
issu loadversion
issu runversion
issu set rollback-timer

L Commands

12protocol-tunnel
12protocol-tunnel cos
12protocol-tunnel drop-threshold
12protocol-tunnel shutdown-threshold
lacp port-priority
lacp system-priority
logging event trunk-status global (global configuration)
logging event link-status global (global configuration)
logging event link-status (interface configuration)
logging event trunk-status (interface configuration)

M Commands

match
mac access-list extended
mac-address-table aging-time
mac-address-table dynamic group protocols
mac address-table learning vlan
mac-address-table notification
mac-address-table static
macro apply cisco-desktop
macro apply cisco-phone
macro apply cisco-router
macro apply cisco-switch
macro global apply cisco-global
macro global apply system-cpp
macro global description
main-cpu
match
match flow ip
mdix auto
media-type
mode
monitor session
mtu

N Commands

name

P Commands

pagp learn-method
pagp port-priority
passive-interface
permit
police
police (percent)
police rate
police (two rates)
policy-map
port-channel load-balance
port-channel standalone-disable
port-security mac-address
port-security mac-address sticky
port-security maximum
power dc input
power efficient-ethernet auto
power inline
power inline consumption
power inline four-pair forced
power inline logging global
power inline police
power redundancy-mode
priority
private-vlan
private-vlan mapping
private-vlan synchronize
profile

Q Commands

qos trust
queue-limit

R Commands

redundancy
redundancy force-switchover
redundancy reload
remote login module
remote-span
renew ip dhcp snooping database
reset
revision

S Commands

service-policy (interface configuration)
service-policy (policy-map class)
service-policy input (control-plane)
session module
set
set cos
set dscp
set precedence
set qos-group
shape (interface configuration)
snmp ifindex clear
snmp ifindex persist
snmp-server enable traps
snmp-server ifindex persist
snmp-server ifindex persist compress
snmp trap mac-notification change
spanning-tree backbonefast
spanning-tree bpdufilter
spanning-tree bpduguard
spanning-tree cost
spanning-tree etherchannel guard misconfig
spanning-tree extend system-id
spanning-tree guard
spanning-tree link-type
spanning-tree loopguard default
spanning-tree mode
spanning-tree mst
spanning-tree mst configuration
spanning-tree mst forward-time
spanning-tree mst hello-time
spanning-tree mst max-age
spanning-tree mst max-hops
spanning-tree mst root
spanning-tree pathcost method
spanning-tree portfast (interface configuration mode)
spanning-tree portfast bpdufilter default
spanning-tree portfast bpduguard default
spanning-tree portfast default
spanning-tree port-priority
spanning-tree uplinkfast
spanning-tree vlan
speed
storm-control
storm-control broadcast include multicast
switchport
switchport access vlan
switchport autostate exclude
switchport block
switchport mode
switchport port-security
switchport private-vlan association trunk
switchport private-vlan host-association
switchport private-vlan mapping
switchport private-vlan trunk allowed vlan
switchport private-vlan trunk native vlan tag
switchport trunk
system mtu

Show Commands

show access-group mode interface
show adjacency
show arp access-list
show authentication
show auto install status
show auto qos
show bootflash:
show bootvar
show cable-diagnostics tdr
show call-home
show cdp neighbors
show class-map
show diagnostic content
show diagnostic result module
show diagnostic result module test
show diagnostic result module test 2
show diagnostic result module test 3
show $\operatorname{dot} 1 \mathrm{x}$
show environment
show errdisable detect
show errdisable recovery
show etherchannel
show flowcontrol
show hw-module port-group
show hw-module uplink
show idprom
show interfaces
show interfaces capabilities
show interfaces counters
show interfaces description
show interfaces link
show interfaces mtu
show interfaces private-vlan mapping
show interfaces status
show interfaces switchport
show interfaces transceiver
show interfaces trunk
show ip arp inspection
show ip arp inspection log
show ip cef vlan
show ip dhep snooping
show ip dhep snooping binding
show ip dhcp snooping database
show ip igmp interface
show ip igmp profile
show ip igmp snooping
show ip igmp snooping membership
show ip igmp snooping mrouter
show ip igmp snooping vlan
show ip interface
show ip mfib
show ip mfib fastdrop
show ip mroute
show ip source binding
show ip verify source
show ipc
show ipv6 mld snooping
show ipv6 mld snooping mrouter
show ipv6 mld snooping querier
show issu capability
show issu clients
show issu comp-matrix
show issu endpoints
show issu entities
show issu fsm
show issu message
show issu negotiated
show issu rollback-timer
show issu sessions
show issu state
show 12 protocol-tunnel
show lacp
show mab
show mac access-group interface
show mac-address-table address
show mac-address-table aging-time
show mac-address-table count
show mac-address-table dynamic
show mac-address-table interface
show mac-address-table multicast
show mac-address-table notification
show mac-address-table protocol
show mac-address-table static
show mac-address-table vlan
show module
show monitor
show pagp
show policy-map
show policy-map control-plane
show policy-map interface
show policy-map interface vlan
show port-security
show power
show power inline police
show qos
show qos aggregate policer
show qos dbl
show qos interface
show qos maps
show redundancy
show redundancy config-sync
show running-config
show slavebootflash:
show slaveslot0:
show slot0:
show spanning-tree
show spanning-tree mst
show storm-control
show system mtu
show tech-support
show udld
show vlan
show vlan access-map
show vlan counters
show vlan dot1q tag native
show vlan internal usage
show vlan mtu
show vlan private-vlan
show vlan remote-span
show vmps
show vtp

T Commands

test cable-diagnostics tdr
traceroute mac
traceroute mac ip
trust
tx-queue

U Commands

udld (global configuration mode)
udld (interface configuration mode)
udld reset
username
username

V Commands

verify
vlan (VLAN Database mode)
vlan access-map
vlan configuration
vlan database
vlan dot1q tag native
vlan filter
vlan internal allocation policy
vmps reconfirm (global configuration)
vmps reconfirm (privileged EXEC)
vmps retry
vmps server
vtp (global configuration mode)
vtp client
vtp domain
vtp password
vtp pruning
vtp server
vtp transparent
vtp v2-mode

CONTENTS

Preface xix

Audience xix

> Organization xix

Relateded Documentation xix
Conventions xx
Notices xxi
Obtaining Documentation and Submitting a Service Request xxiii

Command-Line Interface
 1-1

Getting Help 1-1
How to Find Command Options $\quad \mathbf{1 - 2}$
Understanding Command Modes 1-5
Using the No and Default Forms of Commands 1-6
Using the CLI String Search 1-6
Saving Configuration Changes 1-11
show platform Commands 1-11
Cisco IOS Commands for the Catalyst 4500 Series Switches 2-1
\#macro keywords 2-2
aaa accounting dot1x default start-stop group radius 2-4
aaa accounting system default start-stop group radius 2-5
access-group mode 2-6
access-list hardware capture mode 2-8
access-list hardware entries 2-10
access-list hardware region $\quad \mathbf{2 - 1 2}$
action 2-13
active \quad 2-14
apply 2-15
arp access-list 2-17
attach module \quad 2-18
authentication control-direction 2-19
authentication critical recovery delay 2-21
authentication event 2-22
authentication fallback 2-25
authentication host-mode 2-26
authentication open 2-28
authentication order 2-29
authentication periodic 2-31
authentication port-control 2-32
authentication priority 2-34
authentication timer 2-36
auto qos voip 2-38
auto-sync 2-41
bandwidth 2-42
call-home (global configuration) 2-45
call-home request 2-48
call-home send 2-50
call-home send alert-group 2-51
call-home test 2-53
channel-group 2-54
channel-protocol 2-56
class 2-58
class-map 2-61
clear counters 2-63
clear energywise neighbors 2-65
clear errdisable 2-66
clear hw-module slot password 2-67
clear interface gigabitethernet 2-68
clear interface vlan 2-69
clear ip access-template 2-70
clear ip arp inspection log 2-71
clear ip arp inspection statistics 2-72
clear ip dhcp snooping binding 2-73
clear ip dhcp snooping database 2-75

```
clear ip dhcp snooping database statistics 2-76
clear ip igmp group 2-77
clear ip igmp snooping membership 2-79
clear ip mfib counters 2-80
clear ip mfib fastdrop 2-81
clear lacp counters 2-82
clear mac-address-table 2-83
clear mac-address-table dynamic 2-85
clear pagp 2-86
clear port-security 2-87
clear qOS 2-89
clear vlan counters 2-91
clear vmps statistics 2-92
control-plane 2-93
counter 2-95
dbl 2-96
debug adjacency 2-98
debug backup 2-99
debug condition interface 2-100
debug condition standby 2-101
debug condition vlan 2-103
debug dot1x 2-105
debug etherchnl 2-106
debug interface 2-108
debug ipc 2-109
debug ip dhcp snooping event 2-110
debug ip dhcp snooping packet 2-111
debug ip verify source packet 2-112
debug lacp 2-113
debug monitor 2-114
debug nvram 2-115
debug pagp 2-116
debug platform packet protocol lacp 2-117
debug platform packet protocol pagp 2-118
debug pm 2-119
```

```
debug port-security 2-120
debug redundancy 2-121
debug spanning-tree 2-122
debug spanning-tree backbonefast 2-124
debug spanning-tree switch 2-125
debug spanning-tree uplinkfast 2-127
debug sw-vlan 2-128
debug sw-vlan ifs 2-129
debug sw-vlan notification 2-131
debug sw-vlan vtp 2-132
debug udld 2-133
debug vqpc 2-135
define interface-range 2-136
deny 2-137
destination address 2-139
destination message-size-limit bytes 2-140
destination preferred-msg-format 2-141
destination transport-method 2-142
diagnostic monitor action 2-143
diagnostic start 2-144
dot1x auth-fail max-attempts 2-145
dot 1x auth-fail vlan 2-146
dot1x control-direction 2-147
dot1x critical 2-148
dot1x critical eapol 2-149
dot1x critical recovery delay 2-150
dot1x critical vlan 2-151
dot1x guest-vlan 2-152
dot1x guest-vlan supplicant 2-153
dot1x host-mode 2-154
dot1x initialize 2-156
dot1x mac-auth-bypass 2-157
dot1x max-reauth-req 2-158
dot1x max-req 2-159
```

dot1x port-control 2-161
dot1x re-authenticate 2-163
dot1x re-authentication 2-164
dot1x system-auth-control 2-165
dot1x timeout 2-166
duplex 2-168
energywise (global configuration) 2-170
energywise (interface configuration) 2-172
energywise domain 2-175
energywise query 2-177
erase 2-181
errdisable detect 2-184
errdisable recovery 2-186
flowcontrol 2-189
hardware statistics 2-192
hw-module port-group 2-193
hw-module power 2-194
hw-module system max-queue-limit 2-195
hw-module uplink mode shared-backplane 2-196
hw-module uplink select 2-198
instance 2-202
interface 2-205
interface port-channel 2-207
interface range 2-208
interface vlan 2-210
ip admission proxy http refresh-all 2-211
ip arp inspection filter vlan 2-212
ip arp inspection limit (interface) $\quad \mathbf{2 - 2 1 4}$
ip arp inspection log-buffer 2-216
ip arp inspection trust 2-218
ip arp inspection validate 2-219
ip arp inspection vlan 2-221
ip arp inspection vlan logging 2-223
ip cef load-sharing algorithm \quad 2-225
ip dhcp snooping 2-227
ip dhcp snooping binding 2-228
ip dhcp snooping database 2-230
ip dhcp snooping information option 2-232
ip dhcp snooping information option allow-untrusted 2-234
ip dhcp snooping limit rate \quad 2-235
ip dhcp snooping trust 2-236
ip dhcp snooping vlan 2-237
ip dhcp snooping vlan information option format-type 2-239
ip igmp filter 2-241
ip igmp max-groups 2-242
ip igmp profile 2-243
ip igmp query-interval \quad 2-244
ip igmp snooping 2-246
ip igmp snooping report-suppression 2-248
ip igmp snooping vlan $\quad \mathbf{2 - 2 5 0}$
ip igmp snooping vlan explicit-tracking 2-251
ip igmp snooping vlan immediate-leave \quad 2-253
ip igmp snooping vlan mrouter 2-255
ip igmp snooping vlan static \quad 2-257
ip local-proxy-arp 2-259
ip mfib fastdrop 2-260
ip route-cache flow \quad 2-261
ip source binding 2-263
ip sticky-arp 2-264
ip verify header vlan all 2-266
ip verify source \quad 2-267
ip verify unicast source reachable-via 2-269
ipv6 mld snooping 2-271
ipv6 mld snooping last-listener-query-count 2-273
ipv6 mid snooping last-listener-query-interval 2-275
ipv6 mld snooping listener-message-suppression 2-277
ipv6 mld snooping robustness-variable 2-278
ipv6 mld snooping tcn 2-280
ipv6 mld snooping vlan 2-281
issu abortversion 2-283
issu acceptversion 2-285
issu changeversion 2-287
issu commitversion 2-289
issu loadversion 2-291
issu runversion 2-293
issu set rollback-timer 2-295
|2protocol-tunnel 2-296
|2protocol-tunnel cos 2-298
I2protocol-tunnel drop-threshold 2-299
I2protocol-tunnel shutdown-threshold 2-301
lacp port-priority 2-303
lacp system-priority 2-304
logging event link-status global (global configuration) 2-305
logging event link-status (interface configuration) 2-306
logging event trunk-status global (global configuration) 2-308
logging event trunk-status (interface configuration) 2-309
mab 2-311
mac access-list extended 2-313
mac-address-table aging-time 2-316
mac-address-table dynamic group protocols 2-317
mac address-table learning vlan 2-320
mac-address-table notification 2-322
mac-address-table static 2-324
macro apply cisco-desktop 2-325
macro apply cisco-phone 2-327
macro apply cisco-router 2-329
macro apply cisco-switch 2-331
macro global apply cisco-global 2-333
macro global apply system-cpp 2-334
macro global description 2-335
main-cpu 2-336
match 2-337
match (class-map configuration) 2-339
match flow ip 2-342
mdix auto 2-346
media-type 2-348
mode 2-349
monitor session 2-351
mtu 2-357
name 2-358
pagp learn-method 2-359
pagp port-priority $\quad \mathbf{2 - 3 6 0}$
passive-interface 2-361
permit 2-364
police 2-366
police (percent) 2-371
police rate \quad 2-373
police (two rates) 2-375
policy-map 2-379
port-channel load-balance 2-381
port-channel standalone-disable 2-383
port-security mac-address $\quad \mathbf{2 - 3 8 4}$
port-security mac-address sticky 2-385
port-security maximum $\quad \mathbf{2 - 3 8 6}$
power dc input $\quad \mathbf{2 - 3 8 8}$
power efficient-ethernet auto $\quad \mathbf{2 - 3 8 9}$
power inline $\quad \mathbf{2 - 3 9 0}$
power inline consumption 2-392
power inline four-pair forced 2-393
power inline logging global 2-395
power inline police $\quad \mathbf{2 - 3 9 6}$
power redundancy-mode 2-398
priority $\quad \mathbf{2 - 4 0 0}$
private-vlan 2-402
private-vlan mapping 2-406
private-vlan synchronize $\quad \mathbf{2 - 4 0 9}$
profile 2-410
qos account layer-all encapsulation 2-412
qos trust 2-413
queue-limit 2-415
redundancy 2-417
redundancy config-sync mismatched-commands 2-419
redundancy force-switchover 2-421
redundancy reload 2-422
remote login module 2-423
remote-span 2-424
renew ip dhcp snooping database 2-425
reset 2-426
revision 2-427
service-policy (interface configuration) 2-428
service-policy (policy-map class) 2-431
service-policy input (control-plane) 2-433
session module 2-435
set 2-437
set COS 2-439
set dscp 2-442
set precedence 2-445
set qos-group 2-448
shape (class-based queueing) 2-450
shape (interface configuration) 2-452
show access-group mode interface 2-455
show adjacency 2-456
show arp access-list 2-458
show authentication 2-459
show auto install status 2-463
show auto qos 2-464
show bootflash 2-465
show bootvar 2-467
show cable-diagnostics tdr 2-468
show call-home 2-470
show cdp neighbors 2-475
show class-map 2-478
show diagnostic content $\quad \mathbf{2 - 4 8 0}$
show diagnostic result module $\quad \mathbf{2 - 4 8 2}$
show diagnostic result module test $\quad \mathbf{2 - 4 8 6}$
show diagnostic result module test $2 \quad \mathbf{2 - 4 8 8}$
show diagnostic result module test $3 \quad \mathbf{2 - 4 9 0}$
show dot1x 2-492
show energywise 2-496
show environment 2-500
show errdisable detect 2-503
show errdisable recovery 2-504
show etherchannel 2-506
show flowcontrol 2-510
show hw-module port-group 2-512
show hw-module uplink 2-513
show idprom 2-514
show interfaces 2-520
show interfaces capabilities 2-523
show interfaces counters 2-527
show interfaces description 2-529
show interfaces link 2-530
show interfaces mtu 2-531
show interfaces private-vlan mapping 2-532
show interfaces status 2-533
show interfaces switchport 2-535
show interfaces transceiver 2-537
show interfaces trunk 2-542
show ip arp inspection $\quad \mathbf{2 - 5 4 4}$
show ip arp inspection log 2-547
show ip cef vlan 2-549
show ip dhcp snooping $\quad \mathbf{2 - 5 5 0}$
show ip dhcp snooping binding $\quad \mathbf{2 - 5 5 2}$
show ip dhcp snooping database 2-555
show ip igmp interface 2-557
show ip igmp profile 2-559
show ip igmp snooping $\quad \mathbf{2 - 5 6 0}$
show ip igmp snooping membership 2-564
show ip igmp snooping mrouter 2-566
show ip igmp snooping vlan 2-567
show ip interface 2-569
show ip mfib 2-572
show ip mfib fastdrop 2-574
show ip mroute 2-575
show ip source binding $\quad \mathbf{2 - 5 8 0}$
show ip verify source $\quad \mathbf{2 - 5 8 1}$
show ipc $\quad 2-584$
show ipv6 mld snooping 2-586
show ipv6 mld snooping mrouter 2-588
show ipv6 mld snooping querier 2-589
show issu capability 2-591
show issu clients 2-593
show issu comp-matrix 2-595
show issu endpoints $\quad \mathbf{2 - 6 0 0}$
show issu entities 2-601
show issu fsm 2-602
show issu message 2-603
show issu negotiated 2-605
show issu rollback-timer 2-606
show issu sessions 2-607
show issu state $\quad \mathbf{2 - 6 0 8}$
show I2protocol-tunnel 2-610
show lacp 2-613
show mab 2-616
show mac access-group interface $\quad \mathbf{2 - 6 1 9}$
show mac-address-table address $\quad \mathbf{2 - 6 2 0}$
show mac-address-table aging-time 2-622
show mac-address-table count 2-624
show mac-address-table dynamic 2-626
show mac-address-table interface 2-628
show mac-address-table multicast 2-630
show mac-address-table notification 2-632
show mac-address-table protocol 2-634
show mac-address-table static 2-636
show mac-address-table vlan 2-639
show module 2-641
show monitor 2-643
show pagp 2-645
show policy-map 2-647
show policy-map control-plane 2-648
show policy-map interface 2-651
show policy-map interface vlan 2-654
show port-security 2-656
show power 2-663
show power inline police 2-671
show qos \quad 2-672
show qos aggregate policer 2-673
show qos dbl 2-674
show qos interface 2-675
show qos maps 2-677
show redundancy 2-679
show redundancy config-sync 2-683
show running-config 2-686
show slavebootflash: 2-688
show slaveslot0: 2-690
show slot0: 2-692
show spanning-tree 2-694
show spanning-tree mst 2-699
show storm-control 2-702
show system mtu 2-704

> show tech-support 2-705
show udld 2-707
show vlan 2-709
show vlan access-map 2-713
show vlan counters 2-714
show vlan dot1q tag native 2-715
show vlan internal usage 2-716
show vlan mtu 2-717
show vlan private-vlan 2-718
show vlan remote-span 2-720
show vmps 2-721
show vtp 2-723
snmp ifindex clear 2-727
snmp ifindex persist 2-729
snmp-server enable traps 2-731
snmp-server ifindex persist 2-735
snmp-server ifindex persist compress 2-736
snmp trap mac-notification change 2-737
source-interface 2-738
source-ip-address 2-739
spanning-tree backbonefast 2-740
spanning-tree bpdufilter 2-741
spanning-tree bpduguard 2-743
spanning-tree cost 2-744
spanning-tree etherchannel guard misconfig 2-745
spanning-tree extend system-id 2-746
spanning-tree guard 2-747
spanning-tree link-type 2-748
spanning-tree loopguard default
spanning-tree mode 2-750
spanning-tree mst 2-751
spanning-tree mst configuration 2-753
spanning-tree mst forward-time 2-755
spanning-tree mst hello-time 2-756
spanning-tree mst max-age 2-757
spanning-tree mst max-hops 2-758
spanning-tree mst root 2-759
spanning-tree pathcost method 2-761
spanning-tree portfast (interface configuration mode) 2-762
spanning-tree portfast bpdufilter default 2-764
spanning-tree portfast bpduguard default 2-766
spanning-tree portfast default 2-767
spanning-tree port-priority 2-768
spanning-tree uplinkfast 2-769
spanning-tree vlan 2-771
speed 2-773
storm-control 2-776
storm-control broadcast include multicast 2-778
subscribe-to-alert-group all 2-779
subscribe-to-alert-group configuration 2-781
subscribe-to-alert-group diagnostic 2-783
subscribe-to-alert-group environment 2-785
subscribe-to-alert-group inventory 2-787
subscribe-to-alert-group syslog 2-789
switchport 2-791
switchport access vlan 2-793
switchport autostate exclude 2-795
switchport block 2-797
switchport mode 2-798
switchport port-security 2-803
switchport private-vlan association trunk $\quad \mathbf{2 - 8 0 8}$
switchport private-vlan host-association 2-810
switchport private-vlan mapping 2-812
switchport private-vlan trunk allowed vlan $\quad \mathbf{2 - 8 1 5}$
switchport private-vlan trunk native vlan tag $\mathbf{2 - 8 1 8}$
switchport trunk $\quad \mathbf{2 - 8 1 9}$
system mtu 2-822
test cable-diagnostics tdr 2-824
traceroute mac 2-826
traceroute mac ip 2-829
trust 2-832
tx-queue 2-834
udld (global configuration mode) 2-836
udld (interface configuration mode) 2-838
udld reset 2-840
username 2-841
verify \quad 2-843
vlan (VLAN Database mode) 2-845
vlan access-map 2-848
vlan configuration 2-850
vlan database 2-852
vlan dot1q tag native 2-854
vlan filter 2-856
vlan internal allocation policy 2-857
vmps reconfirm (global configuration) 2-858
vmps reconfirm (privileged EXEC) 2-859
vmps retry 2-860
vmps server 2-861
vtp (global configuration mode) 2-863
vtp client 2-864
vtp domain 2-865
vtp password 2-866
vtp pruning 2-867
vtp server $\quad \mathbf{2 - 8 6 8}$
vtp transparent 2-869
vtp v2-mode 2-870
APPEndix A Abbreviations A-1
INDEX

Preface

This preface describes the audience, organization, and conventions of this publication, and provides information on how to obtain related documentation.

Audience

This publication is for experienced network administrators who are responsible for configuring and maintaining Catalyst 4500 series switches.

Organization

This publication is organized as follows:

Chapter	Title	Description
Chapter 1	Command-Line Interface	Describes the Catalyst 4500 series switch CLI.
Chapter 2	Cisco IOS Commands for the Catalyst 4500 Series Switches	Lists all Catalyst 4500 series Cisco IOS commands alphabetically and provides detailed information on each command.
Appendix A	Abbreviations	Defines the acronyms used in this publication.

Relateded Documentation

The Catalyst 4500 series Cisco IOS documentation set includes these publications:

- Catalyst 4500 Series Switch Installation Guide
- Catalyst 4500 Series Switch Supervisor Engine Installation Note
- Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide
- Catalyst 4500 Series Switch Cisco IOS System Message Guide
- Release Notes for Catalyst 4500 Series Switch Software

Note Access the Catalyst 4500 Series Switch documentation library at the URL http://www.cisco.com/go/cat4500/docs

Other documents in the Cisco IOS documentation set include:

- Cisco IOS Release 12.2 Configuration Guides
- Cisco IOS Release 12.2 Command References

For information about MIBs, refer to this URL:
http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

Conventions

This document uses these conventions:

Convention	Description
boldface font	Boldface text indicates commands and keywords that you enter literally as shown.
italic font	Italic text indicates arguments for which you supply values.
$[\mathbf{x}]$	Square brackets enclose an optional element (keyword or argument).
\mathbf{l}	A vertical line indicates a choice within an optional or required set of keywords or arguments.
$[\mathbf{x} \mid y]$	Square brackets enclosing keywords or arguments separated by a vertical line indicate an optional choice.
$\{\mathbf{x} \mid y\}$	Braces enclosing keywords or arguments separated by a vertical line indicate a required choice.
$[\mathbf{x}\{\mathbf{y} \mid \mathbf{z}\}]$	Braces and a vertical line within square brackets indicate a required choice within an optional element.
string	A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.
screen font	Terminal sessions and information the system displays are in screen font.
boldface screen font	Information you must enter is in boldface screen font.
italic screen font	Arguments for which you supply values are in italic screen font.
\wedge	The symbol \wedge represents the key labeled Control-for example, the key combination $\wedge D ~ i n ~ a ~ s c r e e n ~ d i s p l a y ~ m e a n s ~$ hold down the Control key while you press the D key.
Nonprinting characters, such as passwords, are in angle brackets.	
$<>$	

Convention	Description
$[\quad]$	Default responses to system prompts are in square brackets.
$!, \#$	An exclamation point (!) or a pound sign (\#) at the beginning of a line of code indicates a comment line.

Notes use this convention:

Means reader take note. Notes contain helpful suggestions or references to material not covered in the publication.

Cautions use this convention:

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Notices

The following notices pertain to this software license.

OpenSSL/Open SSL Project

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License:

Copyright © 1998-2007 The OpenSSL Project. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgment: "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)".
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)".
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License:

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.
This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.
This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh @cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)".
The word 'cryptographic' can be left out if the routines from the library being used are not cryptography-related.
4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)".
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution license [including the GNU Public License].

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.

CHAPTER

Command-Line Interface

This chapter provides information for understanding and using the Cisco IOS command-line interface (CLI) on the Catalyst 4500 series switch. This chapter includes the following sections:

- Getting Help, page 1-1
- How to Find Command Options, page 1-2
- Understanding Command Modes, page 1-5
- Using the No and Default Forms of Commands, page 1-6
- Using the CLI String Search, page 1-6
- Saving Configuration Changes, page 1-11

For an overview of the Catalyst 4500 series switch Cisco IOS configuration, refer to the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide.

Getting Help

To display a list of commands that you can use within a command mode, enter a question mark (?) at the system prompt. You also can display keywords and arguments for each command with this context-sensitive help feature.
Table 1-1 lists commands you can enter to get help that is specific to a command mode, a command, a keyword, or an argument.

Table 1-1
Getting Help

Command	Purpose
abbreviated-command-entry?	Displays a list of commands that begin with a particular character string. (Do not leave a space between the command and question mark.)
abbreviated-command-entry<Tab>	Completes a partial command name.
$\boldsymbol{?}$	Lists all commands for the command mode.
command $\boldsymbol{?}$	Lists all keywords for the command. Leave a space between the command and the question mark.
command keyword ?	Lists all arguments for the keyword. Leave a space between the keyword and the question mark.

How to Find Command Options

This section provides an example of how to display syntax for a command. The syntax can consist of optional or required keywords. To display keywords for a command, enter a question mark (?) at the command prompt or after entering part of a command followed by a space. The Catalyst 4500 series switch software displays a list of available keywords along with a brief description of the keywords. For example, if you are in global configuration mode and want to see all the keywords for the arap command, you enter arap?

Table 1-2 shows examples of how you can use the question mark (?) to assist you in entering commands and also guides you through entering the following commands:

- interface gigabitethernet $\mathbf{1 / 1}$
- channel-group 1 mode auto

Table 1-2 How to Find Command Options

Command	Purpose
Switch> enable Password: <password> Switch\#	Enter the enable command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to Switch\#.
Switch\# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Switch(config) \#	Enter global configuration mode. You are in global configuration mode when the prompt changes to Switch(config) \#.
Switch(config)\# interface gigabitethernet ? <1-9> GigabitEthernet interface number Switch(config)\# interface gigabitethernet 1/1 Switch(config-if)\#	Enter interface configuration mode by specifying the Gigabit Ethernet interface that you want to configure using the interface gigabitethernet global configuration command. Enter a ? to display what you must enter next on the command line. In this example, you must enter an interface number from 1 to 9 in the format module-number/port-number. You are in interface configuration mode when the prompt changes to Switch(config-if) \#.

Table 1-2 How to Find Command Options (continued)

Command	Purpose
```Switch(config-if)#? Interface configuration commands: access-expression Build a bridge boolean access expression apollo appletalk arp backup bandwidth bgp-policy bridge-group carrier-delay cdp channel-group clns cmns OSI CMNS custom-queue-list decnet default delay Specify interface throughput delay description dlsw dspu Down Stream PU exit Exit from interface configuration mode fair-queue flowcontrol fras help hold-queue ip ipx isis iso-igrp ISO-IGRP interface subcommands``` Switch(config-if) \#	Enter a ? to display a list of all the interface configuration commands available for the Gigabit Ethernet interface.
Switch(config-if) \# channel-group ? group channel-group of the interface   Switch(config-if) \#channel-group	Enter the command that you want to configure for the controller. In this example, the channel-group command is used.   Enter a ? to display what you must enter next on the command line. In this example, you must enter the group keyword.   Because a <cr> is not displayed, it indicates that you must enter more information to complete the command.

Table 1-2 How to Find Command Options (continued)

Command	Purpose
Switch(config-if) \# channel-group ? <1-256> Channel group number   Switch(config-if) \#channel-group	After you enter the group keyword, enter a ? to display what you must enter next on the command line. In this example, you must enter a channel group number from 1 to 256 .   Because a <cr> is not displayed, it indicates that you must enter more information to complete the command.
```Switch(config-if)# channel-group 1 ? mode Etherchannel Mode of the interface Switch(config-if)#```	After you enter the channel group number, enter a? to display what you must enter next on the command line. In this example, you must enter the mode keyword.   Because a <cr> is not displayed, it indicates that you must enter more information to complete the command.
```Switch(config-if)# channel-group 1 mode ? auto Enable PAgP only if a PAgP device is detected desirable Enable PAgP unconditionally on Enable Etherchannel only Switch(config-if)#```	After you enter the mode keyword, enter a ? to display what you must enter next on the command line. In this example, you must enter the auto, desirable, or on keyword.   Because a <cr> is not displayed, it indicates that you must enter more information to complete the command.
```Switch(config-if)# channel-group 1 mode auto ? <cr> Switch(config-if)#```	In this example, the auto keyword is entered. After you enter the auto keyword, enter a? to display what you must enter next on the command line.   Because a <cr> is displayed, it indicates that you can press Return to complete the command. If additional keywords are listed, you can enter more keywords or press Return to complete the command.
Switch(config-if) \# channel-group 1 mode auto Switch(config-if) \#	In this example, press Return to complete the command.

Understanding Command Modes

The Cisco IOS user interface on the Catalyst 4500 series switch has many different modes. The commands that are available to you depend on which mode you are currently in. You can obtain a list of commands available for each command mode by entering a question mark (?) at the system prompt.
When you start a session on the Catalyst 4500 series switch, you begin in user mode, often called EXEC mode. Only a limited subset of the commands are available in EXEC mode. In order to have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From privileged EXEC mode, you can enter any EXEC command or enter global configuration mode. Most EXEC commands are one-time commands, such as show commands, which show the current status of a given item, and clear commands, which clear counters or interfaces. The EXEC commands are not saved across reboots of the Catalyst 4500 series switch.
The configuration modes provide a way for you to make changes to the running configuration. When you save changes to the configuration, the changes remain intact when the Catalyst 4500 series switch reboots. From global configuration mode, you can enter interface configuration mode, subinterface configuration mode, and other protocol-specific modes.

ROM-monitor mode is a separate mode used when the Catalyst 4500 series switch cannot boot properly. If your Catalyst 4500 series switch or access server does not find a valid system image when it is booting, or if its configuration file is corrupted at startup, the system might enter ROM-monitor mode.
Table 1-3 provides a summary of the main command modes.
Table 1-3 Summary of Main Command Modes

Command Mode	Access Method	Prompt	Exit Method
User EXEC mode	Log in.	Switch>	Use the logout command.
Privileged EXEC mode	From user EXEC mode, enter the enable EXEC command.	Switch\#	To exit to user EXEC mode, enter the disable command. To enter global configuration mode, enter the configure terminal privileged EXEC command.
Global configuration mode	From privileged EXEC mode, enter the configure terminal privileged EXEC command.	Switch(config) \#	To exit to privileged EXEC mode, enter the exit or end command or press Ctrl-Z. To enter interface configuration mode, enter an interface configuration command.
Interface configuration mode	From global configuration mode, enter by specifying an interface with an interface command.	Switch(config-if) \#	To exit to global configuration mode, enter the exit command. To exit to privileged EXEC mode, enter the exit command or press Ctrl-Z. To enter subinterface configuration mode, specify a subinterface with the interface command.

Table 1-3 Summary of Main Command Modes (continued)

Command Mode	Access Method	Prompt	Exit Method
Subinterface configuration	From interface configuration mode, specify a subinterface with an interface command.	Switch(config-subif) \#	To exit to global configuration mode, enter the exit command.
ROM monitor	From privileged EXEC mode, enter the reload To enter privileged EXEC mode, enter the end command or press Ctrl-Z.		
EXEC command. Press the Break key during the first 60 seconds while the system is booting.	To exit ROM-monitor mode, you must reload the image by entering the boot command. If you use the boot command without specifying a file or any other boot instructions, the system boots from the default Flash image (the first image in onboard		
Flash memory). Otherwise, you can instruct the			
system to boot from a specific Flash image (using			
the boot system flash filename command).			

For more information on command modes, refer to the "Using the Command Line Interface" chapter of the Configuration Fundamentals Configuration Guide.

Using the No and Default Forms of Commands

Almost every configuration command has a no form. In general, enter the no form to disable a function. Use the command without the keyword no to reenable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, specify the no ip routing command and specify ip routing to reenable it. This publication provides the complete syntax for the configuration commands and describes what the no form of a command does.

Some configuration commands have a default form. The default form of a command returns the command setting to its default settings. Most commands are disabled by default, so the default form is the same as the no form. However, some commands are enabled by default, with variables set to certain default values. In these cases, the default form of the command enables the command and returns its variables to their default values.

Using the CLI String Search

The pattern in the command output is referred to as a string. The CLI string search feature allows you to search or filter any show or more command output and allows you to search and filter at --More-prompts. This feature is useful when you need to sort though large amounts of output, or if you want to exclude output that you do not need to see.

With the search function, you can begin unfiltered output at the first line that contains a regular expression you specify. You can then specify a maximum of one filter per command or start a new search from the --More-- prompt.
A regular expression is a pattern (a phrase, number, or more complex pattern) software uses to match against show or more command output. Regular expressions are case sensitive and allow for complex matching requirements. Examples of simple regular expressions are Serial, misses, and 138. Examples of complex regular expressions are $00210 \ldots$, (is), and [Oo]utput.

You can perform three types of filtering:

- Use the begin keyword to begin output with the line that contains a specified regular expression.
- Use the include keyword to include output lines that contain a specified regular expression.
- Use the exclude keyword to exclude output lines that contain a specified regular expression.

You can then search this filtered output at the --More-- prompts.

The CLI string search function does not allow you to search or filter backward through previous output; filtering cannot be specified using HTTP access to the CLI.

Regular Expressions

A regular expression can be a single character that matches the same single character in the command output or multiple characters that match the same multiple characters in the command output. This section describes how to create both single-character patterns and multiple-character patterns and how to create more complex regular expressions using multipliers, alternation, anchoring, and parentheses.

Single-Character Patterns

The simplest regular expression is a single character that matches the same single character in the command output. You can use any letter (A-Z, a-z) or digit (0-9) as a single-character pattern. You can also use other keyboard characters (such as ! or \sim) as single-character patterns, but certain keyboard characters have special meaning when used in regular expressions. Table 1-4 lists the keyboard characters that have special meaning.

Table 1-4 Characters with Special Meaning

Character	Special Meaning
\cdot	Matches any single character, including white space.
$*$	Matches 0 or more sequences of the pattern.
+	Matches 1 or more sequences of the pattern.
$?$	Matches 0 or 1 occurrences of the pattern.
\wedge	Matches the beginning of the string.
$\$$	Matches the end of the string.
$-($ underscore $)$	Matches a comma (,), left brace (\{), right brace (\}), left parenthesis ((), right parenthesis ()), the beginning of the string, the end of the string, or a space.

To enter these special characters as single-character patterns, remove the special meaning by preceding each character with a backslash (\backslash). These examples are single-character patterns matching a dollar sign, an underscore, and a plus sign, respectively.

\$ _ \+

You can specify a range of single-character patterns to match against command output. For example, you can create a regular expression that matches a string containing one of the following letters: $\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}$, or u. One and only one of these characters must exist in the string for pattern matching to succeed. To specify a range of single-character patterns, enclose the single-character patterns in square brackets ([]). For example,

[aeiou]

matches any one of the five vowels of the lowercase alphabet, while

[abcdABCD]

matches any one of the first four letters of the lower- or uppercase alphabet.
You can simplify ranges by entering only the end points of the range separated by a dash (-). Simplify the previous range as follows:

[a-dA-D]

To add a dash as a single-character pattern in your range, include another dash and precede it with a backslash:

[a-dA-D - -]

You can also include a right square bracket (]) as a single-character pattern in your range. To do so, enter the following:

[a-dA-D -1]]

The previous example matches any one of the first four letters of the lower- or uppercase alphabet, a dash, or a right square bracket.

You can reverse the matching of the range by including a caret (\wedge) at the start of the range. This example matches any letter except the ones listed:
[^a-dqsv]
This example matches anything except a right square bracket (]) or the letter d:
[^\]d]

Multiple-Character Patterns

When creating regular expressions, you can also specify a pattern containing multiple characters. You create multiple-character regular expressions by joining letters, digits, or keyboard characters that do not have special meaning. For example, $\mathrm{a} 4 \%$ is a multiple-character regular expression. Put a backslash in front of the keyboard characters that have special meaning when you want to remove their special meaning.

With multiple-character patterns, order is important. The regular expression $\mathrm{a} 4 \%$ matches the character a followed by a 4 followed by a $\%$ sign. If the string does not have $a 4 \%$, in that order, pattern matching fails. This multiple-character regular expression:

a.

uses the special meaning of the period character to match the letter a followed by any single character. With this example, the strings ab , a !, or a 2 are all valid matches for the regular expression.
You can remove the special meaning of the period character by putting a backslash in front of it. In the following expression:
al.
only the string a. matches this regular expression.

You can create a multiple-character regular expression containing all letters, all digits, all keyboard characters, or a combination of letters, digits, and other keyboard characters. These examples are all valid regular expressions:
telebit 3107 v32bis

Multipliers

You can create more complex regular expressions to match multiple occurrences of a specified regular expression by using some special characters with your single- and multiple-character patterns. Table 1-5 lists the special characters that specify "multiples" of a regular expression.

Table 1-5 Special Characters Used as Multipliers

Character	Description
$*$	Matches 0 or more single- or multiple-character patterns.
+	Matches 1 or more single- or multiple-character patterns.
$?$	Matches 0 or 1 occurrences of the single- or multiple-character patterns.

This example matches any number of occurrences of the letter a, including none:
a*
This pattern requires that at least one letter a in the string is matched:
a+
This pattern matches the string bb or bab:
ba?b
This string matches any number of asterisks (*):
1**
To use multipliers with multiple-character patterns, you enclose the pattern in parentheses. In the following example, the pattern matches any number of the multiple-character string ab:
(ab)*
As a more complex example, this pattern matches one or more instances of alphanumeric pairs (but not none; that is, an empty string is not a match):
([A-Za-z][0-9])+
The order for matches using multipliers (${ }^{*},+$, or $?$) is to put the longest construct first. Nested constructs are matched from outside to inside. Concatenated constructs are matched beginning at the left side of the construct. Thus, the regular expression matches A9b3, but not 9Ab3 because the letters are specified before the numbers.

Alternation

Alternation allows you to specify alternative patterns to match against a string. You separate the alternative patterns with a vertical bar (I). Exactly one of the alternatives can match the string. For example, the regular expression

codex | telebit

matches the string codex or the string telebit, but not both codex and telebit.

Anchoring

You can match a regular expression pattern against the beginning or the end of the string. That is, you can specify that the beginning or end of a string contains a specific pattern. You "anchor" these regular expressions to a portion of the string using the special characters shown in Table 1-6.

Table 1-6	Special Characters Used for Anchoring
Character	Description
\wedge	Matches the beginning of the string.
$\$$	Matches the end of the string.

This regular expression matches a string only if the string starts with abcd:

\wedge abcd

In contrast, this expression is in a range that matches any single letter, as long as it is not the letters a, b, c , or d:
[^abcd]
With this example, the regular expression matches a string that ends with .12 :

\$. 12

Contrast these anchoring characters with the special character underscore (_). The underscore matches the beginning of a string (\wedge), the end of a string (\$), parentheses (), space (), braces \{ \}, comma (,), or underscore (_). With the underscore character, you can specify that a pattern exist anywhere in the string.

For example:
1300
matches any string that has 1300 somewhere in the string. The string's 1300 can be preceded by or end with a space, brace, comma, or underscore. For example:
\{1300
matches the regular expression, but 21300 and 13000 do not.
Using the underscore character, you can replace long regular expression lists, such as the following:
${ }^{\wedge} 1300 \${ }^{\wedge} 1300$ (space) (space) $1300\{1300,, 1300,\{1300\}, 1300,(1300$
with
1300

Parentheses for Recall

As shown in the "Multipliers" section on page 1-9, you use parentheses with multiple-character regular expressions to multiply the occurrence of a pattern. You can also use parentheses around a single- or multiple-character pattern to remember a pattern for use elsewhere in the regular expression.

To create a regular expression that recalls a previous pattern, you use parentheses to indicate a remembered specific pattern and a backslash (\backslash) followed by an integer to reuse the remembered pattern. The integer specifies the occurrence of the parentheses in the regular expression pattern. If you have more than one remembered pattern in your regular expression, then $\backslash 1$ indicates the first remembered pattern, $\backslash 2$ indicates the second remembered pattern, and so on.
This regular expression uses parentheses for recall:

$\mathbf{a}() .\mathrm{bc}(.) \backslash 1 \backslash 2$

This regular expression matches an a followed by any character (call it character 1), followed by bc followed by any character (character 2), followed by character 1 again, followed by character 2 again. So, the regular expression can match aZbcTZT. The software remembers that character 1 is Z and character 2 is T and then uses Z and T again later in the regular expression.

Saving Configuration Changes

To save your configuration changes to your startup configuration so that they will not be lost if there is a system reload or power outage, enter the following command:

```
Switch# copy system:running-config nvram:startup-config
Building configuration...
```

It might take a minute or two to save the configuration. After the configuration has been saved, the following output appears:

```
[OK]
Switch#
```

On most platforms, this step saves the configuration to NVRAM. On the Class A Flash file system platforms, this step saves the configuration to the location specified by the CONFIG_FILE environment variable. The CONFIG_FILE environment variable defaults to NVRAM.

show platform Commands

You should use these commands only when you are working directly with your technical support representative, while troubleshooting a problem. Do not use these commands unless your technical support representative asks you to do so.

Note The show platform commands are not described in this document.

CHAPTER

Cisco IOS Commands for the Catalyst 4500 Series Switches

This chapter contains an alphabetical listing of Cisco IOS commands for the Catalyst 4500 series switches. For information about Cisco IOS commands that are not included in this publication, refer to Cisco IOS Release 12.2 configuration guides and command references at this URL:
http://www.cisco.com/en/US/products/sw/iosswrel/ps1835/products_product_indices_list.html

\#macro keywords

To specify the help string for the macro keywords, use the \#macro keywords command.
\#macro keywords [keyword1] [keyword2] [keyword3]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

keyword 1	(Optional) Specifies a keyword that is needed while applying a macro to an interface.
keyword 2	(Optional) Specifies a keyword that is needed while applying a macro to an interface.
keyword 3	(Optional) Specifies a keyword that is needed while applying a macro to an interface.

This command has no default settings.

Global configuration mode

Release	Modification
$12.2(18) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

If you do not specify the mandatory keywords for a macro, the macro is to be considered invalid and fails when you attempt to apply it. By entering the \#macro keywords command, you will receive a message indicating what you need to include to make the syntax valid.

This example shows how to specify the help string for keywords associated with a macro named test:

```
Switch(config)# macro name test
macro name test
Enter macro commands one per line. End with the character '@'.
#macro keywords $VLAN $MAX
swichport
@
Switch(config)# int gi1/1
Switch(config-if)# macro apply test ?
    WORD Keyword to replace with a value e.g $VLAN, $MAX << It is shown as help
    <cr>
```

Related Commands	Command	Description
	macro apply cisco-desktop	Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop.
	macro apply cisco-phone	Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop and a Cisco IP phone.
	macro apply cisco-router	Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a router.
	macro apply cisco-switch	Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to another switch.

aaa accounting dot1x default start-stop group radius

To enable accounting for 802.1X authentication sessions, use the aaa accounting dot1x default start-stop group radius command. To disable accounting, use the no form of this command.
aaa accounting dot 1 x default start-stop group radius
no aaa accounting dot 1 x default start-stop group radius
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Defaults

Command Modes

Command History

Usage Guidelines

Examples

This example shows how to configure 802.1 X accounting:
Switch(config)\# aaa accounting dot1x default start-stop group radius

The RADIUS authentication server must be properly configured to accept and log update or watchdog packets from the AAA client.

Command	Description
aaa accounting system default start-stop group radius	Receives the session termination messages after the switch reboots.

aaa accounting system default start-stop group radius

To receive the session termination messages after the switch reboots, use the aaa accounting system default start-stop group radius command. To disable accounting, use the no form of this command.
aaa accounting system default start-stop group radius
no aaa accounting system default start-stop group radius
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Defaults
 Accounting is disabled.

Command Modes Global configuration mode

Command History

Usage Guidelines

Examples

Release	Modification
$12.2(18) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

802.1X accounting requires the RADIUS server.

This command enables the AAA client's accounting feature to forward 802.1X update and watchdog packets from the 802.1 X supplicant (workstation client) to the authentication (RADIUS) server. (Watchdog packets are defined as EAPOL-LOGON, EAPOL-LOGOFF, and EAPOL-INTERIM messages.) Successful authentication and authorization of the supplicant by the authentication server is required before these packets are considered valid and are forwarded. When the client is reauthenticated, an interim-update accounting notice is sent to the accounting server.

This example shows how to generate a logoff after a switch reboots:
Switch(config)\# aaa accounting system default start-stop group radius

The RADIUS authentication server must be properly configured to accept and log update or watchdog packets from the AAA client.

Related Commands

Command	Description
aaa accounting dot1x default	Enables accounting for 802.1X authentication sessions.
start-stop group radius	

access-group mode

To specify the override modes (for example, VACL overrides PACL) and the non-override modes (for example, merge or strict mode), use the access-group mode command. To return to preferred port mode, use the no form of this command.
access-group mode $\{$ prefer $\{$ port | vlan \} | merge \}
no access-group mode $\{$ prefer $\{$ port | vlan\} | merge \}

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

prefer port	Specifies that the PACL mode take precedence if PACLs are configured. If no PACL features are configured on the port, other features applicable to the interface are merged and applied on the interface.
prefer vlan	Specifies that the VLAN-based ACL mode take precedence. If no VLAN-based ACL features are configured on the port's VLAN, the PACL features on the port are applied.
merge	Merges applicable ACL features before they are programmed into the hardware.

PACL override mode

Interface configuration mode

Release	Modification
$12.1(19)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.

On the Layer 2 interface, prefer port, prefer VLAN, and merge modes are supported. A Layer 2 interface can have one IP ACL applied in either direction (one inbound and one outbound).

This example shows how to make the PACL mode on the switch take effect:

```
(config-if)# access-group mode prefer port
```

This example shows how to merge applicable ACL features:

```
(config-if) # access-group mode merge
```

Related Commands	Command Description show access-group mode interface show ip interface (refer to Cisco IOS documentation) show mac access-group interface	Displays the IP interface configuration.

access-list hardware capture mode

To select the mode of capturing control packets, use the access-list hardware capture mode command.
access-list hardware capture mode \{global | vlan\}

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

global	Specifies the capture of control packets globally on all VLANs.
vlan	Specifies the capture of control packets on a specific VLAN.

The control packets are globally captured.

Global configuration mode

Release	Modification
$12.2(40)$ SG	Support for this command was introduced on the Catalyst 4500 series switch.

This command is not supported on Supervisor Engine 6-E and the Catalyst 4900M chassis.
Before configuring the capture mode, it is best to examine and modify your configuration to globally disable features such as DHCP snooping or IGMP snooping, and instead enable them on specific VLANs.

When changing to path managed mode, be aware that control traffic may be bridged in hardware or dropped initially until the per-vlan CAM entries are programmed in hardware.
You must ensure that any access control configuration on a member port or VLAN does not deny or drop the control packets from being forwarded to the CPU for the features which are enabled on the VLAN. If control packets are not permitted then the specific feature does not function.

This example shows how to configure the switch to capture control packets on VLANs that are configured to enable capturing control packets:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# access-list hardware capture mode vlan
Switch(config)# end
Switch#
```

This example shows how to configure the switch to capture control packets globally across all VLANs (using a static ACL):

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# access-list hardware capture mode global
Switch(config)# end
Switch#
```

This example shows another way to configure the switch to capture control packets globally across all VLANs:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no access-list hardware capture mode vlan
Switch(config)# end
Switch#
```


access-list hardware entries

To designate how ACLs are programmed into the switch hardware, use the access-list hardware entries command.

```
access-list hardware entries \(\{\) packed | scattered \}
```


Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

packed	Directs the software to use the first entry with a matching mask when selecting an entry from the ACL TCAM for programming the ACEs in an ACL.
scattered	Directs the software to use the first entry with a free mask when selecting an entry from the ACL TCAM for programming the ACEs in an ACL.

The ACLs are programmed as packed.

Global configuration mode

Release	Modification
$12.2(20)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.

Two types of hardware resources are used when ACLs are programmed: entries and masks. If one of these resources is consumed, no additional ACLs can be programmed into the hardware. If the masks are consumed, but the entries are available, change the programming algorithm from packed to scattered to make the masks available. This action allows additional ACLs to be programmed into the hardware.

The goal is to use TCAM resources more efficiently; that is, to minimize the number of masks per ACL entries. To compare TCAM utilization when using the scattered or packed algorithms, use the show platform hardware acl statistics utilization brief command. To change the algorithm from packed to scattered, use the access-list hardware entries command.

This example shows how to program ACLs into the hardware as packed. After they are programmed, you will need 89 percent of the masks to program only 49 percent of the ACL entries.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# access-list hardware entries packed
Switch(config)# end
Switch#
01:15:34: %SYS-5-CONFIG_I: Configured from console by console
Switch#
Switch# show platform hardware acl statistics utilization brief
Entries/Total(%) Masks/Total(%)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Input & Acl (PortAndVlan) & 2016 & / & 4096 & 49) & 460 & / & 512 & 89) \\
\hline Input & Acl (PortOrVlan) & 6 & / & 4096 & 0 ) & 4 & / & 512 & 0 ) \\
\hline Input & Qos (PortAndVlan) & 0 & / & 4096 & 0 ) & 0 & / & 512 & \(0)\) \\
\hline Input & Qos (PortOrVlan) & 0 & / & 4096 & ( 0) & 0 & / & 512 & ) \\
\hline
\end{tabular}
```

Output Acl(PortAndVlan)
Output Acl(PortOrVlan)
Output Qos (PortAndVlan)
Output Qos (PortOrVlan)

access-list hardware region

To modify the balance between TCAM regions in hardware, use the access-list hardware region command.

```
access-list hardware region {feature | qos} {input | output} balance {bal-num}
```

Syntax Description

Defaults

Command Modes

Command History

feature	Specifies adjustment of region balance for ACLs.
qos	Specifies adjustment of region balance for QoS.
input	Specifies adjustment of region balance for input ACL and QoS.
output	Specifies adjustment of region balance for output ACL and QoS.
balance bal-num	Specifies relative sizes of the PandV and PorV regions in the TCAM; valid values are between 1 and 99.

The default region balance for each TCAM is 50 .

Global configuration mode

Usage Guidelines

Release	Modification
$12.2(31)$ SG	Support for this command was introduced on the Catalyst 4500 series switch.

PandV is a TCAM region containing entries which mask in both the port and VLAN tag portions of the flow label.
PorV is a TCAM region containing entries which mask in either the port or VLAN tag portion of the flow label, but not both.

A balance of 1 allocates the minimum number of PandV region entries and the maximum number of PorV region entries. A balance of 99 allocates the maximum number of PandV region entries and the minimum number of PorV region entries. A balance of 50 allocates equal numbers of PandV and PorV region entries in the specified TCAM.
Balances for the four TCAMs can be modified independently.

Examples

This example shows how to enable the MAC notification trap when a MAC address is added to a port:

```
Switch# configure terminal
Switch(config)# access-list hardware region feature input balance 75
Switch(config)#
```


action

To specify an action to be taken when a match occurs in a VACL, use the action command. To remove an action clause, use the no form of this command.
action $\{$ drop | forward \}
no action $\{$ drop | forward \}

Syntax Description	$\overline{\text { drop }}$	Sets the action to drop packets.
	forward	Sets the action to forward packets to their destination.
Defaults	This command has no default settings.	
Command Modes	VLAN access-map mode	
Command History	Release	Modification
	12.1(12c)EW	Support for this command was introduced on the Catalyst 4500 series switch.

Usage Guidelines In a VLAN access map, if at least one ACL is configured for a packet type (IP or MAC), the default action for the packet type is drop (deny).
If an ACL is not configured for a packet type, the default action for the packet type is forward (permit).
If an ACL for a packet type is configured and the ACL is empty or undefined, the configured action will be applied to the packet type.

Examples This example shows how to define a drop action:

```
Switch(config-access-map) # action drop
```

Switch(config-access-map) \#
This example shows how to define a forward action:
Switch(config-access-map) \# action forward
Switch(config-access-map) \#
Syntax Description

Command	Description
match	Specifies a match clause by selecting one or more ACLs for a VLAN access-map sequence.
show vlan access-map	Displays the contents of a VLAN access map.
vlan access-map	Enters VLAN access-map command mode to create a VLAN access map.

active

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

To enable the destination profile, use the active command.
active

This command has no arguments or keywords.

This command has no default settings.
cfg-call-home-profile

Release	Modification
$12.2(52) \mathrm{SG}$	Support was introduced on the Catalyst 4500 series switches.

By default the profile is enabled upon creation.

This example shows how to enable the destination profile:

```
Switch(config)# call-home
Switch(cfg-call-home)# profile cisco
Switch(cfg-call-home-profile)# active
```

Command	Description
destination address	Configures the destination e-mail address or URL to which Call Home messages will be sent.
destination message-size-limit bytes	Configures a maximum destination message size for the destination profile.
destination preferred-msg-format	Configures a preferred message format.
destination transport-method	Enables the message transport method.

apply

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.
To implement a new VLAN database, increment the configuration number, save the configuration number in NVRAM, and propagate the configuration number throughout the administrative domain, use the apply command.

apply

This command has no default settings.

VLAN configuration mode

Release	Modification
$12.1(8 a)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.

The apply command implements the configuration changes that you made after you entered VLAN database mode and uses them for the running configuration. This command keeps you in VLAN database mode.

You cannot use this command when the switch is in the VTP client mode.
You can verify that the VLAN database changes occurred by entering the show vlan command from privileged EXEC mode.

This example shows how to implement the proposed new VLAN database and to recognize it as the current database:

Switch(config-vlan)\# apply
Switch(config-vlan) \#

Command	Description
exit (refer to Cisco IOS documentation)	Closes an active terminal session by logging off the switch.
reset	Leaves the proposed new VLAN database but remains in VLAN configuration mode and resets the proposed new database to be identical to the VLAN database currently implemented.
show vlan	Displays VLAN information.

Command	Description
shutdown vlan (refer to Cisco IOS documentation)	Shuts down VLAN switching.
vtp (global configuration mode)	Modifies the name of a VTP configuration storage file.

arp access-list

To define an ARP access list or add clauses at the end of a predefined list, use the arp access-list command.
arp access-list name
name \quad Specifies the access control list name.

Defaults

Command Modes Global configuration mode

Command History

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Examples

This command has no default settings.

This example shows how to define an ARP access list named static-hosts:
Switch(config) \# arp access-list static-hosts
Switch(config) \#
$\overline{\text { Related Commands }}$

Command	Description
deny	Denies an ARP packet based on matches against the DHCP bindings.
ip arp inspection filter vlan	Permits ARPs from hosts that are configured for static IP when DAI is enabled and to define an ARP access list and applies it to a VLAN.
permit	Permits an ARP packet based on matches against the DHCP bindings.

attach module

To remotely connect to a specific module, use the attach module configuration command.
attach module mod

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines
mod Target module for the command.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(19)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.

This command applies only to the Access Gateway Module on Catalyst 4500 series switches.
The valid values for mod depend on the chassis that are used. For example, if you have a Catalyst 4506 chassis, valid values for the module are from 2 to 6 . If you have a 4507R chassis, valid values are from 3 to 7 .

When you execute the attach module mod command, the prompt changes to Gateway\#.
This command is identical in the resulting action to the session module mod and the remote login module mod commands.

This example shows how to remotely \log in to an Access Gateway Module:
Switch\# attach module 5
Attaching console to module 5
Type 'exit' at the remote prompt to end the session
Gateway>

Command	Description
remote login module	Remotely connects to a specific module.
session module	Logs in to the standby supervisor engine using a virtual console.

authentication control-direction

To change the port control to unidirectional or bidirectional, use the authentication control-direction command in interface configuration mode. To return to the default setting, use the no form of this command.

```
authentication control-direction {both | in}
```

no authentication control-direction

Syntax Description

both	Enables bidirectional control on the port.
in	Enables unidirectional control on the port.

Command Default

Command Modes

Command History

Release	Modification
$12.2(50)$ SG	Support for this command was introduced.

Usage Guidelines
The authentication control-direction command replaces the following dot 1 x command, which is
deprecated in Cisco IOS Release 12.2(50)SG and later releases:

dot $1 x$ control-direction $\{$ both \mid in \}

The IEEE 802.1X standard defines a client-server-based access control and authentication protocol that restricts unauthorized devices from connecting to a LAN through publicly accessible ports.

IEEE 802.1X controls network access by creating two distinct virtual access points at each port. One access point is an uncontrolled port; the other is a controlled port. All traffic through the single port is available to both access points. IEEE 802.1X authenticates each user device that connects to a switch port and assigns the port to a VLAN before making available any services that are offered by the switch or the LAN. Until the device authenticates, 802.1X access control allows only Extensible Authentication Protocol (EAP) over LAN (EAPOL) traffic through the port to which the device connects. After authentication succeeds, normal traffic can pass through the port.

- Unidirectional state-When you configure a port as unidirectional with the dot1x control-direction interface configuration command, the port changes to the spanning-tree forwarding state.

When the unidirectional controlled port is enabled, the connected host is in sleeping mode or power-down state. The host does not exchange traffic with other devices in the network. If the host connected to the unidirectional port that cannot send traffic to the network, the host can only receive traffic from other devices in the network.

- Bidirectional state-When you configure a port as bidirectional with the dot1x control-direction interface configuration command, the port is access-controlled in both directions. In this state, the switch port sends only EAPOL.

Using the both keyword or using the no form of this command changes the port to its bidirectional default setting.
Setting the port as bidirectional enables 802.1X authentication with Wake-on-LAN (WoL).
You can verify your settings by entering the show authentication privileged EXEC command.

Examples

The following example shows how to enable unidirectional control:

```
Switch(config-if)# authentication control-direction in
Switch(config-if)#
```

The following example shows how to enable bidirectional control:

```
Switch(config-if)# authentication control-direction both
Switch(config-if)#
```

The following example shows how to return to the default settings:
Switch(config-if) \# no authentication control-direction
Switch(config-if) \#

Related Commands

Command	Description
show authentication	Displays Authentication Manager information.

authentication critical recovery delay

To configure the 802.1X critical authentication parameters, use the authentication critical recovery delay command in global configuration mode. To return to the default settings, use the no form of this command.
authentication critical recovery delay milliseconds
no authentication critical recovery delay

Syntax Description	milliseconds	Specifies the recovery delay period in milliseconds to wait to reinitialize a critical port when an unavailable RADIUS server becomes available. The rang is 1 to 10000 milliseconds.
Command Default	10000 millise	
Command Modes	Global configuration mode	
Command History	Release	Modification
	12.2(50)SG	Support for this command was introduced.

Usage Guidelines

Examples

The authentication critical recovery delay command replaces the following dot 1 x command, which is deprecated in Cisco IOS Release 12.2(50)SG and later releases:
dot1x critical recovery delay milliseconds
You can verify your settings by entering the show authentication privileged EXEC command.

This example shows how to set the recovery delay period that the switch waits to reinitialize a critical port when an unavailable RADIUS server becomes available:

Switch(config) \# authentication critical recovery delay 1500
Switch(config) \#

Related Commands

Command	Description
show authentication	Displays Authentication Manager information.

authentication event

To configure the actions for authentication events, use the authentication event interface configuration command. To return to the default settings, use the no form of this command.
authentication event fail [retry count] action [authorize vlan vlan | next-method \}
authentication event server \{alive action reinitialize | dead action authorize [vlan vlan] | voice I dead action reinitialize [vlan vlan]\}\}
authentication event no-response action authorize vlan $v l a n]\}$
no authentication event $\{$ fail $\} \mid$ \{server $\{$ alive | dead $\}\} \mid\{$ no-response $\}$

Syntax Description

Command Default

Command Modes

Command History

The default settings are as follows:

- The count is 2 by default.
- The current authentication method is retried indefinitely (and fails each time) until the AAA server becomes reachable.

Interface configuration mode

Release	Modification
$12.2(50) \mathrm{SG}$	Support for this command was introduced.

$\overline{\text { Usage Guidelines }}$ The authentication event fail command replaces the following 802.1X commands, which are deprecated in Cisco IOS Release 12.2(50)SG and later releases:

- [no] dot1x auth-fail max-attempts count
- [no] dot1x auth-fail vlan vlan

The authentication event fail command is supported only for 802.1 X to signal authentication failures. By default, this failure type causes the authentication method to be retried. You can configure either to authorize the port in the configured VLAN or to failover to the next authentication method. Optionally, you can specify the number of authentication retries before performing this action.

The authentication event server command replaces the following 802.1X commands, which are deprecated in Cisco IOS Release 12.2(50)SG and later releases:

- [no] dot1x critical
- [no] dot1x critical vlan vlan
- [no] dot1x critical recover action initialize

The authentication event server command specifies the behavior when the AAA server becomes unreachable, ports are authorized in the specified VLAN.
The authentication server alive action command specifies the action to be taken once the AAA server becomes reachable again.

You can verify your settings by entering the show authentication privileged EXEC command.
The authentication event no-response command replaces the following 802.1X command, which is deprecated in Cisco IOS Release 12.2(50)SG and later releases:

- [no] dot1x guest-vlan vlan

The authentication event no-response command specifies the action to be taken when the client does not support 802.1X.

Examples

The following example shows how to specify that when an authentication fails due to bad user credentials, the process advances to the next authentication method:

```
Switch(config-if) # authentication event fail action next-method
Switch(config-if)#
```

The following example shows how to specify the AAA server alive actions as reinitialize all authorized clients for authentication events:

```
Switch(config-if)# authentication event server alive action reinitialize
Switch(config-if)#
```

The following example shows how to specify the AAA server dead actions that authorize the port for authentication events:

```
Switch(config-if) # authentication event server dead action authorize
Switch(config-if)#
```

The following example shows how to specify the conditions when a client doesn't support 802.1X to authorize the port for authentication events:

Switch(config-if) \# authentication event authentication event no-response action authorize
vlan 10
Switch(config-if) \#

Related Commands	Command	Description
	show authentication	Displays Authentication Manager information.

authentication fallback

To enable WebAuth fallback and to specify the fallback profile to use when failing over to WebAuth, use the authentication fallback interface command. To return to the default setting, use the no form of this command.

authentication fallback profile

Syntax Description

Command Default

Command Modes

Command History
profile
The fallback profile name to use when failing over to WebAuth (maximum of 200 characters).

Disabled

Interface configuration mode

Release	Modification
$12.2(50)$ SG	Support for this command was introduced.

By default, if 802.1X times out and if MAB fails, WebAuth is enabled.
The authentication fallback command replaces the following dot 1 x command, which is deprecated in Cisco IOS Release 12.2(50)SG and later releases:
[no] dot1x fallback profile
The Webauth fallback feature allows you to have those clients that do not have an 802.1 X supplicant and are not managed devices to fall back to the WebAuth method.
You can verify your settings with the show authentication privileged EXEC command.

Examples

Related Commands

authentication host-mode

To define the classification of a session that will be used to apply the access-policies in host-mode configuration, use the authentication host-mode command in interface configuration mode. To return to the default settings, use the no form of this command.
authentication host-mode $\{$ single-host | multi-auth | multi-domain | multi-host $\}$ [open]
[no] authentication host-mode \{single-host | multi-auth | multi-domain | multi-host\} [open]

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

single-host	Specifies the session as an interface session, and allows one client on the port only. This is the default host mode when enabling 802.1X.
multi-auth	Specifies the session as a MAC-based session. Any number of clients are allowed on a port in data domain and only one client in voice domain, but each one is required to authenticate separately.
multi-domain	Specifies the session based on a combination of MAC address and domain, with the restriction that only one MAC is allowed per domain.
multi-host	Specifies the session as an interface session, but allows more than one client on the port.
(Optional) Configures the host-mode with open policy on the port.	

This command has no default settings.

Interface configuration mode

Release	Modification
$12.2(50) \mathrm{SG}$	Support for this command was introduced.

Single-host mode classifies the session as an interface session (for example, one MAC per interface). Only one client is allowed on the port, and any policies that are downloaded for the client are applied to the whole port. A security violation is triggered if more than one client is detected.
Multi-host mode classifies the session as an interface session, but the difference with this host-mode is that it allows more than one client to attach to the port. Only the first client that is detected on the port will be authenticated and the rest will inherit the same access as the first client. The policies that are downloaded for the first client will be applied to the whole port.

Multi-domain mode classifies the session based on a combination of MAC address and domain, with the restriction that only one MAC is allowed per domain. The domain in the switching environment refers to the VLAN, and the two supported domains are the DATA domain and the voice domain. Only one client is allowed on a particular domain. So, only two clients (MACs) per port are supported. Each one is required to authenticate separately. Any policies that are downloaded for the client will be applied for that client's MAC/IP only and will not affect the other on the same port. The clients can be authenticated using different methods (such as 802.1 X for PC, MAB for IP phone, or vice versa). No restriction exists on the authentication order.

The only caveat with the above statement is that web-based authentication is only available for data devices because a user is probably operating the device and HTTP capability exists. Also, if web-based authentication is configured in MDA mode, the only form of enforcement for all types of devices is downloadable ACLs (dACL). The restriction is in place because VLAN assignment is not supported for web-based authentication. Furthermore, if you use dACLs for data devices and not for voice devices, when the user's data falls back to webauth, voice traffic is affected by the ACL that is applied based on the fallback policy. Therefore if webauth is configured as a fallback on an MDA enabled port, dACL is the only supported enforcement method.

Multi-auth mode classifies the session as a MAC-based. No limit exists for the number of clients allowed on a port data domain. Only one client is allowed in a voice domain and each one is required to authenticate separately. Any policies that are downloaded for the client are applied for that client's MAC or IP only and do not affect others on the same port.
The optional pre-authentication open access mode allows you to gain network access before authentication is performed.This is primarily required for the PXE boot scenario, but not limited to just that use case, where a device needs to access the network before PXE times out and downloads a bootable image possibly containing a supplicant.

The configuration related to this feature is attached to the host-mode configuration whereby the host-mode itself is significant for the control plane, while the open access configuration is significant for the data plane. Open-access configuration has absolutely no bearing on the session classification. The host-mode configuration still controls this. If the open-access is defined for single-host mode, the port still allows only one MAC address. The port forwards traffic from the start and is only restricted by what is configured on the port. Such configurations are independent of 802.1X. So, if there is no form of access-restriction configured on the port, the client devices have full access on the configured VLAN.

You can verify your settings with the show authentication privileged EXEC command.

Examples

Related Commands

This example shows how to define the classification of a session that are used to apply the access-policies using the host-mode configuration:
Switch(config-if) \# authentication host-mode single-host
Switch(config-if) \#

Command	Description
show authentication	Displays Authentication Manager information.

authentication open

To enable open access on this port, use the authentication open command in interface configuration mode. To disable open access on this port, use the no form of this command.
authentication open
no authentication open
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default Disabled.

$\overline{\text { Command Modes }}$ Interface configuration mode

Command History

Release	Modification
$12.2(50)$ SG	Support for this command was introduced.

Usage Guidelines

Open Access allows clients or devices to gain network access before authentication is performed.
You can verify your settings with the show authentication privileged EXEC command.
This command overrides the authentication host-mode session-type open global configuration mode command for the port only.
This command operates per-port rather than globally.

Examples

Related Commands

Command	Description
show authentication	Displays Authentication Manager information.

authentication order

To specify the order in which authentication methods should be attempted for a client on an interface, use the authentication order command in interface configuration mode. To return to the default settings, use the no form of this command.
authentication order method1 [method2] [method3]
no authentication order

Syntax Description	methodl	Authentication method to be attempted. The valid values are as follows: - dot1x—Adds the dot1x authentication method. - mab-Adds the MAB authentication method. - webauth-Adds the WebAuth authentication method.
	method 2 method3	(Optional) Authentication method to be attempted. The valid values are as follows: - dot1x—Adds the dot1x authentication method. - mab-Adds the MAB authentication method. - webauth-Adds the WebAuth authentication method.

Command Default
$\overline{\text { Command Modes }}$ Interface configuration mode

Command History

Release	Modification
$12.2(50) \mathrm{SG}$	Support for this command was introduced.

Usage Guidelines

The default order is dot1x, MAB, then WebAuth.

Once you enter the authentication order command, only those methods explicitly listed will run. Each method may be entered only once in the run list and no methods may be entered after you enter the webauth keyword.

Authentication methods are applied in the configured (or default) order until authentication succeeds. For authentication fails, failover to the next authentication method occurs (subject to the configuration of authentication event handling).
You can verify your settings with the show authentication privileged EXEC command.
Examples \quad The following example shows how to specify the order in which authentication methods should be
attempted for a client on an interface:

Switch(config-if) \# authentication order mab dot1x webauth Switch(config-if) \#

Command	Description
show authentication	Displays Authentication Manager information.

authentication periodic

To enable reauthentication for this port, use the authentication periodic command in interface configuration mode. To disable reauthentication for this port, use the no form of this command.

authentication periodic

no authentication periodic
$\overline{\text { Syntax Description }}$ This command has no arguments or keywords.

Command Default Disabled.
 Command Modes Interface configuration mode

Command History

Release	Modification
$12.2(50) \mathrm{SG}$	Support for this command was introduced.

Usage Guidelines
The authentication periodic command replaces the following dot 1 x command, which is deprecated in Cisco IOS Release 12.2(50)SG and later releases:

[no] dot $1 x$ reauthentication

The reauthentication period can be set using the authentication timer command.
You can verify your settings by entering the show authentication privileged EXEC command.

Examples

Related Commands
The following example shows how to enable reauthentication for this port:

```
Switch(config-if)# authentication reauthentication
Switch(config-if)#
```

The following example shows how to disable reauthentication for this port:
Switch(config-if) \# no authentication reauthentication
Switch(config-if) \#

authentication port-control

To configure the port-control value, use the authentication port-control command in interface configuration mode. To return to the default setting, use the no form of this command.
authentication port-control [auto | force-authorized | force-unauthorized]
no authentication port-control

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

auto	(Optional) Enables 802.1X port-based authentication and causes the port to begin in the unauthorized state.
force-authorized	(Optional) Disables 802.1 X on the interface and causes the port to change to the authorized state without any authentication exchange required. The port transmits and receives normal traffic without 802.1X-based authentication of the client. The force-authorized keyword is the default.
force-unauthorized	(Optional) Denies all access through this interface by forcing the port to change to the unauthorized state, ignoring all attempts by the client to authenticate.

force-authorized

Interface configuration mode

Release	Modification
$12.2(50) \mathrm{SG}$	Support for this command was introduced.

The authentication port-control command replaces the following dot 1 x command, which is deprecated in Cisco IOS Release 12.2(50)SG and later releases:
[no] dot1x port-control [auto | force-authorized I force-unauthorized]
The following guidelines apply to Ethernet switch network modules:

- The 802.1X protocol is supported on Layer 2 static-access ports.
- You can use the auto keyword only if the port is not configured as one of the following types:
- Trunk port—If you try to enable 802.1 X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1 X -enabled port to trunk, the port mode is not changed.
- EtherChannel port—Before enabling 802.1X on the port, you must first remove it from the EtherChannel. If you try to enable 802.1 X on an EtherChannel or on an active port in an EtherChannel, an error message appears, and 802.1 X is not enabled. If you enable 802.1 X on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
- Switch Port Analyzer (SPAN) destination port—You can enable 802.1X on a port that is a SPAN destination port; however, 802.1 X is disabled until the port is removed as a SPAN destination. You can enable 802.1X on a SPAN source port.

To globally disable 802.1 X on the device, you must disable it on each port. There is no global configuration command for this task.

You can verify your settings with the show authentication privileged EXEC command.
The auto keyword allows you to send and receive only Extensible Authentication Protocol over LAN (EAPOL) frames through the port. The authentication process begins when the link state of the port transitions from down to up or when an EAPOL-start frame is received. The system requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the system through the client's MAC address.

The following example shows that the authentication status of the client PC will be determined by the authentication process:
Switch(config-if) \# authentication port-control auto
Switch(config-if) \#
$\overline{\text { Related Commands }}$

Command	Description
show authentication	Displays Authentication Manager information.

authentication priority

To specify the priority of authentication methods on an interface, use the authentication priority command in interface configuration mode. To return to the default settings, use the no form of this command.
authentication priority method 1 [method 2$]$ [method3]
no authentication priority

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

method1
Authentication method to be attempted. The valid values are as follows:

- dot1x—Adds the dot1x authentication method.
- mab-Adds the MAB authentication method.
- webauth-Adds the Webauth authentication method.
method 2
method3
(Optional) Authentication method to be attempted. The valid values are as follows:
- dot1x—Adds the dot 1 x authentication method.
- mab-Adds the MAB authentication method.
- webauth-Adds the Webauth authentication method.

The default order is $\operatorname{dot} 1 \mathrm{x}, \mathrm{MAB}$, then webauth.

Interface configuration mode

Release	Modification
$12.2(50) \mathrm{SG}$	Support for this command was introduced.

Configuring priorities for authentication methods allows a higher priority method (not currently running) to interrupt an authentication in progress with a lower priority method. Alternatively, if the client is already authenticated, an interrupt from a higher priority method can cause a client, which was previously authenticated using a lower priority method, to reauthenticate.
The default priority of a method is equivalent to its position in the order of execution list. If you do not configure a priority, the relative priorities (highest first) are dot 1 x , MAB and then webauth. If you enter the authentication order command, the default priorities are the same as the configured order.
You can verify your settings with the show authentication privileged EXEC command.

| Examples | The following example shows how to specify the priority in which authentication methods should be
 attempted for a client on an interface: |
| :--- | :--- | :--- |
| Switch (config-if)\# authentication priority mab dot1x webauth
 Switch (config-if) \# | |
| Related Commands | Command Description
 authentication order Specifies the order in which authentication methods should be attempted for
 a client on an interface.
 show authentication Displays Authentication Manager information. |

authentication timer

To configure the authentication timer, use the authentication timer command in interface configuration mode. To return to the default settings, use the no form of this command.

```
authentication timer {{inactivity value}| {reauthenticate {server | value }}|{restart value}}
no authentication timer {{inactivity value} | {reauthenticate value}|{restart value}}
```


Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

inactivity value	Specifies the amount of time in seconds that a host is allowed to be inactive before being authorized. Range is 1 to 65535 . Default is Off. Note \quadThe inactivity value should be less than the reauthenticate timer value, but configuring the inactivity value higher than the reauthenticate timer value is not considered an error. reauthenticate server Specifies that the reauthentication period value for the client should be obtained from the authentication, authorization, and accounting (AAA) server as Session-Timeout (RADIUS Attribute 27).		
restart value	Specifies the amount of time in seconds after which an automatic reauthentication is initiated. Range is 1 to 65535. Default is 3600.		Specifies the amount of time in seconds after which an attempt is made to
:---			
authenticate an unauthorized port. Range is 1 to 65535. Default is Off.			

The default settings are as follows:

- inactivity value-Off.
- reauthenticate value-3600
- restart value-Off

Interface configuration mode

Release	Modification
$12.2(50)$ SG	Support for this command was introduced.

Reauthentication only occurs if it is enabled on the interface.
The authentication timer reauthenticate value command replaces the following dot 1 x command that is deprecated in Cisco IOS Release 12.2(50)SG and later releases:
[no] dot1x timeout \{reauth-period seconds | quiet-period seconds | tx-period seconds | supp-timeout seconds \mid server-timeout seconds $\}$

You should change the default values of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients or authentication servers.

During the inactivity period, the Ethernet switch network module does not accept or initiate any authentication requests. If you want to provide a faster response time to the user, enter a number less than the default.

The reauthenticate keyword affects the behavior of the Ethernet switch network module only if you have enabled periodic reauthentication with the authentication reauthentication global configuration command.

Examples

The following example shows how to specify that the reauthentication period value for the client should be obtained from the authentication, authorization, and accounting (AAA) server as Session-Timeout (RADIUS Attribute 27):

```
Switch(config-if)# authentication timer reauthenticate server
Switch(config-if)#
```

Related Commands

Command	Description
show authentication	Displays Authentication Manager information.

auto qos voip

To automatically configure quality of service (auto-QoS) for voice over IP (VoIP) within a QoS domain, use the auto qos voip interface configuration command. To change the auto-QoS configuration settings to the standard QoS defaults, use the no form of this command.
auto qos voip $\{$ cisco-phone \mid trust $\}$
no auto qos voip $\{$ cisco-phone | trust $\}$

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

cisco-phone	Connects the interface to a Cisco IP phone and automatically configures QoS for VoIP. The CoS labels of incoming packets are trusted only when the telephone is detected.
trust	Connects the interface to a trusted switch or router and automatically configures QoS for VoIP. The CoS and DSCP labels of incoming packets are trusted.

Auto-QoS is disabled on all interfaces.

Interface configuration mode

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Use this command to configure the QoS that is appropriate for VoIP traffic within the QoS domain. The QoS domain includes the switch, the interior of the network, and the edge devices that can classify incoming traffic for QoS.
Use the cisco-phone keyword on the ports at the edge of the network that are connected to Cisco IP phones. The switch detects the telephone through the Cisco Discovery Protocol (CDP) and trusts the CoS labels in packets that are received from the telephone.

Use the trust keyword on the ports that are connected to the interior of the network. Because it is assumed that the traffic has already been classified by the other edge devices, the CoS/DSCP labels in these packets are trusted.
When you enable the auto-QoS feature on the specified interface, these actions automatically occur:

- QoS is globally enabled (qos global configuration command).
- DBL is enabled globally (qos dbl global configuration command).
- When you enter the auto qos voip cisco-phone interface configuration command, the trusted boundary feature is enabled. It uses the Cisco Discovery Protocol (CDP) to detect the presence or absence of a Cisco IP phone. When a Cisco IP phone is detected, the ingress classification on the specific interface is set to trust the CoS label that is received in the packet because some old phones do not mark DSCP. When a Cisco IP phone is absent, the ingress classification is set to not trust the CoS label in the packet.
- When you enter the auto qos voip trust interface configuration command, the ingress classification on the specified interface is set to trust the CoS label that is received in the packet if the specified interface is configured as Layer 2 (and is set to trust DSCP if the interface is configured as Layer 3).

You can enable auto-QoS on static, dynamic-access, voice VLAN access, and trunk ports.
To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the debug auto qos privileged EXEC command to enable auto-QoS debugging.

To disable auto-QoS on an interface, use the no auto qos voip interface configuration command. When you enter this command, the switch enables standard QoS and changes the auto-QoS settings to the standard QoS default settings for that interface. This action will not change any global configuration performed by auto-QoS; the global configuration remains the same.

Examples

This example shows how to enable auto-QoS and to trust the CoS and DSCP labels that are received in the incoming packets when the switch or router that is connected to Gigabit Ethernet interface $1 / 1$ is a trusted device:

```
Switch(config)# interface gigabitethernet1/1
Switch(config-if)# auto qos voip trust
```

This example shows how to enable auto-QoS and to trust the CoS labels that are received in incoming packets when the device connected to Fast Ethernet interface $2 / 1$ is detected as a Cisco IP phone:

```
Switch(config)# interface fastethernet2/1
Switch(config-if)# auto qos voip cisco-phone
```

This example shows how to display the QoS configuration that is automatically generated when auto-QoS is enabled on a Supervisor Engine 6-E:

```
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface gigabitethernet3/10
Switch(config-if) #auto qos voip trust
Switch(config-if)#
1d03h: service-policy input AutoQos-VoIP-Input-Cos-Policy
1d03h: service-policy output AutoQos-VoIP-Output-Policy
Switch(config-if) #intface gigabitethernet3/11
Switch(config-if)#auto qos voip
cisco-phone
Switch(config-if)#
1d03h: qos trust device cisco-phone
1d03h: service-policy input AutoQos-VoIP-Input-Cos-Policy
1d03h: service-policy output AutoQos-VoIP-Output-Policy
Switch(config-if)#end
Switch#
```

You can verify your settings by entering the show auto qos interface command.

Related Commands

Command	Description
debug auto qos (refer to Cisco IOS documentation)	Debugs Auto QoS.
qos trust	Sets the trusted state of an interface.
show auto qos	Displays the automatic quality of service (auto-QoS) configuration that is applied.

Command	Description
show qos	Displays QoS information.
show qos interface	Displays queueing information.
show qos maps	Displays QoS map information.

auto-sync

To enable automatic synchronization of the configuration files in NVRAM, use the auto-sync command.
To disable automatic synchronization, use the no form of this command.

```
auto-sync {startup-config | config-register | bootvar | standard}
no auto-sync {startup-config | config-register | bootvar | standard}
```

Syntax Description		startup-config config-register
bootvar Specifies automatic synchronization of the startup configuration. standard Specifies automatic synchronization of the BOOTVAR configuration. Specifies automatic synchronization of the startup configuration, BOOTVAR, and configuration registers.		

Defaults

Command Modes Command History

Usage Guidelines

Examples

Release	Modification
$12.1(12 \mathrm{c}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch (Catalyst 4507R only).

If you enter the no auto-sync standard command, no automatic synchronizations occur.

This example shows how (from the default configuration) to enable automatic synchronization of the configuration register in the main CPU:

```
Switch# config terminal
Switch (config)# redundancy
Switch (config-r)# main-cpu
Switch (config-r-mc)# no auto-sync standard
Switch (config-r-mc)# auto-sync configure-register
Switch (config-r-mc)#
```

Related Commands

Command	Description
redundancy	Enters the redundancy configuration mode.

bandwidth

To specify or modify the minimum bandwidth provided to a class belonging to a policy map attached to a physical port, use the bandwidth policy-map class command. To return to the default setting, use the no form of this command.
bandwidth $\{$ bandwidth-kbps \mid percent percent \mid remaining percent percent $\}$
no bandwidth

Syntax Description

Defaults

Command Modes Command History

Usage Guidelines

bandwidth-kbps	Amount of bandwidth in kbps assigned to the class. The range is 32 to 16000000.
percent percent	Percentage of available bandwidth assigned to the parent class. The range is 1 to 100.
remaining percent percent	Percentage of remaining bandwidth assigned to parent class. The range is 1 to $100 . ~ T h i s ~ c o m m a n d ~ i s ~ s u p p o r t e d ~ o n l y ~ w h e n ~ p r i o r i t y ~ q u e u i n g ~ c l a s s ~$
is configured, and the prioity queuing class is not rate-limited.	

No bandwidth is specified.

Policy-map class configuration mode

Release	Modification
$12.2(40)$ SG	This command was introduced on the Catalyst 4500 series switch using a
	Supervisor Engine 6E.

Use the bandwidth command only in a policy map attached to a physical port.
The bandwidth command specifies the minimum bandwidth for traffic in that class when there is traffic congestion in the switch. If the switch is not congested, the class receives more bandwidth than you specify with this command.
When queuing class is configured without any explicit bandwidth configuration, since the queue is not guaranteed any minimum bandwidth, this queue will get a share of any unallocated bandwidth on the port.
If there is no unallocated bandwidth for the new queue or if the unallocated bandwidth is not sufficient to meet the minimum configurable rate for all queues which do not have any explicit bandwidth configuration, then the policy association is rejected.

These restrictions apply to the bandwidth command:

- If the percent keyword is used, the sum of the class bandwidth percentages within a single policy map cannot exceed 100 percent. Percentage calculations are based on the bandwidth available on the port.
- The amount of bandwidth configured should be large enough to accommodate Layer 2 overhead.
- A policy map can have all the class bandwidths specified in either kbps or in percentages, but not a mix of both.

This example shows how to set the minimum bandwidth to 2000 kbps for a class called silver-class. The class already exists in the switch configuration.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# policy-map polmap6
Switch(config-pmap) # class silver-class
Switch(config-pmap-c) # bandwidth 2000
Switch(config-pmap-c) # end
```

This example shows how to guarantee 30 percent of the bandwidth for classl and 25 percent of the bandwidth for class 2 when CBWFQ is configured. A policy map with two classes is created and is then attached to a physical port.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# bandwidth percent 50
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class2
Switch(config-pmap-c) # bandwidth percent }2
Switch(config-pmap-c)# exit
Switch(config-pmap) # end
Switch(config)# interface gigabitethernet1/1
Switch(config-if)# service-policy input policy1
Switch(config-if)# end
```

This example shows how bandwidth is guaranteed if low-latency queueing (LLQ) and bandwidth are configured. In this example, LLQ is enabled in a class called voice1.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# bandwidth remaining percent 50
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class2
Switch(config-pmap-c)# bandwidth remaining percent }2
Switch(config-pmap-c) # exit
Switch(config-pmap)# class voice1
Switch(config-pmap-c) # priority
Switch(config-pmap-c)# exit
Switch(config-pmap)# end
Switch(config)# interface gigabitethernet1/1
Switch(config-if)# service-policy output policy1
Switch(config-if)# end
```

You can verify your settings by entering the show policy-map privileged EXEC command.

Related Commands	Command	Description
class	Specifies the name of the class whose traffic policy you want to create or change.	
policy-map	Enables active queue management on a transmit queue used by a class of traffic.	
	Creates or modifies a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode.	
priority	Enables the strict priority queue (low-latency queueing [LLQ]) and to give priority to a class of traffic belonging to a policy map attached to a physical port.	
	service-policy (policy-map class)	Creates a service policy that is a quality of service (QoS) policy within a policy map.
shape (class-based queueing)	Enables traffic shaping a class of traffic in a policy map attached to a physical port.	
show policy-map	Displays information about the policy map.	

call-home (global configuration)

To enter call home configuration submode, use the call-home command in global configuration mode.

call-home

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

This command has no arguments or keywords.

This command has no default settings.

Global configuration mode

Release	Modification
$12.2(52)$ SG	This command was introduced on the Catalyst 4500 series switch, Supervisor Engine 6-E, and Catalyst 4900M chassis.

Once you enter the call-home command, the prompt changes to Switch (cfg-call-home)\#, and you have access to the call home configuration commands as follows:

- alert-group-Enables or disables an alert group. See the alert-group command.
- contact-email-addr email-address-Assigns the system contact's e-mail address. You can enter up to 128 alphanumeric characters in e-mail address format with no spaces.
- contract-id alphanumeric-Specifies the customer contract identification for Cisco AutoNotification. You can enter up to 64 alphanumeric characters. If you include spaces, you must enclose your entry in quotes (" ").
- copy profile source-profile target-profile-Creates a new destination profile (target-profile) with the same configuration settings as the existing profile (source-profile).
- customer-id name-Provides customer identification for Cisco AutoNotify. You can enter up to 256 alphanumeric characters. If you include spaces, you must enclose your entry in quotes (" ").
- default-Sets a command to its defaults.
- exit-Exits call home configuration mode and returns to global configuration mode.
- mail-server \{ipv4-address | name $\}$ priority priority—Assigns the customer's e-mail server address and relative priority. You can enter an IP address or a fully qualified domain name (FQDN), and assign a priority from 1 (highest) to 100 (lowest).
You can define backup e-mail servers by repeating the mail-server command and entering different priority numbers.
- no-Negates a command or set its defaults.
- phone-number + phone-number-Specifies the phone number of the contact person. The phone-number value must begin with a plus (+) prefix, and may contain only dashes (-) and numbers. You can enter up to 16 characters. If you include spaces, you must enclose your entry in quotes (" ").
- profile name-Enters call-home profile configuration mode. See the profile command.
- rate-limit threshold-Configures the call-home message rate-limit threshold; valid values are from 1 to 60 messages per minute.
- sender \{from | reply-to\} email-address-Specifies the call-home message sender's e-mail addresses. You can enter up to 128 alphanumeric characters in e-mail address format with no spaces.
- site-id alphanumeric-Specifies the site identification for Cisco AutoNotify. You can enter up to 256 alphanumeric characters. If you include spaces, you must enclose your entry in quotes (" ").
- street-address street-address-Specifies the street address for the RMA part shipments. You can enter up to 256 alphanumeric characters. If you include spaces, you must enclose your entry in quotes (" ").
- vrf—Specifies the VPN routing or forwarding instance name; limited to 32 characters.

Examples

This example show how to configure the contact information:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# call-home
Switch(cfg-call-home)# contact-email-addr username@example.com
Switch(cfg-call-home)# phone-number +1-800-555-4567
Switch(cfg-call-home)# street-address "1234 Picaboo Street, Any city, Any state, 12345"
Switch(cfg-call-home)# customer-id Customer1234
Switch(cfg-call-home)# site-id Site1ManhattanNY
Switch(cfg-call-home)# contract-id Company1234
Switch(cfg-call-home)# exit
Switch(config)#
```

This example shows how to configure the call-home message rate-limit threshold:

```
Switch(config)# call-home
Switch(cfg-call-home)# rate-limit 50
```

This example shows how to set the call-home message rate-limit threshold to the default setting:

```
Switch(config)# call-home
Switch(cfg-call-home)# default rate-limit
```

This example shows how to create a new destination profile with the same configuration settings as an existing profile:

```
Switch(config)# call-home
Switch(cfg-call-home)# copy profile profile1 profile1a
```

This example shows how to configure the general e-mail parameters, including a primary and secondary e-mail server:

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# call-home
Switch(cfg-call-home) \# mail-server smtp.example.com priority 1
Switch(cfg-call-home) \# mail-server 192.168.0.1 priority 2
Switch(cfg-call-home) \# sender from username@example.com
Switch(cfg-call-home) \# sender reply-to username@example.com
Switch(cfg-call-home) \# exit
Switch(config) \#

This example shows how to specify MgmtVrf as the vrf name where the call-home email message is forwarded:

```
Switch(cfg-call-home)# vrf MgmtVrf
```

Related Commands	Command Description alert-group (refer to Cisco IOS documentation) Enables an alert group. profile (refer to Cisco IOS documentation) Enters call-home profile configuration mode. show call-home	Displays call home configuration information.

call-home request

To submit information about your system to Cisco for report and analysis information from the Cisco Output Interpreter tool, use the call-home request command in privileged EXEC mode. An analysis report is sent by Cisco to a configured contact e-mail address.
call-home request \{output-analysis "show-command" | config-sanity | bugs-list | command-reference | product-advisory\} [profile name] [ccoid user-id]

Syntax Description

$\overline{\text { Command Default }}$

Command Modes

Command History

Usage Guidelines

output-analysis "show-command"	Sends the output of the specified CLI show command for analysis. The show command must be contained in quotes ("").
config-sanity bugs-list command-reference product-advisory	Specifies the type of report requested. Based on this keyword, the output of a predetermined set of commands such as the show running-config all, show version, and show module (standalone) or show module switch all (VS system) commands, is sent to Cisco for analysis.
profile name	(Optional) Specifies an existing profile to which the request is sent. If no profile is specified, the request is sent to the Cisco TAC profile.
ccoid user-id	(Optional) Specifies the identifier of a registered Smart Call Home user. If a user-id is specified, the resulting analysis report is sent to the e-mail address of the registered user. If no user-id is specified, the report is sent to the contact e-mail address of the device.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.2(52)$ SG	This command was introduced on the Catalyst 4500 series switch,
	Supervisor Engine 6-E, and Catalyst 4900M chassis.

The recipient profile does not need to be enabled for the call-home request. The profile should specify the e-mail address where the transport gateway is configured so that the request message can be forwarded to the Cisco TAC and the user can receive the reply from the Smart Call Home service.

Based on the keyword specifying the type of report requested, the following information is returned in response to the request:

- config-sanity-Information on best practices as related to the current running configuration.
- bugs-list-Known bugs in the running version and in the currently applied features.
- command-reference-Reference links to all commands in the running configuration.
- product-advisory-Product Security Incident Response Team (PSIRT) notices, End of Life (EOL) or End of Sales (EOS) notices, or field notices (FN) that may affect devices in your network.

Examples	This example shows a request for analysis of a user-specified show command: Switch\# call-home request output-analysis "show diagnostic result module all" profile $\mathbf{T G}$	
Related Commands	call-home (global configuration) Enters call home configuration mode. call-home send Sends a CLI command to be executed, with the command output to be sent by e-mail. call-home send alert-group Sends a specific alert group message. service call-home (refer to Cisco IOS documentation) Enables or disables Call Home.	Displays call-home configuration information.

call-home send

To execute a CLI command and e-mail the command output, use the call-home send command in privileged EXEC mode.
call-home send "cli-command" \{email email-addr [service-number $S R$] | service-number $S R$ \}

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

"cli-command"	Specifies a CLI command to be executed. The command output is sent by e-mail.
email email-addr	Specifies the e-mail address to which the CLI command output is sent. If no e-mail address is specified, the command output is sent to the Cisco TAC at attach @ cisco.com.
service-number $S R$	Specifies an active TAC case number to which the command output pertains. This number is required only if no e-mail address (or a TAC e-mail address) is specified, and will appear in the e-mail subject line.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.2(52)$ SG	This command was introduced on the Catalyst 4500 series switch,
	Supervisor Engine 6-E, and Catalyst 4900M chassis

This command causes the specified CLI command to be executed on the system. The specified CLI command must be enclosed in quotes (""), and can be any run or show command, including commands for all modules.

The command output is then sent by e-mail to the specified e-mail address. If no e-mail address is specified, the command output is sent to the Cisco TAC at attach@cisco.com. The e-mail is sent in long text format with the service number, if specified, in the subject line.

This example shows how to send a CLI command and have the command output e-mailed:
Switch\# call-home send "show diagnostic result module all" email support@example.com

call-home (global configuration)	Enters call home configuration mode.
call-home send alert-group	Sends a specific alert group message.
service call-home (refer to Cisco	Enables or disables Call Home.
IOS documentation)	
show call-home	Displays call-home configuration information.

call-home send alert-group

To send a specific alert group message, use the call-home send alert-group command in privileged EXEC mode.
call-home send alert-group \{configuration I diagnostic module number | inventory\} [profile profile-name]

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

Examples

Release	Modification
$12.2(52)$ SG	This command was introduced on the Catalyst 4500 series switch,

When you enter the module number, you can enter the number of the module.
If you do not specify the profile profile-name, the message is sent to all subscribed destination profiles. Only the configuration, diagnostic, and inventory alert groups can be manually sent. The destination profile need not be subscribed to the alert group.

This example shows how to send the configuration alert-group message to the destination profile:
Switch\# call-home send alert-group configuration
This example shows how to send the diagnostic alert-group message to the destination profile for a specific module number:

Switch\# call-home send alert-group diagnostic module 3
This example shows how to send the diagnostic alert-group message to all destination profiles for a specific module number:

Switch\# call-home send alert-group diagnostic module 3 profile Ciscotac1
This example shows how to send the inventory call-home message:

Related Commands	call-home (global configuration)	Enters call home configuration mode.
	call-home test	Sends a call-home test message that you define.
service call-home (refer to Cisco Enables or disables Call Home. IOS documentation) show call-home Displays call-home configuration information.		

call-home test

To manually send a Call Home test message, use the call-home test command in privileged EXEC mode.
call-home test ["test-message"] profile profile-name

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

"test-message"	(Optional) Test message text.
profile profile-name	Specifies the name of the destination profile.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.2(52)$ SG	This command was introduced on the Catalyst 4500 series switch, Supervisor Engine 6-E, and Catalyst 4900M chassis

This command sends a test message to the specified destination profile. If you enter test message text, you must enclose the text in quotes ("") if it contains spaces. If you do not enter a message, a default message is sent.

This example shows how to manually send a Call Home test message:
Switch\# call-home test "test of the day" profile Ciscotac1

call-home (global configuration)	Enters call home configuration mode.
call-home send alert-group	Sends a specific alert group message.
service call-home (refer to Cisco IOS documentation)	Enables or disables Call Home.
show call-home	Displays call-home configuration information.

channel-group

To assign and configure an EtherChannel interface to an EtherChannel group, use the channel-group command. To remove a channel group configuration from an interface, use the no form of this command.

```
channel-group number mode {active | on | auto [non-silent]}| {passive | desirable [non-silent]}
no channel-group
```

Syntax Description

number	Specifies the channel-group number; valid values are from 1 to 64.
mode	Specifies the EtherChannel mode of the interface.
active	Enables LACP unconditionally.
on	Forces the port to channel without PAgP.
auto	Places a port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not initiate PAgP packet negotiation.
non-silent	(Optional) Used with the auto or desirable mode when traffic is expected from the other device.
passive	Enables LACP only if an LACP device is detected. desirablePlaces a port into an active negotiating state, in which the port initiates negotiations with other ports by sending PAgP packets.

Defaults

No channel groups are assigned.

Command Modes

Interface configuration mode

Command History

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(13) \mathrm{EW}$	Support for LACP was added.

Usage Guidelines

You do not have to create a port-channel interface before assigning a physical interface to a channel group. If a port-channel interface has not been created, it is automatically created when the first physical interface for the channel group is created.
If a specific channel number is used for the PAgP-enabled interfaces of a channel group, that same channel number cannot be used for configuring a channel that has LACP-enabled interfaces or vice versa.

You can also create port channels by entering the interface port-channel command. This will create a Layer 3 port channel. To change the Layer 3 port channel into a Layer 2 port channel, use the switchport command before you assign physical interfaces to the channel group. A port channel cannot be changed from Layer 3 to Layer 2 or vice versa when it contains member ports.
You do not have to disable the IP address that is assigned to a physical interface that is part of a channel group, but we recommend that you do so.

Any configuration or attribute changes that you make to the port-channel interface are propagated to all interfaces within the same channel group as the port channel (for example, configuration changes are also propagated to the physical interfaces that are not part of the port channel, but are part of the channel group).

You can create in on mode a usable EtherChannel by connecting two port groups together.

Do not enable Layer 3 addresses on the physical EtherChannel interfaces. Do not assign bridge groups on the physical EtherChannel interfaces because it creates loops.

Examples

This example shows how to add Gigabit Ethernet interface $1 / 1$ to the EtherChannel group that is specified by port-channel 45:

Switch(config-if)\# channel-group 45 mode on
Creating a port-channel interface Port-channel45
Switch(config-if) \#

Related Commands

Command	Description
interface port-channel	Accesses or creates a port-channel interface.
show interfaces port-channel (refer to Cisco IOS documentation)	Displays the information about the Fast EtherChannel.

channel-protocol

To enable LACP or PAgP on an interface, use the channel-protocol command. To disable the protocols, use the no form of this command.

```
channel-protocol {lacp | pagp}
no channel-protocol {lacp | pagp}
```

Syntax Description

lacp	Enables LACP to manage channeling.
pagp	Enables PAgP to manage channeling.

$\overline{\text { Defaults PAgP }}$

Command Modes

Command History

Usage Guidelines

Examples

This example shows how to select LACP to manage channeling on the interface:
Switch(config-if)\# channel-protocol lacp
Switch(config-if) \#

Related Commands	Command	Description
channel-group	Assigns and configures an EtherChannel interface to an	
	EtherChannel group.	
show etherchannel	Displays EtherChannel information for a channel.	

class

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

To specify the name of the class whose traffic policy you want to create or change, use the class policy-map configuration command. To delete an existing class from a policy map, use the no form of this command.
class class-name
no class class-name

class-name	Name of the predefined traffic class for which you want to configure or modify a traffic policy. The class was previously created through the class-map
class-map-name global configuration command.	

No classes are defined; except for the class-default.

Policy-map configuration mode

Release	Modification
$12.1(8 a)$ EW	Support for this command was introduced on the Catalyst 4500 series switches.

Before using the class command, you must create a class map for matching packets to the class by using the class-map global configuration command. You also must use the policy-map global configuration command to identify the policy map and to enter policy-map configuration mode. After specifying a policy map, you can configure a traffic policy for new classes or modify a traffic policy for any existing classes in that policy map. The class name that you specify with the class command in the policy map ties the characteristics for that class (its policy) to the class map and its match criteria, as configured through the class-map global configuration command. You attach the policy map to a port by using the service-policy (interface configuration) configuration command.
After you enter the class command, the switch enters policy-map class configuration mode, and these configuration commands are available:

- bandwidth Specifies or modifies the minimum bandwidth provided to a class belonging to a policy map. For more information, see the bandwidth command. This command is available on the Supervisor Engine 6-E and the Catalyst 4900M chassis.
- dbl Enables dynamic buffer limiting for traffic hitting this class. For details on dbl parameters refer to the show qos dbl command.
- exit Exits policy-map class configuration mode and returns to policy-map configuration mode.
- no Returns a command to its default setting.
- police Configures a single-rate policer, an aggregate policer, or a two-rate traffic policer that uses the committed information rate (CIR) and the peak information rate (PIR) for a class of traffic. The policer specifies the bandwidth limitations and the action to take when the limits are exceeded. For
more information, see the police command. For more information about the two-rate policer, see the police (two rates) and the police (percent) command. The two-rate traffic policer is supported on a Supervisor Engine 6-E and the Catalyst 4900M chassis.
- priority Enables the strict priority queue for a class of traffic. For more information, see the priority command. This command is supported on the Supervisor Engine 6-E and the Catalyst 4900M chassis.
- service-policy (policy-map class) Creates a service policy as a quality of service (QoS) policy within a policy map (called a hierarchical service policy). For more information, see the service-policy (policy-map class) command. This command is effective only in a hierarchical policy map attached to an interface.
- set Classifies IP traffic by setting a class of service (CoS), a Differentiated Services Code Point (DSCP) or IP-precedence in the packet. For more information, see the set command.
- shape (class-based queueing) Sets the token bucket committed information rate (CIR) in a policy map. For more information, see the shape (class-based queueing) command. This command is supported on the Supervisor Engine 6-E and the Catalyst 4900M chassis.
- trust Defines a trust state for a traffic class. For more information, see the trust command. This command is not supported on the Supervisor Engine 6-E and the Catalyst 4900M chassis.
The switch supports up to 256 classes, including the default class, in a policy map. Packets that fail to meet any of the matching criteria are classified as members of the default traffic class. You configure the default traffic class by specifying class-default as the class name in the class policy-map class configuration command. You can manipulate the default traffic class (for example, set policies to police or to shape it) just like any other traffic class, but you cannot delete it.
To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

This example shows how to create a policy map called policy 1 . When attached to an ingress port, the policy matches all the inbound traffic defined in class1, sets the IP DSCP to 10, and polices the traffic at an average rate of 1 Mbps and bursts of 20 KB . Traffic exceeding the profile is marked down to a Traffic exceeding the profile is marked down to a DSCP value obtained from the policed-DSCP map and then sent.

```
Switch# configure terminal
Switch(config) # class-map class1
Switch(config-cmap) # exit
Switch(config) # policy-map policy1
Switch(config-pmap) # class class1
Switch(config-pmap-c) # set ip dscp }1
Switch(config-pmap-c)# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c) # exit
Switch(config-pmap) # exit
Switch(config)# interface fastethernet1/0/4
Switch(config-if)# service-policy input policy1
Switch#
```

You can verify your settings by entering the show policy-map privileged EXEC command.

Related Commands	Command	Description
	bandwidth	Specifies or modifies the minimum bandwidth provided to a class belonging to a policy map attached to a physical port.
	class-map	Creates a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode.
	dbl	Enables active queue management on a transmit queue used by a class of traffic.
	police	Configures the Traffic Policing feature.
	police (percent)	Configures traffic policing on the basis of a percentage of bandwidth available on an interface.
	police rate	Configures single- or dual-rate policer.
	policy-map	Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode.
	priority	Enables the strict priority queue (low-latency queueing [LLQ]) and to give priority to a class of traffic belonging to a policy map attached to a physical port.
	service-policy (interface configuration)	Attaches a policy map to an interface.
	service-policy (policy-map class)	Creates a service policy that is a quality of service (QoS) policy within a policy map.
	set	Marks IP traffic by setting a class of service (CoS), a Differentiated Services Code Point (DSCP), or IP-precedence in the packet.
	shape (class-based queueing)	Enables traffic shaping a class of traffic in a policy map attached to a physical port.
	show policy-map	Displays information about the policy map.
	trust	Defines a trust state for traffic classified through the class policy-map configuration command.

class-map

To create a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode, use the class-map global configuration command. To delete an existing class map and to return to global configuration mode, use the no form of this command.
class-map [match-all I match-any] class-map-name
no class-map [match-all | match-any] class-map-name

Syntax Description	(Optional) Perform a logical-AND of all matching under this class map. All criteria in the class map must be matched.	
match-any	(Optional) Perform a logical-OR of the matching statements under this class map. One or more criteria in the class map must be matched.	
	class-map-name	Name of the class map.

$\overline{\text { Defaults }}$ No class maps are defined.
If neither the match-all nor the match-any keyword is specified, the default is match-all.

Command Modes

Command History
Global configuration mode

Usage Guidelines

Use this command to specify the name of the class for which you want to create or modify class-map match criteria and to enter class-map configuration mode. Packets are checked against the match criteria configured for a class map to decide if the packet belongs to that class. If a packet matches the specified criteria, the packet is considered a member of the class and is forwarded according to the quality of service (QoS) specifications set in the traffic policy.
After you enter the class-map command, the switch enters class-map configuration mode, and these configuration commands are available:

- description Describes the class map (up to 200 characters). The show class-map privileged EXEC command displays the description and the name of the class map.
- exit Exits from QoS class-map configuration mode.
- match Configures classification criteria. For more information, see the match (class-map configuration) command.
- no Removes a match statement from a class map.
$\overline{\text { Examples }}$ This example shows how to configure the class map called class1 with one match criterion, which is an access list called 103:

```
Switch# configure terminal
Switch(config)# access-list 103 permit any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# exit
Switch#
```

This example shows how to delete the class1 class map:

```
Switch# configure terminal
Switch(config)# no class-map class1
Switch#
```

You can verify your settings by entering the show class-map privileged EXEC command.

Command	Description
class	Specifies the name of the class whose traffic policy you want to create or change.
match (class-map configuration)	Defines the match criteria for a class map.
policy-map	Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode.
show class-map	Displays class map information.

clear counters

To clear the interface counters, use the clear counters command.
clear counters [\{FastEthernet interface_number\} | \{GigabitEthernet interface_number\} | \{null interface_number\} | \{port-channel number\} | \{van vlan_id\}]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Support for extended VLAN addresses was added.

FastEthernet interface_number	(Optional) Specifies the Fast Ethernet interface; valid values are from 1 to 9.
GigabitEthernet interface_number	(Optional) Specifies the Gigabit Ethernet interface; valid values are from 1 to 9.
null interface_number	(Optional) Specifies the null interface; the valid value is 0.
port-channel number	(Optional) Specifies the channel interface; valid values are
	from 1 to 64.
vlan vlan_id	(Optional) Specifies the VLAN; valid values are from 1 to
	4096.

This command has no default settings.

This command clears all the current interface counters from all the interfaces unless you specify an interface.

This command does not clear the counters that are retrieved using SNMP, but only those seen when you enter the show interface counters command.

This example shows how to clear all the interface counters:

```
Switch# clear counters
Clear "show interface" counters on all interfaces [confirm] y
Switch#
```

This example shows how to clear the counters on a specific interface:

```
Switch# clear counters vlan 200
Clear "show interface" counters on this interface [confirm]y
Switch#
```

Related Commands	Command show interface counters (refer to Cisco IOS documentation)	Displays interface counter information.

clear energywise neighbors

Use the clear energywise neighbors privileged EXEC command to delete the EnergyWise neighbor tables.

clear energywise neighbors

Syntax Description

Defaults

Command Modes

Command History

Examples

Related Commands

This example shows how to delete the neighbor tables:
Switch\# clear energywise neighbors
Cleared all non static energywise neighbors
You can verify that the tables were deleted by entering the show energywise neighbors privileged EXEC command.

The clear energywise neighbors command clears all discovered neighbors.

Command	Description
show energywise	Displays the EnergyWise settings and status of the entity and
	PoE ports.

clear errdisable

To re-enable error-disabled VLANs on an interface, use the clear errdisable command.
clear errdisable interface $\{$ name $\}$ vlan [range]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

interface name	Specifies the interface of the VLAN(s) to recover.
vlan	Specifies all VLANs on the interface be recovered.
range	(Optional) Specifies the VLAN range to be recovered.

This command has no default settings.

Global configuration mode

Release	Modification
$12.2(52)$ SG	Added support for per-VLAN error-disable detection.

If a VLAN range is not specified, all VLANs on the specified interface are re-enabled. The clear errdisable command recovers the disabled VLANs on an interface.

Clearing the error-disabled state from a virtual port does not change the link state of the physical port, and it does not affect other VLAN ports on the physical port. It does post an event to STP, and spanning tree goes through its normal process of bringing that VLAN port to the appropriate blocking or forwarding state.

This example shows how to re-enable a range of disabled VLANs on an interaface:
Switch\# clear errdisable interface ethernet2 vlan 10-15
Switch\#

Command	Description
errdisable detect	Enables error-disable detection.
show errdisable detect	Displays the error-disable detection status.
show interfaces status	Displays the interface status or a list of interfaces in error-disabled state.
switchport port-security	Enables port security on an interface.

clear hw-module slot password

To clear the password on an intelligent line module, use the clear hw-module slot password command. clear hw-module slot slot_num password
slot_num \quad Slot on a line module.

Defaults

Command Modes Privileged EXEC mode

Command History

Release	Modification
$12.2(18)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.

$\overline{\text { Usage Guidelines }}$ You only need to change the password once unless the password is reset.

Examples

This example shows how to clear the password from slot 5 on a line module:
Switch\# clear hw-module slot 5 password
Switch\#

Related Commands

Command	Description
hw-module power	Turns the power off on a slot or line module.

clear interface gigabitethernet

To clear the hardware logic from a Gigabit Ethernet IEEE 802.3 z interface, use the clear interface gigabitethernet command.

Command History

Examples

Related Commands

This example shows how to clear the hardware logic from a Gigabit Ethernet IEEE 802.3z interface:
Switch\# clear interface gigabitethernet 1/1
Switch\#

Command	Description
show interfaces status	Displays the interface status.

clear interface vlan

To clear the hardware logic from a VLAN, use the clear interface vlan command. clear interface vlan number

Syntax Description	number \quad Number of the VLAN interface; valid values are from 1 to 4094.
Defaults	This command has no default settings.
Command Modes	Privileged EXEC mode
Command History	Release Modification
	12.1(8a)EW Support for this command was introduced on the Catalyst 4500 series switch.
	12.1(12c)EW Support for extended VLAN addresses added.
Examples	This example shows how to clear the hardware logic from a specific VLAN: Switch\# clear interface vlan 5 Switch\#
Related Commands	Command Description
	show interfaces status Displays the interface status.

clear ip access-template

To clear the statistical information in access lists, use the clear ip access-template command.
clear ip access-template access-list

Syntax Description

Defaults

Command Modes

Command History

access-list Number of the access list; valid values are from 100 to 199 for an IP extended access list, and from 2000 to 2699 for an expanded range IP extended access list.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 a) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

This example shows how to clear the statistical information for an access list:

```
Switch# clear ip access-template 201
Switch#

\section*{clear ip arp inspection log}

To clear the status of the log buffer, use the clear ip arp inspection log command.
clear ip arp inspection log

\section*{Syntax Description}

Defaults

Command Modes

Command History

\section*{Examples}

Related Commands

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to clear the contents of the log buffer:
Switch\# clear ip arp inspection log
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline show ip arp inspection log & Displays the status of the log buffer. \\
\hline
\end{tabular}

\section*{clear ip arp inspection statistics}

To clear the dynamic ARP inspection statistics, use the clear ip arp inspection statistics command.
clear ip arp inspection statistics [vlan vlan-range]

\section*{Defaults}

Command Modes

Command History

\section*{Examples}

Related Commands

This example shows how to clear the DAI statistics from VLAN 1 and how to verify the removal:

\begin{tabular}{ll}
\hline Command & Description \\
\hline arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline clear ip arp inspection log & Clears the status of the log buffer. \\
\hline show ip arp inspection log & Displays the status of the log buffer. \\
\hline
\end{tabular}

\section*{clear ip dhcp snooping binding}

To clear the DHCP snooping binding, use the clear ip dhcp snooping binding command.
clear ip dhep snooping binding [*] [ip-address] [vlan vlan_num] [interface interface_num]
Syntax Description
\begin{tabular}{ll}
\hline\(*\) & (Optional) Clears all DHCP snooping binding entries. \\
\hline ip-address & (Optional) IP address for the DHCP snooping binding entries. \\
\hline vlan vlan_num & (Optional) Specifies a VLAN. \\
\hline interface interface_num & (Optional) Specifies an interface. \\
\hline
\end{tabular}

Defaults

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(44)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) These commands are mainly used to clear DHCP snooping binding entries.
DHCP snooping is enabled on a VLAN only if both the global snooping and the VLAN snooping are enabled.

\section*{Examples}

This example shows how to clear all the DHCP snoop binding entries:
Switch\#clear ip dhcp snooping binding *
Switch\#
This example shows how to clear a specific DHCP snoop binding entry:
```

Switch\#clear ip dhcp snooping binding 1.2.3.4
Switch\#

```

This example shows how to clear all the DHCP snoop binding entries on the GigabitEthernet interface 1/1:

Switch\#clear ip dhcp snooping binding interface gigabitEthernet 1/1
Switch\#
This example shows how to clear all the DHCP snoop binding entries on VLAN 40:
Switch\#clear ip dhcp snooping binding vlan 40
Switch\#
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{lll} 
Command & Description \\
\cline { 2 - 3 } ip dhcp snooping & Globally enables DHCP snooping. \\
& ip dhcp snooping binding & \begin{tabular}{l} 
Sets up and generates a DHCP binding configuration to \\
restore bindings across reboots.
\end{tabular} \\
& \begin{tabular}{ll} 
ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{clear ip dhcp snooping database}

To clear the DHCP binding database, use the clear ip dhcp snooping database command. clear ip dhep snooping database

Syntax Description

Defaults

Command Modes

Command History

\section*{Examples}

Related Commands

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19)\) EW & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

This example shows how to clear the DHCP binding database:
Switch\# clear ip dhcp snooping database
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping binding & \begin{tabular}{l} 
Sets up and generates a DHCP binding configuration to \\
restore bindings across reboots. \\
\hline ip dhcp snooping information option
\end{tabular} \\
\hline Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline show ip dhcp snooping & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping configuration. \\
\hline
\end{tabular}

\section*{clear ip dhcp snooping database statistics}

To clear the DHCP binding database statistics, use the clear ip dhcp snooping database statistics command.
clear ip dhep snooping database statistics

Syntax Description

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Examples}

Related Commands

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to clear the DHCP binding database:
Switch\# clear ip dhcp snooping database statistics
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping binding & \begin{tabular}{l} 
Sets up and generates a DHCP binding configuration to \\
restore bindings across reboots.
\end{tabular} \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{clear ip igmp group}

To delete the IGMP group cache entries, use the clear ip igmp group command.
clear ip igmp group [\{fastethernet mod/port\}||\{GigabitEthernet mod/port\}|\{host_name | group_address \(\}\) \{Loopback interface_number\} | \{null interface_number\}| \{port-channel number\} | \{vlan vlan_id\}]
Syntax Description
\begin{tabular}{ll}
\hline fastethernet & (Optional) Specifies the Fast Ethernet interface. \\
\hline mod/port & (Optional) Number of the module and port. \\
\hline GigabitEthernet & (Optional) Specifies the Gigabit Ethernet interface. \\
\hline host_name & \begin{tabular}{l} 
(Optional) Hostname, as defined in the DNS hosts table or with the \\
ip host command.
\end{tabular} \\
\hline group_address & \begin{tabular}{l} 
(Optional) Address of the multicast group in four-part, dotted \\
notation.
\end{tabular} \\
\hline Loopback interface_number & \begin{tabular}{l} 
(Optional) Specifies the loopback interface; valid values are from 0 \\
to 2,147,483,647.
\end{tabular} \\
\hline null interface_number & (Optional) Specifies the null interface; the valid value is 0. \\
\hline port-channel number & \begin{tabular}{l} 
(Optional) Specifies the channel interface; valid values are from 1 to \\
64.
\end{tabular} \\
\hline vlan vlan_id & (Optional) Specifies the VLAN; valid values are from 1 to 4094. \\
\hline
\end{tabular}

\section*{Defaults}

This command has no default settings.

\section*{Command Modes Privileged EXEC mode}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) The IGMP cache contains a list of the multicast groups of which hosts on the directly connected LAN are members.

To delete all the entries from the IGMP cache, enter the clear ip igmp group command with no arguments.

\section*{Examples}

This example shows how to clear the entries for a specific group from the IGMP cache:
```

Switch\# clear ip igmp group 224.0.255.1

```
Switch\#

This example shows how to clear the IGMP group cache entries from a specific interface:
Switch\# clear ip igmp group gigabitethernet 2/2
Switch\#
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command
\end{tabular} & Description \\
\begin{tabular}{l} 
ip host (refer to Cisco IOS \\
documentation)
\end{tabular} & \begin{tabular}{l} 
Defines a static host name-to-address mapping in the host \\
cache.
\end{tabular} \\
\begin{tabular}{ll} 
show ip igmp groups (refer to Cisco IOS \\
documentation)
\end{tabular} & \begin{tabular}{l} 
Displays the multicast groups with receivers that are \\
directly connected to the router and that were learned \\
through Internet Group Management Protocol (IGMP), use \\
the show ip igmp groups command in EXEC mode.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Displays the information about the IGMP-interface status \\
and configuration.
\end{tabular} \\
\hline
\end{tabular}

\section*{clear ip igmp snooping membership}

To clear the explicit host-tracking database, use the clear ip igmp snooping membership command.
clear ip igmp snooping membership [vlan vlan_id]

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands
vlan vlan_id (Optional) Specifies a VLAN; valid values are from 1 to 1001 and from 1006 to 4094.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(20) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

By default, the explicit host tracking database maintains a maximum of 1-KB entries. After you reach this limit, no additional entries can be created in the database. To create more entries, you will need to delete the database with the clear ip igmp snooping statistics vlan command.

This example shows how to display the IGMP snooping statistics for VLAN 25:
Switch\# clear ip igmp snooping membership vlan 25 Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping vlan explicit-tracking & Enables per-VLAN explicit host tracking. \\
\hline show ip igmp snooping membership & Displays host membership information. \\
\hline
\end{tabular}

\section*{clear ip mfib counters}

To clear the global MFIB counters and the counters for all active MFIB routes, use the clear ip mfib counters command.
clear ip mfib counters

\section*{Syntax Description This command has no arguments or keywords.}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Examples}

This example shows how to clear all the active MFIB routes and global counters:
```

Switch\# clear ip mfib counters

```

Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ip mfib & \begin{tabular}{l} 
Displays all active Multicast Forwarding Information Base \\
(MFIB) routes.
\end{tabular} \\
\hline
\end{tabular}

\section*{clear ip mfib fastdrop}

To clear all the MFIB fast-drop entries, use the clear ip mfib fastdrop command. clear ip mfib fastdrop

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

This example shows how to clear all the fast-drop entries:
Switch\# clear ip mfib fastdrop Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip mfib fastdrop & Enables MFIB fast drop. \\
\hline show ip mfib fastdrop & \begin{tabular}{l} 
Displays all currently active fast-drop entries and shows \\
whether fast drop is enabled.
\end{tabular} \\
\hline
\end{tabular}

\section*{clear lacp counters}

To clear the statistics for all the interfaces belonging to a specific channel group, use the clear lacp counters command.
clear lacp [channel-group] counters
Syntax Description

Defaults
\(\overline{\text { Command Modes }}\) Privileged EXEC mode

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13)\) EW & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

This command is not supported on systems that are configured with a Supervisor Engine I.
If you do not specify a channel group, all channel groups are cleared.
If you enter this command for a channel group that contains members in PAgP mode, the command is ignored.

This example shows how to clear the statistics for a specific group:
Switch\# clear lacp 1 counters
Switch\#
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show lacp & Displays LACP information. \\
\hline
\end{tabular}

\section*{clear mac-address-table}

To clear the global counter entries from the Layer 2 MAC address table, use the clear mac-address-table command.
clear mac-address-table \{dynamic [\{address mac_addr\}|\{interface interface\}][vian vlan_id]| notification \(\}\)
Syntax Description
\begin{tabular}{ll}
\hline dynamic & Specifies dynamic entry types. \\
\hline address mac_addr & (Optional) Specifies the MAC address. \\
\hline interface interface & \begin{tabular}{l} 
(Optional) Specifies the interface and clears the entries associated with it; valid \\
values are FastEthernet and GigabitEthernet.
\end{tabular} \\
\hline vlan vlan_id & (Optional) Specifies the VLANs; valid values are from 1 to 4094. \\
\hline notification & Specifies MAC change notification global counters. \\
\hline
\end{tabular}

Defaults

Command Modes
This command has no default settings.

\section*{Command History}

Usage Guidelines
Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline \(12.2(31) \mathrm{SG}\) & Support for MAC address notification global counters added. \\
\hline
\end{tabular}

\section*{Examples}

Enter the clear mac-address-table dynamic command with no arguments to remove all dynamic entries from the table.

The clear mac-address-table notification command only clears the global counters which are displayed with show mac-address-table notification command. It does not clear the global counters and the history table of the CISCO-MAC-NATIFICATION-MIB.

This example shows how to clear all the dynamic Layer 2 entries for a specific interface (gil/1):
```

Switch\# clear mac-address-table dynamic interface gi1/1

```
Switch\#

This example shows how to clear the MAC address notification counters:
Switch\# clear mac-address-table notification
Switch\#
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
\cline { 2 - 3 } clear mac-address-table dynamic
\end{tabular} & \begin{tabular}{l} 
Description \\
Clears the dynamic address entries from the Layer 2 MAC \\
address table.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{ll} 
mac-address-table aging-time & Configures the aging time for entries in the Layer 2 table. \\
\hline mac-address-table notification & Enables MAC address notification on a switch. \\
\hline main-cpu & \begin{tabular}{l} 
Enters the main CPU submode and manually synchronizes \\
the configurations on the two supervisor engines.
\end{tabular} \\
\hline show mac-address-table address & Displays the information about the MAC-address table. \\
\hline snmp-server enable traps & Enables SNMP notifications. \\
\hline
\end{tabular}
\end{tabular}

\section*{clear mac-address-table dynamic}

To clear the dynamic address entries from the Layer 2 MAC address table, use the clear mac-address-table dynamic command.
clear mac-address-table dynamic [\{address mac_addr\}|\{interface interface\}] [vlan vlan_id]

\section*{Syntax Description}

Defaults

Command Modes Command History

Usage Guidelines

\section*{Examples}
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline address mac_addr & (Optional) Specifies the MAC address. \\
\hline interface interface & \begin{tabular}{l} 
(Optional) Specifies the interface and clears the entries associated with it; valid \\
values are FastEthernet and GigabitEthernet.
\end{tabular} \\
\hline vlan vlan_id & (Optional) Specifies the VLANs; valid values are from 1 to 4094.
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline
\end{tabular}

Enter the clear mac-address-table dynamic command with no arguments to remove all dynamic entries from the table.

This example shows how to clear all the dynamic Layer 2 entries for a specific interface (gi1/1):
```

Switch\# clear mac-address-table dynamic interface gi1/1

```

Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline mac-address-table aging-time & Configures the aging time for entries in the Layer 2 table. \\
\hline main-cpu & \begin{tabular}{l} 
Enters the main CPU submode and manually synchronizes \\
the configurations on the two supervisor engines.
\end{tabular} \\
\hline show mac-address-table address & Displays the information about the MAC-address table. \\
\hline
\end{tabular}

\section*{clear pagp}

To clear the port-channel information, use the clear pagp command.
clear pagp \{group-number \(\mid\) counters \(\}\)

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}
\begin{tabular}{ll}
\hline group-number & Channel-group number; valid values are from 1 to 64. \\
\hline counters & Clears traffic filters. \\
\hline
\end{tabular}

This command has no default settings.

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to clear the port-channel information for a specific group:
```

Switch\# clear pagp 32

```
Switch\#

This example shows how to clear all the port-channel traffic filters:
Switch\# clear pagp counters
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show pagp & Displays information about the port channel. \\
\hline
\end{tabular}

\section*{clear port-security}

To delete all configured secure addresses or a specific dynamic or sticky secure address on an interface from the MAC address table, use the clear port-security command.
clear port-security dynamic [address mac-addr [vlan vlan-id]] I [interface interface-id] [vlan access I voice]
Syntax Description

\section*{Defaults}
\begin{tabular}{ll}
\hline dynamic & Deletes all the dynamic secure MAC addresses. \\
\hline address mac-addr & (Optional) Deletes the specified secure MAC address. \\
\hline vlan vlan-id & \begin{tabular}{l} 
(Optional) Deletes the specified secure MAC address from the specified \\
VLAN.
\end{tabular} \\
\hline interface interface-id & \begin{tabular}{l} 
(Optional) Deletes the secure MAC addresses on the specified physical port \\
or port channel.
\end{tabular} \\
\hline vlan access & (Optional) Deletes the secure MAC addresses from access VLANs. \\
\hline vlan voice & (Optional) Deletes the secure MAC addresses from voice VLANs. \\
\hline
\end{tabular}

This command has no default settings.

Command Modes

Usage Guidelines

Note

Command History

\section*{Examples}

You can clear sticky and static secure MAC addresses one at a time with the no switchport port-security mac-address command.

If you enter the clear port-security dynamic interface interface-id command, the switch removes all the dynamic secure MAC addresses on an interface from the MAC address table.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & This command was first introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(31) \mathrm{SG}\) & Add support for sticky port security. \\
\hline
\end{tabular}

Privileged EXEC mode

If you enter the clear port-security all command, the switch removes all the dynamic secure MAC addresses from the MAC address table.

This example shows how to remove all the dynamic secure addresses from the MAC address table:
```

Switch\# clear port-security dynamic

```

This example shows how to remove a dynamic secure address from the MAC address table:
Switch\# clear port-security dynamic address 0008.0070.0007

This example shows how to remove all the dynamic secure addresses learned on a specific interface:
```

Switch\# clear port-security dynamic interface gigabitethernet0/1

```

You can verify that the information was deleted by entering the show port-security command.
\begin{tabular}{lll}
\cline { 3 - 3 } Related Commands & Command & Description \\
\cline { 2 - 3 } & show port-security & Displays information about the port-security setting. \\
\cline { 2 - 4 } switchport port-security & Enables port security on an interface. \\
\hline
\end{tabular}

\section*{clear qos}

To clear the global and per-interface aggregate QoS counters, use the clear qos command.
clear qos [aggregate-policer [name] | interface \{ \{fastethernet | GigabitEthernet \} \{mod/interface \}\}| vlan \{vlan_num \} | port-channel \{number\}]
Syntax Description
\begin{tabular}{ll}
\hline aggregate-policer name & (Optional) Specifies an aggregate policer. \\
\hline interface & (Optional) Specifies an interface. \\
\hline fastethernet & (Optional) Specifies the Fast Ethernet 802.3 interface. \\
\hline GigabitEthernet & (Optional) Specifies the Gigabit Ethernet 802.3 z interface. \\
\hline mod/interface & (Optional) Number of the module and interface. \\
\hline vlan vlan_num & (Optional) Specifies a VLAN. \\
\hline port-channel number & (Optional) Specifies the channel interface; valid values are from 1 to 64. \\
\hline
\end{tabular}

Defaults

\section*{Command Modes}

Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Usage Guidelines

Note

This command is not supported on Supervisor Engine 6-E and the Catalyst 4900M chassis.

When you enter the clear qos command, the way that the counters work is affected and the traffic that is normally restricted could be forwarded for a short period of time.

The clear qos command resets the interface QoS policy counters. If no interface is specified, the clear qos command resets the QoS policy counters for all interfaces.

This example shows how to clear the global and per-interface aggregate QoS counters for all the protocols:
```

Switch\# clear qos

```

Switch\#
This example shows how to clear the specific protocol aggregate QoS counters for all the interfaces:
```

Switch\# clear qos aggregate-policer

```
Switch\#
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 2 - 3 } show qos & Displays QoS information. \\
\hline
\end{tabular}

\section*{clear vlan counters}

To clear the software-cached counter values to start from zero again for a specified VLAN or all existing VLANs, use the clear vlan counters command.

\section*{clear vlan [vlan-id] counters}

Syntax Description

Defaults

Command Modes

Command History

\section*{Examples}

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

If you do not specify a vlan-id value; the software-cached counter values for all the existing VLANs are cleared.

This example shows how to clear the software-cached counter values for a specific VLAN:
Switch\# clear vlan 10 counters
Clear "show vlan" counters on this vlan [confirm] y Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vlan counters & Displays VLAN counter information. \\
\hline
\end{tabular}

\section*{clear vmps statistics}

To clear the VMPS statistics, use the clear vmps statistics command.
clear vmps statistics

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

Related Commands

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

This example shows how to clear the VMPS statistics:
Switch\# clear vmps statistics
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vmps & Displays VMPS information. \\
\hline vmps reconfirm (privileged EXEC) & Changes the reconfirmation interval for the VLAN Query \\
& Protocol (VQP) client. \\
\hline
\end{tabular}

\section*{control-plane}

To enter control-plane configuration mode, which allows users to associate or modify attributes or parameters (such as a service policy) that are associated with the control plane of the device, use the control-plane command.

\section*{control-plane}

\section*{\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.}

\section*{Defaults}

Default service police named "system-cpp-policy" is attached.

\section*{Command Modes \\ Global configuration mode}

\section*{Command History}

\section*{Usage Guidelines}

This command is not supported on Supervisor Engine 6-E and the Catalyst 4900M chassis.
After you enter the control-plane command, you can define control plane services for your route processor. For example, you can associate a service policy with the control plane to police all traffic that is destined to the control plane.

\section*{Examples}

These examples show how to configure trusted hosts with source addresses 10.1.1.1 and 10.1.1.2 to forward Telnet packets to the control plane without constraint, while allowing all remaining Telnet packets to be policed at the specified rate:
```

Switch(config)\# access-list 140 deny tcp host 10.1.1.1 any eq telnet
! Allow 10.1.1.2 trusted host traffic.
Switch(config)\# access-list 140 deny tcp host 10.1.1.2 any eq telnet
! Rate limit all other Telnet traffic.
Switch(config)\# access-list 140 permit tcp any any eq telnet
! Define class-map "telnet-class."
Switch(config)\# class-map telnet-class
Switch(config-cmap)\# match access-group 140
Switch(config-cmap)\# exit
Switch(config)\# policy-map control-plane
Switch(config-pmap) \# class telnet-class
Switch(config-pmap-c)\# police 32000 1000 conform transmit exceed drop
Switch(config-pmap-c)\# exit
Switch(config-pmap) \# exit
! Define aggregate control plane service for the active Route Processor.
Switch(config)\# macro global apply system-cpp
Switch(config)\# control-plane
Switch(config-cp) \# service-police input system-cpp-policy
Switch(config-cp) \# exit

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
class
\end{tabular} & \begin{tabular}{l} 
Description \\
Specifies the name of the class whose traffic policy you want to \\
create or change.
\end{tabular} \\
& \begin{tabular}{l} 
class-map \\
match access-group (refer to \\
whose name you specify and to enter class-map configuration \\
mode.
\end{tabular} \\
\begin{tabular}{ll}
\begin{tabular}{l} 
the Cisco IOS Release 12.2 \\
Command Reference)
\end{tabular} & \begin{tabular}{l} 
Configures the match criteria for a class map on the basis of the \\
specified access control list (ACL).
\end{tabular} \\
\hline policy-map & \begin{tabular}{l} 
Creates a policy map that can be attached to multiple ports to \\
specify a service policy and to enter policy-map configuration \\
mode.
\end{tabular} \\
& \begin{tabular}{l} 
service-policy (interface \\
configuration)
\end{tabular} \\
\begin{tabular}{l} 
Attaches a policy map to an interface. \\
show policy-map \\
control-plane
\end{tabular} & \begin{tabular}{l} 
Displays the configuration either of a class or of all classes for the \\
policy map of a control plane.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{counter}

To assign a counter set to a switch port, use the counter command. To remove a counter assignment, use the no form of this command.
counter
no counter
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults This command has no default setting.}

Command Modes Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40) \mathrm{SG}\) & Support for this command was introduced. \\
\hline
\end{tabular}

Usage Guidelines This command is supported on Supervisor Engine 6-E and the Catalyst 4900M chassis.
The total number of switch ports that can have transmit and receive counters is 4096.
When a Layer 3 port with counter assigned is changed to a Layer 2 port or removed, the hardware counters are freed. This action is similar to entering the no counter command.

\section*{Examples}

This example shows how to assign a counter set to a switch port:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface vlan 20
Switch(config-if)\# counter
Switch(config-if)\# end
Switch\#

```

To enable active queue management on a transmit queue used by a class of traffic, use the dbl command. Use the no form of this command to return to the default setting.

\section*{dbl}
no dbl
\(\overline{\text { Syntax Description }}\) This command has no keywords or arguments.

\section*{Defaults}

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & This command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(40)\) SG & Support added on Supervisor Engine 6E. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}

The semantics of the DBL configuration is similar to the (W)RED algorithm. The dbl command can operate alone on class-default; otherwise, it requires you to configure the bandwidth or shape commands on the class.

This example shows how to enable dbl action in a class:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# policy-map policy1
Switch(config-pmap)\# class class1
Switch(config-pmap-c)\# dbl
Switch(config-pmap-c) \# exit
Switch(config-pmap) \# exit
Switch(config)\# interface gigabitethernet 1/1
Switch(config-if)\# service-policy output policy1
Switch(config-if)\# end

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 4 } bandwidth & \begin{tabular}{l} 
Creates a signaling class structure that can be referred to by its \\
name.
\end{tabular} \\
& \begin{tabular}{l} 
Creates a class map to be used for matching packets to the class \\
whose name you specify and to enter class-map configuration \\
mode.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline policy-map & \begin{tabular}{l} 
Creates a policy map that can be attached to multiple ports to \\
specify a service policy and to enter policy-map configuration \\
mode.
\end{tabular} \\
\hline \begin{tabular}{l} 
service-policy (policy-map \\
class)
\end{tabular} & \begin{tabular}{l} 
Creates a service policy that is a quality of service (QoS) policy \\
within a policy map.
\end{tabular} \\
\hline show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{debug adjacency}

To display information about the adjacency debugging, use the debug adjacency command. To disable debugging output, use the no form of this command.
```

debug adjacency [ipc]
no debug adjacency

```

Syntax Description

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}
Release Modification
12.1(8a)EW Support for this command was introduced on the Catalyst 4500 series switch.

This example shows how to display the information in the adjacency database:
```

Switch\# debug adjacency
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
4d02h: ADJ: add 172.20.52.36 (GigabitEthernet1/1) via ARP will expire: 04:00:00
<... output truncated...>
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
undebug adjacency (same as \\
no debug adjacency)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug backup}

To debug the backup events, use the debug backup command. To disable the debugging output, use the no form of this command.

\section*{debug backup}
no debug backup
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\(\overline{\text { Defaults }}\) This command has no default settings.

Command Modes Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to debug the backup events:
Switch\# debug backup
Backup events debugging is on
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
undebug backup (same as no \\
debug backup)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug condition interface}

To limit the debugging output of interface-related activities, use the debug condition interface command. To disable the debugging output, use the no form of this command.
debug condition interface \{fastethernet \(\mathrm{mod} / \mathrm{port}\) | GigabitEthernet \(\mathrm{mod} / \mathrm{port}\) | null interface_num | port-channel interface-num | vlan vlan_id\}
no debug condition interface \{fastethernet \(\mathrm{mod} / \mathrm{port} \mid\) GigabitEthernet \(\mathrm{mod} / \mathrm{port} \mid\) null interface_num | port-channel interface-num | vlan vlan_id\}

Syntax Description

\section*{Defaults}

Command Modes

Command History

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline fastethernet & Limits the debugging to Fast Ethernet interfaces. \\
\hline mod/port & Number of the module and port. \\
\hline GigabitEthernet & Limits the debugging to Gigabit Ethernet interfaces. \\
\hline null interface-num & Limits the debugging to null interfaces; the valid value is 0. \\
\hline port-channel interface-num & Limits the debugging to port-channel interfaces; valid values are from \\
& 1 to 64. \\
\hline vlan vlan_id & Specifies the VLAN interface number; valid values are from 1 to 4094. \\
\hline
\end{tabular}

This command has no default settings.

\section*{Privileged EXEC mode}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline
\end{tabular}

This example shows how to limit the debugging output to VLAN interface 1:
```

Switch\# debug condition interface vlan 1
Condition 2 set
Switch\#

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline debug interface & Abbreviates the entry of the debug condition interface command. \\
\hline \begin{tabular}{l} 
undebug condition interface \\
(same as no debug condition
\end{tabular} & Disables interface related activities. \\
interface) & \\
\hline
\end{tabular}

\section*{debug condition standby}

To limit the debugging output for the standby state changes, use the debug condition standby command.
To disable the debugging output, use the no form of this command.
debug condition standby \{fastethernet \(\mathrm{mod} / \mathrm{port} \mid\) GigabitEthernet \(\mathrm{mod} / \mathrm{port}\) | port-channel interface-num | vlan vlan_id group-number \}
no debug condition standby \{fastethernet \(\mathrm{mod} / \mathrm{port}\) | GigabitEthernet \(\mathrm{mod} / \mathrm{port}\) | port-channel interface-num | vlan vlan_id group-number \(\}\)

Syntax Description
\begin{tabular}{ll}
\hline fastethernet & Limits the debugging to Fast Ethernet interfaces. \\
\hline mod/port & Number of the module and port. \\
\hline GigabitEthernet & Limits the debugging to Gigabit Ethernet interfaces. \\
\hline port-channel interface_num & \begin{tabular}{l} 
Limits the debugging output to port-channel interfaces; valid values \\
are from 1 to 64.
\end{tabular} \\
\hline vlan vlan_id & \begin{tabular}{l} 
Limits the debugging of a condition on a VLAN interface; valid values \\
are from 1 to 4094.
\end{tabular} \\
\hline group-number & VLAN group number; valid values are from 0 to 255. \\
\hline
\end{tabular}
\(\overline{\text { Defaults }}\) This command has no default settings.

\section*{Command Modes}

Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline
\end{tabular}

Usage Guidelines

Examples
If you attempt to remove the only condition set, you will be prompted with a message asking if you want to abort the removal operation. You can enter \(\mathbf{n}\) to abort the removal or \(\mathbf{y}\) to proceed with the removal. If you remove the only condition set, an excessive number of debugging messages might occur.

This example shows how to limit the debugging output to group 0 in VLAN 1 :
Switch\# debug condition standby vlan 10
Condition 3 set
Switch\#

This example shows the display if you try to turn off the last standby debug condition:
```

Switch\# no debug condition standby vlan 1 0
This condition is the last standby condition set.
Removing all conditions may cause a flood of debugging
messages to result, unless specific debugging flags
are first removed.
Proceed with removal? [yes/no]: n
% Operation aborted
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{ll} 
Command & Description \\
& \begin{tabular}{l} 
undebug condition standby \\
(same as no debug condition \\
standby)
\end{tabular} \\
\hline
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug condition vlan}

To limit the VLAN debugging output for a specific VLAN, use the debug condition vlan command. To disable the debugging output, use the no form of this command.
```

debug condition vlan {vlan_id}
no debug condition vlan {vlan_id}

```

Syntax Description

\section*{Defaults}

Command Modes

Command History

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline
\end{tabular}

Usage Guidelines

\section*{Examples}

If you attempt to remove the only VLAN condition set, you will be prompted with a message asking if you want to abort the removal operation. You can enter \(\mathbf{n}\) to abort the removal or \(\mathbf{y}\) to proceed with the removal. If you remove the only condition set, it could result in the display of an excessive number of messages.

This example shows how to limit the debugging output to VLAN 1:
```

Switch\# debug condition vlan 1
Condition 4 set
Switch\#

```

This example shows the message that is displayed when you attempt to disable the last VLAN debug condition:
```

Switch\# no debug condition vlan 1
This condition is the last vlan condition set.
Removing all conditions may cause a flood of debugging
messages to result, unless specific debugging flags
are first removed.
Proceed with removal? [yes/no]: n
% Operation aborted
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Description \\
\begin{tabular}{ll} 
Lommand & asdebug condition vlan (same \\
as no debug condition vlan)
\end{tabular} & Disables debugging output. \\
& & \\
\hline
\end{tabular}

\section*{debug dot1x}

To enable the debugging for the 802.1 X feature, use the debug dot1x command. To disable the debugging output, use the no form of this command.
debug dot1x \(\{\) all | errors \(\mid\) events \(\mid\) packets \(\mid\) registry \(\mid\) state-machine \}
no debug dot1x \{all| errors | events | packets | registry | state-machine\}
\begin{tabular}{lll}
\hline Syntax Description & & Enables the debugging of all conditions. \\
\cline { 2 - 3 } errors & Enables the debugging of print statements guarded by the dot1x error flag. \\
\hline events & Enables the debugging of print statements guarded by the dot1x events flag. \\
\hline packets & All incoming dot1x packets are printed with packet and interface information. \\
\hline registry & Enables the debugging of print statements guarded by the dot1x registry flag. \\
\hline state-machine & Enables the debugging of print statements guarded by the dot1x registry flag. \\
\hline
\end{tabular}
\(\overline{\text { Defaults }}\) Debugging is disabled.
\(\overline{\text { Command Modes }}\) Privileged EXEC mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable the 802.1X debugging for all conditions:
Switch\# debug dot1x all
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show dot1x & Displays dot1x information. \\
\hline \begin{tabular}{l} 
undebug dot1x (same as no \\
debug dot1x)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug etherchnl}

To debug EtherChannel, use the debug etherchnl command. To disable the debugging output, use the no form of this command.
```

debug etherchnl [all | detail | error | event | idb | linecard]
no debug etherchnl

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Syntax Description} & all & (Optional) Displays all EtherChannel debug messages. \\
\hline & detail & (Optional) Displays the detailed EtherChannel debug messages. \\
\hline & error & (Optional) Displays the EtherChannel error messages. \\
\hline & event & (Optional) Debugs the major EtherChannel event messages. \\
\hline & idb & (Optional) Debugs the PAgP IDB messages. \\
\hline & linecard & (Optional) Debugs the SCP messages to the module. \\
\hline
\end{tabular}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to display all the EtherChannel debug messages:
```

Switch\# debug etherchnl
PAgP Shim/FEC debugging is on
22:46:30:FEC:returning agport Po15 for port (Fa2/1)
22:46:31:FEC:returning agport Po15 for port (Fa4/14)
22:46:33:FEC:comparing GC values of Fa2/25 Fa2/15 flag = 1 1
22:46:33:FEC:port_attrib:Fa2/25 Fa2/15 same
22:46:33:FEC:EC - attrib incompatable for Fa2/25; duplex of Fa2/25 is half, Fa2/15 is full
22:46:33:FEC:pagp_switch_choose_unique:Fa2/25, port Fa2/15 in agport Po3 is incompatable
Switch\#

```

This example shows how to display the EtherChannel IDB debug messages:
```

Switch\# debug etherchnl idb
Agport idb related debugging is on
Switch\#

```

This example shows how to disable the debugging:
Switch\# no debug etherchnl
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
undebug etherchnl (same as no \\
debug etherchnl)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug interface}

To abbreviate the entry of the debug condition interface command, use the debug interface command. To disable debugging output, use the no form of this command.
```

debug interface {FastEthernet mod/port | GigabitEthernet mod/port | null |
port-channel interface-num | vlan vlan_id}
no debug interface {FastEthernet mod/port | GigabitEthernet mod/port | null |
port-channel interface-num | vlan vlan_id}

```
Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline FastEthernet & Limits the debugging to Fast Ethernet interfaces. \\
\hline mod/port & Number of the module and port. \\
\hline GigabitEthernet & Limits the debugging to Gigabit Ethernet interfaces. \\
\hline null & Limits the debugging to null interfaces; the only valid value is 0. \\
\hline port-channel interface-num & Limits the debugging to port-channel interfaces; valid values are from \\
& 1 to 64. \\
\hline vlan vlan_id & Specifies the VLAN interface number; valid values are from 1 to \\
& 4094.
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline
\end{tabular}

This example shows how to limit the debugging to interface VLAN 1:
Switch\# debug interface vlan 1
Condition 1 set
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline debug condition interface & Limits the debugging output of interface-related activities. \\
\hline \begin{tabular}{l} 
undebug etherchnl (same as no \\
debug etherchnl)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug ipc}

To debug the IPC activity, use the debug ipc command. To disable the debugging output, use the no form of this command.
debug ipc \(\{\) all | errors | events | headers | packets | ports | seats \}
no debug ipc \{all| errors | events | headers | packets | ports | seats \}
\begin{tabular}{lll}
\hline Syntax Description & all & Enables all IPC debugging. \\
\cline { 3 - 3 } & errors & Enables the IPC error debugging. \\
\cline { 2 - 3 } events & Enables the IPC event debugging. \\
\hline headers & Enables the IPC header debugging. \\
\hline packets & Enables the IPC packet debugging. \\
\hline ports & Enables the debugging of the creation and deletion of ports. \\
\hline seats & Enables the debugging of the creation and deletion of nodes. \\
\hline
\end{tabular}

\section*{Defaults}

This command has no default settings.

\section*{Command Modes Privileged EXEC mode}
Command History

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to enable the debugging of the IPC events:
Switch\# debug ipc events
Special Events debugging is on
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline undebug ipc (same as no debug & Disables debugging output. \\
ipc) &
\end{tabular}

\section*{debug ip dhcp snooping event}

To debug the DHCP snooping events, use the debug ip dhep snooping event command. To disable debugging output, use the no form of this command.
debug ip dhcp snooping event no debug ip dhep snooping event
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Examples & \begin{tabular}{l} 
This example shows how to enable the de \\
Switch\# debug ip ahcp snooping event
\end{tabular} \\
Switch\#
\end{tabular}

This example shows how to disable the debugging for the DHCP snooping events:
Switch\# no debug ip dhcp snooping event
Switch\#
\begin{tabular}{lll}
\hline Related Commands & Description \\
\hline \begin{tabular}{l} 
Command \\
debug ip dhcp snooping \\
packet
\end{tabular} & Debugs the DHCP snooping messages. \\
\hline
\end{tabular}

\section*{debug ip dhcp snooping packet}

To debug the DHCP snooping messages, use the debug ip dhep snooping packet command. To disable the debugging output, use the no form of this command.
debug ip dhcp snooping packet
no debug ip dhcp snooping packet
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes Privileged EXEC mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

\section*{Examples}

This example shows how to enable the debugging for the DHCP snooping packets:
Switch\# debug ip dhcp snooping packet
Switch\#
This example shows how to disable the debugging for the DHCP snooping packets:
Switch\# no debug ip dhap snooping packet
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline debug ip dhcp snooping event & Debugs the DHCP snooping events. \\
\hline
\end{tabular}

\section*{debug ip verify source packet}

To debug the IP source guard messages, use the debug ip verify source packet command. To disable the debugging output, use the no form of this command.
debug ip verify source packet
no debug ip verify source packet
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable debugging for the IP source guard:
Switch\# debug ip verify source packet
Switch\#
This example shows how to disable debugging for the IP source guard:
Switch\# no debug ip verify source packet
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping limit rate & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{debug lacp}

To debug the LACP activity, use the debug lacp command. To disable the debugging output, use the no form of this command.
debug lacp [all| event | fsm | misc | packet]
no debug lacp
\begin{tabular}{llll}
\cline { 1 - 3 } Syntax Description & all & (Optional) Enables all LACP debugging. \\
\cline { 3 - 4 } & event & (Optional) Enables the debugging of the LACP events. \\
& fsm & (Optional) Enables the debugging of the LACP finite state machine. \\
& misc & (Optional) Enables the miscellaneous LACP debugging. \\
& packet & (Optional) Enables the LACP packet debugging. \\
\hline
\end{tabular}

Defaults
Debugging of LACP activity is disabled.

\section*{Command Modes}

Privileged EXEC mode
\begin{tabular}{|c|c|}
\hline Command History & Release Modification \\
\hline & 12.1(13)EW Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline Usage Guidelines & This command is supported only on the supervisor engine and enterable only from the Catalyst 4500 series switch console. \\
\hline Examples & \begin{tabular}{l}
This example shows how to enable the LACP miscellaneous debugging: \\
Switch\# debug lacp \\
Port Aggregation Protocol Miscellaneous debugging is on Switch\#
\end{tabular} \\
\hline Related Commands & Command Description \\
\hline & undebug pagp (same as no debug pagp) Disables debugging output. \\
\hline
\end{tabular}

\section*{debug monitor}

To display the monitoring activity, use the debug monitor command. To disable the debugging output, use the no form of this command.
debug monitor \{all|errors|idb-update| list| notifications | platform | requests \}
no debug monitor \{all|errors | idb-update | list | notifications | platform | requests \}
\begin{tabular}{lll}
\hline Syntax Description & all & Displays all the SPAN debugging messages. \\
\cline { 3 - 3 } & errors & Displays the SPAN error details. \\
\hline idb-update & Displays the SPAN IDB update traces. \\
\hline & list & Displays the SPAN list tracing and the VLAN list tracing. \\
\hline notifications & Displays the SPAN notifications. \\
\hline platform & Displays the SPAN platform tracing. \\
\hline requests & Displays the SPAN requests. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to debug the monitoring errors:
Switch\# debug monitor errors
SPAN error detail debugging is on
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\begin{tabular}{l} 
undebug monitor (same as no debug \\
monitor)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug nvram}

To debug the NVRAM activity, use the debug nvram command. To disable the debugging output, use the no form of this command.

\section*{debug nvram}
no debug nvram
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\(\overline{\text { Defaults }}\) This command has no default settings.

Command Modes Privileged EXEC mode

Command History

\section*{Examples}

This example shows how to debug NVRAM:
Switch\# debug nvram
NVRAM behavior debugging is on
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
undebug nvram (same as no debug \\
nvram)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug pagp}

To debug the PAgP activity, use the debug pagp command. To disable the debugging output, use the no form of this command.
```

debug pagp [all | dual-active | event | fsm | misc | packet]
no debug pagp

```
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{l} 
all \\
\\
\hline dual-active \\
\hline event
\end{tabular} & (Optional) Enables all PAgP debugging. \\
\hline fsm & (Optional) Enables the PAgP dual-active debugging. \\
\hline misc & (Optional) Enables the debugging of the PAgP events. \\
\hline packet & (Optional) Enables the miscellaneous PAgP debugging. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

\section*{Related Commands}

This command is supported only on the supervisor engine and enterable only from the Catalyst 4500 series switch console.

This example shows how to enable the PAgP miscellaneous debugging:
Switch\# debug pagp misc
Port Aggregation Protocol Miscellaneous debugging is on
Switch\#
*Sep 30 10:13:03: SP: PAgP: pagp_h(Fa5/6) expired
*Sep 30 10:13:03: SP: PAgP: 135 bytes out Fa5/6
*Sep 30 10:13:03: SP: PAgP: Fa5/6 Transmitting information packet
*Sep 30 10:13:03: SP: PAgP: timer pagp_h(Fa5/6) started with interval 30000
<... output truncated...>
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline undebug pagp (same as no debug pagp) & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug platform packet protocol lacp}

To debug the LACP protocol packets, use the debug platform packet protocol lacp command. To disable the debugging output, use the no form of this command
debug platform packet protocol lacp [receive | transmit | vlan]
no debug platform packet protocol lacp [receive | transmit | vlan]
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Syntax Description} & receive (Optional) Enables the platform packet reception debugging functions. \\
\hline & transmit (Optional) Enables the platform packet transmission debugging functions. \\
\hline & vlan (Optional) Enables the platform packet VLAN debugging functions. \\
\hline Defaults & This command has no default settings. \\
\hline Command Modes & Privileged EXEC mode \\
\hline \multirow[t]{2}{*}{Command History} & Release Modification \\
\hline & 12.1(8a)EW Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline Examples & \begin{tabular}{l}
This example shows how to enable all PM debugging: \\
Switch\# debug platform packet protocol lacp Switch\#
\end{tabular} \\
\hline \multirow[t]{2}{*}{Related Commands} & Command Description \\
\hline & undebug platform packet protocol lacp Disables debugging output. (same as no debug platform packet protocol lacp) \\
\hline
\end{tabular}

\section*{debug platform packet protocol pagp}

To debug the PAgP protocol packets, use the debug platform packet protocol pagp command. To disable the debugging output, use the no form of this command.
```

debug platform packet protocol pagp [receive | transmit | vlan]
no debug platform packet protocol pagp [receive | transmit | vlan]

```
\begin{tabular}{llll}
\hline Syntax Description & \begin{tabular}{ll} 
receive & (Optional) Enables the platform packet reception debugging functions. \\
& \begin{tabular}{ll} 
transmit & (Optional) Enables the platform packet transmission debugging functions. \\
& vlan
\end{tabular} \\
\cline { 2 - 4 } & (Optional) Enables the platform packet VLAN debugging functions. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}
\begin{tabular}{llll}
\(\overline{\text { Command History }}\) & & Modification \\
\cline { 3 - 4 } & Release & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable all PM debugging:
Switch\# debug platform packet protocol pagp
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{ll} 
undebug platform packet protocol & Disables debugging output. \\
pagp (same as no debug platform packet & \\
protocol pagp) & \\
\hline
\end{tabular}
\end{tabular}

\section*{debug pm}

To debug the port manager (PM) activity, use the debug pm command. To disable the debugging output, use the no form of this command.
```

debug pm { all | card | cookies | etherchnl | messages | port | registry | scp | sm | span | split |
vlan | vp}
no debug pm { all | card | cookies | etherchnl | messages | port | registry | scp | sm | span | split |
vlan | vp}

```
\begin{tabular}{lll}
\hline Syntax Description & all & Displays all PM debugging messages. \\
& \begin{tabular}{lll} 
card & Debugs the module-related events. \\
\hline cookies & Enables the internal PM cookie validation. \\
\hline etherchnl & Debugs the EtherChannel-related events. \\
\hline messages & Debugs the PM messages. \\
\hline port & Debugs the port-related events. \\
\hline registry & Debugs the PM registry invocations. \\
\hline scp & Debugs the SCP module messaging. \\
\hline sm & Debugs the state machine-related events. \\
\hline span & Debugs the spanning-tree-related events. \\
\hline split & Debugs the split-processor. \\
\hline vlan & Debugs the VLAN-related events. \\
\hline vp & Debugs the virtual port-related events. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples \\ This example shows how to enable all PM debugging: \\ Switch\# debug pm all \\ Switch\#}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline undebug pm (same as no debug pm) & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug port-security}

To debug port security, use the debug port-security command. To disable the debugging output, use the no form of this command.
debug port-security
no debug port-security
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
Examples This example shows how to enable all PM debugging:

Switch\# debug port-security
Switch\#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 4 } switchport port-security & Enables port security on an interface. \\
\hline
\end{tabular}

\section*{debug redundancy}

To debug supervisor engine redundancy, use the debug redundancy command. To disable the debugging output, use the no form of this command.
```

debug redundancy {errors | fsm | kpa | msg | progression | status | timer}
no debug redundancy

```
\(\overline{\text { Syntax Description }}\)

Defaults
\begin{tabular}{ll}
\hline errors & Enables the redundancy facility for error debugging. \\
\hline \(\mathbf{f s m}\) & Enables the redundancy facility for FSM event debugging. \\
\hline kpa & Enables the redundancy facility for keepalive debugging. \\
\hline \(\mathbf{m s g}\) & Enables the redundancy facility for messaging event debugging. \\
\hline progression & Enables the redundancy facility for progression event debugging. \\
\hline status & Enables the redundancy facility for status event debugging. \\
\hline timer & Enables the redundancy facility for timer event debugging. \\
\hline
\end{tabular}

This command has no default settings.

\section*{Command Modes Privileged EXEC mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & \begin{tabular}{c} 
Support for this command was introduced on the Catalyst 4500 series switch \\
(Catalyst 4507R only).
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to debug the redundancy facility timer event debugging:
Switch\# debug redundancy timer
Redundancy timer debugging is on
Switch\#

\section*{debug spanning-tree}

To debug the spanning tree activities, use the debug spanning-tree command. To disable the debugging output, use the no form of this command.
debug spanning-tree \{all| backbonefast | bpdu | bpdu-opt | etherchannel| config | events | exceptions | general| ha | mstp | pvst+ | root | snmp | switch | synchronization | uplinkfast \}
no debug spanning-tree \{all| bpdu | bpdu-opt | etherchannel| config | events | exceptions | general | mst | pvst+ | root | snmp \}
\begin{tabular}{lll}
\hline Syntax Description & all & Displays all the spanning tree debugging messages. \\
\cline { 2 - 3 } backbonefast & Debugs the BackboneFast events. \\
\hline bpdu & Debugs the spanningtree BPDU. \\
\hline bpdu-opt & Debugs the optimized BPDU handling. \\
\hline etherchannel & Debugs the spanning tree EtherChannel support. \\
\hline config & Debugs the spanning tree configuration changes. \\
\hline events & Debugs the TCAM events. \\
\hline exceptions & Debugs the spanning tree exceptions. \\
\hline general & Debugs the general spanning tree activity. \\
\hline ha & Debugs the HA events. \\
\hline mstp & Debugs the multiple spanning tree events. \\
\hline pvst+ & Debugs the PVST+ events. \\
\hline root & Debugs the spanning tree root events. \\
\hline snmp & Debugs the spanning tree SNMP events. \\
\hline switch & Debugs the switch debug events. \\
\hline synchronization & Debugs the STP state synchronization events. \\
\hline uplinkfast & Debugs the UplinkFast events. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

This example shows how to debug the spanning-tree PVST+:
```

Switch\# debug spanning-tree pvst+
Spanning Tree PVST+ debugging is on
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\begin{tabular}{l} 
undebug spanning-tree (same as no \\
debug spanning-tree)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug spanning-tree backbonefast}

To enable debugging of the spanning tree BackboneFast events, use the debug spanning-tree backbonefast command. To disable the debugging output, use the no form of this command.

\title{
debug spanning-tree backbonefast [detail | exceptions] \\ no debug spanning-tree backbonefast
}

\section*{Syntax Description}

Defaults

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

This command is supported only on the supervisor engine and enterable only from the Catalyst 4500 series switch console.

This example shows how to enable the debugging and to display the detailed spanning tree BackboneFast debugging information:

Switch\# debug spanning-tree backbonefast detail
Spanning Tree backbonefast detail debugging is on
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline undebug spanning-tree backbonefast & Disables debugging output. \\
(same as no debug spanning-tree & \\
backbonefast) &
\end{tabular}

\section*{debug spanning-tree switch}

To enable the switch shim debugging, use the debug spanning-tree switch command. To disable the debugging output, use the no form of this command.
```

debug spanning-tree switch {all | errors | general | pm | rx {decode | errors | interrupt |
process} | state | tx [decode]}
no debug spanning-tree switch {all | errors | general | pm | rx {decode | errors | interrupt |
process} | state | tx [decode]}

```

Syntax Description

\section*{Defaults}

Command Modes

Command History
\begin{tabular}{ll}
\hline all & Displays all the spanning-tree switch shim debugging messages. \\
\hline errors & Enables the debugging of switch shim errors or exceptions. \\
\hline \(\mathbf{g e n e r a l ~}\) & Enables the debugging of general events. \\
\hline \(\mathbf{p m}\) & Enables the debugging of port manager events. \\
\hline \(\mathbf{r x}\) & Displays the received BPDU-handling debugging messages. \\
\hline \(\mathbf{d e c o d e}\) & \begin{tabular}{l} 
Enables the debugging of the decode-received packets of the spanning-tree switch \\
shim.
\end{tabular} \\
\hline errors & Enables the debugging of the receive errors of the spanning-tree switch shim. \\
\hline interrupt & Enables the shim ISR receive BPDU debugging on the spanning-tree switch. \\
\hline process & Enables the process receive BPDU debugging on the spanning-tree switch. \\
\hline state & Enables the debugging of the state changes on the spanning-tree port. \\
\hline \(\mathbf{t x}\) & Enables the transmit BPDU debugging on the spanning-tree switch shim. \\
\hline decode & \begin{tabular}{l} 
(Optional) Enables the decode-transmitted packets debugging on the spanning-tree \\
switch shim.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.1(8a)EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) This command is supported only on the supervisor engine and enterable only from the switch console.


\section*{Command Description}
undebug spanning-tree switch (same as Disables debugging output.
no debug spanning-tree switch)

\section*{debug spanning-tree uplinkfast}

To enable the debugging of the spanning-tree UplinkFast events, use the debug spanning-tree uplinkfast command. To disable the debugging output, use the no form of this command.
debug spanning-tree uplinkfast [exceptions]
no debug spanning-tree uplinkfast

Syntax Description

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

Examples
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This command is supported only on the supervisor engine and enterable only from the switch console.

This example shows how to debug the spanning tree UplinkFast exceptions:
Switch\# debug spanning-tree uplinkfast exceptions
Spanning Tree uplinkfast exceptions debugging is on
Switch\#
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
undebug spanning-tree uplinkfast \\
(same as no debug spanning-tree \\
uplinkfast)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug sw-vlan}

To debug the VLAN manager activities, use the debug sw-vlan command. To disable the debugging output, use the no form of this command.
debug sw-vlan \{badpmcookies | events | management | packets | registries\}
no debug sw-vlan \{badpmcookies | events | management | packets | registries\}
\begin{tabular}{lll}
\hline Syntax Description & & badpmcookies \\
& Displays the VLAN manager incidents of bad port manager cookies. \\
& \begin{tabular}{lll} 
events & Debugs the VLAN manager events. \\
\hline management & Debugs the VLAN manager management of internal VLANs. \\
& packets & Debugs the packet handling and encapsulation processes. \\
\hline & registries & Debugs the VLAN manager registries. \\
\hline
\end{tabular}
\end{tabular}

\section*{Defaults}

Command Modes
\begin{tabular}{llll}
\(\overline{\text { Command History }}\) & & Modification \\
\cline { 3 - 5 } & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Examples & \begin{tabular}{l} 
This example shows how to debug the software VLAN events: \\
\begin{tabular}{l} 
Switch\# debug sw-vlan events \\
vlan manager events debugging is on \\
Switch\#
\end{tabular} \\
\hline Related Commands
\end{tabular} \begin{tabular}{ll}
\begin{tabular}{l} 
Command \\
\begin{tabular}{l} 
undebug sw-vlan (same as no debug \\
sw-vlan)
\end{tabular}
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular} &
\end{tabular}

\section*{debug sw-vlan ifs}

To enable the VLAN manager Cisco IOS file system (IFS) error tests, use the debug sw-vlan ifs command. To disable the debugging output, use the no form of this command.
debug sw-vlan ifs \(\{\) open \(\{\) read | write \(\} \mid\) read \(\{1|2| 3 \mid 4\} \mid\) write \(\}\)
no debug sw-vlan ifs \(\{\) open \(\{\) read \(\mid\) write \(\} \mid\) read \(\{1|2| 3 \mid 4\} \mid\) write \(\}\)
\begin{tabular}{lll}
\hline Syntax Description & & \begin{tabular}{l} 
Enables the VLAN manager IFS debugging of errors in an IFS file-open operation. \\
\hline open \\
read
\end{tabular} \\
& \begin{tabular}{l} 
Debugs the errors that occurred when the IFS VLAN configuration file was open for \\
reading.
\end{tabular} \\
\hline write & \begin{tabular}{l} 
Debugs the errors that occurred when the IFS VLAN configuration file was open for \\
writing.
\end{tabular} \\
& \(\{\mathbf{1 | 2 | 3 | 4 \}}\) & \begin{tabular}{l} 
Determines the file-read operation. See the "Usage Guidelines" section for \\
information about operation levels.
\end{tabular} \\
\hline write & Debugs the errors that occurred during an IFS file-write operation. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The following are four types of file read operations:
- Operation 1-Reads the file header, which contains the header verification word and the file version number.
- Operation 2-Reads the main body of the file, which contains most of the domain and VLAN information.
- Operation 3-Reads TLV descriptor structures.
- Operation 4-Reads TLV data.

\section*{Examples}

This example shows how to debug the TLV data errors during a file-read operation:
```

Switch\# debug sw-vlan ifs read 4
vlan manager ifs read \# 4 errors debugging is on
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{ll} 
Command & Description \\
& \begin{tabular}{l} 
undebug sw-vlan ifs (same as no debug \\
sw-vlan ifs)
\end{tabular} \\
& Disables debugging output. \\
\hline
\end{tabular} & \\
\hline
\end{tabular}

\section*{debug sw-vlan notification}

To enable the debugging of the messages that trace the activation and deactivation of the ISL VLAN IDs, use the debug sw-vlan notification command. To disable the debugging output, use the no form of this command.
debug sw-vlan notification \{accfwdchange | allowedvlancfgchange | fwdchange | linkchange | modechange | pruningcfgchange | statechange \}
no debug sw-vlan notification \{accfwdchange | allowedvlancfgchange | fwdchange | linkchange | modechange | pruningcfgchange | statechange \}

Syntax Description
\begin{tabular}{ll}
\hline accfwdchange & \begin{tabular}{l} 
Enables the VLAN manager notification of aggregated access interface \\
STP forward changes.
\end{tabular} \\
\hline allowedvlancfgchange & \begin{tabular}{l} 
Enables the VLAN manager notification of changes to allowed VLAN \\
configuration.
\end{tabular} \\
\hline fwdchange & Enables the VLAN manager notification of STP forwarding changes. \\
\hline linkchange & Enables the VLAN manager notification of interface link state changes. \\
\hline modechange & Enables the VLAN manager notification of interface mode changes. \\
\hline pruningcfgchange & \begin{tabular}{l} 
Enables the VLAN manager notification of changes to pruning \\
configuration.
\end{tabular} \\
\hline statechange & Enables the VLAN manager notification of interface state changes. \\
\hline
\end{tabular}
\(\overline{\text { Defaults }}\) This command has no default settings.

Command Modes Privileged EXEC mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to debug the software VLAN interface mode change notifications:
Switch\# debug sw-vlan notification modechange
vlan manager port mode change notification debugging is on Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\begin{tabular}{l} 
undebug sw-vlan notification (same as \\
no debug sw-vlan notification)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug sw-vlan vtp}

To enable the debugging of messages to be generated by the VTP protocol code, use the debug sw-vlan vtp command. To disable the debugging output, use the no form of this command.
```

debug sw-vlan vtp {events | packets | pruning [packets | xmit] | xmit}
no debug sw-vlan vtp {events | packets | pruning [packets | xmit] | xmit}

```

\section*{Syntax Description}

Defaults

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

Examples

Related Commands
\begin{tabular}{ll}
\hline events & \begin{tabular}{l} 
Displays the general-purpose logic flow and detailed VTP debugging messages \\
generated by the VTP_LOG_RUNTIME macro in the VTP code.
\end{tabular} \\
\hline packets & \begin{tabular}{l} 
Displays the contents of all incoming VTP packets that have been passed into the VTP \\
code from the Cisco IOS VTP platform-dependent layer, except for pruning packets.
\end{tabular} \\
\hline pruning & \begin{tabular}{l} 
Enables the debugging message to be generated by the pruning segment of the VTP \\
protocol code.
\end{tabular} \\
\hline packets & \begin{tabular}{l} 
(Optional) Displays the contents of all incoming VTP pruning packets that have been \\
passed into the VTP code from the Cisco IOS VTP platform-dependent layer.
\end{tabular} \\
\hline xmit & \begin{tabular}{l} 
(Optional) Displays the contents of all outgoing VTP packets that the VTP code will \\
request that the Cisco IOS VTP platform-dependent layer to send.
\end{tabular} \\
\hline xmit & \begin{tabular}{l} 
Displays the contents of all outgoing VTP packets that the VTP code will request that \\
the Cisco IOS VTP platform-dependent layer to send; does not include pruning packets.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

If you do not enter any more parameters after entering pruning, the VTP pruning debugging messages are displayed.

This example shows how to debug the software VLAN outgoing VTP packets:
Switch\# debug sw-vlan vtp xmit
vtp xmit debugging is on
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
undebug sw-vlan vtp (same as no debug \\
sw-vlan vtp)
\end{tabular} & Disables debugging output. \\
\hline
\end{tabular}

\section*{debug udld}

To enable the debugging of UDLD activity, use the debug udld command. To disable the debugging output, use the no form of this command.
```

debug udld {events | packets | registries}
no debug udld {events | packets | registries}

```
\begin{tabular}{llll}
\hline Syntax Description & & events & Enables the debugging of UDLD process events as they occur. \\
\cline { 3 - 3 } & packets & \begin{tabular}{l} 
Enables the debugging of the UDLD process as it receives packets from the packet queue \\
and attempts to transmit packets at the request of the UDLD protocol code.
\end{tabular} \\
& registries & \begin{tabular}{l} 
Enables the debugging of the UDLD process as it processes registry upcalls from the \\
UDLD process-dependent module and other feature modules.
\end{tabular} \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

Privileged EXEC mode
\begin{tabular}{lll}
\(\overline{\text { Command History }}\) & & \begin{tabular}{l} 
Release \\
\cline { 3 - 4 } \\
\end{tabular}
\end{tabular}

Usage Guidelines
This command is supported only on the supervisor engine and enterable only from the Catalyst 4500 series switch console.

\section*{Examples}

This example shows how to debug the UDLD events:
```

Switch\# debug udld events
UDLD events debugging is on
Switch\#

```

This example shows how to debug the UDLD packets:
```

Switch\# debug udld packets
UDLD packets debugging is on
Switch\#

```

This example shows how to debug the UDLD registry events:
```

Switch\# debug udld registries
UDLD registries debugging is on
Switch\#

```
\begin{tabular}{lll}
\(\overline{\text { Related Commands }}\) & \begin{tabular}{ll} 
Command & Description \\
\cline { 2 - 4 } undebug udld (same as no debug udld) & Disables debugging output. \\
\hline
\end{tabular} &
\end{tabular}

\section*{debug vqpc}

To debug the VLAN Query Protocol (VQP), use the debug vqpe command. To disable the debugging output, use the no form of this command.
debug vqpe [all| cli | events | learn | packet]
no debug vqpe [all | cli | events | learn | packet]
\begin{tabular}{llll}
\cline { 3 - 3 } Syntax Description & all & (Optional) Debugs all the VQP events. \\
\cline { 2 - 3 } & cli & (Optional) Debugs the VQP command-line interface. \\
\hline events & (Optional) Debugs the VQP events. \\
\hline learn & (Optional) Debugs the VQP address learning. \\
\hline packet & (Optional) Debugs the VQP packets. \\
\hline
\end{tabular}

Defaults

Command Modes
Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to enable all VQP debugging:
Switch\# debug vqpc all
Switch\#

\begin{tabular}{ll}
\hline Command & Description \\
\hline vmps reconfirm (privileged EXEC) & Immediately sends VLAN Query Protocol (VQP) queries to \\
& reconfirm all the dynamic VLAN assignments with the \\
& VLAN Membership Policy Server (VMPS). \\
\hline
\end{tabular}

\section*{define interface-range}

To create a macro of interfaces, use the define interface-range command.
define interface-range macro-name interface-range

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline macro-name & Name of the interface range macro; up to 32 characters. \\
\hline interface-range & \begin{tabular}{l} 
List of valid ranges when specifying interfaces; see the "Usage Guidelines" \\
section.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The macro name is a character string of up to 32 characters.
A macro can contain up to five ranges. An interface range cannot span modules.
When entering the interface-range, use these formats:
- interface-type \(\{\bmod \} /\{\) first-interface \(\}-\{\) last-interface \(\}\)
- interface-type \(\{\bmod \} /\{\) first-interface \(\}-\{\) last-interface \(\}\)

The valid values for interface-type are as follows:
- FastEthernet
- GigabitEthernet
- Vlan vlan_id

This example shows how to create a multiple-interface macro: Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline interface range & Runs a command on multiple ports at the same time. \\
\hline
\end{tabular}

\section*{deny}

To deny an ARP packet based on matches against the DHCP bindings, use the deny command. To remove the specified ACEs from the access list, use the no form of this command.
deny \(\{[\mathbf{r e q u e s t}]\) ip \(\{\) any \(\mid\) host sender-ip \(\mid\) sender-ip sender-ip-mask \(\}\) mac \(\{\) any I host sender-mac I sender-mac sender-mac-mask\} I response ip \{any I host sender-ip I sender-ip sender-ip-mask\} [\{any l host target-ip I target-ip target-ip-mask\}] mac \{any I host sender-mac | sender-mac sender-mac-mask \(][\{\) any | host target-mac |target-mac target-mac-mask \(\}]\}[\log ]\)
no deny \(\{[\) request \(]\) ip \(\{\) any \(\mid\) host sender-ip \(\mid\) sender-ip sender-ip-mask\} mac \(\{\) any \(\mid\) host sender-mac \(\mid\) sender-mac sender-mac-mask \(\} \mid\) response ip \{any \(\mid\) host sender-ip I sender-ip sender-ip-mask\} [\{any I host target-ip I target-ip target-ip-mask\}] mac \{any I host sender-mac | sender-mac sender-mac-mask \(\}[\{\) any | host target-mac | target-mac target-mac-mask \(\}]\}[\mathbf{l o g}]\)

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}
arp-nacl configuration mode
\(\overline{\text { Command History }} \quad\)\begin{tabular}{ll} 
Release & Modification \\
\cline { 3 - 3 } \(12.1(19) E W\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}
Related Commands

This example shows a host with a MAC address of 0000.0000.abcd and an IP address of 1.1.1.1. This example shows howto deny both requests and responses from this host:
```

Switch(config)\# arp access-list static-hosts
Switch(config-arp-nacl)\# deny ip host 1.1.1.1 mac host 0000.0000.abcd
Switch(config-arp-nacl)\# end
Switch\# show arp access-list
ARP access list static-hosts
deny ip host 1.1.1.1 mac host 0000.0000.abcd
Switch\#

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline ip arp inspection filter vlan & \begin{tabular}{l} 
Permits ARPs from hosts that are configured for static IP \\
when DAI is enabled and to define an ARP access list and \\
applies it to a VLAN.
\end{tabular} \\
\hline permit & \begin{tabular}{l} 
Permits an ARP packet based on matches against the DHCP \\
bindings.
\end{tabular} \\
\hline
\end{tabular}

\section*{destination address}

To configure the destination e-mail address or URL to which Call Home messages will be sent, use the destination address command.
destination address \{email email-address | http url\}

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline email email-address & Specifies the destination e-mail address in 1 to 200 characters. \\
\hline http url & Specifies the destination HTTP URL in 2 to 200 characters.
\end{tabular}

This command has no default settings.
cfg-call-home-profile
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52)\) SG & Support was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

When entering the https:// destination URL for the secure server, you must also configure a trustpoint CA.

This example shows how to set the destination to the e-mail address callhome@cisco.com:
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# destination address email callhome@cisco.com

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline
\end{tabular}

\section*{destination message-size-limit bytes}

To configure a maximum destination message size for the destination profile, use the destination message-size-limit bytes command.

\section*{destination message-size-limit bytes}

Syntax Description

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

This example shows how to configure the maximum message size for the destination profile as 3000000:
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# destination message-size-limit 3000000
Switch(cfg-call-home-profile) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline
\end{tabular}

\section*{destination preferred-msg-format}

To configure a preferred message format, use the destination preferred-msg-format command.
destination preferred-msg-format \{long-text | short-text | xml\}

\section*{Syntax Description}
\begin{tabular}{ll}
\hline long-text & Sends the message in long-text format. \\
\hline short-text & Sends the message in short-text format. \\
\hline \(\mathbf{x m l}\) & Sends the message in XML format. \\
\hline
\end{tabular}

\section*{Defaults}

Command Modes
cfg-call-home-profile

\section*{Command History}
Release

Modification
12.2(52)SG

Support was introduced on the Catalyst 4500 series switches.

Usage Guidelines

\section*{Examples}

Related Commands

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

This example shows how to configure the preferred message format as long text:
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# destination preferred-msg-format long-text
Switch(cfg-call-home-profile) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination transport-method & Enables the message transport method. \\
\hline
\end{tabular}

\section*{destination transport-method}

To enable the message transport method, use the destination transport-method command.
destination transport-method \{email | http\}

\section*{Syntax Description}

\section*{Defaults}

Command Modes

\section*{Command History}

Usage Guidelines

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline email & Enables e-mail as transport method. \\
\hline http & Enables HTTP as transport method.
\end{tabular}
e-mail
cfg-call-home-profile
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52) \mathrm{SG}\) & Support was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

This example shows how to set the transport method to HTTP:
```

Switch(config)\# call-home
Switch(cfg-call-home)\# profile cisco
Switch(cfg-call-home-profile)\# destination transport-method http

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline
\end{tabular}

\section*{diagnostic monitor action}

To direct the action of the switch when it detects a packet memory failure, use the diagnostic monitor action command.

\section*{diagnostic monitor action [conservative | normal | aggressive]}

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines

Examples
\begin{tabular}{ll}
\hline conservative & \begin{tabular}{l} 
(Optional) Specifies that the bootup SRAM diagnostics log all failures \\
and remove all affected buffers from the hardware operation. The \\
ongoing SRAM diagnostics will log events, but will take no other \\
action.
\end{tabular} \\
\hline normal & \begin{tabular}{l} 
(Optional) Specifies that the SRAM diagnostics operate as in \\
conservative mode, except that an ongoing failure resets the supervisor \\
engine; allows for the bootup tests to map out the affected memory.
\end{tabular} \\
\hline aggressive & \begin{tabular}{l} 
(Optional) Specifies that the SRAM diagnostics operate as in normal \\
mode, except that a bootup failure only logs failures and does not allow \\
the supervisor engine to come online; allows for either a redundant \\
supervisor engine or network-level redundancy to take over.
\end{tabular} \\
\hline
\end{tabular}
normal mode

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Use the conservative keyword when you do not want the switch to reboot so that the problem can be fixed.

Use the aggressive keyword when you have redundant supervisor engines, or when network-level redundancy has been provided.

This example shows how to configure the switch to initiate an RPR switchover when an ongoing failure occurs:

Switch\# configure terminal
Switch (config)\# diagnostic monitor action normal

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show diagnostic result module test 2 & Displays the module-based diagnostic test results. \\
\hline show diagnostic result module test 3 & Displays the module-based diagnostic test results. \\
\hline
\end{tabular}

\section*{diagnostic start}

To run the specified diagnostic test, use the diagnostic start command.
diagnostic start \(\{\) module num \(\}\{\) test test-id \(\}\) [port num]

\section*{Syntax Description}
\(\overline{\text { Defaults }}\) This command has no default settings.

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

This example shows how to run the specified diagnostic test at the specified module:

The show cable-diagnostic tdr command displays the results of a TDR test. The test results will not be available until approximately 1 minute after the test starts. If you enter the
show cable-diagnostic tdr command within 1 minute of the test starting, you may see a "TDR test is in progress on interface..." message.

\section*{Related Commands}

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{SG}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
```

This exec command starts the TDR test on specified interface

```
This exec command starts the TDR test on specified interface
Switch# diagnostic start module 1 test cable-tdr port 3
Switch# diagnostic start module 1 test cable-tdr port 3
diagnostic start module 1 test cable-tdr port 3
diagnostic start module 1 test cable-tdr port 3
module 1: Running test(s) 5 Run interface level cable diags
module 1: Running test(s) 5 Run interface level cable diags
module 1: Running test(s) 5 may disrupt normal system operation
module 1: Running test(s) 5 may disrupt normal system operation
Do you want to continue? [no]: yes
Do you want to continue? [no]: yes
yes
yes
Switch#
Switch#
2d16h: %DIAG-6-TEST_RUNNING: module 1: Running online-diag-tdr{ID=5} ...
2d16h: %DIAG-6-TEST_RUNNING: module 1: Running online-diag-tdr{ID=5} ...
2d16h: %DIAG-6-TEST_OK: module 1: online-diag-tdr{ID=5} has completed successfully
2d16h: %DIAG-6-TEST_OK: module 1: online-diag-tdr{ID=5} has completed successfully
Switch#
```

Switch\#

```

\section*{Note}
\begin{tabular}{ll}
\hline module num & Module number. \\
\hline test & Specifies a test to run. \\
\hline test-id & \begin{tabular}{l} 
Specifies an identification number for the test to be run; can be the cable \\
diagnostic test-id, or the cable-tdr keyword.
\end{tabular} \\
\hline port num & (Optional) Specifies the interface port number. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show diagnostic content & Displays diagnostic content information. \\
\hline
\end{tabular}

\section*{dot1x auth-fail max-attempts}

To configure the max number of attempts before a port is moved to the auth-fail VLAN, use the dot1x auth-fail max-attempts command. To return to the default setting, use the no form of this command.

\section*{dot1x auth-fail max-attempts max-attempts}
no dot1x auth-fail max-attempts max-attempts
\(\overline{\text { Syntax Description }}\)

Defaults

Command Modes

Command History

Examples

Default is 3 .

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to configure the maximum number of attempts before the port is moved to the auth-fail VLAN on Fast Ethernet interface 4/3:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet4/3
Switch(config-if) \# dot1x auth-fail max-attempts 5
Switch(config-if)\# end
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
\cline { 2 - 3 } dot1x max-reauth-req \\
\\
\\
\\
show dot1x
\end{tabular} \begin{tabular}{l} 
Description \\
Sets the maximum number of times that the switch will \\
retransmit an EAP-Request/Identity frame to the client \\
before restarting the authentication process.
\end{tabular} \\
\hline
\end{tabular}

\section*{dot1x auth-fail vlan}

To enable the auth-fail VLAN on a port, use the dot1x auth-fail vlan command. To return to the default setting, use the no form of this command.
```

dot1x auth-fail vlan vlan-id
no dot1x auth-fail vlan vlan-id

```

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

\section*{Command History}

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x max-reauth-req & \begin{tabular}{l} 
Sets the maximum number of times that the switch will \\
retransmit an EAP-Request/Identity frame to the client \\
before restarting the authentication process.
\end{tabular} \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x control-direction}

To enable unidirectional port control on a per-port basis on a switch, use the \(\boldsymbol{d o t} \mathbf{1 x}\) control-direction command. Use the no form of this command to disable unidirectional port control.

\section*{dot1x control-direction [in | both]}
no dot 1 x control-direction
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline in & (Optional) Specifies controlling in-bound traffic on a port. \\
\hline both & \begin{tabular}{l} 
(Optional) Specifies controlling both in-bound and out-bound traffic on a \\
port.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

You can manage remote systems using unidirectional control. Unidirectional control enables you to turn on systems remotely using a specific Ethernet packet, known as a magic packet.
Using unidirectional control enables you to remotely manage systems using 802.1X ports. In the past, the port became unauthorized after the systems was turned off. In this state, the port only allowed the receipt and transmission of EAPoL packets. Therefore, there was no way for the unidirectional control magic packet to reach the host and without being turned on there was no way for the system to authenticate and open the port.

\section*{Examples}

This example shows how to enable unidirectional control on incoming packets:
```

Switch(config-if)\# dot1x control-direction in

```

Switch(config-if) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show dot1x & Displays dot1x information.
\end{tabular}

\section*{dot1x critical}

To enable the 802.1X critical authentication on a port, use the \(\operatorname{dot} \mathbf{1 x}\) critical command. To return to the default setting, use the no form of this command.
dot1x critical
no dot1x critical
\(\overline{\text { Syntax Description }}\) This command has no keywords or variables.

\section*{Defaults}

Command Modes

Command History
Interface configuration mode

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31) \mathrm{SG}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to enable 802.1x critical authentication:
Switch(config-if) \# dot1x critical
Switch(config-if) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } dot1x critical eapol & \begin{tabular}{l} 
Enables sending EAPOL success packets when a port is \\
critically authorized partway through an EAP exchange.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{ll} 
dot1x critical recovery delay & Sets the time interval between port reinitializations. \\
\hline dot1x critical vlan & Assigns a critically authenticated port to a specific VLAN. \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}
\end{tabular}

\section*{dot1x critical eapol}

To enable sending EAPOL success packets when a port is critically authorized partway through an EAP exchange, use the dot1x critical eapol command. To return to the default setting, use the no form of this command.

\section*{dot1x critical eapol}
no dot 1 x critical eapol
\(\overline{\text { Syntax Description }}\) This command has no keywords or variables.

Defaults
\(\overline{\text { Command Modes Global configuration mode }}\)

Command History

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

This example shows how to enable sending EAPOL success packets:
Switch(config-if) \# dot1x critical eapol
Switch(config-if) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x critical & Enables the 802.1X critical authentication on a port. \\
\hline dot1x critical recovery delay & Sets the time interval between port reinitializations. \\
\hline dot1x critical vlan & Assigns a critically authenticated port to a specific VLAN. \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x critical recovery delay}

To set the time interval between port reinitializations, use the dot1x critical recovery delay command. To return to the default setting, use the no form of this command.
```

dot1x critical recovery delay delay-time
no dot1x critical recovery delay

```
\(\overline{\text { Syntax Description }}\)\begin{tabular}{l} 
delay-time \\
Specifies the interval between port reinitializations when AAA transistion \\
occurs; valid values are from 1 to 10,000 milliseconds.
\end{tabular}
\(\overline{\text { Defaults }}\) Delay time is set to 100 milliseconds.

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

\section*{Related Commands}

This example shows how to set the 802.1 x critical recovery delay time to 500 :
Switch(config-if) \# dot1x critical recovery delay 500
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x critical & Enables the 802.1X critical authentication on a port. \\
\hline dot1x critical eapol & \begin{tabular}{l} 
Enables sending EAPOL success packets when a port is \\
critically authorized partway through an EAP exchange.
\end{tabular} \\
\hline dot1x critical vlan & Assigns a critically authenticated port to a specific VLAN. \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x critical vlan}

To assign a critically authenticated port to a specific VLAN, use the dot1x critical vlan command. To return to the default setting, use the no form of this command.

\section*{dot1x critical vlan vlan-id}
no dot1x critical vlan-id

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

Related Commands

The type of VLAN specified must match the type of the port. If the port is an access port, the VLAN must be a regular VLAN. If the port is a private-VLAN host port, the VLAN must be the secondary VLAN of a valid private-VLAN domain. If the port is a routed port, no VLAN may be specified.

This command is not supported on platforms such as Layer 3 switches that do not include the Critical Auth VLAN subsystem.

This example shows how to enable 802.1 x critical authentication on a ports VLAN:
Switch(config-if) \# dot1x critical vlan 350
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x critical & Enables the 802.1X critical authentication on a port. \\
\hline dot1x critical eapol & \begin{tabular}{l} 
Enables sending EAPOL success packets when a port is \\
critically authorized partway through an EAP exchange.
\end{tabular} \\
\hline dot1x critical recovery delay & Sets the time interval between port reinitializations. \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x guest-vlan}

To enable a guest VLAN on a per-port basis, use the dot1x guest-vlan command. To return to the default setting, use the no form of this command.
```

dot1x guest-vlan vlan-id
no dot1x guest-vlan vlan-id

```

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

Guest VLANs can be configured only on ports that are statically configured as access ports or private VLAN host ports. Statically configured access ports can be configured with regular VLANs as guest VLANs; statically configured private VLAN host ports can be configured with secondary private VLANs as guest VLANs.

This example shows how to enable a guest VLAN on Fast Ethernet interface 4/3:
```

Switch\# configure terminal

```
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface fastethernet4/3
Switch(config-if) \# dot1x port-control auto
Switch(config-if) \# dot1x guest-vlan 26
Switch(config-if) \# end
Switch(config) \# end
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x max-reauth-req & \begin{tabular}{l} 
Sets the maximum number of times that the switch will \\
retransmit an EAP-Request/Identity frame to the client \\
before restarting the authentication process.
\end{tabular} \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x guest-vlan supplicant}

To place an 802.1X-capable supplicant (host) into a guest VLAN, use the dot1x guest-vlan supplicant global configuration command. To return to the default setting, use the no form of this command.

\section*{dot1x quest-vlan supplicant}
no dot1x quest-vlan supplicant
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}
802.1X-capable hosts are not put into a guest VLAN.
\(\overline{\text { Command Modes }}\) Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) EWA & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Usage Guidelines

\section*{Examples}

With Cisco Release 12.2(25) EWA, you can use the dot1x guest-vlan supplicant command to place an 802.1X-capable host into a guest VLAN. Prior to Cisco Release 12.2(25)EWA, you could only place non-802.1X capable hosts into a guest VLAN.

When guest VLAN supplicant behavior is enabled, the Catalyst 4500 series switch does not maintain EAPOL packet history. The switch allows clients that fail 802.1X authentication to access a guest VLAN, whether or not EAPOL packets have been detected on the interface.

This example shows how to place an 802.1 X -capable supplicant (host) into a guest VLAN:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# dot1x guest-vlan supplicant
Switch(config)\# end
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x system-auth-control & Enables 802.1X authentication on the switch. \\
\hline show dot1x & Displays dot 1 x information. \\
\hline
\end{tabular}

\section*{dot1x host-mode}

Use the dot1x host-mode interface configuration command on the switch stack or on a standalone switch to allow a single host (client) or multiple hosts on an IEEE 802.1x-authorized port. Use the multi-domain keyword to enable multidomain authentication (MDA) on an IEEE 802.1x-authorized port. Use the no form of this command to return to the default setting.
```

dot1x host-mode {multi-host | single-host I multi-domain}
no dot1x host-mode [multi-host | single-host | multi-domain}

```

\section*{Syntax Description}

Defaults

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline multi-host & Enables multiple-hosts mode on the switch. \\
\hline single-host & Enables single-host mode on the switch. \\
\hline multi-domain & Enables MDA on a switch port.
\end{tabular}

The default is single-host mode.

Interface configuration mode

\section*{Usage Guidelines}

Use this command to limit an IEEE 802.1x-enabled port to a single client or to attach multiple clients to an IEEE 802.1x-enabled port. In multiple-hosts mode, only one of the attached hosts needs to be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized (re-authentication fails or an Extensible Authentication Protocol over LAN [EAPOL]-logoff message is received), all attached clients are denied access to the network.

Use the multi-domain keyword to enable MDA on a port. MDA divides the port into both a data domain and a voice domain. MDA allows both a data device and a voice device, such as an IP phone (Cisco or non-Cisco), on the same IEEE 802.1x-enabled port.
Before entering this command, make sure that the dot1x port-control interface configuration command is set to auto for the specified port.

You can assign both voice and data VLAN dynamically from the ACS server. No additional configuration is required to enable dynamic VLAN assignment on the switch.To enable VLAN assignment, you must configure the Cisco ACS server. For details on configuring the ACS server for voice VLAN assignment, refer to the "Cisco ACS Configuration for VLAN Assignment" section in the Catalyst 4500 Series Switch Software Configuration Guide-Release, 12.2(52)SG.

This example shows how to enable IEEE 802.1x authentication and to enable multiple-hosts mode:
```

Switch\# configure t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gigabitethernet6/1
Switch(config-if)\# dot1x port-control auto
Switch(config-if) \# dot1x host-mode multi-host
Switch(config-if)\# end
Switch\#

```

This example shows how to enable MDA and to allow both a host and a voice device on the port:
```

Switch\# configure t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface FastEthernet6/1
Switch(config-if)\# switchport access vlan 12
Switch(config-if)\# switchport mode access
Switch(config-if)\# switchport voice vlan 10
Switch(config-if)\# dot1x pae authenticator
Switch(config-if)\# dot1x port-control auto
Switch(config-if) \# dot1x host-mode multi-domain
Switch(config-if)\# no shutdown
Switch(config-if)\# end
Switch\#

```

You can verify your settings by entering the show dot1x [interface interface-id] privileged EXEC command.
\begin{tabular}{ll}
\hline Command & Description \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x initialize}

To unauthorize an interface before reinitializing 802.1X, use the dot1x initialize command.
dot1x initialize interface

\section*{Syntax Description}

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Use this command to initialize state machines and to set up the environment for fresh authentication.

This example shows how to initialize the 802.1 X state machines on an interface:
Switch\# dot1x initialize
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x mac-auth-bypass}

To enable the 802.1X MAC address bypassing on a switch, use the dot1x mac-auth-bypass command. Use the no form of this command to disable MAC address bypassing.

\section*{dot1x mac-auth-bypass [eap]}
no dot1x mac-auth-bypass [eap]

Syntax Description

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History

Usage Guidelines

There is no default setting.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

The removal of the dot1x mac-auth-bypass configuration from a port does not affect the authorization or authentication state of a port. If the port is in unauthenticated state, it remains unauthenticated, and if MAB is active, the authentication will revert back to the 802.1X Authenticator. If the port is authorized with a MAC address, and the MAB configuration is removed the port remains authorized until re-authentication takes place. When re-authentication occurs the MAC address is removed in favor of an 802.1X supplicant, which is detected on the wire.

\section*{Examples}

This example shows how to enable EAP MAC address authentication:
```

Switch(config-if)\# dot1x mac-auth-bypass

```

Switch(config-if)\#

\section*{dot1x max-reauth-req}

To set the maximum number of times that the switch will retransmit an EAP-Request/Identity frame to the client before restarting the authentication process, use the dot1x max-reauth-req command. To return to the default setting, use the no form of this command.
```

dot1x max-reauth-req count
no dot1x max-reauth-req

```

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
count Number of times that the switch retransmits EAP-Request/Identity frames before restarting the authentication process; valid values are from 1 to 10 .

The switch sends a maximum of two retransmissions.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) E W\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers. This setting impacts the wait before a non-dot1x-capable client is admitted to the guest VLAN, if one is configured.

You can verify your settings by entering the show dot1x privileged EXEC command.

This example shows how to set 5 as the number of times that the switch retransmits an EAP-Request/Identity frame before restarting the authentication process:

Switch(config-if) \# dot1x max-reauth-req 5
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x max-req}

To set the maximum number of times that the switch retransmits an Extensible Authentication Protocol (EAP)-Request frame of types other than EAP-Request/Identity to the client before restarting the authentication process, use the dot1x max-req command. To return to the default setting, use the no form of this command.
dot1x max-req count
no dot1x max-req

Syntax Description

Defaults
The switch sends a maximum of two retransmissions.

\section*{Command Modes}

Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(19) \mathrm{EW}\) & \begin{tabular}{l} 
This command was modified to control on EAP-Request/Identity retransmission \\
limits.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines

\section*{Examples}

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

You can verify your settings by entering the show dot1x privileged EXEC command.

This example shows how to set 5 as the number of times that the switch retransmits an EAP-Request frame before restarting the authentication process:
```

Switch(config-if)\# dot1x max-req 5
Switch(config-if)\#

```

This example shows how to return to the default setting:
Switch(config-if) \# no dot1x max-req
Switch(config-if) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 3 } dot1x initialize & Unauthorizes an interface before reinitializing 802.1X. \\
& \begin{tabular}{l} 
Sets the maximum number of times that the switch will \\
retransmit an EAP-Request/Identity frame to the client \\
before restarting the authentication process.
\end{tabular} \\
& show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x port-control}

To enable manual control of the authorization state on a port, use the dot1x port-control command. To return to the default setting, use the no form of this command.

> dot1x port-control \{auto | force-authorized | force-unauthorized \}
> no dot1x port-control \{auto | force-authorized | force-unauthorized\}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Syntax Description} & auto & Enables 802.1X authentication on the interface and causes the port to transition to the authorized or unauthorized state based on the 802.1X authentication exchange between the switch and the client. \\
\hline & force-authorized & Disables 802.1X authentication on the interface and causes the port to transition to the authorized state without any authentication exchange required. The port transmits and receives normal traffic without 802.1X-based authentication of the client. \\
\hline & force-unauthorized & Denies all access through the specified interface by forcing the port to transition to the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the interface. \\
\hline
\end{tabular}

Defaults

Command Modes

Command History

The port 802.1X authorization is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The 802.1X protocol is supported on both the Layer 2 static-access ports and the Layer 3-routed ports.
You can use the auto keyword only if the port is not configured as follows:
- Trunk port—If you try to enable 802.1 X on a trunk port, an error message appears, and 802.1 X is not enabled. If you try to change the mode of an 802.1 X -enabled port to trunk, the port mode is not changed.
- Dynamic ports-A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1 X on a dynamic port, an error message appears, and 802.1 X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, the port mode is not changed.
- EtherChannel port—Before enabling 802.1X on the port, you must first remove it from the EtherChannel. If you try to enable 802.1 X on an EtherChannel or on an active port in an EtherChannel, an error message appears, and 802.1X is not enabled. If you enable 802.1 X on an inactive port of an EtherChannel, the port does not join the EtherChannel.
- Switch Port Analyzer (SPAN) destination port-You can enable 802.1X on a port that is a SPAN destination port; however, 802.1 X is disabled until the port is removed as a SPAN destination. You can enable 802.1X on a SPAN source port.
To globally disable 802.1X on the switch, you must disable it on each port. There is no global configuration command for this task.
\begin{tabular}{ll} 
Examples & This example shows how to enable 802.1X on Gigabit Ethernet 1/1: \\
\begin{tabular}{l} 
Switch (config) \# interface gigabitethernet1/1 \\
Switch (config-if) \# dot1x port-control auto \\
Switch\#
\end{tabular}
\end{tabular}

You can verify your settings by using the show dot1x all or show dot1x interface int commands to show the port-control status. An enabled status indicates that the port-control value is set either to auto or to force-unauthorized.
\begin{tabular}{lll}
\(\overline{\text { Related Commands }} \quad\)\begin{tabular}{ll} 
Command & Description \\
\cline { 2 - 3 } show dot1x & Displays dot1x information. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{dot1x re-authenticate}

To manually initiate a reauthentication of all 802.1X-enabled ports or the specified 802.1X-enabled port, use the dot1x re-authenticate command.
dot1x re-authenticate [interface interface-id]

\section*{Syntax Description}

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

You can use this command to reauthenticate a client without waiting for the configured number of seconds between reauthentication attempts (re-authperiod) and automatic reauthentication.

This example shows how to manually reauthenticate the device connected to Gigabit Ethernet interface \(1 / 1\) :
```

Switch\# dot1x re-authenticate interface gigabitethernet1/1
Starting reauthentication on gigabitethernet1/1
Switch\#

```

\section*{dot1x re-authentication}

To enable the periodic reauthentication of the client, use the dot1x re-authentication command. To return to the default setting, use the no form of this command.
dot1x re-authentication
no dot1x re-authentication
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

You configure the amount of time between the periodic reauthentication attempts by using the dot \(1 \mathbf{x}\) timeout re-authperiod global configuration command.

\section*{Examples}

This example shows how to disable the periodic reauthentication of the client:
```

Switch(config-if)\# no dot1x re-authentication

```
Switch(config-if) \#

This example shows how to enable the periodic reauthentication and set the number of seconds between the reauthentication attempts to 4000 seconds:
```

Switch(config-if)\# dot1x re-authentication
Switch(config-if)\# dot1x timeout re-authperiod 4000
Switch\#

```

You can verify your settings by entering the show dot1x privileged EXEC command.

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x timeout & Sets the reauthentication timer. \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x system-auth-control}

To enable 802.1X authentication on the switch, use the dot1x system-auth-control command. To disable 802.1X authentication on the system, use the no form of this command.

\section*{dot1x system-auth-control}
no dot1x system-auth-control
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

The 802.1X authentication is disabled.

Command Modes Global configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Usage Guidelines
You must enable dot1x system-auth-control if you want to use the 802.1 X access controls on any port on the switch. You can then use the dot1x port-control auto command on each specific port on which you want the 802.1 X access controls to be used.

\section*{Examples}

This example shows how to enable 802.1X authentication:
Switch(config) \# dot1x system-auth-control
Switch(config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x initialize & Unauthorizes an interface before reinitializing 802.1X. \\
\hline show dot1x & Displays dot1x information. \\
\hline
\end{tabular}

\section*{dot1x timeout}

To set the reauthentication timer, use the dot1x timeout command. To return to the default setting, use the no form of this command.
```

dot1x timeout \{reauth-period \{seconds| server\}| quiet-period seconds |tx-period seconds |
supp-timeout seconds \mid server-timeout seconds $\}$
no dot1x timeout \{reauth-period | quiet-period | tx-period | supp-timeout | server-timeout \}

```

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline reauth-period seconds & \begin{tabular}{l} 
Number of seconds between reauthentication attempts; valid values are \\
from 1 to 65535. See the "Usage Guidelines" section for more \\
information.
\end{tabular} \\
\hline reauth-period server & \begin{tabular}{l} 
Number of seconds between reauthentication attempts; valid values are \\
from 1 to 65535 as derived from the Session-Timeout RADIUS attribute. \\
See the "Usage Guidelines" section for more information.
\end{tabular} \\
\hline quiet-period seconds & \begin{tabular}{l} 
Number of seconds that the switch remains in the quiet state following \\
a failed authentication exchange with the client; valid values are from 0 \\
to 65535 seconds.
\end{tabular} \\
\hline tx-period seconds & \begin{tabular}{l} 
Number of seconds that the switch waits for a response to an \\
EAP-request/identity frame from the client before retransmitting the \\
request; valid values are from 1 to 65535 seconds.
\end{tabular} \\
\hline supp-timeout seconds & \begin{tabular}{l} 
Number of seconds that the switch waits for the retransmission of \\
EAP-Request packets; valid values are from 30 to 65535 seconds.
\end{tabular} \\
\hline server-timeout seconds & \begin{tabular}{l} 
Number of seconds that the switch waits for the retransmission of \\
packets by the back-end authenticator to the authentication server; valid \\
values are from 30 to 65535 seconds.
\end{tabular} \\
\hline
\end{tabular}

The default settings are as follows:
- Reauthentication period is 3600 seconds.
- Quiet period is 60 seconds.
- Transmission period is 30 seconds.
- Supplicant timeout is 30 seconds.
- Server timeout is 30 seconds.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline \(12.2(25) \mathrm{EWA}\) & Support for selecting the reauthentication timer from the "server" was added. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) The periodic reauthentication must be enabled before entering the dot1x timeout re-authperiod command. Enter the dot1x re-authentication command to enable periodic reauthentication.

\section*{Examples}

This example shows how to set 60 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before retransmitting the request:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z
Switch(config)\# interface fastethernet4/3
Switch(config-if) \# dot1x timeout tx-period 60
Switch(config-if)\# end
Switch\#

```

You can verify your settings by entering the show dot1x privileged EXEC command.
This example shows how to set up the switch to use a reauthentication timeout derived from a Session-Timeout attribute taken from the RADIUS Access-Accept message received when a host successfully authenticates via 802.1X:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet4/3
Switch(config-if)\# dot1x timeout reauth-period server
Switch(config-if)\# end
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline dot1x initialize & Unauthorizes an interface before reinitializing 802.1X. \\
\hline show dot1x & Displays dot 1x information. \\
\hline
\end{tabular}

\section*{duplex}
\begin{tabular}{llll} 
Syntax Description & & auto & Specifies the autonegotiation operation. \\
& \begin{tabular}{lll} 
full & Specifies the full-duplex operation. \\
& half & Specifies the half-duplex operation. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

Interface configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Table 2-1 lists the supported command options by interface.

Table 2-1 Supported duplex Command Options
\begin{tabular}{l|l|l|l}
\hline Interface Type & \begin{tabular}{l} 
Supported \\
Syntax
\end{tabular} & Default Setting & Guidelines \\
\hline \(10 / 100-\) Mbps module & \begin{tabular}{l} 
duplex [half I \\
full]
\end{tabular} & half & \begin{tabular}{l} 
If the speed is set to auto, you will \\
not be able to set the duplex mode. \\
If the speed is set to 10 or 100, and \\
you do not configure the duplex \\
setting, the duplex mode is set to half \\
duplex.
\end{tabular} \\
\hline \begin{tabular}{l} 
100-Mbps fiber \\
modules
\end{tabular} & \begin{tabular}{l} 
duplex [half | \\
full]
\end{tabular} & half & Not supported. \\
\hline \begin{tabular}{l} 
Gigabit Ethernet \\
Interface
\end{tabular} & Nopported. & \begin{tabular}{l} 
Gigabit Ethernet interfaces are set to \\
full duplex.
\end{tabular} \\
\hline \(10 / 100 / 1000\) & \begin{tabular}{l} 
duplex [half I \\
full]
\end{tabular} & & \begin{tabular}{l} 
If the speed is set to auto or 1000, \\
you will not be able to set duplex. \\
If the speed is set to \(\mathbf{1 0}\) or 100, and \\
you do not configure the duplex \\
setting, the duplex mode is set to half \\
duplex.
\end{tabular} \\
\hline
\end{tabular}

If the transmission speed on a 16 -port RJ-45 Gigabit Ethernet port is set to \(\mathbf{1 0 0 0}\), the duplex mode is set to full. If the transmission speed is changed to \(\mathbf{1 0}\) or \(\mathbf{1 0 0}\), the duplex mode stays at full. You must configure the correct duplex mode on the switch when the transmission speed changes to \(\mathbf{1 0}\) or \(\mathbf{1 0 0}\) from 1000 Mbps .

Changing the interface speed and duplex mode configuration might shut down and reenable the interface during the reconfiguration.

Table 2-2 describes the system performance for different combinations of the duplex and speed modes. The specified duplex command that is configured with the specified speed command produces the resulting action shown in the table.

Table 2-2 Relationship Between duplex and speed Commands
\begin{tabular}{l|l|l}
\hline duplex Command & speed Command & Resulting System Action \\
\hline duplex half or duplex full & speed auto & Autonegotiates both speed and duplex modes \\
\hline duplex half & speed \(\mathbf{1 0}\) & Forces 10 Mbps and half duplex \\
\hline duplex full & speed \(\mathbf{1 0}\) & Forces 10 Mbps and full duplex \\
\hline duplex half & speed \(\mathbf{1 0 0}\) & Forces 100 Mbps and half duplex \\
\hline duplex full & speed \(\mathbf{1 0 0}\) & Forces 100 Mbps and full duplex \\
\hline duplex full & speed \(\mathbf{1 0 0 0}\) & Forces 1000 Mbps and full duplex \\
\hline
\end{tabular}

Examples
This example shows how to configure the interface for full-duplex operation:
Switch(config-if) \# duplex full
Switch(config-if) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline speed & Configures the interface speed. \\
\hline \begin{tabular}{l} 
interface (refer to Cisco IOS \\
documentation)
\end{tabular} & Configures an interface. \\
\hline \begin{tabular}{l} 
show controllers (refer to Cisco IOS \\
documentation)
\end{tabular} & Displays controller information. \\
\hline show interfaces & Displays interface information. \\
\hline
\end{tabular}

\section*{energywise (global configuration)}

Use the energywise global configuration command to enable and configure EnergyWise on an entity. Use the no form of this command to disable EnergyWise on the entity and remove the EnergyWise configuration.
energywise \{importance importance | keywords word,word,... | level level | management tcp-port-number \(\mid\) name name | neighbor hostname \(\mid\) ip-address udp-port-number \(\mid\) role role \(\}\)
no energywise \{importance | keywords | level| management | name | neighbor | role\}

Syntax Description
importance importance Sets the importance of the entity.
The range is from 1 to 100 .
keywords word,word,... Assigns at least one keyword for the entity.
When assigning multiple keywords, separate the keywords with commas, and do not use spaces between keywords.
For the word value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&
- Do not use an asterisk (*) or a blank space between the characters and symbols.
\begin{tabular}{ll}
\hline level level & Sets the power level of the entity. \\
& The only valid value is 10.
\end{tabular}
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&
- Do not use an asterisk (*) or a blank space between the characters and symbols.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
neighbor hostname | \\
ip-address \\
udp-port-number
\end{tabular} & \begin{tabular}{l}
Assigns a static neighbor. \\
- Hostname (hostname) or IP address (ip-address). \\
- UDP port (udp-port-number) that sends and receives queries. The range is from 1 to 65000 .
\end{tabular} \\
\hline role role & Specifies the role of the entity in the EnergyWise domain. For example, lobby.b20. \\
\hline & For the role value: \\
\hline
\end{tabular}
- You can enter alphanumeric characters and symbols such as \#, , , \%, ! or \&
- Do not use an asterisk (*) or a blank space between the characters and symbols.

\section*{Defaults}

The importance is 1 .
No keywords are defined.
The power level is 10 .
The tcp-port-number is 43440 .
The name is the hostname.
No neighbors are assigned.
The role is the model number.

Configuration

\section*{Command History}

Usage Guidelines

Examples

Related Commands

This example shows how to enable EnergyWise, assign the entity to a domain, and set the password:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# energywise domain cisco secret cisco protocol udp port 43440 ip 2.2.4.30
Switch(config)\# energywise importance 50
Switch(config)\# energywise keywords lab1,devlab
Switch(config)\# energywise management 60500
Switch(config)\# energywise name Entity01
Switch(config)\# energywise neighbor 4500-21 43440
Switch(config)\# energywise role role.lobbyaccess
Switch(config)\# end

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show energywise & Displays the EnergyWise settings and status. \\
\hline
\end{tabular}

\section*{energywise (interface configuration)}

Use the energywise interface configuration command to configure EnergyWise on the power over Ethernet (PoE) port. Use the no form of this command to disable EnergyWise on the port and remove the EnergyWise configuration.
energywise [importance importance I keywords word,word,... I level level [recurrence at minute hour day_of_month month day_of_week] I name name I role role]
no energywise

Syntax Description
importance importance (Optional) Sets the importance of the port.
The range is from 1 to 100 .
keywords word,word,... (Optional) Assigns at least one keyword for the port.
When assigning multiple keywords, separate the keywords with commas, and do not use spaces between keywords.

For the word value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&
- Do not use an asterisk \(\left(^{*}\right)\) or a blank space between the characters and symbols.
level level (Optional) Sets the power level of the port.
The only valid values are 0 and 10 .
recurrence importance importance at minute hour day_of_month month day_of_week
(Optional) Schedules the power-on or power-off recurrence.
- importance importance-Sets the importance of the port in the domain. The range is from 1 to 100 .
- minute-The range is from 0 to 59 . Use * for the wildcard.
- hour-The range is from 0 to 23 . Use \(*\) for the wildcard.
- day_of_month—The range is from 1 to 31 . Use * for the wildcard.
- month-The range is from 1 to 12 . You can also enter jan, feb, mar, apr, and so on. Use * for the wildcard.
- day_of_week-The range is from 0 to 7 ( 0 and 7 both represent Sunday). Use * for the wildcard.

Note The specified times are local times based on the PoE-entity time zone.

Note If the day of the month and day of the week are both specified, (that is, are not woldcards), the recurrence is executed when either field matches the current time.

Note Recurrence takes effect within the minute specified, rather than exactly on the minute; it could occur as much as 60 seconds late.
name name
(Optional) Specifies the EnergyWise-specific port name.
For the name value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&
- Do not use an asterisk \(\left(^{*}\right)\) or a blank space between the characters and symbols.
role role
(Optional) Specifies the role of the port in the domain. For example, lobbyport.

For the role value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&.
- Do not use an asterisk \(\left({ }^{*}\right)\) or a blank space between the characters and symbols.

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History

\section*{Usage Guidelines}

To return the importance and level values to the default settings, use the default energywise importance and the default energywise level commands.

\section*{Examples}

This example shows how to enable and configure EnergyWise on the PoE port:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# energywise domain cisco secret cisco protocol udp port 43440 ip 2.2.4.30
Switch(config)\# interface Gi1.2
Switch(config-if)\# energywise level 10 recurrence importance 90 at 0 8 * * *
Switch(config-if)\# energywise level 0 recurrence importance 90 at 0 20 * * *
Switch(config-if)\# energywise inportance 50
Switch(config-if)\# energywise name lobbyInterface.3
Switch(config-if)\# energywise role role.lobbyaccess
Switch(config-if)\# end
Note Recurrence takes effect within the minute specified, rather than exactly on the minute; it could occur as much as 60 -seconds late.

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show energywise & Displays the EnergyWise settings and status. \\
\hline
\end{tabular}

\section*{energywise domain}

Use the energywise domain global configuration command to enable EnergyWise on the entity, assign the entity to a domain, and set the password for secure communication among the entities in the domain. Use the no form of this command to disable EnergyWise on the entity and to remove the EnergyWise configuration.

\section*{energywise domain domain-name secret [0|7] password [protocol udp port udp-port-number}
[interface interface-id \(\mid \mathbf{i p}\) ip-address]]

\section*{no energywise domain}

Syntax Description
domain domain-name Assigns the entity to a domain with the specified domain-name.
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&.
- Do not use an asterisk \((*)\) or a blank space between the characters and symbols.
secret [0|7] password Sets the password for secure communication among the entities in the domain.
- (Optional) 0-Use an unencrypted password.
- (Optional) 7-Use an hidden password. This requires service password-encryption to be enabled.

If you do not enter \(\mathbf{0}\) or \(\mathbf{7}\), the entity uses the default value of 0 .
For the password value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&
- Do not use an asterisk (*) or a blank space between the characters and symbols.
port \(u d p\)-port-number (Optional) Specifies the UDP port that sends and receives queries.
The range is from 1 to 65000 .
interface interface-id (Optional) In a bridged network, specifies the interface that you would prefer for communicating with other EnergyWise switches rather than letting the switch select an interface by default.
ip ip-address
(Optional) In a routed network, specifies the IP address to be used while communicating with EnergyWise peers instead of letting the system choose a default.

The interface and ip options are mutually exclusive.

The entity is not assigned to a domain.
The password is not set.
The udp-port-number is 43440 .

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

\section*{Related Commands}

Configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52) \mathrm{SG}\) & This command was introduced. \\
\hline
\end{tabular}

If you enter the energywise domain domain-name secret [0|7] password command, the entity selects the first available interface to communicate with the network and with management applications.

This example shows how to enable EnergyWise and how to set the domain-name and password values:. Switch(config)\# energywise domain cisco secret cisco protocol udp port 43440 ip 2.2.4.30

This example shows how to enable EnergyWise and to specify the route to the management applications:
Switch(config) \# energywise domain cisco secret 0 cisco protocol udp port 43440 ip 192.168.1.2
\begin{tabular}{ll}
\hline Command & Description \\
\hline show energywise & Displays the EnergyWise settings and status. \\
\hline
\end{tabular}

\section*{energywise query}

Use the energywise query privileged EXEC command to run a query to display power information or to power the entities or PoE ports.
energywise query importance importance \(\{\) keywords word,word,... I name name\} collect \(\{\) delta | usage \}
energywise query importance importance \(\{\) keywords word,word,... I name name\} set level level energywise query importance importance \(\{\) keywords word, word,... I name name\} sum \{delta | usage \}

\section*{Syntax Description}

\section*{importance importance Sets the importance of the entity or ports. \\ The range is from 1 to 100 .}
keywords word,word,... Specifies one of more keywords to use in the query.
When specifying multiple keywords, separate the keywords with commas, and do not use spaces between keywords.

For the word value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&.
- Do not use an asterisk \(\left({ }^{*}\right)\) or a blank space between the characters and symbols.

\section*{name name}

Name to use in the query.
For the wildcard, use * or name* with the asterisk at the end of the name.
For the name value:
- You can enter alphanumeric characters and symbols such as \#, (, \%, ! or \&.
- Do not use an asterisk \(\left({ }^{*}\right)\) or a blank space between the characters and symbols.
collect \(\{\) delta | usage \(\} \quad\) Displays the delta or usage values for the entity or PoE ports.
- delta-Displays only the differences between the current and available power levels.
- usage-Displays only the current power usage.
\begin{tabular}{ll} 
set level level & Sets the power level of the entity or the PoE ports. \\
& For the entity, the only valid value is 10. \\
& For the ports, the valid values are 0 and 10. \\
\hline sum \(\{\) delta \(\mid\) usage \(\}\) & Displays the sum of the delta or usage values for the entity or PoE ports.
\end{tabular}
- delta-Displays only the sum of the differences between the current and available power levels .
- usage-Displays only the sum of the current power usage.

\section*{Command Modes}

Privileged EXEC

To power on or power off ports, enter the energywise query \{keywords word,word,... | name name\} set level level command.


Use this query with care because it affects the entity on which you enter the command and other devices in the domain that match the query criteria.

\section*{Examples}

These examples show how to filter with the entity name:

```

12.9 (W)
Queried: 10 Responded: 10 Time: 0.6 seconds

```

This example shows the sum of the delta values and the potential power change in the domain:


This example shows the power levels in the domain:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Switch\# show energywise children} \\
\hline Interface & Role & Name & Usage & & Lvl & Imp & Type \\
\hline & -- & - & & & --- & --- & ---- \\
\hline & control & SwitchA & 86.0 & (W) & 10 & 100 & parent \\
\hline Gi1/0/1 & interface & Gi1.0.1 & 0.0 & (W) & 10 & 20 & child \\
\hline \multicolumn{8}{|l|}{.} \\
\hline \multicolumn{8}{|l|}{-} \\
\hline \multicolumn{8}{|l|}{} \\
\hline Gi1/0/6 & interface & Gi1.0.6 & 0.0 & (W) & 10 & 20 & child \\
\hline Gi1/0/7 & role.lobbyaccess & lobbyInterface. 7 & 0.0 & (W) & 10 & 50 & child \\
\hline Gi1/0/8 & interface & Gi1.0.8 & 0.0 & (W) & 10 & 20 & child \\
\hline \multicolumn{8}{|l|}{<output truncated>} \\
\hline \multicolumn{8}{|l|}{Switch\# energywise query importance 100 name * set level 0} \\
\hline \multicolumn{8}{|l|}{EnergyWise query, timeout is 3 seconds:} \\
\hline \multicolumn{8}{|l|}{Success rate is (0/0) setting entities} \\
\hline \multicolumn{8}{|l|}{Queried: 0 Responded: 0 Time: 0.996 seconds} \\
\hline \multicolumn{8}{|l|}{Switch\# energywise query importance 100 name * set level 10} \\
\hline \multicolumn{8}{|l|}{EnergyWise query, timeout is 3 seconds:} \\
\hline \multicolumn{8}{|l|}{!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!} \\
\hline \multicolumn{8}{|l|}{!!!!!!} \\
\hline \multicolumn{8}{|l|}{Success rate is (48/48) setting entities} \\
\hline
\end{tabular}

This example shows how to assign keywords on entities:
```

Switch(config)\# interface Gi1/2
Switch(config-if)\# energywise keywords lobby,sattelite
Switch(config-if)\# energywise keywords public
Switch(config-if)\# end
Switch\# show running-config interface gigabitethernet1/0/2
!
interface GigabitEthernet1/2
energywise level 0 recurrence importance 90 at 0 8 * * *
energywise level 10 recurrence importance 90 at 0 20 * * *

```
```

energywise importance 50
energywise role role.lobbyaccess
energywise keywords lobby,sattelite,public
energywise name lobbyInterface.2
end
Switch\# energywise query keyword lobby collect usage
EnergyWise query, timeout is 3 seconds:
Host Name Ne
2.2.4.30 lobbyInterface.17 15.4 (W)
Queried: 1 Responded: 1 Time: 0.0 seconds
Switch\# energywise query keyword satellite sum usage
EnergyWise query, timeout is 3 seconds:
Total Usage

15.4 (W)
Queried: 1 Responded: 1 Time: 0.11 seconds

```

\section*{erase}

Syntax Description

Defaults

\section*{Command Modes}

Command History

To erase a file system, use the erase command.
erase \{/all [non-default | nvram:] | cat4000_flash | nvram: | startup-config\}
\begin{tabular}{ll}
\hline /all nvram: & Erases everything in nvram:. \\
\hline /all non-default & \begin{tabular}{l} 
Erases files and configuration in nonvolatile storage including \\
nvram:, bootflash:, cat4000_flash:, and crashinfo: of the local \\
supervisor engine. Resets the Catalyst 4500 series switch to the \\
factory default settings.
\end{tabular} \\
& Note \(\quad\)\begin{tabular}{l} 
This command option is intended to work only on a \\
standalone supervisor engine.
\end{tabular} \\
\hline cat4000_flash: & Erases the VLAN database configuration file. \\
\hline nvram: & Erases the startup-config and private-config file in NVRAM. \\
\hline startup-config: & Erases the startup-config and private-config file in NVRAM. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

When you use the erase command to erase a file system, you cannot recover the files in the file system.

In addition to the command options shown above, options with the prefix slave that are used to identify nvram: and flash (such as slavenvram: and slavecat4000_flash:) appear in the command help messages on the dual supervisor engine redundancy switch.

The erase nvram: command replaces the write erase and the erase startup-confg commands. This command erases both the startup-config and the private-config file.
The erase /all nvram: command erases all files in nvram: in addition to startup-config file and private-config file.

The erase cat4000_flash: command erases the VLAN database configuration file.
The erase /all non-default command facilitates the work of a manufacturing facility and repair center. It erases the configuration and states stored in the nonvolatile storage and resets the Catalyst 4500 series switch to the factory default settings. The default settings include those mentioned in the Cisco IOS library as well as those set by the erase /all non-default command (vtp mode=transparent, and the ROMMON variables: ConfigReg=0x2101, PS1= "rommon! >" and EnableAutoConfig=1).

For the default settings, refer to these guides:
- Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2, at this URL: http://www.cisco.com/en/US/docs/ios/fundamentals/configuration/guide/12_4/cf_12_4_book.html
- Cisco IOS Configuration Fundamentals Configuration Command Reference, Release 12.2, at this URL:
http://www.cisco.com/en/US/docs/ios/12_2/configfun/command/reference/ffun_r.html

The erase /all non-default command can erase Cisco IOS images in bootflash:. Ensure that a Cisco IOS image can be copied back to the bootflash: (such as, from a accessible TFTP server or a flash card inserted in slot0:) (available on most chassis models), or that the switch can boot from a image stored in an accessible network server.

\section*{Examples}

This example shows how to erase the files and configuration in a nonvolatile storage and reset the switch to factory default settings:
```

Switch\# erase /all non-default
Switch\#
Erase and format operation will destroy all data in non-volatile storage. Continue?
[confirm]
Formatting bootflash: ...
Format of bootflash complete
Erasing nvram:
Erasing cat4000_flash:
Clearing crashinfo:data
Clearing the last power failure timestamp
Clearing all ROMMON variables
Setting default ROMMON variables:
ConfigReg=0x2101
PS1=rommon ! >
EnableAutoConfig=1
Setting vtp mode to transparent
%WARNING! Please reboot the system for the changes to take effect
Switch\#
00:01:48: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
Switch\#

```

This example shows how to erase the contents in nvram.
```

Switch\# erase /all nvram:
Erasing the nvram filesystem will remove all files! Continue? [confirm]
[OK]
Erase of nvram: complete
Switch\#
00:38:10: %SYS-7-NV_BLOCK_INIT: Initalized the geometry of nvram
Switch\#

```

This example shows how to erase filesystem cat4000_flash.
```

Switch\# erase cat4000_flash:
Erasing the cat4000_flash filesystem will remove all files! Continue? [confirm]
[OK]
Erase of cat4000_flash:complete
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
\begin{tabular}{l} 
boot config (refer to Cisco IOS \\
documentation)
\end{tabular} \\
\begin{tabular}{l} 
delete (refer to Cisco IOS \\
documentation)
\end{tabular} \\
\begin{tabular}{ll} 
show bootvar
\end{tabular} \\
\begin{tabular}{l} 
undelete (refer to Cisco IOS \\
documentation)
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Specifies the device and filename of the configuration file. \\
\hline
\end{tabular} & \begin{tabular}{l} 
Recovers a file marked "deleted" on a Class a flash file from a flash memory device or NVRAM. \\
system.
\end{tabular} \\
\hline
\end{tabular}

\section*{errdisable detect}

To enable error-disable detection, use the errdisable detect command. To disable the error-disable detection feature, use the no form of this command.
errdisable detect cause \{all | arp-inspection [action shutdown vlan] | bpduguard shutdown vlan | dhep-rate-limit [action shutdown vlan] | dtp-flap | gbic-invalid | 12 ptguard | link-flap | pagp-flap\}
no errdisable detect cause \{all| arp-inspection [action shutdown vlan] | bpduguard shutdown vlan | dhep-rate-limit [action shutdown vlan] | dtp-flap | gbic-invalid | 12ptguard | link-flap | pagp-flap\}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{11}{*}{Syntax Description} & cause & Specifies error-disable detection to detect a specific cause. \\
\hline & all & Specifies error-disable detection for all error-disable causes. \\
\hline & arp-inspection & Specifies the detection for the ARP inspection error-disable cause. \\
\hline & action shutdown vlan & (Optional) Specifies per-VLAN error-disable for ARP inspection and DHCP rate limiting. \\
\hline & bpduguard shutdown vlan & Specifies per-VLAN error-disable for BPDU guard. \\
\hline & dhcp-rate-limit & Specifies the detection for the DHCP rate-limit error-disable cause. \\
\hline & dtp-flap & Specifies the detection for the DTP flap error-disable cause. \\
\hline & gbic-invalid & Specifies the detection for the GBIC invalid error-disable cause. \\
\hline & 12ptguard & Specifies the detection for the Layer 2 protocol-tunnel error-disable cause. \\
\hline & link-flap & Specifies the detection for the link flap error-disable cause. \\
\hline & pagp-flap & Specifies the detection for the PAgP flap error-disable cause. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

Global configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(52) \mathrm{SG}\) & Added support for per-VLAN error-disable detection. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

A cause (dtp-flap, link-flap, pagp-flap) is defined as the reason why the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in error-disabled state (an operational state that is similar to link-down state).
You must enter the shutdown command and then the no shutdown command to recover an interface manually from the error-disable state.

To prevent the port from shutting down, you can use the shutdown vlan option to shut down just the offending VLAN on the port where the violation occured. This option is available for the following three causes: bpduguard, arp-inspection, and dhcp-rate-limit. You can use the clear errdisable command to recover disabled VLANs on a port.

\section*{Examples}

This example shows how to enable error-disable detection for the link-flap error-disable cause:
```

Switch(config)\# errdisable detect cause link-flap
Switch(config)\#

```

This example shows how to enable per-VLAN error-disable detection for BPDU guard:
```

Switch(config)\# errdisable detect cause bpduguard shutdown vlan
Switch(config)\#

```

This example shows how to disable error-disable detection for DAI:
```

Switch(config)\# no errdisable detect cause arp-inspection
Switch(config)\# end
Switch\# show errdisable detect
ErrDisable Reason Detection Mode
----------------- ---------- ------
arp-inspection Enabled port
bpduguard Enabled vlan
channel-misconfig Enabled port
dhcp-rate-limit Enabled port
dtp-flap Enabled port
gbic-invalid Enabled port
psecure-violation Enabled port/vlan
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show errdisable detect & Displays the error disable detection status. \\
\hline show interfaces status & \begin{tabular}{l} 
Displays the interface status or a list of interfaces in \\
error-disabled state.
\end{tabular} \\
\hline
\end{tabular}

\section*{errdisable recovery}

To configure the recovery mechanism variables, use the errdisable recovery command. To return to the default setting, use the no form of this command.
errdisable recovery [cause \{all| arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | 12 ptguard | link-flap | pagp-flap | pesecure-violation | security-violation | storm-control| udld | unicastflood | vmps \} [arp-inspection] [interval \{interval \(\}]]\)
no errdisable recovery [cause \{all|arp-inspection | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | 12 ptguard | link-flap | pagp-flap | pesecure-violation | security-violation | storm-control | udld | unicastflood | vmps \} [arp-inspection] [interval \{interval \(\}]\) ]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline cause & (Optional) Enables the error-disable recovery to recover from a specific cause. \\
\hline all & (Optional) Enables the recovery timers for all error-disable causes. \\
\hline arp-inspection & (Optional) Enables the recovery timer for the ARP inspection cause. \\
\hline bpduguard & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the BPDU guard error-disable \\
cause.
\end{tabular} \\
\hline channel-misconfig & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the channel-misconfig error-disable \\
cause.
\end{tabular} \\
\hline dhcp-rate-limit & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the DHCP rate limit error-disable \\
cause.
\end{tabular} \\
\hline dtp-flap & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the DTP flap error-disable cause. \\
(Optional) Enables the recovery timer for the GBIC invalid error-disable \\
cause.
\end{tabular} \\
\hline gbic-invalid & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the Layer 2 protocol-tunnel \\
error-disable cause.
\end{tabular} \\
\hline (Optguard & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the link flap error-disable cause.
\end{tabular} \\
\hline (Onk-flap & \begin{tabular}{l} 
(Optional) Enables the recovery timer for the PAgP flap error-disable cause. \\
cause.
\end{tabular} \\
\hline pagp-flap & \begin{tabular}{l} 
(Optional) Enables the automatic recovery of ports disabled due to 802.1X \\
security violations.
\end{tabular} \\
\hline (Optional) Enables the timer to recover from storm-control error-disable state.
\end{tabular}

Error disable recovery is disabled.
The recovery interval is set to 300 seconds.

\section*{Command Modes Global configuration mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(19) \mathrm{EW}\) & Support for the storm-control feature.
\end{tabular}

Usage Guidelines A cause (bpduguard, dtp-flap, link-flap, pagp-flap, udld) is defined as the reason why the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in error-disabled state (an operational state that is similar to the link-down state). If you do not enable error-disable recovery for the cause, the interface stays in the error-disabled state until a shutdown and no shutdown occurs. If you enable recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry operation again once all the causes have timed out.

You must enter the shutdown command and then the no shutdown command to recover an interface manually from error disable.

This example shows how to enable the recovery timer for the BPDU guard error disable cause:
```

Switch(config)\# errdisable recovery cause bpduguard
Switch(config)\#

```

This example shows how to set the timer to 300 seconds:
```

Switch(config)\# errdisable recovery interval 300
Switch(config)\#

```

This example shows how to enable the errdisable recovery for arp-inspection:
```

Switch(config)\# errdisable recovery cause arp-inspection
Switch(config)\# end
Switch\# show errdisable recovery
ErrDisable Reason Timer Status

udld Disabled
bpduguard Disabled
security-violatio Disabled
channel-misconfig Disabled
vmps Disabled
pagp-flap Disabled
dtp-flap Disabled
link-flap Disabled
l2ptguard Disabled
psecure-violation Disabled
gbic-invalid Disabled
dhcp-rate-limit Disabled
unicast-flood Disabled
storm-control Disabled
arp-inspection Enabled

```
\begin{tabular}{ll} 
& Timer interval: 300 seconds \\
& Interfaces that will be enabled at the next timeout: \\
Switch\# & \\
\hline Related Commands & \begin{tabular}{ll} 
Command & Description \\
\hline & show errdisable detect \\
\hline show interfaces status & Displays the error disable detection status. \\
&
\end{tabular} \\
& \begin{tabular}{l} 
Displays error disable recovery timer information. \\
error-disabled state.
\end{tabular} \\
\hline
\end{tabular}

\section*{flowcontrol}

To configure a Gigabit Ethernet interface to send or receive pause frames, use the flowcontrol command.
To disable the flow control setting, use the no form of this command.
```

flowcontrol {receive | send}{off | on | desired}
no flowcontrol {receive | send}{off | on | desired}

```
\begin{tabular}{ll}
\hline receive & Specifies that the interface processes pause frames. \\
\hline send & Specifies that the interface sends pause frames. \\
\hline off & \begin{tabular}{l} 
Prevents a local port from receiving and processing pause frames from remote ports or \\
from sending pause frames to remote ports.
\end{tabular} \\
\hline on & \begin{tabular}{l} 
Enables a local port to receive and process pause frames from remote ports or send \\
pause frames to remote ports.
\end{tabular} \\
\hline desired & Obtains predictable results whether a remote port is set to on, off, or desired. \\
\hline
\end{tabular}

\section*{Defaults}

The default settings for Gigabit Ethernet interfaces are as follows:
- Sending pause frames is off—Non-oversubscribed Gigabit Ethernet interfaces.
- Receiving pause frames is desired-Non-oversubscribed Gigabit Ethernet interfaces.
- Sending pause frames is on-Oversubscribed Gigabit Ethernet interfaces.
- Receiving pause frames is desired—Oversubscribed Gigabit Ethernet interfaces.

Table 2-3 shows the default settings for the modules.
Table 2-3 Default Module Settings
\begin{tabular}{l|l|l}
\hline Module & Ports & Send \\
\hline \begin{tabular}{l} 
All modules except \\
WS-X4418-GB and \\
WS-X4416-2GB-TX
\end{tabular} & \begin{tabular}{l} 
All ports except for the \\
oversubscribed ports
\end{tabular} & Off \\
\hline WS-X4418-GB & Uplink ports (1-2) & Off \\
\hline WS-X4418-GB & Oversubscribed ports (3-18) & On \\
\hline WS-X4412-2GB-TX & Uplink ports (13-14) & Off \\
\hline WS-X4412-2GB-TX & Oversubscribed ports (1-12) & On \\
\hline WS-X4416-2GB-TX & Uplink ports \((17-18)\) & Off \\
\hline
\end{tabular}

\section*{Command Modes}

Interface configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series sw \\
\hline & \\
& Catalyst 4500 Series Switch Cisco IOS Command Reference-Release IOS-XE 3.2.0 SG
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) The pause frames are special packets that signal a source to stop sending frames for a specific period of time because the buffers are full.

Table 2-4 describes the guidelines for using the different configurations of the send and receive keywords with the flowcontrol command.

\section*{Table 2-4 Keyword Configurations for send and receive}
\begin{tabular}{l|l}
\hline Configuration & Description \\
\hline send on & \begin{tabular}{l} 
Enables a local port to send pause frames to remote ports. To obtain \\
predictable results, use send on only when remote ports are set to \\
receive on or receive desired.
\end{tabular} \\
\hline send off & \begin{tabular}{l} 
Prevents a local port from sending pause frames to remote ports. To \\
obtain predictable results, use send off only when remote ports are set \\
to receive off or receive desired.
\end{tabular} \\
\hline send desired & \begin{tabular}{l} 
Obtains predictable results whether a remote port is set to receive on, \\
receive off, or receive desired.
\end{tabular} \\
\hline receive on & \begin{tabular}{l} 
Enables a local port to process pause frames that a remote port sends. \\
To obtain predictable results, use receive on only when remote ports \\
are set to send on or send desired.
\end{tabular} \\
\hline receive off & \begin{tabular}{l} 
Prevents remote ports from sending pause frames to a local port. To \\
obtain predictable results, use send off only when remote ports are set \\
to receive off or receive desired.
\end{tabular} \\
\hline receive desired & \begin{tabular}{l} 
Obtains predictable results whether a remote port is set to send on, \\
send off, or send desired.
\end{tabular} \\
\hline
\end{tabular}

Table 2-5 identifies how the flow control will be forced or negotiated on the Gigabit Ethernet interfaces based on their speed settings.

\section*{Table 2-5 Send Capability by Switch Type, Module, and Port}
\begin{tabular}{l|l|l}
\hline Interface Type & Configured Speed & Advertised Flow Control \\
\hline \(10 / 100 / 1000 B A S E-T X\) & Speed 1000 & Configured flow control always \\
\hline 1000BASE-T & Negotiation always enabled & \begin{tabular}{l} 
Configured flow control always \\
negotiated
\end{tabular} \\
\hline 1000BASE-X & No speed nonegotiation & Configured flow control negotiated \\
\hline 1000BASE-X & Speed nonegotiation & Configured flow control forced \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable send flow control:
```

Switch(config-if)\# flowcontrol receive on
Switch(config-if)\#

```

This example shows how to disable send flow control:
Switch(config-if) \# flowcontrol send off
Switch(config-if) \#

This example shows how to set receive flow control to desired:
Switch(config-if) \# flowcontrol receive desired
Switch(config-if) \#
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Related Commands} & Command & Description \\
\hline & interface port-channel & Accesses or creates a port-channel interface. \\
\hline & interface range & Runs a command on multiple ports at the same time. \\
\hline & show flowcontrol & Displays the per-interface status and statistics related to flow control. \\
\hline & show running-config & Displays the running-configuration for a switch. \\
\hline & speed & Configures the interface speed. \\
\hline
\end{tabular}

\section*{hardware statistics}

To enable TCAM hardware statistics in your ACLs use the hardware statistics command. To disable TCAM hardware statistics, use the no form of this command.
hardware statistics
no hardware statistics

\section*{\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

Supervisor Engine 6-E and Catalyst 4900 M chassis TCAM hardware do not have sufficient hardware statistics entries for every classification/QoS cam entry. Therefore, the statistics for each cam entry needs to be enabled as needed.

\section*{Examples}

This example shows how to enable TCAM hardware statistics in your ACLs ace:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\#ip access-list extended myv4
Switch(config-ext-nacl) \#permit ip any any
Switch(config-ext-nacl)\#hardware statistics
Switch(config-ext-nacl) \#end

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
\\
\end{tabular} \begin{tabular}{ll} 
ip access list (refer to Cisco IOS \\
documentation)
\end{tabular} & Description \\
& \begin{tabular}{l} 
ipv6 access list (refer to Cisco IOS \\
documentation)
\end{tabular} & Creates an IPv6 ACL. \\
& \begin{tabular}{l} 
mac access-list extended
\end{tabular} & Defines the extended MAC access lists. \\
\hline
\end{tabular}

\section*{hw-module port-group}

To select either Gigabit Ethernet or 10-Gigabit Ethernet interfaces on your module, use the hw-module port-group command.
hw-module module number port-group number select [gigabitethernet I tengigabitethernet]

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline module & Specifies a line module. \\
\hline number & Specifies a module which supports TwinGig converter. \\
\hline port-group number & Port group number on a switch. \\
\hline select & Specifies an interface type; valid values are Gigabit Ethernet and \\
& 10-Gigabit Ethernet. \\
\hline gigabitethernet & (Optional) Specifies Gigabit Ethernet. \\
\hline tengigabitethernet & (Optional) Specifies 10-Gigabit Ethernet. \\
\hline
\end{tabular}

10 Gigabit.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.2(40)SG & Support for TwinGig converter module introduced. \\
\hline
\end{tabular}

Support for this command is available on Cisco Catalyst 4500 modules that support TwinGig converter modules, such as the Supervisor Engine 6-E and WS-X4606-10GE-E.

This example shows how to select Gigabit Ethernet interfaces on a WS-X4606-10GE-E using the TwinGig Converter:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# hw-module module 1 port-group 1 select gigabitethernet
Switch(config) \# exit

```

Use the show interfaces status command to display your configuration.

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show hw-module port-group & Displays how the X2 holes on a module are grouped. \\
\hline show interfaces status & \begin{tabular}{l} 
Displays the interface status or a list of interfaces in \\
error-disabled state.
\end{tabular} \\
\hline
\end{tabular}

\section*{hw-module power}

To turn the power off on a slot or line module, use the no hw-module power command. To turn the power back on, use the hw-module power command.

\title{
hw-module [slot | module] number power \\ no hw-module [slot | module] number power
}
\begin{tabular}{llll}
\cline { 3 - 4 } Syntax Description & \(\overline{\text { slot }}\) & (Optional) Specifies a slot on a chassis. \\
\cline { 2 - 3 } module & (Optional) Specifies a line module. \\
\cline { 2 - 3 } number & Slot or module number. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Examples}

Related Commands
\begin{tabular}{llll}
\hline Command History & & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(18) \mathrm{EW}\) & Add slot and module keywords. \\
\hline
\end{tabular}

This example shows how to shut off power to a module in slot 5:
After a boot up, the power is on.

Global configuration mode
```

Switch(config)\# no hw-module slot 5 power

```
```

Switch(config)\# no hw-module slot 5 power

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline clear hw-module slot password & Clears the password on an intelligent line module. \\
\hline
\end{tabular}

\section*{hw-module system max-queue-limit}

To tenables user to change the queue limit for all interfaces globally use the hw-module system max-queue-limit command. To cancel the global setting, use the no form of the command.
hw-module system max-queue-limit max-queue-limit
no hw-module system max-queue-limit max-queue-limit

Syntax Description

Defaults

Command Modes

Command History
\(\overline{\text { Usage Guidelines }}\) This command allows you to change the queue limit for all interfaces globally rather than apply a policy with a queue limit to all the interfcaes

This is a global configuration command. It can be overriden by the per port, per class, queue-limit command.

For a standalone supervisor engine, you must reboot the engine after applying this command. For a redundant supervisor engine, you must enter the redundancy reload shelf command to enforce a reboot on both supervisor engines.

This example shows how to set the queue limit globally to 1024 :
```

Switch> enable
Switch\# configure terminal
Switch(config)\# hw-module system max-queue-limit 1024
Switch(config)\# exit
Switch\# reload (for standalone supervisors)
Switch\# redundancy reload shelf (for reduandancy supervisors in SSO mode)
or
Switch\# redundancy force-switchover (followed by another redundancy force-switchover, for
reduandancy supervisors in RPR mode

```

\section*{hw-module uplink mode shared-backplane}

To change the uplink mode so that you can use all four 10-Gigabit Ethernet ports as blocking ports on the Supervisor Engine 6-E and Catalyst 4900 M chassis when operating in redundant mode, use the hw-module uplink mode shared-backplane command. To disable shared-backplane uplink mode, use the no form of the command.
hw-module uplink mode shared-backplane
no hw-module uplink mode shared-backplane

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
```

Switch(config)\# hw-module uplink mode shared-backplane
A reload of the active supervisor is required to apply the new configuration.
Switch(config) \# exit
Switch\#

```

This example shows how to disable shared-backplane uplink mode:
```

Switch(config)\# no hw-module uplink mode shared-backplane
A reload of the active supervisor is required to apply the new configuration.
Switch(config)\# exit
Switch\#

```

This example shows how to display the current state of uplink-mode:
```

Switch\# show hw-module uplink
Active uplink mode configuration is Default
(will be Shared-backplane after next reload)
A reload of active supervisor is required to apply the new configuration.

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show hw-module uplink & Displays hardware-module uplink information. \\
\hline
\end{tabular}

\section*{hw-module uplink select}

To select the 10-Gigabit Ethernet, or Gigabit Ethernet uplinks on a Supervisor Engine V-10GE in a WS-C4510R chassis, or Supervisor 7L-E in a WS-C4507R chassis, use the hw-module uplink select command.

Supervisor Engine 7L-E is not supported on a ten-slot chassis (WS-C4510R.
hw-module uplink select \{tengigabitethernet | gigabitethernet | all\}
hw-module uplink select \{tengigabitethernet | gigabitethernet (Sup-7L-E only)

\section*{Syntax Description}

\section*{Defaults}

Command Modes

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline tengigabitethernet & (Optional) Specifies the 10-Gigabit Ethernet uplinks. \\
\hline gigabitethernet & (Optional) Specifies the Gigabit Ethernet uplinks.
\end{tabular}
tengigabitethernet

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(25) \mathrm{SG}\) & Support for the all keyword was added. \\
\hline \(15.0(2) \mathrm{XO}\) & \begin{tabular}{l} 
The number of uplink ports for Supervisor Engine 7L-E in a WS-C4507R chassis \\
depends on the supervisor engine mode (single or redundandant) and the uplink \\
mode configuration (1-Gigabit or 10-Gigabit).
\end{tabular}
\end{tabular}

On a Supervisor Engine V-10GE (WS-X4516-10GE) in a 10-slot chassis (Catalyst 4510R and 4510R-E), if a startup configuration with a new uplink mode is copied into flash memory and the system is power cycled, the system will not come up with the new uplink mode. After copying the startup configuration with the new uplink mode into flash memory, the uplink mode must be changed to the new uplink mode through the command interface before the system is power cycled. This ensures that the system comes up in the new uplink mode.

Supervisor Engine V-10GE and Supervisor Engine II+10GE support 10-Gigabit Ethernet and Gigabit Ethernet uplink ports. On the Supervisor Engine II +10 GE , all uplink ports are always available. Similarly, when a Supervisor Engine V-10GE is plugged into a W-C4503, W-4506, or W-4507R chassis, all uplink ports are always available. When a Supervisor Engine V-10GE is plugged into a W-4510R chassis, you can choose to use the 10 -Gigabit Ethernet uplink ports, the Gigabit Ethernet uplink ports,
or all uplink ports. If you choose to use all uplink ports, then the tenth slot will support only the WS-X4302-GB switching linecard. Be aware that this command takes effect only after a reload (after you have executed the redundancy reload shelf command).
Because the uplink selection is programmed into hardware during initialization, changing the active uplinks requires saving the configuration and reloading the switch. When you are configuring a change to the uplinks, the system responds with a message informing you that the switch must be reloaded and suggesting the appropriate command (depending on redundancy mode) to reload the switch.
If you select the all keyword, ensure that the tenth slot is either empty or has a WS-X4302-GB switching module.
A no form of this command does not exist. To undo the configuration, you must configure the uplinks.
For Supervisor Engine 7L-E in a WS-C4507R chassis, the number of uplink options depends on the supervisor engine mode (single or redundandant) and the uplink mode configuration (1-Gigabit or 10-Gigabit)

\section*{Single Supervisor Mode}

In single supervisor mode, Supervisor Engine 7L-E supports the uplink configuration of at most either two 10-Gigabit or four 1-Gigabit ports (Table 2-6).

Table 2-6 Uplink Options for Single Supervisor Mode
\begin{tabular}{|l|l|l|l|l}
\hline Slot 1 & Slot 2 & Slot 3 & Slot 4 & \begin{tabular}{l} 
Speeds Achievable with the Following \\
Combination of Pluggables (Band Width)
\end{tabular} \\
\hline
\end{tabular}

Choose 10-Gigabit operation through the command line interface.
\begin{tabular}{|l|l|l|l|l|}
\hline SFP + & SFP + & - & - & 20 Gbps \\
\hline SFP + & SFP & - & - & 11 Gbps \\
\hline SFP & SFP+ & - & - & 11 Gbps \\
\hline SFP & SFP & - & - & 2 Gbps \\
\hline
\end{tabular}

Choose 1-Gigabit operation through the command line interface.
\begin{tabular}{|l|l|l|l|l|}
\hline SFP & SFP & SFP & SFP & 4 Gbps \\
\hline
\end{tabular}

\section*{Redundant Supervisor Mode}

In redundant supervisor mode, Supervisor Engine 7L-E support \(1+1\) (in 10 -Gigabit mode) and \(2+2\) (in 1-Gigabit mode) (Table 2-7).

No redundancy support exists for slots 3 and 4.

Table 2-7 Uplink Options for Redundant Supervisor Mode
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Active Supervisor Uplink Ports} & \multicolumn{4}{|l|}{Standby Supervisor Uplink Ports} & \\
\hline A1 & A2 & A3 & A4 & B1 & B2 & B3 & B4 & Speeds Achievable with this Combination of Pluggables \\
\hline \multicolumn{9}{|l|}{Choose 10-Gigabit operation through the command line interface.} \\
\hline SFP+ & - & - & - & SFP+ & - & - & - & 20 Gbps \\
\hline SFP+ & - & - & - & SFP & - & - & - & 11 Gbps \\
\hline
\end{tabular}

Table 2-7 Uplink Options for Redundant Supervisor Mode
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Active Supervisor Uplink \\
Ports
\end{tabular} & \multicolumn{5}{|l|}{\begin{tabular}{l} 
Standby Supervisor Uplink \\
Ports
\end{tabular}} & \\
\hline A1 & A2 & A3 & A4 & B1 & B2 & B3 & B4 & \begin{tabular}{l} 
Speeds Achievable with this \\
Combination of Pluggables
\end{tabular} \\
\hline SFP & - & - & - & SFP+ & - & - & - & 11 Gbps \\
\hline SFP & - & - & - & SFP & - & - & - & 2 Gbps \\
\hline Choose 1-Gigabit operation through the command line interface. \\
\hline SFP & SFP & - & - & SFP & SFP & - & - & 4 Gbps \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to select the Gigabit Ethernet uplinks:
```

Switch(config)\# hw-module uplink select gigabitethernet
A reload of the active supervisor is required to apply the new configuration.
Switch(config)\# exit
Switch\#

```

The Gigabit Ethernet uplinks will be active after the next reload.

This example shows how to select the Gigabit Ethernet uplinks in a redundant system in SSO mode:
```

Switch(config) \# hw-module uplink select gigabitethernet
A 'redundancy reload shelf' or power-cycle of chassis is required to apply the new
configuration
Switch(config) \# exit
Switch\#

```

Note The Gigabit Ethernet uplinks will be active after the next reload of the chassis/shelf. Use the redundancy reload shelf command to reload the chassis/shelf.

This example shows how to select the Gigabit Ethernet uplinks in a redundant system in RPR mode:
Switch(config) \# hw-module uplink select gigabitethernet
A reload of the active supervisor is required to apply the new configuration.
Switch(config) \# exit
Switch\#

The Gigabit Ethernet uplinks will be active on a switchover or reload of the active supervisor engine.

This example shows how to select all the uplinks in a redundant system in SSO mode:
```

Switch(config)\# hw-module uplink select all
Warning: This configuration mode may disable slot10.
A 'redundancy reload shelf' or power-cycle of chassis is required to apply the new
configuration.
Switch(config)\# exit
Switch\#

```

If you select the all keyword, only the Drome board will be supported in the tenth slot of the supervisor engine.
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } show hw-module uplink & Displays hardware-module uplink information. \\
\cline { 2 - 4 } &
\end{tabular}

\section*{instance}
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline instance-id & \begin{tabular}{l} 
MST instance to which the specified VLANs are mapped; valid values are \\
from 0 to 15.
\end{tabular} \\
\hline vlans vlan-range & \begin{tabular}{l} 
Specifies the number of the VLANs to be mapped to the specified instance. \\
\\
The number is entered as a single value or a range; valid values are from \\
1 to 4094.
\end{tabular}
\end{tabular}
\(\overline{\text { Defaults }}\) Mapping is disabled.

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

The mapping is incremental, not absolute. When you enter a range of VLANs, this range is added or removed to the existing ones.
Any unmapped VLAN is mapped to the CIST instance.

\section*{Examples}

This example shows how to map a range of VLANs to instance 2 :
```

Switch(config-mst)\# instance 2 vlans 1-100
Switch(config-mst) \#

```

This example shows how to map a VLAN to instance 5:
```

Switch(config-mst)\# instance 5 vlans }110
Switch(config-mst)\#

```

This example shows how to move a range of VLANs from instance 2 to the CIST instance:
```

Switch(config-mst)\# no instance 2 vlans 40-60
Switch(config-mst)\#

```

This example shows how to move all the VLANs mapped to instance 2 back to the CIST instance:
```

Switch(config-mst)\# no instance 2
Switch(config-mst)\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & name & Sets the MST region name. \\
\cline { 2 - 3 } & revision & Sets the MST configuration revision number. \\
\cline { 2 - 3 } show spanning-tree mst & Displays MST protocol information. \\
\cline { 2 - 3 } spanning-tree mst configuration & Enters the MST configuration submode. \\
\hline
\end{tabular}

\section*{interface}

To select an interface to configure and to enter interface configuration mode, use the interface command.
interface type number

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{EW}\) & Extended to include \\
\hline \\
Table 2-8 lists the valid values for type
\end{tabular}
Table 2-8 Valid type Values
\begin{tabular}{l|l}
\hline Keyword & Definition \\
\hline ethernet & Ethernet IEEE 802.3 interface. \\
\hline fastethernet & 100-Mbps Ethernet interface. \\
\hline gigabitethernet & Gigabit Ethernet IEEE 802.3z interface. \\
\hline tengigabitethernet & 10-Gigabit Ethernet IEEE 802.3ae interface. \\
\hline ge-wan & \begin{tabular}{l} 
Gigabit Ethernet WAN IEEE 802.3z interface; supported on Catalyst 4500 \\
series switches that are configured with a Supervisor Engine 2 only.
\end{tabular} \\
\hline pos & \begin{tabular}{l} 
Packet OC-3 interface on the Packet over SONET Interface Processor; \\
supported on Catalyst 4500 series switches that are configured with a \\
Supervisor Engine 2 only.
\end{tabular} \\
\hline atm & \begin{tabular}{l} 
ATM interface; supported on Catalyst 4500 series switches that are \\
configured with a Supervisor Engine 2 only.
\end{tabular} \\
\hline vlan & VLAN interface; see the interface vlan command. \\
\hline port-channel & Port channel interface; see the interface port-channel command. \\
\hline null & Null interface; the valid value is \(\mathbf{0}\). \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Examples & This example shows how to enter the interface configuration mode on the Fast Ethernet interface \(2 / 4\) : \\
& Switch(config) \# interface fastethernet \(2 / 4\) \\
& Switch (config-if) \#
\end{tabular}
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } Rhow interfaces & Displays interface information. \\
\hline
\end{tabular}

\section*{interface port-channel}

To access or create a port-channel interface, use the interface port-channel command.
interface port-channel channel-group

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

You do not have to create a port-channel interface before assigning a physical interface to a channel group. A port-channel interface is created automatically when the channel group gets its first physical interface, if it is not already created.

You can also create the port channels by entering the interface port-channel command. This will create a Layer 3 port channel. To change the Layer 3 port channel into a Layer 2 port channel, use the switchport command before you assign the physical interfaces to the channel group. A port channel cannot be changed from Layer 3 to Layer 2 or vice versa when it contains member ports.

Only one port channel in a channel group is allowed.

\section*{Examples}

The Layer 3 port-channel interface is the routed interface. Do not enable Layer 3 addresses on the physical Fast Ethernet interfaces.

If you want to use CDP, you must configure it only on the physical Fast Ethernet interface and not on the port-channel interface.

This example creates a port-channel interface with a channel-group number of 64:
```

Switch(config)\# interface port-channel 64

```
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline channel-group & Assigns and configures an EtherChannel interface to an \\
& EtherChannel group. \\
\hline show etherchannel & Displays EtherChannel information for a channel. \\
\hline
\end{tabular}

\section*{interface range}

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

To run a command on multiple ports at the same time, use the interface range command.
interface range \(\left\{\right.\) vlan \(\left.v l a n \_i d-v l a n \_i d\right\}\{\) port-range \(\mid\) macro name \(\}\)
\begin{tabular}{ll}
\hline vlan vlan_id - vlan_id & Specifies a VLAN range; valid values are from 1 to 4094. \\
\hline port-range & \begin{tabular}{l} 
Port range; for a list of valid values for port-range, see the "Usage \\
Guidelines" section.
\end{tabular} \\
\hline macro name & Specifies the name of a macro. \\
\hline
\end{tabular}

This command has no default settings.

Global configuration mode
Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended VLAN addresses added. \\
\hline
\end{tabular}

You can use the interface range command on the existing VLAN SVIs only. To display the VLAN SVIs, enter the show running config command. The VLANs that are not displayed cannot be used in the interface range command.

The values that are entered with the interface range command are applied to all the existing VLAN SVIs.

Before you can use a macro, you must define a range using the define interface-range command.
All configuration changes that are made to a port range are saved to NVRAM, but the port ranges that are created with the interface range command do not get saved to NVRAM.

You can enter the port range in two ways:
- Specifying up to five port ranges
- Specifying a previously defined macro

You can either specify the ports or the name of a port-range macro. A port range must consist of the same port type, and the ports within a range cannot span the modules.
You can define up to five port ranges on a single command; separate each range with a comma.
When you define a range, you must enter a space between the first port and the hyphen (-):

Use these formats when entering the port-range:
- interface-type \(\{\bmod \} /\{\) first-port \(\}-\{\) last-port \(\}\)
- interface-type \(\{\bmod \} /\{\) first-port \(\}-\{\) last-port \(\}\)

Valid values for interface-type are as follows:
- FastEthernet
- GigabitEthernet
- Vlan \(v l a n \_i d\)

You cannot specify both a macro and an interface range in the same command. After creating a macro, you can enter additional ranges. If you have already entered an interface range, the CLI does not allow you to enter a macro.
You can specify a single interface in the port-range value. This makes the command similar to the interface interface-number command.

\section*{Examples}

This example shows how to use the interface range command to interface to FE 5/18-20:
```

Switch(config)\# interface range fastethernet 5/18 - 20
Switch(config-if)\#

```

This command shows how to run a port-range macro:
Switch(config) \# interface range macro macro1
Switch(config-if) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline define interface-range & Creates a macro of interfaces. \\
\hline \begin{tabular}{l} 
show running config (refer to Cisco IOS \\
documentation)
\end{tabular} & Displays the running configuration for a switch. \\
\hline
\end{tabular}

\section*{interface vlan}

To create or access a Layer 3 switch virtual interface (SVI), use the interface vlan command. To delete an SVI, use the no form of this command.
interface vlan vlan_id
no interface vlan vlan_id

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
vlan_id \(\quad\) Number of the VLAN; valid values are from 1 to 4094.

Fast EtherChannel is not specified.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline
\end{tabular}

The SVIs are created the first time that you enter the interface vlan vlan_id command for a particular VLAN. The vlan_id value corresponds to the VLAN tag that is associated with the data frames on an ISL or 802.1Q-encapsulated trunk or the VLAN ID that is configured for an access port. A message is displayed whenever a VLAN interface is newly created, so you can check that you entered the correct VLAN number.

If you delete an SVI by entering the no interface vlan vlan_id command, the associated interface is forced into an administrative down state and marked as deleted. The deleted interface will no longer be visible in a show interface command.

You can reinstate a deleted SVI by entering the interface vlan vlan_id command for the deleted interface. The interface comes back up, but much of the previous configuration will be gone.

This example shows the output when you enter the interface vlan vlan_id command for a new VLAN number:
```

Switch(config)\# interface vlan 23
% Creating new VLAN interface.
Switch(config)\#

```

\section*{ip admission proxy http refresh-all}

To ensure that you see a customized WebAuth login page with the sam ename in the switch system directory as a same-named prior login page, use the ip admission proxy http refresh-all command.
ip admission proxy http [success I failure I refresh-all | login [expired I page]]

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline success & Successful authentication proxy. \\
\hline failure & Failed authentication proxy. \\
\hline refresh-all & Refresh all custom html pages. \\
\hline login expired & Specify expired webpage \\
\hline login page & Specify customized login webpage \\
\hline
\end{tabular}

If you do not enter this command, if any of the customized web-based authentication page files with the file of same name have been changed, you see the old login page rather than the new file.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(15.0(2)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

You should enter this command whenever the customized web-based authentication page has been changed in the system directory.

This example shows how to enter this command:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip admission proxy http [success | failure | refresh-all | login]
Switch(config)\# end
Switch\#

```
<The new html page is observed.>

\section*{ip arp inspection filter vlan}

To permit ARPs from hosts that are configured for static IP when DAI is enabled and to define an ARP access list and apply it to a VLAN, use the ip arp inspection filter vlan command. To disable this application, use the no form of this command.
ip arp inspection filter arp-acl-name vlan vlan-range [static]
no ip arp inspection filter arp-acl-name vlan vlan-range [static]

Syntax Description

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to apply the ARP ACL static hosts to VLAN 1 for DAI:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip arp inspection filter static-hosts vlan 1
Switch(config)\# end
Switch\#
Switch\# show ip arp inspection vlan 1
Source Mac Validation : Enabled
Destination Mac Validation : Disabled
IP Address Validation : Disabled

```
\begin{tabular}{|c|c|c|c|c|}
\hline Vlan & Configuration & Operation & ACL Match & Static ACL \\
\hline 1 & Enabled & Active & static-hosts & No \\
\hline Vlan & ACL Logging & \multicolumn{3}{|l|}{DHCP Logging} \\
\hline 1 & Acl-Match & Deny & & \\
\hline Switch\# & & & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 2 - 3 } & arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\cline { 2 - 3 } show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
& &
\end{tabular}

\section*{ip arp inspection limit (interface)}

To limit the rate of incoming ARP requests and responses on an interface and prevent DAI from consuming all of the system's resources in the event of a DoS attack, use the ip arp inspection limit command. To release the limit, use the no form of this command.
ip arp inspection limit \(\{\) rate pps | none\} [burst interval seconds]
no ip arp inspection limit

Syntax Description

\section*{Defaults}
\begin{tabular}{ll}
\hline rate \(p p s\) & \begin{tabular}{l} 
Specifies an upper limit on the number of incoming packets processed per \\
second. The rate can range from 1 to 10000.
\end{tabular} \\
\hline none & \begin{tabular}{l} 
Specifies no upper limit on the rate of the incoming ARP packets that can \\
be processed.
\end{tabular} \\
\hline burst interval seconds & \begin{tabular}{l} 
(Optional) Specifies the consecutive interval in seconds over which the \\
interface is monitored for the high rate of the ARP packets. The interval \\
is configurable from 1 to 15 seconds.
\end{tabular} \\
\hline
\end{tabular}

The rate is set to 15 packets per second on the untrusted interfaces, assuming that the network is a switched network with a host connecting to as many as 15 new hosts per second.
The rate is unlimited on all the trusted interfaces.
The burst interval is set to 1 second by default.

\section*{Command Modes}

Interface configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(20) \mathrm{EW}\) & Added support for interface monitoring. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

The trunk ports should be configured with higher rates to reflect their aggregation. When the rate of the incoming packets exceeds the user-configured rate, the interface is placed into an error-disabled state. The error-disable timeout feature can be used to remove the port from the error-disabled state. The rate applies to both the trusted and nontrusted interfaces. Configure appropriate rates on trunks to handle the packets across multiple DAI-enabled VLANs or use the none keyword to make the rate unlimited.

The rate of the incoming ARP packets onthe channel ports is equal to the sum of the incoming rate of packets from all the channel members. Configure the rate limit for the channel ports only after examining the rate of the incoming ARP packets on the channel members.

After a switch receives more than the configured rate of packets every second consecutively over a period of burst seconds, the interface is placed into an error-disabled state.


This example shows how to limit the rate of the incoming ARP requests to 20 packets per second and to set the interface monitoring interval to 5 consecutive seconds:
```

Switch\# config terminal
Switch(config)\# interface fa6/1
Switch(config-if)\# ip arp inspection limit rate 20 burst interval 5
Switch(config-if)\# end

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip arp inspection log-buffer}

To configure the parameters that are associated with the logging buffer, use the ip arp inspection log-buffer command. To disable the parameters, use the no form of this command.
```

ip arp inspection log-buffer {entries number | logs number interval seconds}
no ip arp inspection log-buffer {entries | logs}

```

\section*{Syntax Description}
\begin{tabular}{ll}
\hline entries number & Number of entries from the logging buffer; the range is from 0 to 1024. \\
\hline logs number & \begin{tabular}{l} 
Number of entries to be logged in an interval; the range is from 0 to 1024. \\
0 \\
0 value indicates that entries should not be logged out of this buffer.
\end{tabular} \\
\hline interval seconds & \begin{tabular}{l} 
Logging rate; the range is from 0 to 86400 (1 day). A 0 value indicates an \\
immediate log.
\end{tabular}
\end{tabular}

Defaults

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to configure the logging buffer to hold up to 45 entries:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip arp inspection log-buffer entries 45
Switch(config)\# end
Switch\# show ip arp inspection log
Total Log Buffer Size : 45
Syslog rate : 5 entries per 1 seconds.
No entries in log buffer.
Switch\#

```

This example shows how to configure the logging rate to 10 logs per 3 seconds:
```

Switch(config)\# ip arp inspection log-buffer logs 10 interval 3
Switch(config)\# end
Switch\# show ip arp inspection log
Total Log Buffer Size : 45
Syslog rate : 10 entries per 3 seconds.
No entries in log buffer.
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip arp inspection trust}

To set a per-port configurable trust state that determines the set of interfaces where incoming ARP packets are inspected, use the ip arp inspection trust command. To make the interfaces untrusted, use the no form of this command.
ip arp inspection trust
no ip arp inspection trust
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

Defaults

Command Modes

Command History

This command has no default settings.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to configure an interface to be trusted:
```

Switch\# config terminal
Switch(config)\# interface fastEthernet 6/3
Switch(config-if)\# ip arp inspection trust
Switch(config-if)\# end

```

To verify the configuration, use the show form of this command:

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip arp inspection validate}

To perform specific checks for ARP inspection, use the ip arp inspection validate command. To disable checks, use the no form of this command.
ip arp inspection validate [src-mac] [dst-mac] [ip]
no ip arp inspection validate [src-mac] [dst-mac] [ip]

Syntax Description

Defaults
\(\overline{\text { Command Modes }}\) Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\footnotetext{
Usage Guidelines When enabling the checks, specify at least one of the keywords (src-mac, dst-mac, and ip) on the command line. Each command overrides the configuration of the previous command. If a command enables src and dst mac validations, and a second command enables IP validation only, the src and dst mac validations are disabled as a result of the second command.

The no form of this command disables only the specified checks. If none of the check options are enabled, all the checks are disabled.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{Examples} & \begin{tabular}{l}
This e \\
Switch \\
Switc \\
Switc \\
Sourc \\
Desti \\
IP Ad
\end{tabular} & ple show how to ffig) \# ip arp nfig) \# end how ip arp insp c Validation on Mac Validat s Validation & \begin{tabular}{l}
ble the sou \\
pection val \\
ion vlan 1 \\
: Enabled \\
: Disabled \\
: Disabled
\end{tabular} & \begin{tabular}{l}
MAC vali \\
date src-m
\end{tabular} & \\
\hline & Vlan & Configuration & Operation & ACL Match & Static ACL \\
\hline & 1 & Enabled & Active & & \\
\hline & Vlan & ACL Logging & DHCP Loggi & & \\
\hline & \[
\begin{gathered}
1 \\
\text { Switch }
\end{gathered}
\] & Deny & Deny & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
& \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\cline { 2 - 3 } & show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip arp inspection vlan}

To enable dynamic ARP inspection (DAI) on a per-VLAN basis, use the ip arp inspection vlan command. To disable DAI, use the no form of this command.
ip arp inspection vlan vlan-range
no ip arp inspection vlan vlan-range

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History

Usage Guidelines

ARP inspection is disabled on all VLANs.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

You must specify on which VLANs to enable DAI. DAI may not function on the configured VLANs if they have not been created or if they are private.

\section*{Examples}

This example shows how to enable DAI on VLAN 1:
```

Switch\# configure terminal
Switch(config)\# ip arp inspection vlan 1
Switch(config)\# end
Switch\# show ip arp inspection vlan 1
Source Mac Validation : Disabled
Destination Mac Validation : Disabled
IP Address Validation : Disabled
Vlan Configuration Operation ACL Match Static ACL
---- --
1 Enabled Active
Vlan ACL Logging DHCP Logging
_---------- -------------
Deny Deny
Switch\#

```

This example shows how to disable DAI on VLAN 1:
```

Switch\# configure terminal
Switch(config)\# no ip arp inspection vlan 1
Switch(config)\#

```
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 2 - 3 } & arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\cline { 2 - 3 } & show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
&
\end{tabular}

\section*{ip arp inspection vlan logging}

To control the type of packets that are logged, use the ip arp inspection vlan logging command. To disable this logging control, use the no form of this command.
ip arp inspection vlan vlan-range logging \{acl-match \{matchlog | none\} | dhcp-bindings \{permit | all | none \} \}
no ip arp inspection vlan vlan-range logging \{acl-match | dhep-bindings \(\}\)

Syntax Description

\section*{Defaults}

Command Modes Command History
\begin{tabular}{ll}
\hline vlan-range & \begin{tabular}{l} 
Number of the VLANs to be mapped to the specified instance. The number is \\
entered as a single value or a range; valid values are from 1 to 4094.
\end{tabular} \\
\hline acl-match & \begin{tabular}{l} 
Specifies the logging criteria for packets that are dropped or permitted based on \\
ACL matches.
\end{tabular} \\
\hline matchlog & \begin{tabular}{l} 
Specifies that logging of packets matched against ACLs is controlled by the \\
matchlog keyword in the permit and deny access control entries of the ACL. \\
Note \(\quad\)\begin{tabular}{l} 
By default, the matchlog keyword is not available on the ACEs. When the \\
keyword is used, denied packets are not logged. Packets are logged only \\
when they match against an ACE that has the matchlog keyword.
\end{tabular} \\
\hline none
\end{tabular} \begin{tabular}{l} 
Specifies that ACL-matched packets are not logged.
\end{tabular} \\
\hline dhcp-bindings & \begin{tabular}{l} 
Specifies the logging criteria for packets dropped or permitted based on matches \\
against the DHCP bindings.
\end{tabular} \\
\hline all & \begin{tabular}{l} 
Specifies logging when permitted by DHCP bindings.
\end{tabular} \\
\hline Specifies logging when permitted or denied by DHCP bindings. \\
\hline
\end{tabular}

All denied or dropped packets are logged.

Global configuration mode

\section*{Usage Guidelines}

The acl-match and dhcp-bindings keywords merge with each other. When you set an ACL match configuration, the DHCP bindings configuration is not disabled. You can use the no form of this command to reset some of the logging criteria to their defaults. If you do not specify either option, all the logging types are reset to log on when the ARP packets are denied. The two options that are available to you are as follows:
- acl-match-Logging on ACL matches is reset to log on deny
- dhcp-bindings-Logging on DHCP binding compared is reset to log on deny

\section*{Examples \\ This example shows how to configure an ARP inspection on VLAN 1 to add packets to a log on matching} against the ACLs with the logging keyword:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip arp inspection vlan 1 logging acl-match matchlog
Switch(config)\# end
Switch\# show ip arp inspection vlan 1
Source Mac Validation : Enabled
Destination Mac Validation : Disabled
IP Address Validation : Disabled
Vlan Configuration Operation ACL Match Static ACL
---- ------------- --------- ---------------------
1 Enabled Active
Vlan ACL Logging DHCP Logging
---- -------------------------
1 Acl-Match Deny
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline show ip arp inspection & \begin{tabular}{l} 
Displays the status of dynamic ARP inspection for a \\
specific range of VLANs.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip cef load-sharing algorithm}

To configure the load-sharing hash function so that the source TCP/UDP port, the destination TCP/UDP port, or both ports can be included in the hash in addition to the source and destination IP addresses, use the ip cef load-sharing algorithm command. To revert back to the default, which does not include the ports, use the no form of this command.
```

ip cef load-sharing algorithm {include-ports {source source | destination dest}| original |
tunnel | universal}

```
no ip cef load-sharing algorithm \{include-ports \(\{\) source source \(\mid\) destination dest \(\}\) | original| tunnel | universal \}
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{ll} 
include-ports & Specifies the algorithm that includes the Layer 4 ports. \\
& \begin{tabular}{ll} 
source source & Specifies the source port in the load-balancing hash functions. \\
\hline destination dest & \begin{tabular}{l} 
Specifies the destination port in the load-balancing hash. Uses the source and \\
destination in hash functions.
\end{tabular} \\
& \begin{tabular}{ll} 
original & Specifies the original algorithm; not recommended. \\
\hline tunnel & Specifies the algorithm for use in tunnel-only environments. \\
\hline universal & Specifies the default Cisco IOS load-sharing algorithm. \\
\hline
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
Spa
\end{tabular} \\
\hline
\end{tabular}
\end{tabular}

\section*{Defaults}

Default load-sharing algorithm is disabled.

This option does not include the source or destination port in the load-balancing hash.

\section*{Command Modes}

Global configuration mode

\section*{Command History}

Usage Guidelines

\section*{Examples}

This example shows how to configure the IP CEF load-sharing algorithm that includes Layer 4 ports:
```

Switch(config)\# ip cef load-sharing algorithm include-ports

```

Switch(config) \#

This example shows how to configure the IP CEF load-sharing algorithm that includes Layer 4 tunneling ports:
Switch(config) \# ip cef load-sharing algorithm include-ports tunnel
Switch(config) \#
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } show ip cef vlan & \begin{tabular}{l} 
Displays the IP CEF VLAN interface status and \\
configuration information.
\end{tabular} \\
& & \\
\hline
\end{tabular}

\section*{ip dhep snooping}

To enable DHCP snooping globally, use the ip dhcp snooping command. To disable DHCP snooping, use the no form of this command.

\section*{ip dhcp snooping \\ no ip dhep snooping}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes Global configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines } \quad \text { You must enable DHCP snooping globally before you can use DHCP snooping on a VLAN. }}\)

\section*{Examples}

This example shows how to enable DHCP snooping:
Switch(config) \# ip dhcp snooping
Switch(config) \#
This example shows how to disable DHCP snooping:
Switch(config) \# no ip dhcp snooping Switch(config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping limit rate & \begin{tabular}{l} 
Configures the number of the DHCP messages that an \\
interface can receive per second.
\end{tabular} \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhep snooping binding}

To set up and generate a DHCP binding configuration to restore bindings across reboots, use the ip dhcp snooping binding command. To disable the binding configuration, use the no form of this command.
ip dhep snooping binding mac-address vlan vlan-\# ip-address interface interface expiry seconds no ip dhep snooping binding mac-address vlan vlan-\# ip-address interface interface
\begin{tabular}{llll}
\hline Syntax Description & & mac-address & Specifies a MAC address. \\
\cline { 2 - 3 } & \begin{tabular}{ll} 
vlan vlan-\# & Specifies a valid VLAN number. \\
\cline { 2 - 3 } ip-address & Specifies an IP address. \\
\cline { 2 - 3 } interface interface & Specifies an interface type and number. \\
\hline & expiry seconds
\end{tabular} & Specifies the interval (in seconds) after which binding is no longer valid. \\
\hline
\end{tabular}
\(\overline{\text { Defaults }}\) This command has no default settings.

\section*{Command Modes Privileged EXEC mode}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Command History} & Release & Modification \\
\hline & 12.1(19)EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline & 12.2(25)EW & Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Usage Guidelines Whenever a binding is added or removed using this command, the binding database is marked as changed and a write is initiated.

\section*{Examples}

This example shows how to generate a DHCP binding configuration on interface gigabitethernet \(1 / 1\) in VLAN 1 with an expiration time of 1000 seconds:

Switch\# ip dhcp snooping binding 0001.1234 .1234 vlan 1172.20 .50 .5 interface gi1/1 expiry 1000
Switch\#
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhcp snooping database}

To store the bindings that are generated by DHCP snooping, use the ip dhcp snooping database command. To either reset the timeout, reset the write-delay, or delete the agent specified by the URL, use the no form of this command.
ip dhep snooping database \(\{u r l \mid\) timeout seconds \(\mid\) write-delay seconds \(\}\)
no ip dhep snooping database \{timeout | write-delay \}

Syntax Description

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

You need to create an empty file at the configured URL on network-based URLs (such as TFTP and FTP) before the switch can write the set of bindings for the first time at the URL.

Because both NVRAM and bootflash have limited storage capacity, using TFTP or network-based files is recommended. If you use flash to store the database file, new updates (by the agent) result in the creation of new files (flash fills quickly). In addition, due to the nature of the file system used on the flash, a large number of files causes access to be considerably slowed. When a file is stored in a remote location accessible through TFTP, an RPR/SSO standby supervisor engine can take over the binding list when a switchover occurs.

\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
& ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping binding & \begin{tabular}{l} 
Sets up and generates a DHCP binding configuration to \\
restore bindings across reboots.
\end{tabular} \\
\cline { 2 - 3 } & ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline & show ip dhcp snooping & Displays the DHCP snooping configuration. \\
& show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhep snooping information option}

To enable DHCP option 82 data insertion, use the ip dhep snooping information option command. To disable DHCP option 82 data insertion, use the no form of this command.
ip dhep snooping information option format remote-id \{hostname | string \(\{\) word \(\}\}\)
no ip dhep snooping information option format remote-id \{hostname | string \{word\}\}

Syntax Description

Defaults

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to enable DHCP option 82 data insertion:
```

Switch(config)\# ip dhcp snooping information option
Switch(config)\#

```

This example shows how to disable DHCP option 82 data insertion:
```

Switch(config)\# no ip dhcp snooping information option
Switch(config)\#

```

This example shows how to configure the hostname as the remote ID:
```

Switch(config)\# ip dhcp snooping information option format remote-id hostname
Switch(config)\#

```

The following example shows how to enable DHCP Snooping on VLAN 500 through 555 and option 82 remote ID:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip dhcp snooping

```
```

Switch(config)\# ip dhcp snooping vlan 500 555
Switch(config)\# ip dhcp snooping information option format remote-id string switch123
Switch(config)\# interface GigabitEthernet 5/1
Switch(config-if)\# ip dhcp snooping trust
Switch(config-if)\# ip dhcp snooping limit rate 100
Switch(config-if)\# ip dhcp snooping vlan 555 information option format-type circuit-id
string customer-555
Switch(config-if)\# interface FastEthernet 2/1
Switch(config-if)\# ip dhcp snooping vlan }555\mathrm{ information option format-type circuit-id
string customer-500
Switch(config)\# end

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{10}{*}{Related Commands} & Command & Description \\
\hline & ip dhep snooping & Globally enables DHCP snooping. \\
\hline & ip dhep snooping binding & Sets up and generates a DHCP binding configuration to restore bindings across reboots. \\
\hline & ip dhep snooping information option & Enables DHCP option 82 data insertion. \\
\hline & ip dhep snooping limit rate & Configures the number of the DHCP messages that an interface can receive per second. \\
\hline & ip dhep snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline & ip dhep snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline & ip dhep snooping vlan information option format-type & Enables circuit-id (a sub-option of DHCP snooping option-82) on a VLAN. \\
\hline & show ip dhep snooping & Displays the DHCP snooping configuration. \\
\hline & show ip dhep snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhep snooping information option allow-untrusted}

To allow DHCP packets with option 82 data inserted to be received from a snooping untrusted port, use the ip dhep snooping information option allow-untrusted command. To disallow receipt of these DHCP packets, use the no form of this command.
ip dhep snooping information option allow-untrusted
no ip dhep snooping information option allow-untrusted
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Examples}

\section*{Related Commands}

DHCP packets with option 82 are not allowed on snooping untrusted ports.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.2(25)EWA & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to allow DHCP packets with option 82 data inserted to be received from a snooping untrusted port:

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# ip dhcp snooping information option allow-untrusted
Switch(config) \# end
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping limit rate & \begin{tabular}{l} 
Configures the number of the DHCP messages that an \\
interface can receive per second.
\end{tabular} \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhcp snooping limit rate}

To configure the number of the DHCP messages that an interface can receive per second, use the ip dhcp snooping limit rate command. To disable the DHCP snooping rate limiting, use the no form of this command.
ip dhep snooping limit rate rate
no ip dhep snooping limit rate

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines

\section*{Examples}

Related Commands

Typically, the rate limit applies to the untrusted interfaces. If you want to set up rate limiting for the trusted interfaces, note that the trusted interfaces aggregate all DHCP traffic in the switch, and you will need to adjust the rate limit of the interfaces to a higher value.

This example shows how to enable the DHCP message rate limiting:
Switch(config-if) \# ip dhcp snooping limit rate 150
Switch(config) \#
This example shows how to disable the DHCP message rate limiting:
Switch(config-if) \# no ip dhcp snooping limit rate
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhep snooping trust}

To configure an interface as trusted for DHCP snooping purposes, use the ip dhcp snooping trust command. To configure an interface as untrusted, use the no form of this command.
ip dhep snooping trust
no ip dhep snooping trust

\section*{Syntax Description}

Defaults

Command Modes

Command History

DHCP snooping trust is disabled.

Interface configuration mode

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping limit rate & \begin{tabular}{l} 
Configures the number of the DHCP messages that an \\
interface can receive per second.
\end{tabular} \\
\hline ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping & Displays the DHCP snooping configuration. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline
\end{tabular}

\section*{ip dhep snooping vlan}

Use the ip dhcp snooping vlan command to enable DHCP snooping on a VLAN. To disable DHCP snooping on a VLAN, use the no form of this command.
```

ip dhcp snooping [vlan number]
no ip dhcp snooping [vlan number]

```

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History
Release Modification
12.1(12c)EW Support for this command was introduced on the Catalyst 4500 series switch.
\(\overline{\text { Usage Guidelines }}\) DHCP snooping is enabled on a VLAN only if both global snooping and the VLAN snooping are enabled.

\section*{Examples}
vlan number (Optional) Single VLAN number or a range of VLANs; valid values are from 1 to 4094 .

DHCP snooping is disabled.

Global configuration mode

This example shows how to enable DHCP snooping on a VLAN:
```

Switch(config)\# ip dhcp snooping vlan 10
Switch(config)\#

```

This example shows how to disable DHCP snooping on a VLAN:
```

Switch(config)\# no ip dhcp snooping vlan 10
Switch(config)\#

```

This example shows how to enable DHCP snooping on a group of VLANs:
```

Switch(config)\# ip dhcp snooping vlan 10 55
Switch(config)\#

```

This example shows how to disable DHCP snooping on a group of VLANs:
```

Switch(config)\# no ip dhcp snooping vlan 10 55
Switch(config)\#

```
\begin{tabular}{lll} 
Related Commands & \begin{tabular}{ll} 
Command & Description \\
& \begin{tabular}{ll} 
ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping limit rate & \begin{tabular}{l} 
Configures the number of the DHCP messages that an \\
interface can receive per second.
\end{tabular} \\
& \begin{tabular}{ll} 
ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
ip dhcp snooping vlan information \\
option format-type
\end{tabular} \\
& \begin{tabular}{l} 
Enables circuit-id (a suboption of DHCP snooping \\
option-82) on a VLAN.
\end{tabular} \\
\hline show ip dhcp snooping & show ip dhcp snooping binding
\end{tabular} \\
\hline
\end{tabular} & Displays the DHCP snooping configuration. \\
\hline
\end{tabular}

\section*{ip dhcp snooping vlan information option format-type}

To enable circuit-id (a suboption of DHCP snooping option 82) on a VLAN, use the ip dhcp snooping vlan information option format-type command. To disable circuit-id on a VLAN, use the no form of this command.
ip dhep snooping vlan number information option format-type circuit-id string string
no ip dhcp snooping vlan number information option format-type circuit-id string string

Syntax Description

Defaults

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline number & Single VLAN number or a range of VLANs; valid values are from 1 to 4094. \\
\hline circuit-id & Specifies using the string as the circuit ID. \\
\hline string string & Specifies a user-defined string for the circuit ID.
\end{tabular}

VLAN-mod-port, if DHCP snooping option-82 is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The circuit-id suboption of DHCP option 82 is supported only when DHCP snooping is globally enabled and on VLANs using DHCP option 82.

The following example shows how to enable DHCP snooping on VLAN 500 through 555 and option 82 circuit-id:
```

Switch\# configure terminal

```
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip dhcp snooping
Switch(config)\# ip dhcp snooping vlan 500555
Switch(config) \# ip dhcp snooping information option format remote-id string switch123
Switch(config) \# interface GigabitEthernet 5/1
Switch(config-if) \# ip dhcp snooping trust
Switch(config-if) \# ip dhcp snooping limit rate 100
Switch(config-if) \# ip dhcp snooping vlan 555 information option format-type circuit-id
string customer-555
Switch(config-if) \# interface FastEthernet 2/1
Switch(config-if) \# ip dhcp snooping vlan 555 information option format-type circuit-id
string customer-500
Switch(config) \# end

\footnotetext{
Related Commands
}
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping information option & Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping limit rate & \begin{tabular}{l} 
Configures the number of the DHCP messages that an \\
interface can receive per second. \\
\hline ip dhcp snooping trust
\end{tabular} \\
\hline Enables DHCP snooping on a trusted VLAN. \\
\hline show ip dhcp snooping vlan & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping configuration. \\
\hline
\end{tabular}

\section*{ip igmp filter}

To control whether all hosts on a Layer 2 interface can join one or more IP multicast groups by applying an IGMP profile to the interface, use the ip igmp filter command. To remove a profile from the interface, use the no form of this command.

\section*{ip igmp filter profile number}
no ip igmp filter

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(11 \mathrm{~b})\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

You can apply IGMP filters only to Layer 2 physical interfaces; you cannot apply IGMP filters to routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.

An IGMP profile can be applied to one or more switch port interfaces, but one port can have only one profile applied to it.

\section*{Examples}

This example shows how to apply IGMP profile 22 to an interface:
Switch(config) \# interface gigabitethernet1/1
Switch(config-if) \# ip igmp filter 22
Switch(config-if) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp profile & Creates an IGMP profile. \\
\hline show ip igmp profile & \begin{tabular}{l} 
Displays all configured IGMP profiles or a specified IGMP \\
profile.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip igmp max-groups}

To set the maximum number of IGMP groups that a Layer 2 interface can join, use the ip igmp max-groups command. To set the maximum back to the default, use the no form of this command.
ip igmp max-groups number
no ip igmp max-groups
\(\overline{\text { Syntax Description }}\) number \begin{tabular}{l} 
Maximum number of IGMP groups that an interface can join; valid values are from 0 to \\
4294967294.
\end{tabular}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(11 \mathrm{~b}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{\(\overline{\text { Usage Guidelines }}\) You can use the ip igmp max-groups command only on Layer 2 physical interfaces; you cannot set the IGMP maximum groups for the routed ports, the switch virtual interfaces (SVIs), or the ports that belong to an EtherChannel group.}

\section*{Examples}

This example shows how to limit the number of IGMP groups that an interface can join to 25:
```

Switch(config)\# interface gigabitethernet1/1
Switch(config-if)\# ip igmp max-groups 25
Switch(config-if)

```

\section*{ip igmp profile}

To create an IGMP profile, use the ip igmp profile command. To delete the IGMP profile, use the no form of this command.
ip igmp profile profile number
no ip igmp profile profile number

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines

\section*{Examples}
profile number IGMP profile number being configured; valid values are from 1 to 4294967295.

No profile created.

Global configuration mode
IGMP profile configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(11 b)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

When entering a range, enter the low IP multicast address, a space, and the high IP multicast address.
You can apply an IGMP profile to one or more Layer 2 interfaces, but each interface can have only one profile applied to it.

This example shows how to configure IGMP profile 40 that permits the specified range of IP multicast addresses
```

Switch \# config terminal
Switch(config)\# ip igmp profile 40
Switch(config-igmp-profile)\# permit
Switch(config-igmp-profile)\# range 233.1.1.1 233.255.255.255
Switch(config-igmp-profile)\#

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp filter & \begin{tabular}{l} 
Controls whether all hosts on a Layer 2 interface can join \\
one or more IP multicast groups by applying an IGMP \\
profile to the interface.
\end{tabular} \\
\hline show ip igmp profile & \begin{tabular}{l} 
Displays all configured IGMP profiles or a specified IGMP \\
\\
profile.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip igmp query-interval}

To configure the frequency that the switch sends the IGMP host-query messages, use the ip igmp query-interval command. To return to the default frequency, use the no form of this command.
ip igmp query-interval seconds
no ip igmp query-interval

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
seconds Frequency, in seconds, at which the IGMP host-query messages are transmitted; valid values depend on the IGMP snooping mode. See the "Usage Guidelines" section for more information.
\(\qquad\)

The query interval is set to 60 seconds.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

If you use the default IGMP snooping configuration, the valid query interval values are from 1 to 65535 seconds. If you have changed the default configuration to support CGMP as the IGMP snooping learning method, the valid query interval values are from 1 to 300 seconds.

The designated switch for a LAN is the only switch that sends the IGMP host-query messages. For IGMP version 1 , the designated switch is elected according to the multicast routing protocol that runs on the LAN. For IGMP version 2, the designated querier is the lowest IP-addressed multicast switch on the subnet.
If no queries are heard for the timeout period (controlled by the ip igmp query-timeout command), the switch becomes the querier.

Changing the timeout period may severely impact multicast forwarding.

This example shows how to change the frequency at which the designated switch sends the IGMP host-query messages:

Switch(config-if) \# ip igmp query-interval 120
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp querier-timeout (refer to Cisco & \begin{tabular}{l} 
Configures the timeout period before the router takes over \\
as the querier for the interface after the previous querier has \\
stopped querying.
\end{tabular} \\
\hline IOS documentation) & \begin{tabular}{l} 
Configures the frequency of Protocol Independent \\
Ip pim query-interval (refer to Cisco \\
IOS documentation)
\end{tabular} \\
\hline \begin{tabular}{l} 
Mhow ip igmp groups (refer to Cisco IOS \\
documentation)
\end{tabular} & \begin{tabular}{l} 
Displays the multicast groups with receivers that are \\
directly connected to the router and that were learned \\
through Internet Group Management Protocol (IGMP), use \\
the show ip igmp groups command in EXEC mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip igmp snooping}

To enable IGMP snooping, use the ip igmp snooping command. To disable IGMP snooping, use the no form of this command.

> ip igmp snooping [ten \{flood query count count | query solicit\}]
> no ip igmp snooping [ten \{flood query count count \(\mid\) query solicit\}]

\section*{Syntax Description}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline ten & (Optional) Specifies the topology change configurations. \\
\hline flood & \begin{tabular}{l} 
(Optional) Specifies to flood the spanning tree table to the network when a topology \\
change occurs.
\end{tabular} \\
\hline query & (Optional) Specifies the TCN query configurations. \\
\hline count count & \begin{tabular}{l} 
(Optional) Specifies how often the spanning tree table is flooded; valid values are \\
from 1 to 10.
\end{tabular} \\
\hline solicit & (Optional) Specifies an IGMP general query.
\end{tabular}

IGMP snooping is enabled.

Global configuration mode
Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(11) \mathrm{EW}\) & Support for flooding the spanning tree table was added. \\
\hline
\end{tabular}

The ten flood option applies only to Layer 2 switch ports and EtherChannels; it does not apply to routed ports, VLAN interfaces, or Layer 3 channels.

The ip igmp snooping command is disabled by default on multicast routers.

You can use the ten flood option in interface configuration mode.
```

Switch(config)\# ip igmp snooping
Switch(config)\#

```

This example shows how to disable IGMP snooping:
```

Switch(config)\# no ip igmp snooping
Switch(config)\#

```

This example shows how to enable the flooding of the spanning tree table to the network after nine topology changes have occurred:
```

Switch(config)\# ip igmp snooping tcn flood query count 9
Switch(config)\#

```

This example shows how to disable the flooding of the spanning tree table to the network:
```

Switch(config)\# no ip igmp snooping ten flood
Switch(config)\#

```

This example shows how to enable an IGMP general query:
```

Switch(config)\# ip igmp snooping ton query solicit
Switch(config)\#

```

This example shows how to disable an IGMP general query:
```

Switch(config)\# no ip igmp snooping tcn query solicit
Switch(config)\#

```

\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping vlan immediate-leave & Enable IGMP immediate-leave processing. \\
\hline ip igmp snooping vlan mrouter & \begin{tabular}{l} 
Configures a Layer 2 interface as a multicast router \\
interface for a VLAN.
\end{tabular} \\
\hline ip igmp snooping vlan static & Configures a Layer 2 interface as a member of a group. \\
\hline
\end{tabular}

\section*{ip igmp snooping report-suppression}

To enable report suppression, use the ip igmp snooping report-suppression command. To disable report suppression and forward the reports to the multicast devices, use the no form of this command.
ip igmp snooping report-suppression no igmp snooping report-suppression
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

IGMP snooping report-suppression is enabled.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

If the ip igmp snooping report-suppression command is disabled, all the IGMP reports are forwarded to the multicast devices.

If the command is enabled, report suppression is done by IGMP snooping.

\section*{Examples}

This example shows how to enable report suppression:
```

Switch(config)\# ip igmp snooping report-suppression
Switch(config)\#

```

This example shows how to disable report suppression:
```

Switch(config)\# no ip igmp snooping report-suppression
Switch(config)\#

```

This example shows how to display the system status for report suppression:
```

Switch\# show ip igmp snoop

```
Switch# show ip igmp snoop
vlan 1
vlan 1
----------
----------
    IGMP snooping is globally enabled
    IGMP snooping is globally enabled
    IGMP snooping TCN solicit query is globally disabled
    IGMP snooping TCN solicit query is globally disabled
    IGMP snooping global TCN flood query count is 2
    IGMP snooping global TCN flood query count is 2
    IGMP snooping is enabled on this Vlan
    IGMP snooping is enabled on this Vlan
    IGMP snooping immediate-leave is disabled on this Vlan
    IGMP snooping immediate-leave is disabled on this Vlan
    IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
    IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
    IGMP snooping is running in IGMP_ONLY mode on this Vlan
    IGMP snooping is running in IGMP_ONLY mode on this Vlan
    IGMP snooping report suppression is enabled on this Vlan
    IGMP snooping report suppression is enabled on this Vlan
Switch#
```

Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
& \begin{tabular}{lll} 
ip igmp snooping vlan immediate-leave & Enable IGMP immediate-leave processing. \\
& ip igmp snooping vlan mrouter & Configures a Layer 2 interface as a multicast router \\
& interface for a VLAN. \\
& ip igmp snooping vlan static & Configures a Layer 2 interface as a member of a group. \\
\hline
\end{tabular}
\end{tabular}

\section*{ip igmp snooping vlan}

To enable IGMP snooping for a VLAN, use the ip igmp snooping vlan command. To disable IGMP snooping, use the no form of this command.
ip igmp snooping vlan vlan-id
no ip igmp snooping vlan vlan-id

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands
vlan-id Number of the VLAN; valid values are from 1 to 1001 and from 1006 to 4094.

IGMP snooping is disabled.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline
\end{tabular}

This command is entered in VLAN interface configuration mode only.
The ip igmp snooping vlan command is disabled by default on multicast routers.

This example shows how to enable IGMP snooping on a VLAN:
```

Switch(config)\# ip igmp snooping vlan 200

```

Switch(config) \#

This example shows how to disable IGMP snooping on a VLAN:
Switch(config)\# no ip igmp snooping vlan 200
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping vlan immediate-leave & Enable IGMP immediate-leave processing. \\
\hline ip igmp snooping vlan mrouter & \begin{tabular}{l} 
Configures a Layer 2 interface as a multicast router \\
interface for a VLAN.
\end{tabular} \\
\hline ip igmp snooping vlan static & Configures a Layer 2 interface as a member of a group. \\
\hline
\end{tabular}

\section*{ip igmp snooping vlan explicit-tracking}

To enable per-VLAN explicit host tracking, use the ip igmp snooping vlan explicit-tracking command. To disable explicit host tracking, use the no form of this command.

\section*{ip igmp snooping vlan vlan-id explicit-tracking}
no ip igmp snooping vlan vlan-id explicit-tracking

Syntax Description

\section*{Defaults}

Command Modes

Command History
vlan_id (Optional) Specifies a VLAN; valid values are from 1 to 1001 and from 1006 to 4094.

Explicit host tracking is enabled.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(20) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to disable IGMP explicit host tracking on interface VLAN 200 and how to verify the configuration:
```

Switch(config)\# no ip igmp snooping vlan 200 explicit-tracking
Switch(config) \# end
Switch\# show ip igmp snooping vlan 200 | include explicit tracking
Global IGMP Snooping configuration:
*)
IGMP snooping : Enabled
IGMPv3 snooping : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Vlan 2:

IGMP snooping : Enabled
IGMPv2 immediate leave : Disabled
Explicit host tracking : Disabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Explicit host tracking : Disabled
Switch\#

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping vlan immediate-leave & Enables IGMP immediate-leave processing. \\
\hline ip igmp snooping vlan mrouter & \begin{tabular}{l} 
Configures a Layer 2 interface as a multicast router \\
interface for a VLAN.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping vlan static & Configures a Layer 2 interface as a member of a group. \\
\hline show ip igmp snooping membership & Displays host membership information. \\
\hline
\end{tabular}

\section*{ip igmp snooping vlan immediate-leave}

To enable IGMP immediate-leave processing, use the ip igmp snooping vlan immediate-leave command. To disable immediate-leave processing, use the no form of this command.

\section*{ip igmp snooping vlan \(v l a n \_n u m\) immediate-leave}
no ip igmp snooping vlan vlan_num immediate-leave

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples
vlan_num \(\quad\) Number of the VLAN; valid values are from 1 to 4094. immediate-leave Enables immediate leave processing.

Immediate leave processing is disabled.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added.
\end{tabular}

You enter this command in global configuration mode only.
Use the immediate-leave feature only when there is a single receiver for the MAC group for a specific VLAN.

The immediate-leave feature is supported only with IGMP version 2 hosts.

This example shows how to enable IGMP immediate-leave processing on VLAN 4:
Switch(config) \# ip igmp snooping vlan 4 immediate-leave
Switch(config) \#
This example shows how to disable IGMP immediate-leave processing on VLAN 4:
Switch(config) \# no ip igmp snooping vlan 4 immediate-leave
Switch(config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping & Enables IGMP snooping. \\
\hline ip igmp snooping vlan mrouter & Configures a Layer 2 interface as a multicast router \\
& interface for a VLAN. \\
\hline ip igmp snooping vlan static & Configures a Layer 2 interface as a member of a group. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ip igmp interface & \begin{tabular}{l} 
Displays the information about the IGMP-interface status \\
and configuration.
\end{tabular} \\
\hline show mac-address-table multicast & \begin{tabular}{l} 
Displays information about the multicast MAC address \\
table.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip igmp snooping vlan mrouter}

To statically configure an Layer 2 interface as a multicast router interface for a VLAN, use the ip igmp snooping vlan mrouter command. To remove the configuration, use the no form of this command.
ip igmp snooping vlan vlan-id mrouter \{interface \(\{\) \{ fastethernet slot/port \}| \{gigabitethernet slot/port\}|\{tengigabitethernet slot/port\}|\{port-channel number\}\}|
\{learn \{cgmp | pim-dvmrp\} \}
no ip igmp snooping vlan \(v\) lan-id mrouter \(\{\) interface \(\{\) \{ fastethernet \(\operatorname{slot/port\} |} \mid\) gigabitethernet slot/port \(\} \mid\) \{tengigabitethernet slot/port \(\}\) | \{port-channel number \(\}\}\) |
\{learn \{cgmp | pim-dvmrp\}\}
\(\overline{\text { Defaults }}\)

\section*{Command Modes}
\begin{tabular}{ll}
\hline vlan vlan-id & \begin{tabular}{l} 
Specifies the VLAN ID number to use in the command; valid values are \\
from 1 to 4094.
\end{tabular} \\
\hline interface & Specifies the next-hop interface to a multicast switch. \\
\hline fastethernet slot/port & Specifies the Fast Ethernet interface; number of the slot and port. \\
\hline gigabitethernet slot/port & Specifies the Gigabit Ethernet interface; number of the slot and port. \\
\hline \begin{tabular}{ll} 
tengigabitethernet & Specifies the 10-Gigabit Ethernet interface; number of the slot and port. \\
slot/port
\end{tabular} & \\
\hline port-channel number & Port-channel number; valid values are from 1 to 64. \\
\hline learn & Specifies the multicast switch learning method. \\
\hline cgmp & Specifies the multicast switch snooping CGMP packets. \\
\hline pim-dvmrp & Specifies the multicast switch snooping PIM-DVMRP packets. \\
\hline
\end{tabular}

Multicast switch snooping PIM-DVMRP packets are specified.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline \(12.2(25) \mathrm{EW}\) & \begin{tabular}{l} 
Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 \\
series switch.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

You enter this command in VLAN interface configuration mode only.
The interface to the switch must be in the VLAN where you are entering the command. It must be both administratively up and line protocol up.

The CGMP learning method can decrease control traffic.
The learning method that you configure is saved in NVRAM.
The static connections to multicast interfaces are supported only on switch interfaces.

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping & Enable IGMP snooping. \\
\hline ip igmp snooping vlan immediate-leave & Enable IGMP immediate-leave processing. \\
\hline ip igmp snooping vlan static & Configures a Layer 2 interface as a member of a group. \\
\hline show ip igmp snooping & \begin{tabular}{l} 
Displays information on dynamically learned and manually \\
configured VLAN switch interfaces.
\end{tabular} \\
\hline show ip igmp snooping mrouter & \begin{tabular}{l} 
Displays information on the dynamically learned and \\
manually configured multicast switch interfaces.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip igmp snooping vlan static}

To configure a Layer 2 interface as a member of a group, use the ip igmp snooping vlan static command. To remove the configuration, use the no form of this command.
ip igmp snooping vlan vlan_num static mac-address \(\{\) interface \(\{\) fastethernet slot/port\} | \{gigabitethernet slot/port \(\} \mid\{\) tengigabitethernet slot/port \(\} \mid\) \{port-channel number \(\}\}\)
no ip igmp snooping vlan vlan_num static mac-address \{interface \{fastethernet slot/port\}| \{gigabitethernet slot/port\}|\{tengigabitethernet mod/interface-number\} | \{port-channel number\}\}

\author{
Syntax Description
}
\begin{tabular}{ll}
\hline vlan_num & Number of the VLAN. \\
\hline mac-address & Group MAC address. \\
\hline interface & Specifies the next-hop interface to multicast switch. \\
\hline fastethernet slot/port & Specifies the Fast Ethernet interface; number of the slot and port. \\
\hline gigabitethernet slot/port & Specifies the Gigabit Ethernet interface; number of the slot and port. \\
\hline tengigabitethernet slot/port & \begin{tabular}{l} 
Specifies the 10-Gigabit Ethernet interface; number of the slot and \\
port.
\end{tabular} \\
\hline port-channel number & Port-channel number; valid values are from 1 through 64. \\
\hline
\end{tabular}

Defaults

Command Modes
Global configuration mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(25) \mathrm{EW}\) & \begin{tabular}{l} 
Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 \\
series switch.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to configure a host statically on an interface:
Switch(config)\# ip igmp snooping vlan 4 static \(0100.5 e 02.0203\) interface fastethernet 5/11
Configuring port FastEthernet5/11 on group 0100.5e02.0203 vlan 4
Switch(config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping & Enable IGMP snooping. \\
\hline ip igmp snooping vlan immediate-leave & Enable IGMP immediate-leave processing. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip igmp snooping vlan mrouter & \begin{tabular}{l} 
Configures a Layer 2 interface as a multicast router \\
interface for a VLAN.
\end{tabular} \\
\hline show mac-address-table multicast & \begin{tabular}{l} 
Displays information about the multicast MAC address \\
table.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip local-proxy-arp}

To enable the local proxy ARP feature, use the ip local-proxy-arp command. To disable the local proxy ARP feature, use the no form of this command.

\section*{ip local-proxy-arp}
no ip local-proxy-arp
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\(\overline{\text { Defaults }}\) Local proxy ARP is disabled.

Command Modes Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Usage Guidelines
Use this feature only on subnets where hosts are intentionally prevented from communicating directly to the switch on which they are connected.

ICMP redirect is disabled on interfaces where the local proxy ARP feature is enabled.

\section*{Examples \\ This example shows how to enable the local proxy ARP feature: \\ ```
Switch(config-if)# ip local-proxy-arp \\ Switch(config-if)#
```}

\section*{ip mfib fastdrop}

To enable MFIB fast drop, use the ip mfib fastdrop command. To disable MFIB fast drop, use the no form of this command.
ip mfib fastdrop
no ip mfib fastdrop
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable MFIB fast drops:
Switch\# ip mfib fastdrop
Switch\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline clear ip mfib fastdrop & Clears all the MFIB fast-drop entries. \\
\hline show ip mfib fastdrop & \begin{tabular}{l}
Displays all currently active fast-drop entries and shows \\
whether fast drop is enabled.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip route-cache flow}

To enable NetFlow statistics for IP routing, use the ip route-cache flow command. To disable NetFlow statistics, use the no form of this command.

\section*{ip route-cache flow [infer-fields]}
no ip route-cache flow [infer-fields]

Syntax Description

\section*{Defaults}

NetFlow statistics is disabled.
Inferred information is excluded.

\section*{Command Modes Global configuration mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline \(12.1(19) \mathrm{EW}\) & Command enhanced to support infer fields. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

To use these commands, you need to install the Supervisor Engine IV and the NetFlow Service Card.
The NetFlow statistics feature captures a set of traffic statistics. These traffic statistics include the source IP address, destination IP address, Layer 4 port information, protocol, input and output identifiers, and other routing information that can be used for network analysis, planning, accounting, billing and identifying DoS attacks.

NetFlow switching is supported on IP and IP-encapsulated traffic over all interface types.
If you enter the ip route-cache flow infer-fields command after the ip route-cache flow command, you will purge the existing cache, and vice versa. This action is done to avoid having flows with and without inferred fields in the cache simultaneously.

For additional information on NetFlow switching, refer to the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide.

Note NetFlow consumes additional memory and CPU resources compared to other switching modes. You need to know the resources required on your switch before enabling NetFlow.
\(\overline{\text { Examples }}\) This example shows how to enable NetFlow switching on the switch:
```

Switch\# config terminal
Switch(config)\# ip route-cache flow
Switch(config)\# exit
Switch\#

```

Note This command does not work on individual interfaces.

\section*{ip source binding}

To add or delete a static IP source binding entry, use the ip source binding command. To delete the corresponding IP source binding entry, use the no form of this command.
ip source binding ip-address mac-address vlan vlan-id interface interface-name
no ip source binding ip-address mac-address vlan vlan-id interface interface-name
\begin{tabular}{llll}
\hline Syntax Description & & Binding IP address. \\
\cline { 3 - 4 } & \begin{tabular}{ll}
ip-address & mac-address
\end{tabular} & Binding MAC address. \\
\cline { 2 - 3 } vlan vlan-id & VLAN number. \\
\cline { 2 - 3 } interface interface-name & Binding interface. \\
\hline
\end{tabular}
\(\overline{\text { Defaults }}\)

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

The ip source binding command is used to add a static IP source binding entry only.
The no form of this command deletes the corresponding IP source binding entry. For the deletion to succeed, all required parameters must match.
Each static IP binding entry is keyed by a MAC address and VLAN number. If the CLI contains an existing MAC and VLAN, the existing binding entry will be updated with the new parameters; a separate binding entry will not be created.

This example shows how to configure the static IP source binding:
Switch\# config terminal
Switch(config) \# ip source binding 11.0.0.1 0000.000A.000B vlan 10 interface
fastethernet6/10
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ip source binding & \begin{tabular}{l}
Displays IP source bindings that are configured on the \\
system.
\end{tabular} \\
\hline
\end{tabular}

\section*{ip sticky-arp}

To enable sticky ARP, use the ip sticky-arp command. Use the no form of this command to disable sticky ARP.
ip sticky-arp
no ip sticky-arp
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

This command is supported on PVLANs only.
ARP entries that are learned on Layer 3 PVLAN interfaces are sticky ARP entries. (You should display and verify ARP entries on the PVLAN interface using the show arp command).
For security reasons, sticky ARP entries on the PVLAN interface do not age out. Connecting new equipment with the same IP address generates a message and the ARP entry is not created.

Because the ARP entries on the PVLAN interface do not age out, you must manually remove ARP entries on the PVLAN interface if a MAC address changes.

Unlike static entries, sticky-ARP entries are not stored and restored when you enter the reboot and restart commands.

This example shows how to enable sticky ARP:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) ip sticky-arp
Switch(config)\# end
Switch\#

```

This example shows how to disable sticky ARP:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) no ip sticky-arp
Switch(config)\# end
Switch\#

```
\begin{tabular}{lll}
& Command & Description \\
\cline { 2 - 3 } Relp (refer to Cisco IOS documentation) & \begin{tabular}{l}
Enables Address Resolution Protocol (ARP) entries for \\
static routing over the Switched Multimegabit Data Service \\
(SMDS) network.
\end{tabular} \\
& \begin{tabular}{l}
show arp (refer to Cisco IOS \\
documentation)
\end{tabular} & Displays ARP information. \\
\hline
\end{tabular}

\section*{ip verify header vlan all}

To enable IP header validation for Layer 2-switched IPv4 packets, use the ip verify header vlan all command. To disable the IP header validation, use the no form of this command
```

ip verify header vlan all
no ip verify header vlan all

```

Syntax Description This command has no default settings.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to disable the IP header validation for the Layer 2-switched IPv4 packets:
```

Switch\# config terminal
Switch(config)\# no ip verify header vlan all
Switch(config)\# end
Switch\#

```

\section*{ip verify source}

To enable IP source guard on untrusted Layer 2 interfaces, use the ip verify source command. To disable IP source guard on untrusted Layer 2 interfaces, use the no form of this command.

\section*{ip verify source \{vlan dhcp-snooping\} [port-security] \\ no ip verify source \{vlan dhep-snooping\} [port-security]}
\(\overline{\text { Syntax Description }}\)

Defaults

Command Modes

Command History
vlan dhcp-snooping Enables IP source guard on untrusted Layer 2 DHCP snooping interfaces.
port-security (Optional) Filters both source IP and MAC addresses using the port security feature.

IP source guard is disabled.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(37) \mathrm{SG}\) & Added support for IP port security and tracking. \\
\hline
\end{tabular}

This example shows how to enable IP source guard on VLANs 10 through 20 on a per-port basis:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ip dhcp snooping
Switch(config)\# ip dhcp snooping vlan 10 20
Switch(config)\# interface fastethernet6/1
Switch(config-if)\# switchport trunk encapsulation dot1q
Switch(config-if)\# switchport mode trunk
Switch(config-if)\# switchport trunk native vlan 10
Switch(config-if)\# switchport trunk allowed vlan 11-20
Switch(config-if)\# no ip dhcp snooping trust
Switch(config-if)\# ip verify source vlan dhcp-snooping
Switch(config)\# end
Switch\# show ip verify source interface f6/1
Interface Filter-type Filter-mode IP-address Mac-address Vlan

```

```

Fa6/1 ip-mac active 10.0.0.1 10
Fa6/1 ip-mac active deny-all 11-20
Switch\#

```

You can verify your settings by entering the show ip verify source privileged EXEC command.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{11}{*}{Related Commands} & Command & Description \\
\hline & ip dhep snooping & Enables IP port security binding tracking on a Layer 2 port. \\
\hline & ip dhep snooping & Globally enables DHCP snooping. \\
\hline & ip dhep snooping information option & Enables DHCP option 82 data insertion. \\
\hline & ip dhep snooping limit rate & Configures the number of the DHCP messages that an interface can receive per second. \\
\hline & ip dhep snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline & ip source binding & Adds or delete a static IP source binding entry. \\
\hline & show ip dhep snooping & Displays the DHCP snooping configuration. \\
\hline & show ip dhcp snooping binding & Displays the DHCP snooping binding entries. \\
\hline & show ip source binding & Displays IP source bindings that are configured on the system. \\
\hline & show ip verify source & Displays the IP source guard configuration and filters on a particular interface. \\
\hline
\end{tabular}

\section*{ip verify unicast source reachable-via}

To enable and configure unicast RPF checks on a \(\operatorname{IPv} 4\) interface, use the ip verify unicast source reachable-via command. To disable unicast \(R P F\), use the no form of this command.

\section*{ip verify unicast source reachable-via rx allow-default}
no ip verify unicast source reachable-via

Syntax Description
\begin{tabular}{ll}
\(\mathbf{r x}\) & \begin{tabular}{l}
Verifies that the source address is reachable on the interface where the packet was \\
received.
\end{tabular} \\
allow-default & Verifies that the default route matches the source address.
\end{tabular}

Defaults

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & \begin{tabular}{l}
Support for this command was introduced on the Catalyst 4500 with a Supervisor \\
Engine 6-E and the Catalyst 4900M chassis.
\end{tabular}
\end{tabular}

Usage Guidelines
In basic RX mode, unicast RPF ensures a source address must be reachable on the arrived interface. For example, the source must be reachable without load balancing.

Unicast RPF is an input function and is applied only on the input interface of a router at the upstream end of a connection.

Do not use unicast RPF on internal network interfaces. Internal interfaces might have routing asymmetry, which means that there are multiple routes to the source of a packet. Apply unicast RPF only where there is natural or configured symmetry.

\section*{Examples}

This example shows how to enable unicast RPF exist-only checking mode:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gigabitethernet1/1
Switch(config-if)\# ip verify unicast source reachable-via rx allow-default
Switch(config-if)\# end
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 3 } ip cef (refer to Cisco IOS documentation) & Enables Cisco Express Forwarding (CEF) on the switch. \\
\cline { 2 - 3 } show running-config & Displays the current running configuration for a switch. \\
\hline
\end{tabular}

\section*{ipv6 mld snooping}

To enable IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping globally or on the specified VLAN, use the ipv6 mld snooping command without keywords. To disable MLD snooping on a switch or the VLAN, use the no form of this command.

\section*{ipv6 mld snooping [vlan vlan-id]}
no ipv6 mld snooping [vlan vlan-id]

MLD snooping is globally disabled on the switch.
MLD snooping is enabled on all VLANs. However, MLD snooping must be globally enabled before VLAN snooping can take place.
\(\overline{\text { Command Modes }}\) Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & This command was introduced on the Catalyst 4500. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

When MLD snooping is globally disabled, it is disabled on all the existing VLAN interfaces. When you globally enable MLD snooping, it is enabled on all VLAN interfaces that are in the default state (enabled). VLAN configuration overrides global configuration on interfaces on which MLD snooping has been disabled.
If MLD snooping is globally disabled, you cannot enable it on a VLAN. If MLD snooping is globally enabled, you can disable it on individual VLANs.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

\section*{Examples}

This example shows how to globally enable MLD snooping:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping
Switch(config)\# end
Switch\#

```

This example shows how to disable MLD snooping on a VLAN:
Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# no ipv6 mld snooping vlan 11
Switch(config) \# end
Switch\#
You can verify your settings by entering the show ipv6 mld snooping user EXEC command.
\begin{tabular}{lll}
\cline { 3 - 4 } Related Commands & Command & Description \\
\cline { 3 - 4 } & show ipv6 mld snooping & \begin{tabular}{l}
Displays IP version 6 (IPv6) Multicast Listener Discovery \\
(MLD) snooping configuration of the switch or the VLAN.
\end{tabular} \\
& &
\end{tabular}

\section*{ipv6 mld snooping last-listener-query-count}

To configure IP version 6 (IPv6) Multicast Listener Discovery Mulitcast Address Specific Queries (MASQs) that will be sent before aging out a client, use the ipv6 mld snooping last-listener-query-count command. To reset the query count to the default settings, use the no form of this command.
ipv6 mld snooping [vlan vlan-id] last-listener-query-count integer_value
no ipv6 mld snooping [vlan vlan-id] last-listener-query-count

Syntax Description
\begin{tabular}{ll}
\hline vlan vlan-id & \begin{tabular}{l}
(Optional) Configures last-listener query count on the specified VLAN. The \\
\\
VLAN ID range is 1 to 1001 and 1006 to 4094.
\end{tabular} \\
\hline integer_value & The interger range is 1 to 7. \\
\hline
\end{tabular}

Command Default

Command Modes

Command History

Usage Guidelines

The default global count is 2 .
The default VLAN count is 0 (the global count is used).

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40) \mathrm{SG}\) & This command was introduced on the Catalyst 4500. \\
\hline
\end{tabular}

In MLD snooping, the IPv6 multicast switch periodically sends out queries to hosts belonging to the multicast group. If a host wants to leave a multicast group, it can silently leave or it can respond to the query with a Multicast Listener Done message (equivalent to an IGMP Leave message). When Immediate Leave is not configured (it should not be configured if multiple clients for a group exist on the same port), the configured last-listener query count determines the number of MASQs that are sent before an MLD client is aged out.

When the last-listener query count is set for a VLAN, this count overrides the value configured globally. When the VLAN count is not configured (set to the default of 0), the global count is used.
VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

\section*{\(\overline{\text { Examples }}\) This example shows how to globally set the last-listener query count:}
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping last-listener-query-count 1
Switch(config)\# end
Switch\#

```

This example shows how to set the last-listener query count for VLAN 10:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping vlan 10 last-listener-query-count 3
Switch(config)\# end
Switch\#

```

You can verify your settings by entering the show ipv6 mld snooping [vlan vlan-id] user EXEC command.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Related Commands} & Command & Description \\
\hline & ipv6 mld snooping last-listener-query-interval & Configures IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping last-listener query interval on the switch or on a VLAN. \\
\hline & show ipv6 mld snooping & Displays IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping configuration of the switch or the VLAN. \\
\hline & show ipv6 mld snooping querier & Displays IP version 6 (IPv6) MLD snooping querier-related information most recently received by the switch or the VLAN. \\
\hline
\end{tabular}

\section*{ipv6 mld snooping last-listener-query-interval}

To configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping last-listener query interval on the switch or on a VLAN, use the ipv6 mld snooping last-listener-query-interval command. To reset the query time to the default settings, use the no form of this command.
```

ipv6 mld snooping [vlan vlan-id] last-listener-query-interval integer_value
no ipv6 mld snooping [vlan vlan-id] last-listener-query-interval

```

Command Default

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & This command was introduced on the Catalyst 4500.
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) The last-listener-query-interval time is the maximum time that a multicast switch waits after issuing a Mulitcast Address Specific Query (MASQ) before deleting a port from the multicast group.

In MLD snooping, when the IPv6 multicast switch receives an MLD leave message, it sends out queries to hosts belonging to the multicast group. If there are no responses from a port to a MASQ for a length of time, the switch deletes the port from the membership database of the multicast address. The last listener query interval is the maximum time that the switch waits before deleting a nonresponsive port from the multicast group.
When a VLAN query interval is set, the global query interval is overridden. When the VLAN interval is set at 0 , the global value is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

\section*{\(\overline{\text { Examples }}\) This example shows how to globally set the last-listener query interval to 2 seconds:}
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping last-listener-query-interval }200
Switch(config)\# end
Switch\#

```

This example shows how to set the last-listener query interval for VLAN 1 to 5.5 seconds:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping vlan 1 last-listener-query-interval 5500
Switch(config)\# end
Switch\#

```

You can verify your settings by entering the show ipv6 MLD snooping [vlan vlan-id] user EXEC command.
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 3 } \begin{tabular}{ll}
ipv6 mld snooping \\
last-listener-query-count & \begin{tabular}{l}
Configures IP version 6 (IPv6) Multicast Listener \\
Discovery Mulitcast Address Specific Queries (MASQs) \\
that will be sent before aging out a client.
\end{tabular} \\
& show ipv6 mld snooping querier \\
& \begin{tabular}{l}
Displays IP version 6 (IPv6) MLD snooping querier-related \\
information most recently received by the switch or the \\
VLAN.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{ipv6 mld snooping listener-message-suppression}

To enable IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping listener message suppression, use the ipv6 mld snooping listener-message-suppression command. To disable MLD snooping listener message suppression, use the no form of this command.

\section*{ipv6 mld snooping listener-message-suppression \\ no ipv6 mld snooping listener-message-suppression}

Command Default

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands

MLD snooping listener message suppression is equivalent to IGMP snooping report suppression. When it is enabled, received MLDv1 reports to a group are forwarded to IPv6 multicast switchs only once in every report-forward time. This prevents the forwarding of duplicate reports.

This example shows how to enable MLD snooping listener message suppression:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# ipv6 mld snooping listener-message-suppression
Switch(config) \# end
Switch\#

```

This example shows how to disable MLD snooping listener message suppression:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# no ipv6 mld snooping listener-message-suppression
Switch(config) \# end
Switch\#

```

You can verify your settings by entering the show ipv6 mld snooping [vlan vlan-id] user EXEC command.
\begin{tabular}{ll}
\hline Command & Description \\
\hline ipv6 mld snooping & \begin{tabular}{l}
Enables IP version 6 (IPv6) Multicast Listener Discovery \\
(MLD) snooping globally or on the specified VLAN.
\end{tabular} \\
\hline show ipv6 mld snooping & \begin{tabular}{l}
Displays IP version 6 (IPv6) MLD snooping configuration \\
of the switch or the VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{ipv6 mld snooping robustness-variable}

To configure the number of IP version 6 (IPv6) Multicast Listener Discovery (MLD) queries that the switch sends before deleting a listener that does not respond, or to enter a VLAN ID to configure the number of queries per VLAN, use the ipv6 mld snooping robustness-variable command. To reset the variable to the default settings, use the no form of this command.
```

ipv6 mld snooping [vlan vlan-id] robustness-variable integer_value
no ipv6 mld snooping [vlan vlan-id] robustness-variable

```

Syntax Description

Command Default

\section*{Command Modes}

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline vlan vlan-id & (Optional) Configure the robustness variable on the specified VLAN. The \\
& VLAN ID range is 1 to 1001 and 1006 to 4094. \\
\hline integer_value & The range is 1 to 3.
\end{tabular}

The default global robustness variable (number of queries before deleting a listener) is 2 .
The default VLAN robustness variable (number of queries before aging out a multicast address) is 0 , which means that the system uses the global robustness variable for aging out the listener.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & This command was introduced on the Catalyst 4500. \\
\hline
\end{tabular}

Robustness is measured by the number of MLDv1 queries sent with no response before a port is removed from a multicast group. A port is deleted when there are no MLDv1 reports received for the configured number of MLDv1 queries. The global value determines the number of queries that the switch waits before deleting a listener that does not respond, and it applies to all VLANs that do not have a VLAN value set.

The robustness value configured for a VLAN overrides the global value. If the VLAN robustness value is 0 (the default), the global value is used.
VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples
This example shows how to configure the global robustness variable so that the switch sends out three queries before it deletes a listener port that does not respond:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping robustness-variable 3
Switch(config)\# end
Switch\#

```

This example shows how to configure the robustness variable for VLAN 1. This value overrides the global configuration for the VLAN:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping vlan 1 robustness-variable 1
Switch(config)\# end
Switch\#

```

You can verify your settings by entering the show ipv6 MLD snooping [vlan vlan-id] user EXEC command.

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l}
ipv6 mId snooping \\
last-listener-query-count
\end{tabular} & \begin{tabular}{l}
Configures IP version 6 (IPv6) Multicast Listener \\
Discovery Mulitcast Address Specific Queries (MASQs) \\
that will be sent before aging out a client.
\end{tabular} \\
\hline show ipv6 mld snooping & \begin{tabular}{l}
Displays IP version 6 (IPv6) MLD snooping configuration \\
of the switch or the VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{ipv6 mld snooping ten}

To configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) Topology Change Notifications (TCNs), use the ipv6 mld snooping ten commands. To reset the default settings, use the no form of the commands.
ipv6 mld snooping ten \{flood query count integer_value | query solicit \}
no ipv6 mld snooping ten \{flood query count integer_value | query solicit\}

\section*{Syntax Description}

Command Default

\section*{Command Modes}

\section*{Command History}

\section*{Examples}
\begin{tabular}{ll}
\hline \begin{tabular}{l}
flood query count \\
integer_value
\end{tabular} & \begin{tabular}{l}
Sets the flood query count, which is the number of queries that are sent \\
before forwarding multicast data to only those ports requesting it. The range \\
is 1 to 10.
\end{tabular} \\
\hline query solicit & Enables soliciting of TCN queries. \\
\hline
\end{tabular}

TCN query soliciting is disabled.
When enabled, the default flood query count is 2 .

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{SG}\) & This command was introduced on the Catalyst 4500. \\
\hline
\end{tabular}

This example shows how to enable TCN query soliciting:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping tcn query solicit.
Switch(config)\# end
Switch\#

```

This example shows how to set the flood query count to 5 :
```

Switch\# configure terminal

```
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# ipv6 mld snooping ton flood query count 5.
Switch(config) \# end
Switch\#

You can verify your settings by entering the show ipv6 MLD snooping [vlan vlan-id] user EXEC command.

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show ipv6 mld snooping & \begin{tabular}{l}
Displays IP version 6 (IPv6) MLD snooping configuration \\
of the switch or the VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{ipv6 mld snooping vlan}

To configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping parameters on the VLAN interface, use the ipv6 mld snooping vlan command. To reset the parameters to the default settings, use the no form of this command.
ipv6 mld snooping vlan vlan-id [immediate-leave | mrouter interface interface-id | static ipv6-multicast-address interface interface-id]
no ipv6 mld snooping vlan vlan-id [immediate-leave | mrouter interface interface-id | static ip-address interface interface-id]

Syntax Description
\(\overline{\text { Command Default }}\)

Command Modes

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline vlan vlan-id & Specifies a VLAN number. The range is 1 to 1001 and 1006 to 4094. \\
\hline immediate-leave & \begin{tabular}{l}
(Optional) Enables MLD Immediate-Leave processing on a VLAN \\
interface. Use the no form of the command to disable the Immediate \\
\\
Leave feature on the interface.
\end{tabular} \\
\hline mrouter interface & \begin{tabular}{l}
(Optional) Configures a multicast switch port. The no form of the \\
command removes the configuration.
\end{tabular} \\
\hline static ipv6-multicast-address & \begin{tabular}{l}
(Optional) Configures a multicast group with the specified IPv6 \\
\\
multicast address.
\end{tabular} \\
\hline interface interface-id & \begin{tabular}{l}
Adds a Layer 2 port to the group. The mrouter or static interface can \\
be a physical port or a port-channel interface ranging from 1 to 48.
\end{tabular} \\
\hline
\end{tabular}

MLD snooping Immediate-Leave processing is disabled.
By default, there are no static IPv6 multicast groups.
By default, there are no multicast switch ports.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40) \mathrm{SG}\) & This command was introduced on the Catalyst 4500. \\
\hline
\end{tabular}
\(\overline{\text { Examples }}\) This example shows how to enable MLD Immediate-Leave processing on VLAN 1:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping vlan 1 immediate-leave
Switch(config)\# end
Switch\#

```

This example shows how to disable MLD Immediate-Leave processing on VLAN 1:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# no ipv6 mld snooping vlan 1 immediate-leave
Switch(config)\# end
Switch\#

```

This example shows how to configure a port as a multicast switch port:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping vlan 1 mrouter interface gigabitethernet1/0/2
Switch(config)\# end
Switch\#

```

This example shows how to configure a static multicast group:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# ipv6 mld snooping vlan 2 static FF12::34 interface gigabitethernet1/0/2
Switch(config)\# end
Switch\#

```

You can verify your settings by entering the show ipv6 mld snooping vlan vlan-id user EXEC command.
\begin{tabular}{lll}
& Command & Description \\
\cline { 2 - 4 } & ipv6 mld snooping & \begin{tabular}{l}
Enables IP version 6 (IPv6) Multicast Listener Discovery \\
(MLD) snooping globally or on the specified VLAN.
\end{tabular} \\
\cline { 2 - 4 } & show ipv6 mld snooping & \begin{tabular}{l}
Displays IP version 6 (IPv6) MLD snooping configuration \\
of the switch or the VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{issu abortversion}

To cancel the ISSU upgrade or the downgrade process in progress and to restore the Catalyst 4500 series switch to its state before the start of the process, use the issue abortversion command.
issu abortversion active-slot [active-image-new]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands
\begin{tabular}{ll}
\hline active-slot & Specifies the slot number for the current standby supervisor engine. \\
\hline active-image-new & \begin{tabular}{l}
(Optional) Name of the new image present in the current standby supervisor \\
engine.
\end{tabular}
\end{tabular}

There are no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

You can use the issu abortversion command at any time to stop the ISSU process. To complete the process enter the issu commitversion command. Before any action is taken, a check ensures that both supervisor engines are either in the run version (RV) or load version (LV) state.

When the issu abortversion command is entered before the issu runversion command, the standby supervisor engine is reset and reloaded with the old image. When the issu abortversion command is entered after the issu runversion command, a change takes place and the new standby supervisor engine is reset and reloaded with the old image.

This example shows how you can reset and reload the standby supervisor engine:
Switch\# issu abortversion 2
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu acceptversion & \begin{tabular}{l}
Halts the rollback timer and ensures that the new Cisco IOS \\
software image is not automatically stopped during the
\end{tabular} \\
& ISSU process.
\end{tabular} \begin{tabular}{ll}
\hline Loads the new Cisco IOS software image into the new \\
standby supervisor engine.
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu runversion & \begin{tabular}{l}
Forces a change from the active supervisor engine to the \\
standby supervisor engine and causes the newly active \\
supervisor engine to run the new image specified.
\end{tabular} \\
\hline show issu state & \begin{tabular}{l}
Displays the ISSU state and current booted image name \\
during the ISSU process.
\end{tabular} \\
\hline
\end{tabular}

\section*{issu acceptversion}

To halt the rollback timer and to ensure that the new Cisco IOS software image is not automatically stopped during the ISSU process, use the issu acceptversion command.
issu acceptversion active-slot [active-image-new]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline active-slot & Specifies the slot number for the currently active supervisor engine. \\
\hline active-image-new & (Optional) Name of the new image on the currently active supervisor engine. \\
\hline
\end{tabular}

Rollback timer resets automatically 45 minutes after you enter the issu runversion command.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

After you are satisfied with the new image and have confirmed the new supervisor engine is reachable by both the console and the network, enter the issu acceptversion command to halt the rollback timer. If the issu acceptversion command is not entered within 45 minutes from the time the issu runversion command is entered, the entire ISSU process is automatically rolled back to the previous version of the software. The rollback timer starts immediately after you enter the issu runversion command.

If the rollback timer expires before the standby supervisor engine goes to a hot standby state, the timer is automatically extended by up to 15 minutes. If the standby state goes to a hot-standby state within this extension time or the 15 minute extension expires, the switch aborts the ISSU process. A warning message that requires your intervention is displayed every 1 minute of the timer extension.
If the rollback timer is set to a long period of time, such as the default of 45 minutes, and the standby supervisor engine goes into the hot standby state in 7 minutes, you have 38 minutes (45 minus 7) to roll back if necessary.

Use the issu set rollback-timer to configure the rollback timer.

This example shows how to halt the rollback timer and allow the ISSU process to continue:
```

Switch\# issu acceptversion 2
Switch\#

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{Related Commands} & Command & Description \\
\hline & issu abortversion & Cancels the ISSU upgrade or the downgrade process in progress and restores the switch to its state before the start of the process. \\
\hline & issu commitversion & Loads the new Cisco IOS software image into the new standby supervisor engine. \\
\hline & issu loadversion & Starts the ISSU process. \\
\hline & issu runversion & Forces a change from the active supervisor engine to the standby supervisor engine and causes the newly active supervisor engine to run the new image specified. \\
\hline & issu set rollback-timer & Configures the In Service Software Upgrade (ISSU) rollback timer value. \\
\hline & show issu state & Displays the ISSU state and current booted image name during the ISSU process. \\
\hline
\end{tabular}

\section*{issu changeversion}

To initiate an automatic ISSU upgrade procedure or to schedule an automatic upgrade to begin later, use the issu changeversion exec command.
issu changeversion [active-slot] new-image [standby-slot standby-image] [at hh:mm | in hh:mm] [quick]

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 3.1.0SG & This command was first supported on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline new-image & Specifies the URL of the upgrade IOS XE bundle. \\
\hline active-slot & Defines the active switch/slot number. \\
\hline standby-slot & Defines the standby switch/slot number. \\
\hline standby-image & Specifies the standby image URL \\
\hline at \(h h: m m\) & \begin{tabular}{l}
Schedules an ISSU upgrade to begin in the future. Provides an \\
exact time (\(h h: m m ; 24\) hour format) in the next 24 hours at which \\
the upgrade will occur.
\end{tabular} \\
\hline in \(h h: m m\) & \begin{tabular}{l}
Schedules an ISSU upgrade to begin in the future. Provides the \\
number of hours and minutes (hh:mm format) that will elapse \\
before an upgrade will occur (99:59 max).
\end{tabular} \\
\hline quick & \begin{tabular}{l}
Upon switchover, boots the standby supervisor engine with the \\
new, rather than old, image for faster upgrade.
\end{tabular} \\
\hline
\end{tabular}

None

Privileged EXEC

The issu changeversion command can be used to initiate a single-step, complete ISSU upgrade cycle. It performs the logic for all four of the standard commands (issu loadversion, issu runversion, issu acceptversion, and issu commitversion) without user intervention.
Additionally, the issu changeversion command allows the upgrade process to be scheduled in the future. This enables you to stage a number of systems to perform upgrades sequentially when a potential disruption would be least harmful.
Similar to the normal ISSU upgrade procedure, the in-progress upgrade procedure initiated by the issu changeversion command can be aborted with the issu abortversion command. If the system detects any problems or detects an unhealthy system during an upgrade, the upgrade might be automatically aborted.

\section*{Examples}

This example shows how to use the issu changeversion command to initiate an automatic ISSU upgrade.
```

Switch\# issu changeversion 5 bootflash:cat4500e-universalk9.SSA.03.01.00.SG.150-1.xO.bin 6
slavebootflash:cat4500e-universalk9.SSA.03.01.00.SG.150-1.xO.bin
Switch\#

```

This example shows how to use the issu changeversion command with the quick option to initiate an automatic ISSU upgrade. In this example, the optional standby-slot and standby-image parameters are not specified.
```

Switch\# issu changeversion 5 bootflash:cat4500e-universalk9.SSA.03.01.00.SG.150-1.xo.bin
quick
Switch\#

```

This example shows how to use the issu changeversion command with the in option to schedule an automatic ISSU upgrade to occur in 2 hours and 45 minutes. In this example, the optional standby-slot and standby-image parameters are not specified.
```

Switch\# issu changeversion 5 bootflash:cat4500e-universalk9.SSA.03.01.00.SG.150-1.XO.bin
in 02:45
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu acceptversion & \begin{tabular}{l}
Halts the rollback timer and ensures that the new Cisco IOS XE software \\
bundle is not automatically stopped during the ISSU process.
\end{tabular} \\
\hline issu commitversion & \begin{tabular}{l}
Loads the new Cisco IOS XE software bundle into the new standby \\
supervisor engine.
\end{tabular} \\
\hline issu loadversion & Starts the ISSU process. \\
\hline issu runversion & \begin{tabular}{l}
Forces a change from the active supervisor engine to the standby supervisor \\
engine and causes the newly active supervisor engine to run the new image \\
specified.
\end{tabular} \\
\hline
\end{tabular}

\section*{issu commitversion}

To load the new Cisco IOS software image into the new standby supervisor engine, use the issu commitversion command.
issu commitversion standby-slot [standby-image-new]

\section*{Syntax Description}

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline standby-slot & Specifies the slot number for the currently active supervisor engine. \\
\hline standby-image-new & (Optional) Name of the new image on the currently active supervisor engine.
\end{tabular}

Enabled by default.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The issu commitversion command verifies that the standby supervisor engine has the new Cisco IOS software image in its file system and that both supervisor engines are in the run version (RV) state. If these conditions are met, the following actions take place:
- The standby supervisor engine is reset and booted with the new version of Cisco IOS software.
- The standby supervisor engine moves into the Stateful Switchover (SSO) mode and is fully stateful for all clients and applications with which the standby supervisor engine is compatible.
- The supervisor engines are moved into final state, which is the same as initial state.

Entering the issu commitversion command completes the In Service Software Upgrade (ISSU) process. This process cannot be stopped or reverted to its original state without starting a new ISSU process.

Entering the issu commitversion command without entering the issu acceptversion command is equivalent to entering both the issu acceptversion and the issu commitversion commands. Use the issu commitversion command if you do not intend to run in the current state for an extended period of time and are satisfied with the new software version.

This example shows how you can configure the standby supervisor engine to be reset and reloaded with the new Cisco IOS software version:

Switch\# issu commitversion 1
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu acceptversion & \begin{tabular}{l}
Halts the rollback timer and ensures that the new Cisco IOS \\
software image is not automatically stopped during the \\
ISSU process.
\end{tabular} \\
\hline issu commitversion & \begin{tabular}{l}
Loads the new Cisco IOS software image into the new \\
standby supervisor engine.
\end{tabular} \\
\hline issu loadversion & Starts the ISSU process. \\
\hline issu runversion & \begin{tabular}{l}
Forces a change from the active supervisor engine to the \\
standby supervisor engine and causes the newly active \\
supervisor engine to run the new image specified.
\end{tabular} \\
\hline show issu state & \begin{tabular}{l}
Displays the ISSU state and current booted image name \\
during the ISSU process.
\end{tabular} \\
\hline
\end{tabular}

\section*{issu loadversion}

To start the ISSU process, use the issu loadversion command.
issu loadversion active-slot active-image-new standby-slot standby-image-new [force]

Syntax Description
\(\overline{\text { Defaults }}\)

Command Modes Command History

Usage Guidelines
\begin{tabular}{ll}
\hline active-slot & Specifies the slot number for the currently active supervisor engine. \\
\hline active-image-new & Specifies the name of the new image on the currently active supervisor engine. \\
\hline standby-slot & Specifies the standby slot on the networking device. \\
\hline standby-image-new & \begin{tabular}{l}
Specifies the name of the new image on the standby supervisor engine. \\
\hline force
\end{tabular} \begin{tabular}{l}
(Optional) Overrides the automatic rollback when the new Cisco IOS software \\
version is detected to be incompatible.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The issu loadversion command causes the standby supervisor engine to be reset and booted with the new Cisco IOS software image specified by the command. If both the old image and the new image are ISSU capable, ISSU compatible, and have no configuration mismatches, the standby supervisor engine moves into Stateful Switchover (SSO) mode, and both supervisor engines move into the load version (LV) state.

It will take several seconds after the issu loadversion command is entered for Cisco IOS software to load onto the standby supervisor engine and the standby supervisor engine to transition to SSO mode.

\section*{Examples}

This example shows how to initiate the ISSU process:
Switch\# issu loadversion 1 bootflash:new-image 2 slavebootflash:new-image
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu abortversion & \begin{tabular}{l}
Cancels the ISSU upgrade or the downgrade process in \\
progress and restores the switch to its state before the start \\
of the process.
\end{tabular} \\
\hline issu acceptversion & \begin{tabular}{l}
Halts the rollback timer and ensures that the new Cisco IOS \\
software image is not automatically stopped during the
\end{tabular} \\
& ISSU process.
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu commitversion & \begin{tabular}{l}
Loads the new Cisco IOS software image into the new \\
standby supervisor engine.
\end{tabular} \\
\hline issu runversion & \begin{tabular}{l}
Forces a change from the active supervisor engine to the \\
standby supervisor engine and causes the newly active \\
supervisor engine to run the new image specified.
\end{tabular} \\
\hline show issu state & \begin{tabular}{l}
Displays the ISSU state and current booted image name \\
during the ISSU process.
\end{tabular} \\
\hline
\end{tabular}

\section*{issu runversion}

To force a change from the active supervisor engine to the standby supervisor engine and to cause the newly active supervisor engine to run the new image specified in the issu loadversion command, use the issu runversion command.
issu runversion standby-slot [standby-image-new]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline standby-slot & Specifies the standby slot on the networking device. \\
\hline standby-image-new & \begin{tabular}{l}
(Optional) Specifies the name of the new image on the standby supervisor \\
engine.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The issu runversion command changes the currently active-supervisor engine to standby-supervisor engine and the real standby-supervisor engine is booted with the old image version following and resets the switch. As soon as the standby-supervisor engine moves into the standby state, the rollback timer is started.

This example shows how to force a change of the active-supervisor engine to standby-supervisor engine:
Switch\# issu runversion 2
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu abortversion & \begin{tabular}{l}
Cancels the ISSU upgrade or the downgrade process in \\
progress and restores the switch to its state before the start \\
of the process.
\end{tabular} \\
\hline issu acceptversion & \begin{tabular}{l}
Halts the rollback timer and ensures that the new Cisco IOS \\
software image is not automatically stopped during the
\end{tabular} \\
& ISSU process.
\end{tabular} \begin{tabular}{l}
Loads the new Cisco IOS software image into the new \\
standby supervisor engine.
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu loadversion & Starts the ISSU process. \\
\hline show issu state & \begin{tabular}{l}
Displays the ISSU state and current booted image name \\
during the ISSU process.
\end{tabular} \\
\hline
\end{tabular}

\section*{issu set rollback-timer}

To configure the In Service Software Upgrade (ISSU) rollback timer value, use the issu set rollback-timer command.
issu set rollback-timer seconds

\section*{Syntax Description}

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands
seconds
\(\qquad\)

Rollback timer value is 2700 seconds.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch.
\end{tabular}

Use the issue set rollback-timer command to configure the rollback timer value. You can only enable this command when the supervisor engines are in the init state.

This example shows how you can set the rollback timer value to 3600 seconds, or 1 hour:
Switch\# configure terminal
Switch(config) \# issu set rollback-timer 3600
Switch(config) \# end
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline issu acceptversion & \begin{tabular}{l}
Halts the rollback timer and ensures that the new Cisco IOS \\
software image is not automatically stopped during the
\end{tabular} \\
& ISSU process. \\
\hline issu set rollback-timer & \begin{tabular}{l}
Configures the In Service Software Upgrade (ISSU) \\
\\
rollback timer value.
\end{tabular} \\
\hline
\end{tabular}

\section*{I2protocol-tunnel}

To enable protocol tunneling on an interface, use the 12protocol-tunnel command. You can enable tunneling for the Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunking Protocol (VTP) packets. To disable tunneling on the interface, use the no form of this command.
```

12protocol-tunnel [cdp | stp | vtp]
no 12protocol-tunnel [cdp | stp | vtp]

```

Syntax Description

\section*{Defaults}

Command Modes
Command History

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

This example shows how to enable protocol tunneling for the CDP packets:
Switch(config-if) \# 12protocol-tunnel cdp
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline 12protocol-tunnel cos & Configures the class of service \((\operatorname{CoS})\) value for all tunneled \\
& Layer 2 protocol packets. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline 12protocol-tunnel drop-threshold & \begin{tabular}{l}
Sets a drop threshold for the maximum rate of Layer 2 \\
protocol packets per second to be received before an \\
interface drops packets.
\end{tabular} \\
\hline 12protocol-tunnel shutdown-threshold & Configures the protocol tunneling encapsulation rate. \\
\hline
\end{tabular}

\section*{12protocol-tunnel cos}

To configure the class of service (CoS) value for all tunneled Layer 2 protocol packets, use the 12protocol-tunnel cos command. To return to the default value of zero, use the no form of this command.

\section*{12protocol-tunnel cos value}
no 12protocol-tunnel cos

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

Usage Guidelines

\section*{Examples}

Related Commands
value \(\quad\) Specifies the CoS priority value for tunneled Layer 2 protocol packets. The range is 0 to 7 , with 7 being the highest priority.

The default is to use the CoS value that is configured for data on the interface. If no CoS value is configured, the default is 5 for all tunneled Layer 2 protocol packets.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & This command was first introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

When enabled, the tunneled Layer 2 protocol packets use this \(\operatorname{CoS}\) value.
The value is saved in NVRAM.

This example shows how to configure a Layer 2 protocol tunnel \(\operatorname{CoS}\) value of 7:
Switch(config) \# 12protocol-tunnel cos 7
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline \(\mathbf{1 2 p r o t o c o l - t u n n e l ~}\) & Enables protocol tunneling on an interface. \\
\hline \(\mathbf{1 2 p r o t o c o l - t u n n e l ~ d r o p - t h r e s h o l d ~}\) & \begin{tabular}{l}
Sets a drop threshold for the maximum rate of Layer 2 \\
protocol packets per second to be received before an \\
interface drops packets.
\end{tabular} \\
\hline 2protocol-tunnel shutdown-threshold & Configures the protocol tunneling encapsulation rate. \\
\hline
\end{tabular}

\section*{I2protocol-tunnel drop-threshold}

To set a drop threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface drops packets, use the I2protocol-tunnel drop-threshold command. You can set the drop threshold for the Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunking Protocol (VTP) packets. To disable the drop threshold on the interface, use the no form of this command.

\section*{12protocol-tunnel drop-threshold [cdp | stp | vtp] value}
no 12protocol-tunnel drop-threshold [cdp | stp | vtp] value
\(\overline{\text { Syntax Description }}\)

Defaults

Command Modes

Command History

Usage Guidelines

Examples
\begin{tabular}{ll}
\hline cdp & (Optional) Specifies a drop threshold for CDP. \\
\hline \(\mathbf{s t p}\) & (Optional) Specifies a drop threshold for STP. \\
\hline vtp & (Optional) Specifies a drop threshold for VTP. \\
\hline value & \begin{tabular}{l}
Specifies a threshold in packets per second to be received for encapsulation before the \\
interface shuts down, or specifies the threshold before the interface drops packets. The \\
range is 1 to 4096. The default is no threshold.
\end{tabular} \\
&
\end{tabular}

The default is no drop threshold for the number of the Layer 2 protocol packets.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The l2protocol-tunnel drop-threshold command controls the number of protocol packets per second that are received on an interface before it drops packets. When no protocol option is specified with a keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a shutdown threshold on the interface, the drop-threshold value must be less than or equal to the shutdown-threshold value.

When the drop threshold is reached, the interface drops the Layer 2 protocol packets until the rate at which they are received is below the drop threshold.

This example shows how to configure the drop threshold rate:
Switch(config-if) \# 12protocol-tunnel drop-threshold cdp 50
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline \(\mathbf{1 2 p r o t o c o l - t u n n e l ~}\) & Enables protocol tunneling on an interface. \\
\hline \(\mathbf{1 2 p r o t o c o l}-t u n n e l ~ c o s\) & Configures the class of service (CoS) value for all tunneled \\
& Layer 2 protocol packets. \\
\hline \(\mathbf{1 2 p r o t o c o l - t u n n e l ~ s h u t d o w n - t h r e s h o l d ~}\) & Configures the protocol tunneling encapsulation rate. \\
\hline
\end{tabular}

\section*{I2protocol-tunnel shutdown-threshold}

To configure the protocol tunneling encapsulation rate, use the I2protocol-tunnel shutdown-threshold command. You can set the encapsulation rate for the Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunking Protocol (VTP) packets. To disable the encapsulation rate on the interface, use the no form of this command.

\section*{12protocol-tunnel shutdown-threshold [cdp | stp | vtp] value}
no 12protocol-tunnel shutdown-threshold [cdp | stp | vtp] value

Syntax Description

Defaults

Command Modes

\section*{Command History}

Usage Guidelines
\begin{tabular}{ll}
\hline cdp & (Optional) Specifies a shutdown threshold for CDP. \\
\hline stp & (Optional) Specifies a shutdown threshold for STP. \\
\hline vtp & (Optional) Specifies a shutdown threshold for VTP. \\
\hline value & \begin{tabular}{l}
Specifies a threshold in packets per second to be received for encapsulation before the \\
interface shuts down. The range is 1 to 4096. The default is no threshold.
\end{tabular} \\
\hline
\end{tabular}

The default is no shutdown threshold for the number of Layer 2 protocol packets.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The 12-protocol-tunnel shutdown-threshold command controls the number of protocol packets per second that are received on an interface before it shuts down. When no protocol option is specified with the keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a drop threshold on the interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value.

When the shutdown threshold is reached, the interface is error disabled. If you enable error recovery by entering the errdisable recovery cause 12ptguard command, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out. If the error recovery feature generation is not enabled for l2ptguard, the interface stays in the error-disabled state until you enter the shutdown and no shutdown commands.

This example shows how to configure the maximum rate:
```

Switch(config-if)\# l2protocol-tunnel shutdown-threshold cdp 50
Switch(config-if)\#

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Related Commands} & Command & Description \\
\hline & 12protocol-tunnel & Enables protocol tunneling on an interface. \\
\hline & 12protocol-tunnel cos & Configures the class of service (CoS) value for all tunneled Layer 2 protocol packets. \\
\hline & 12protocol-tunnel drop-threshold & Sets a drop threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface drops packets. \\
\hline
\end{tabular}

\section*{lacp port-priority}

To set the LACP priority for the physical interfaces, use the lacp port-priority command.
lacp port-priority priority

\section*{Syntax Description}

\section*{Defaults}

Command Modes Interface configuration mode

Command History

\section*{Usage Guidelines}

Priority is set to 32768 .
priority \(\quad\) Priority for the physical interfaces; valid values are from 1 to 65535.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & This command was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

You must assign each port in the switch a port priority that can be specified automatically or by entering the lacp port-priority command. The port priority is used with the port number to form the port identifier. The port priority is used to decide which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.

Although this command is a global configuration command, the priority value is supported only on port channels with LACP-enabled physical interfaces.This command is supported on LACP-enabled interfaces.

When setting the priority, the higher numbers indicate lower priorities.

\section*{Examples}

This example shows how to set the priority for the interface:
Switch(config-if) \# lacp port-priority 23748
Switch(config-if) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline channel-group & Assigns and configure an EtherChannel interface to an \\
& EtherChannel group. \\
\hline channel-protocol & Enables LACP or PAgP on an interface. \\
\hline lacp system-priority & Sets the priority of the system for LACP. \\
\hline show lacp & Displays LACP information. \\
\hline
\end{tabular}

\section*{lacp system-priority}

To set the priority of the system for LACP, use the lacp system-priority command.
lacp system-priority priority

\section*{Syntax Description}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

\section*{Related Commands}

This command is not supported on systems that are configured with a Supervisor Engine I.
You must assign each switch that is running LACP a system priority that can be specified automatically or by entering the lacp system-priority command. The system priority is used with the switch MAC address to form the system ID and is also used during negotiation with other systems.

Although this command is a global configuration command, the priority value is supported on port channels with LACP-enabled physical interfaces.

When setting the priority, the higher numbers indicate lower priorities.
You can also enter the lacp system-priority command in interface configuration mode. After you enter the command, the system defaults to global configuration mode.

This example shows how to set the system priority:
Switch(config) \# lacp system-priority 23748
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline channel-group & Assigns and configure an EtherChannel interface to an \\
& EtherChannel group. \\
\hline channel-protocol & Enables LACP or PAgP on an interface. \\
\hline show lacp & Displays LACP information. \\
\hline
\end{tabular}

\section*{logging event link-status global (global configuration)}

To change the default switch-wide global link-status event messaging settings, use the logging event link-status global command. Use the no form of this command to disable the link-status event messaging.
logging event link-status global
no logging event link-status global
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

Defaults

Command Modes

Command History

\section*{Usage Guidelines}

If link-status logging event is not configured at the interface level, this global link-status setting takes effect for each interface.

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

\section*{effect}

This example shows how to globally enable link status message on each interface:

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# logging event link-status global
Switch(config)\# end
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\begin{tabular}{l}
logging event link-status (interface \\
configuration)
\end{tabular} & Enables the link-status event messaging on an interface. \\
\hline
\end{tabular}

\section*{logging event link-status (interface configuration)}

To enable the link-status event messaging on an interface, use the logging event link-status command. Use the no form of this command to disable link-status event messaging. Use the logging event link-status use-global command to apply the global link-status setting.

\section*{logging event link-status}
no logging event link-status
logging event link-status use-global

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

To enable system logging of interface state-change events on a specific interface, enter the logging event link-status command in interface configuration mode.
To enable system logging of interface state-change events on all interfaces in the system, enter the logging event link-status global command in global configuration mode. All interfaces without the state change event configuration use the global setting.

\section*{Examples}

This example shows how to enable logging event state-change events on interface gi11/1:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gi11/1
Switch(config-if)\# logging event link-status
Switch(config-if)\# end
Switch\#

```

This example shows how to turn off logging event link status regardless of the global setting:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gi11/1
Switch(config-if)\# no logging event link-status
Switch(config-if)\# end
Switch\#

```

This example shows how to enable the global event link-status setting on interface gi11/1:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gi11/1
Switch(config-if)\# logging event link-status use-global
Switch(config-if)\# end
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\begin{tabular}{ll}
logging event link-status global (global \\
configuration)
\end{tabular} & \begin{tabular}{l}
Changes the default switch-wide global link-status event \\
messaging settings.
\end{tabular} \\
\hline
\end{tabular}

\section*{logging event trunk-status global (global configuration)}

To enable the trunk-status event messaging globally, use the logging event trunk-status global command. Use the no form of this command to disable trunk-status event messaging.

\section*{logging event trunk-status global}
no logging event trunk-status global

\section*{\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

Related Commands
If trunk-status logging event is not configured at the interface level, the global trunk-status setting takes effect for each interface.

This example shows how to globally enable link status messaging on each interface:
Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# logging event trunk-status global
Switch(config) \# end
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\begin{tabular}{l}
logging event trunk-status global \\
(global configuration)
\end{tabular} & Enables the trunk-status event messaging on an interface.
\end{tabular}

\section*{logging event trunk-status (interface configuration)}

To enable the trunk-status event messaging on an interface, use the logging event trunk-status command. Use the no form of this command to disable the trunk-status event messaging. Use the logging event trunk-status use-global command to apply the global trunk-status setting.

\section*{logging event trunk-status}
no logging event trunk-status
logging event trunk-status use-global

Defaults

Command Modes

Command History

Global trunk-status messaging is enabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

To enable system logging of interface state-change events on a specific interface, enter the logging event trunk-status command in interface configuration mode.

To enable system logging of interface state-change events on all interfaces in the system, enter the logging event trunk-status use-global command in global configuration mode. All interfaces without the state change event configuration use the global setting.

\section*{Examples}

This example shows how to enable logging event state-change events on interface gil1/1:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gi11/1
Switch(config-if)\# logging event trunk-status
Switch(config-if)\# end
Switch\#

```

This example shows how to turn off logging event trunk status regardless of the global setting:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gi11/1
Switch(config-if)\# no logging event trunk-status
Switch(config-if)\# end
Switch\#

```

This example shows how to enable the global event trunk-status setting on interface gi11/1:
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gi11/1
Switch(config-if)\# logging event trunk-status use-global
Switch(config-if)\# end
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l}
Command \\
\begin{tabular}{l}
logging event trunk-status global \\
(global configuration)
\end{tabular}
\end{tabular} Description \\
\hline
\end{tabular}

\section*{mab}
\(\overline{\text { Syntax Description }}\)

\section*{Command Default}

Command Modes

Command History

Usage Guidelines
When a port is configured for MAB as a fallback method, it operates in a typical dot1X method until a configurable number of failed attempts to request the identity of the host. The authenticator learns the MAC address of the host and uses that information to query an authentication server to see whether this MAC address will be granted access.

\section*{Examples}
\begin{tabular}{ll}
eap & (Optional) Specifies that a full EAP conversation should be used, as opposed to \\
standard RADIUS Access-Request, Access-Accept conversation.
\end{tabular}

Disabled

Interface configuration mode

The following example shows how to enable MAB on a port:

To enable and configure MAC authorization bypass (MAB) on a port, use the mab command in interface configuration mode. To disable MAB, use the no form of this command.

\section*{mab [eap]}
no mab [eap]

The mab command is totally independent of the effect of the dot1x system-auth control command.
```

Switch(config-if) \# mab

```

Switch(config-if) \#
The following example shows how to enable and configure MAB on a port:
```

Switch(config-if)\# mab eap
Switch(config-if)\#

```

The following example shows how to disable MAB on a port:
Switch(config-if) \# no mab
Switch(config-if) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
& show authentication & Displays Authentication Manager information. \\
\hline show mab & Displays MAB information. \\
\hline & show running-config & Displays the running configuration information. \\
\hline
\end{tabular}

\section*{mac access-list extended}

To define the extended MAC access lists, use the mac access-list extended command. To remove the MAC access lists, use the no form of this command.
mac access-list extended name
no mac access-list extended name

Syntax Description

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History

Usage Guidelines
name \(\quad\) ACL to which the entry belongs.

MAC access lists are not defined.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

When you enter the ACL name, follow these naming conventions:
- Maximum of 31 characters long and can include a-z, A-Z, \(0-9\), the dash character (-), the underscore character (_), and the period character (.)
- Must start with an alpha character and must be unique across all ACLs of all types
- Case sensitive
- Cannot be a number
- Must not be a keyword; keywords to avoid are all, default-action, map, help, and editbuffer

When you enter the mac access-list extended name command, you use the following subset to create or delete entries in a MAC layer access list:
[no] \{permit | deny \(\}\{\{\) src-mac mask \(\mid\) any \(\}\) [dest-mac mask]\} [protocol-family \{appletalk | arp-non-ipv4 | decnet \(|\mathbf{i p x}| \mathbf{i p v} 6 \mid\) rarp-ipv4 | rarp-non-ipv4 | vines \(\mid \mathbf{x n s}\} \mid<\) arbitrary ethertype \(>\mid\) name-coded ethertype].

Table 2-9 describes the syntax of the mac access-list extended subcommands.
Table 2-9 mac access-list extended Subcommands
\begin{tabular}{l|l}
\hline Subcommand & Description \\
\hline any & Specifies any source-host or destination-host. \\
\hline arbitrary ethertype & \begin{tabular}{l}
(Optional) Specifies an arbitrary ethertype in the range 1536 to 65535 \\
(Decimal or Hexadecimal)
\end{tabular} \\
\hline deny & Prevents access if the conditions are matched. \\
\hline
\end{tabular}

Table 2-9 mac access-list extended Subcommands (continued)
\begin{tabular}{l|l}
\hline Subcommand & Description \\
\hline dest-mac mask & \begin{tabular}{l}
(Optional) Specifies a destination MAC address of the form: \\
dest-mac-address dest-mac-address-mask.
\end{tabular} \\
\hline \begin{tabular}{l}
name-coded \\
ethertype
\end{tabular} & \begin{tabular}{l}
(Optional) Denotes a predefined name-coded ethertype for common protocols: \\
aarp-AppleTalk ARP \\
amber-DEC-Amber \\
appletalk—AppleTalk/EtherTalk \\
dec-spanning—DEC-Spanning-Tree \\
decnet-iv-DECnet Phase IV \\
diagnostic-DEC-Diagnostic
\end{tabular} \\
\hline dsm—DEC-DSM \\
etype-6000-0x6000 \\
etype-8042-0x8042 \\
lat-DEC-LAT \\
lavc-sca-DEC-LAVC-SCA \\
mop-console—DEC-MOP Remote Console \\
mop-dump-DEC-MOP Dump \\
msdos-DEC-MSDOS \\
mumps—DEC-MUMPS
\end{tabular}

Table 2-10 describes mapping an Ethernet packet to a protocol family.
Table 2-10 Mapping an Ethernet Packet to a Protocol Family
\begin{tabular}{l|l}
\hline Protocol Family & Ethertype in Packet Header \\
\hline Appletalk & \(0 \times 809 \mathrm{~B}, 0 \times 80 \mathrm{~F} 3\) \\
\hline Arp-Non-Ipv4 & \(0 \times 0806\) and protocol header of Arp is a non-Ip protocol family \\
\hline Decnet & \(0 \times 6000-0 \times 6009,0 \times 8038-0 \times 8042\) \\
\hline
\end{tabular}

Table 2-10 Mapping an Ethernet Packet to a Protocol Family
\begin{tabular}{l|l}
\hline Protocol Family & Ethertype in Packet Header \\
\hline Ipx & 0x8137-0x8138 \\
\hline Ipv6 & \(0 \times 86 \mathrm{DD}\) \\
\hline Rarp-Ipv4 & 0x8035 and protocol header of Rarp is Ipv4 \\
\hline Rarp-Non-Ipv4 & \(0 \times 8035\) and protocol header of Rarp is a non-Ipv4 protocol family \\
\hline Vines & 0x0BAD, 0x0BAE, 0x0BAF \\
\hline Xns & \(0 \times 0600,0 \times 0807\) \\
\hline
\end{tabular}

When you enter the src-mac mask or dest-mac mask value, follow these guidelines:
- Enter the MAC addresses as three 4-byte values in dotted hexadecimal format such as 0030.9629.9f84.
- Enter the MAC address masks as three 4-byte values in dotted hexadecimal format. Use 1 bit as a wildcard. For example, to match an address exactly, use 0000.0000.0000 (can be entered as 0.0 .0).
- For the optional protocol parameter, you can enter either the EtherType or the keyword.
- Entries without a protocol parameter match any protocol.
- The access list entries are scanned in the order that you enter them. The first matching entry is used. To improve performance, place the most commonly used entries near the beginning of the access list.
- An implicit deny any any entry exists at the end of an access list unless you include an explicit permit any any entry at the end of the list.
- All new entries to an existing list are placed at the end of the list. You cannot add entries to the middle of a list.

\section*{Examples}

This example shows how to create a MAC layer access list named mac_layer that denies traffic from 0000.4700 .0001 , which is going to 0000.4700 .0009 , and permits all other traffic:
```

Switch(config)\# mac access-list extended mac_layer
Switch(config-ext-macl)\# deny 0000.4700.0001 0.0.0 0000.4700.0009 0.0.0 protocol-family
appletalk
Switch(config-ext-macl)\# permit any any
Switch(config-ext-macl)\# end
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vlan access-map & Displays VLAN access map information. \\
\hline
\end{tabular}

\section*{mac-address-table aging-time}

To configure the aging time for the entries in the Layer 2 table, use the mac-address-table aging-time command. To reset the seconds value to the default setting, use the no form of this command.
mac-address-table aging-time seconds [vlan vlan_id]
no mac-address-table aging-time seconds [vlan vlan_id]

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline seconds & Aging time in seconds; valid values are 0 and from 10 to 1000000 seconds. \\
\hline vlan vlan_id & \begin{tabular}{l}
(Optional) Single VLAN number or a range of VLANs; valid values are from 1 \\
to 4094.
\end{tabular} \\
\hline
\end{tabular}

Aging time is set to 300 seconds.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline
\end{tabular}

If you do not enter a VLAN, the change is applied to all routed-port VLANs. Enter 0 seconds to disable aging.

This example shows how to configure the aging time to 400 seconds:
```

Switch(config) \# mac-address-table aging-time 400
Switch(config)\#

```

This example shows how to disable aging:
Switch(config) \# mac-address-table aging-time 0
Switch(config)
\begin{tabular}{ll}
\hline Command & Description \\
\hline show mac-address-table aging-time & Displays MAC address table aging information. \\
\hline
\end{tabular}

\section*{mac-address-table dynamic group protocols}

To enable the learning of MAC addresses in both the "ip" and "other" protocol buckets, even though the incoming packet may belong to only one of the protocol buckets, use the mac-address-table dynamic group protocols command. To disable grouped learning, use the no form of this command.
mac-address-table dynamic group protocols \{ip|other\} \{ip|other\}
no mac-address-table dynamic group protocols \(\{\) ip | other \(\}\) \{ip |other \}

Syntax Description
\begin{tabular}{ll}
\hline ip & Specifies the "ip" protocol bucket. \\
\hline other & Specifies the "other" protocol bucket.
\end{tabular}

Defaults

Command Modes

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The entries within the "ip" and "other" protocol buckets are created according to the protocol of the incoming traffic.
When you use the mac-address-table dynamic group protocols command, an incoming MAC address that might belong to either the "ip" or the "other" protocol bucket, is learned on both protocol buckets. Therefore, any traffic destined to this MAC address and belonging to any of the protocol buckets is unicasted to that MAC address, rather than flooded. This reduces the unicast Layer 2 flooding that might be caused if the incoming traffic from a host belongs to a different protocol bucket than the traffic that is destined to the sending host.

\section*{Examples}

Global configuration mode
The group learning feature is disabled.

This example shows that the MAC addresses are initially assigned to either the "ip" or the "other" protocol bucket:
```

Switch\# show mac-address-table dynamic
Unicast Entries
vlan mac address type protocols port
10000.0000.5000 dynamic other GigabitEthernet1/1
1 0001.0234.6616 dynamic ip GigabitEthernet3/1
1 0003.3178.ec0a dynamic assigned GigabitEthernet3/1
1 0003.4700.24c3 dynamic ip GigabitEthernet3/1
1 0003.4716.f475 dynamic ip GigabitEthernet3/1
1 0003.4748.75c5 dynamic ip GigabitEthernet3/1

```
0003.47f0.d6a3 dynamic ip
0003.47 f6.a91a dynamic ip
0003.ba06.4538 dynamic ip
0003.fd63.3eb4 dynamic ip
\(0004.2326 .18 a 1\) dynamic ip
0004.5a5d.de53
0004.5a5e.6ecc
0004.5a5e.f60e
0004.5a5f.06f7
0004.5a5f.072f
0004.5a5f.08f6
0004.5a5f.090b
0004.5a88.b075
\(0004 . c 1 b d .1 b 40\)
\(0004 . c 1 d 8 . b 3 c 0\)
0004.c1d8.bd00
0007.e997.74dd
0007.e997.7e8f
0007.e9ad.5e24

000b.5f0a.f1d8
000b.fdf3.c498
0010.7be8. 3794
0012.436f.c07f
0050.0407 .5 fe1
0050.6901 .65 af
\(0050 . d a 6 c .81 c b\)
0050.dad0. af07

00a0.ccd7.20ac
00b0.64fd.1c23
00b0.64fd.2d8f
00d0.b775.c8bc
00d0.b79e.de1d
\(00 e 0.4 c 79.1939\)
\(00 \mathrm{e} 0.4 \mathrm{c} 7 \mathrm{~b} . \mathrm{d} 765\)
00 e 0.4 c 82.66 b 7
\(00 e 0.4 c 8 b . f 83 e\)
\(00 \mathrm{e} 0.4 \mathrm{cbc} . \mathrm{a} 04 \mathrm{f}\)
0800.20 cf .8977
0800.20 f2.82e5
dynamic ip
dynamic assigned
dynamic ip
dynamic assigned
dynamic ip

GigabitEthernet3/1
GigabitEthernet3/1
GigabitEthernet3/1 GigabitEthernet3/1
Switch\#

This example shows how to assign MAC addresses that belong to either the "ip" or the "other" bucket to both buckets:

\begin{tabular}{|c|c|c|c|}
\hline 1 & \(0004.5 a 5 d . d e 55\) & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.5a5e.6ecc & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & \(0004.5 \mathrm{5e}\).f60e & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.5a5f.08f6 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & \(0004.5 \mathrm{abf.090b}\) & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & \(0004.5 \mathrm{6} 4 . \mathrm{f} 813\) & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.5a66.1a77 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.5a6b.56b2 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.5a6c.6a07 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.5a88.b075 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & \(0004 . c 1 b d .1 b 40\) & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.c1d8.b3c0 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0004.c1d8.bd00 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0005.dce0.7c0a & dynamic assigned & GigabitEthernet3/1 \\
\hline 1 & 0007.e997.74dd & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0007.e997.7e8f & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0007.e9ad.5e24 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0007.e9c9.0bc9 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 000b.5f0a.f1d8 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 000b.fdf3.c498 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0012.436f.c07f & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0050.0407 .5 fe 1 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0050.6901.65af & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0050.da6c.81cb & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0050.dad0.af07 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00a0.ccd7.20ac & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00b0.64fd.1b84 & dynamic assigned & GigabitEthernet3/1 \\
\hline 1 & 00d0.b775.c8bc & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00d0.b775.c8ee & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00d0.b79e.de1d & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00e0.4c79.1939 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00e0.4c7b.d765 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00e0.4c82.66b7 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00e0.4c8b.f83e & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 00e0.4c8c. 0861 & dynamic ip,other & GigabitEthernet3/1 \\
\hline 1 & 0800.20d1.bf09 & dynamic ip,other & GigabitEthernet3/1 \\
\hline Switc & & & \\
\hline
\end{tabular}

\section*{mac address-table learning vlan}

To enable MAC address learning on a VLAN, use the mac address-table learning global configuration command. Use the no form of this command to disable MAC address learning on a VLAN to control which VLANs can learn MAC addresses.
mac address-table learning vlan vlan-id
no mac address-table learning vlan vlan-id

Syntax Description

Defaults

Command Modes

Command History

\section*{Usage Guidelines}
vlan-id Specifies a single VLAN ID or a range of VLAN IDs separated by a hyphen or comma. Valid VLAN IDs are 1 to 4094.

\section*{Enabled on all VLANs}

Global configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(54)\) SG & This command was modified to support the disable learning feature on the \\
& Catalyst 4500 series switch. \\
\hline
\end{tabular}

When you control MAC address learning on a VLAN, you can manage the available table space by controlling which VLANs, and which ports can learn MAC addresses.
You can disable MAC address learning on a single VLAN ID (for example, by entering no mac address-table learning vlan 223) or on a range of VLAN IDs (for example, by entering no mac address-table learning vlan 1-20, 15.)
Before you disable MAC address learning, familiarize yourself with the network topology and the switch system configuration. If you disable MAC address learning on a VLAN, flooding may occur in the network. For example, if you disable MAC address learning on a VLAN with a configured switch virtual interface (SVI), the switch floods all IP packets in the Layer 2 domain. If you disable MAC address learning on a VLAN that includes more than two ports, every packet entering the switch is flooded in that VLAN domain. Disable MAC address learning only in VLANs that contain two ports. Use caution before disabling MAC address learning on a VLAN with an SVI.
You cannot disable MAC address learning on a VLAN that the switch uses internally. This action causes the switch to generate an error message and rejects the no mac address-table learning vlan command. To view used internal VLANs, enter the show vlan internal usage privileged EXEC command.
If you disable MAC address learning on a VLAN configured as a PVLAN primary or a secondary VLAN, the MAC addresses are still learned on the VLAN (primary or secondary) associated with the PVLAN.
You cannot disable MAC address learning on an RSPAN VLAN. The configuration is not allowed.
If you disable MAC address learning on a VLAN that includes a secure port, MAC address learning is not disabled on the secure port. If you later disable port security on the interface, the disabled MAC address learning state is enabled.

To display the MAC address learning status of a specific VLAN or for all VLANs, enter the show mac-address-table learning vlan command.

Examples
This example shows how to disable MAC address learning on VLAN 2003:
Switch(config) \# no mac address-table learning vlan 2003

\section*{mac-address-table notification}

To enable MAC address notification on a switch, use the mac-address-table notification command. To return to the default setting, use the no form of this command
mac-address-table notification [[change [history-size \(h s_{-}\)value | interval intv_value]] | [mac-move] | [threshold [limit percentage | interval time]] | [learn-fail [interval time | limit num_fail]]
no mac-address-table notification [[change [history-size \(\left.\left.h s_{-} v a l u e ~ \mid ~ i n t e r v a l ~ i n t v _v a l u e\right]\right] ~ \mid ~\) \([\) mac-move] | [threshold [limit percentage | interval time]] | [learn-fail [interval time | limit num_fail] \(]\)
Syntax Description
\(\left.\begin{array}{ll}\hline \text { change } & \text { (Optional) Specifies enabling MAC change notification. } \\
\hline \text { history-size } \text { hs_value }^{\text {(Optional) Sets a maximum number of entries in the MAC change }} \\
\hline \text { notification history table. The range is 0 to 500 entries. }\end{array}\right]\)\begin{tabular}{ll}
interval intv_value & \begin{tabular}{l}
(Optional) Sets a notification trap interval: the set interval time between two \\
consecutive traps. The range is 0 to 2,147,483,647 seconds.
\end{tabular} \\
\hline mac-move & (Optional) Specifies enabling MAC move notification. \\
\hline threshold & (Optional) Specifies enabling MAC threshold notification. \\
\hline limit percentage & \begin{tabular}{l}
(Optional) Specifies the percentage of MAT utilization threshold; valid \\
values are from 1 to 100 percent.
\end{tabular} \\
\hline interval time & \begin{tabular}{l}
(Optional) Specifies the time between MAC threshold notifications; valid \\
values are greater than or equal to 120 seconds.
\end{tabular} \\
\hline learn-fail & \begin{tabular}{l}
(Optional) Specifies syslog (level 6) notifications of failures to install MAC \\
addresses learned in software into hardware. Disabled by default.
\end{tabular} \\
\hline interval time & \begin{tabular}{l}
(Optional) Specifies the syslog interval between hardware MAC learning \\
failure notifications. The default value is 150 seconds. The range is between \\
1 to 100000 seconds.
\end{tabular} \\
\hline \begin{tabular}{l}
(Optional) Specifies the number of hardware MAC learning failures to be \\
allowed in a notification interval.
\end{tabular} \\
\hline
\end{tabular}

\section*{\(\overline{\text { Defaults }}\)}

MAC address notification feature is disabled.
The default MAC change trap interval value is 1 second.
The default number of entries in the history table is 1 .
MAC move notification is disabled.
MAC threshold monitoring feature is disabled.
The default limit is 50 percent.
The default time is 120 seconds.
Hardware MAC learning failure syslog notification is disabled.
The default limit is 1000 .
The default interval is 150 seconds.

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

This example shows how to set the MAC address notification history table size to 300 entries:
```

Switch(config) \# mac-address-table notification change history-size 300
Switch(config)\#

```

This example shows how to set the MAC address notification interval time to 1250 seconds:
```

Switch(config)\# mac-address-table notification change interval }125
Switch(config)\#

```

This example shows how to enable hardware MAC address learning failure syslog notification:
```

Switch(config)\# mac address-table notification learn-fail

```

This example shows how to set the interval of hardware MAC address learning failure syslog notification to 30 seconds:

Switch(config) \# mac address-table notification learn-fail interval 30
\begin{tabular}{ll}
\hline Command & Description \\
\hline clear mac-address-table & \begin{tabular}{l}
Clears the global counter entries from the Layer 2 MAC \\
address table.
\end{tabular} \\
\hline mac-address-table notification & Enables MAC address notification on a switch. \\
\hline snmp-server enable traps & Enables SNMP notifications. \\
\hline snmp trap mac-notification change & Enables SNMP MAC address notifications. \\
\hline
\end{tabular}

\section*{mac-address-table static}

To configure the static MAC addresses for a VLAN interface or drop unicast traffic for a MAC address for a VLAN interface, use the mac-address-table static command. To remove the static MAC address configurations, use the no form of this command.
mac-address-table static mac-addr \{vlan vlan-id\} \{interface type |drop\}
no mac-address-table static mac-addr \{van vlan-id\} \{interface type\} \{drop\}

Syntax Description

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

This example shows how to add the static entries to the MAC address table:
Switch (config) \# mac-address-table static 0050.3 e 8 d .6400 vlan 100 interface fastethernet5/7
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show mac-address-table static & Displays the static MAC address table entries only. \\
\hline
\end{tabular}

\section*{macro apply cisco-desktop}

To enable the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop, use the macro apply cisco-desktop command.

\section*{macro apply cisco-desktop \$AVID access_vlanid}
\$AVID access_vlanid \(\quad\) Specifies an access VLAN ID.

\section*{Defaults}

This command has no default settings.

Command Modes Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

\section*{Usage Guidelines \\ This command can only be viewed and applied; it cannot be modified.}

\section*{Examples}

Ensure that the existing configuration on the interface does not conflict with the intended macro configuration. Before you apply the macro, clear the configuration on the interface with the default interface command.

This example shows how to enable the Cisco-recommended features and settings on port fa \(2 / 1\) :
```

Switch(config)\# interface FastEthernet2/1
Switch(config-if)\# macro apply cisco-desktop \$AVID 50
Switch(config-if)\#

```

The contents of this macro are as follows:
```


# Basic interface - Enable data VLAN only

# Recommended value for access vlan (AVID) should not be 1

switchport access vlan \$AVID [access_vlanid]
switchport mode access

# Enable port security limiting port to a single

# MAC address -- that of desktop

switchport port-security

# Ensure port-security age is greater than one minute

# and use inactivity timer

# "Port-security maximum 1" is the default and will not

# Show up in the config

switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity

# Configure port as an edge network port

spanning-tree portfast
spanning-tree bpduguard enable

```
\begin{tabular}{lll}
\cline { 2 - 3 } Related Commands & Command & Description \\
\cline { 2 - 4 } & macro apply cisco-phone & \begin{tabular}{l}
Enables the Cisco-recommended features and settings that \\
are suitable for connecting a switch port to a standard \\
desktop and a Cisco IP phone.
\end{tabular} \\
\cline { 2 - 4 } & macro apply cisco-router & \begin{tabular}{l}
Enables the Cisco-recommended features and settings that \\
are suitable for connecting a switch port to a router.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Enables the Cisco-recommended features and settings that \\
are suitable for connecting a switch port to another switch.
\end{tabular} \\
\hline
\end{tabular}

\section*{macro apply cisco-phone}

To enable the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop and a Cisco IP phone, use the macro apply cisco-phone command.
macro apply cisco-phone \$AVID access_vlanid \$VVID voice_vlanid

\section*{Syntax Description}

\section*{Defaults}
\begin{tabular}{ll}
\hline \$AVID access_vlanid & Specifies an access VLAN ID. \\
\hline \$VVID voice_vlanid & Specifies a voice VLAN ID.
\end{tabular}

This command has no default settings.

\section*{Command Modes}

Interface configuration mode
Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This command can only be viewed and applied; it cannot be modified.
Ensure that the existing configuration on the interface does not conflict with the intended macro configuration. Before you apply the macro, clear the configuration on the interface with the default interface command.

\section*{Examples}

This example shows how to enable the Cisco-recommended features and settings on port fa2/1:
```

Switch(config)\# interface FastEthernet2/1
Switch(config-if)\# macro apply cisco-phone \$AVID 10 \$VVID 50
Switch(config-if)\#

```

The contents of this macro are as follows:
```


# VoIP enabled interface - Enable data VLAN

# and voice VLAN (VVID)

# Recommended value for access vlan (AVID) should not be 1\

switchport access vlan \$AVID [access_vlan_id]
switchport mode access

# Update the Voice VLAN (VVID) value which should be

# different from data VLAN

# Recommended value for voice vlan (VVID) should not be 1

switchport voice vlan \$VVID [voice_vlan_id]

# Enable port security limiting port to a 3 MAC

# addressees -- One for desktop and two for phone

switchport port-security
switchport port-security maximum 3

# Ensure port-security age is greater than one minute

# and use inactivity timer

switchport port-security violation restrict
switchport port-security aging time 2

```
```

switchport port-security aging type inactivity

# Enable auto-qos to extend trust to attached Cisco phone

auto qos voip cisco-phone

# Configure port as an edge network port

spanning-tree portfast
spanning-tree bpduguard enable@

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Related Commands} & Command & Description \\
\hline & macro apply cisco-desktop & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop. \\
\hline & macro apply cisco-router & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a router. \\
\hline & macro apply cisco-switch & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to another switch. \\
\hline
\end{tabular}

\section*{macro apply cisco-router}

To enable the Cisco-recommended features and settings that are suitable for connecting a switch port to a router, use the macro apply cisco-router command.
macro apply cisco-router \$NVID native_vlanid
\(\overline{\text { Syntax Description }} \overline{\text { \$NVID } \text { native_vlanid }}\) Specifies a native VLAN ID.

\section*{Defaults}

This command has no default settings.

Command Modes Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines This command can only be viewed and applied; it cannot be modified.}

Ensure that the existing configuration on the interface does not conflict with the intended macro configuration. Before you apply the macro apply cisco-router command, clear the configuration on the interface with the default interface command.

\section*{Examples}

This example shows how to enable the Cisco-recommended features and settings on port fa2/1:
```

Switch(config)\# interface FastEthernet2/1
Switch(config-if)\# macro apply cisco-router \$NVID 80
Switch(config-if)\#

```

The contents of this macro are as follows:
```


# Access Uplink to Distribution

switchport trunk encapsulation dot1q

# Define unique Native VLAN on trunk ports

# Recommended value for native vlan (NVID) should not be 1

switchport trunk native vlan \$NVID [native_vlan_id]

# Update the allowed VLAN range (VRANGE) such that it

# includes data, voice and native VLANs

# switchport trunk allowed vlan \$VRANGE [vlan_range]

# Hardcode trunk and disable negotiation to

# speed up convergence

# Hardcode speed and duplex to router

switchport mode trunk
switchport nonegotiate
speed 100
duplex full

# Configure qos to trust this interface

auto qos voip trust
qos trust dscp

```
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{```
Ensure fast access to the network when enabling the interface.
Ensure that switch devices cannot become active on the interface.
spanning-tree portfast
spanning-tree bpduguard enable
```} \\
\hline \multirow[t]{5}{*}{Related Commands} & Command & Description \\
\hline & macro apply cisco-desktop & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop. \\
\hline & macro apply cisco-phone & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop and a Cisco IP phone. \\
\hline & macro apply cisco-router & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a router. \\
\hline & macro apply cisco-switch & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to another switch. \\
\hline
\end{tabular}

\section*{macro apply cisco-switch}

To enable the Cisco-recommended features and settings that are suitable for connecting a switch port to another switch, use the macro apply cisco-switch command.
macro apply cisco-switch \$NVID native_vlanid
\(\overline{\text { Syntax Description }} \quad\) \$NVID native_vlanid \(\quad\) Specifies a native VLAN ID.

\section*{Defaults}

Command Modes Interface configuration mode

Command History

\section*{Usage Guidelines}

\section*{Examples} interface command.

This command can only be viewed and applied; it cannot be modified.
Ensure that the existing configuration on the interface does not conflict with the intended macro configuration. Before you apply this macro, clear the configuration on the interface with the default

This example shows how to enable the Cisco-recommended features and settings on port fa2/1:
```

Switch(config)\# interface FastEthernet2/1
Switch(config-if)\# macro apply cisco-switch \$NVID 45
Switch(config-if)\#

```

The contents of this macro are as follows:
```


Access Uplink to Distribution

switchport trunk encapsulation dot1q

Define unique Native VLAN on trunk ports

Recommended value for native vlan (NVID) should not be 1

switchport trunk native vlan \$NVID [native_vlan_id]

Update the allowed VLAN range (VRANGE) such that it

includes data, voice and native VLANs

switchport trunk allowed vlan \$VRANGE

Hardcode trunk and disable negotiation to

speed up convergence

switchport mode trunk
switchport nonegotiate

Configure qos to trust this interface

auto qos voip trust

802.1w defines the link as pt-pt for rapid convergence

spanning-tree link-type point-to-point

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{\(\overline{\text { Related Commands }}\)} & Command & Description \\
\hline & macro apply cisco-desktop & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop. \\
\hline & macro apply cisco-phone & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a standard desktop and a Cisco IP phone. \\
\hline & macro apply cisco-router & Enables the Cisco-recommended features and settings that are suitable for connecting a switch port to a router. \\
\hline
\end{tabular}

\section*{macro global apply cisco-global}

To apply the system-defined default template to the switch, use the macro global apply cisco-global global configuration command on the switch stack or on a standalone switch.
macro global apply cisco-global
\(\overline{\text { Syntax Description }}\) This command has no keywords or variables.

Defaults

Command Modes

Command History

Examples

These examples show how to apply the system-defined default to the switch:
```

Switch(config)\# macro global apply cisco-global
Changing VTP domain name from gsg-vtp to [smartports] Device mode already VTP TRANSPARENT.
Switch(config)\#

```

\section*{macro global apply system-cpp}

To apply the control plane policing default template to the switch, use the macro global apply system-cpp global configuration command on the switch stack or on a standalone switch.
macro global apply system-cpp

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

This example shows how to apply the system-defined default to the switch:
Switch (config) \# macro global apply system-cpp
Switch (config) \#

\section*{Related Commands}

This command has no keywords or variables.

This command has no default setting.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31) \mathrm{SG}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline macro global apply cisco-global & Applies the system-defined default template to the switch. \\
\hline macro global description & Enters a description about the macros that are applied to the \\
& switch. \\
\hline
\end{tabular}

\section*{macro global description}

To enter a description about the macros that are applied to the switch, use the macro global description global configuration command on the switch stack or on a standalone switch. Use the no form of this command to remove the description.
macro global description text
no macro global description text
\begin{tabular}{lll}
\(\overline{\text { Syntax Description }}\) & & Enters a description about the macros that are applied to the switch. \\
\hline Defaults & This command has no default setting. \\
\(\overline{\text { Command Modes }}\) & Global configuration mode \\
\hline Command History & \begin{tabular}{ll} 
Release & Modification \\
&
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines Use the text argument to associate comment text, or the macro name, with a switch. When multiple macros are applied on a switch, the description text will be from the last applied macro.

\section*{Examples}

This example shows how to add a description to a switch:
Switch(config)\# macro global description udld aggressive mode enabled
You can verify your settings by entering the show parser macro description privileged EXEC command.
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline macro global apply cisco-global & Applies the system-defined default template to the switch. \\
\hline
\end{tabular}

\section*{main-cpu}

To enter the main CPU submode and manually synchronize the configurations on the two supervisor engines, use the main-cpu command.

\section*{main-cpu}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

The main CPU submode is used to manually synchronize the configurations on the two supervisor engines. From the main CPU submode, use the auto-sync command to enable automatic synchronization of the configuration files in NVRAM.

After you enter the main CPU submode, you can use the auto-sync command to automatically synchronize the configuration between the primary and secondary route processors based on the primary configuration. In addition, you can use all of the redundancy commands that are applicable to the main CPU.

This example shows how to reenable the default automatic synchronization feature using the auto-sync standard command to synchronize the startup-config and config-register configuration of the active supervisor engine with the standby supervisor engine. The updates for the boot variables are automatic and cannot be disabled.
```

Switch(config)\# redundancy
Switch(config-red)\# main-cpu
Switch(config-r-mc) \# auto-sync standard
Switch(config-r-mc)\# end
Switch\# copy running-config startup-config
Switch\#

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline auto-sync & Enables automatic synchronization of the configuration \\
& files in NVRAM. \\
\hline
\end{tabular}

\section*{match}

To specify a match clause by selecting one or more ACLs for a VLAN access-map sequence, use the match subcommand. To remove the match clause, use the no form of this command.
match \{ip address \(\{\) acl-number \(\mid\) acl-name \(\}\} \mid\{\) mac address acl-name \(\}\)
no match \(\{\mathbf{i p}\) address \(\{\) acl-number \(\mid\) acl-name \(\}\} \mid\{\) mac address acl-name \(\}\)


If a match clause is not specified, the action for the VLAN access-map sequence is applied to all packets. All packets are matched against that sequence in the access map.
\begin{tabular}{lll}
\cline { 2 - 3 } Syntax Description & ip address acl-number & \begin{tabular}{l} 
Selects one or more IP ACLs for a VLAN access-map sequence; valid values \\
are from 1 to 199 and from 1300 to 2699.
\end{tabular} \\
\cline { 2 - 3 } & ip address acl-name & Selects an IP ACL by name. \\
\cline { 2 - 4 } mac address acl-name & Selects one or more MAC ACLs for a VLAN access-map sequence. \\
\hline
\end{tabular}

Defaults

\section*{Command Modes}

Command History

Usage Guidelines
The match clause specifies the IP or MAC ACL for traffic filtering.
The MAC sequence is not effective for IP packets. IP packets should be access controlled by IP match clauses.
Refer to the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide for additional configuration guidelines and restrictions.
Refer to the Cisco IOS Command Reference publication for additional match command information.

\section*{Examples}

This example shows how to define a match clause for a VLAN access map:
```

Switch(config)\# vlan access-map ganymede 10
Switch(config-access-map)\# match ip address 13
Switch(config-access-map)\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vlan access-map & Displays the contents of a VLAN access map. \\
\hline vlan access-map & Enters VLAN access-map command mode to create a \\
& VLAN access map. \\
\hline
\end{tabular}

\section*{match (class-map configuration)}

To define the match criteria for a class map, use the match class-map configuration command. To remove the match criteria, use the no form of this command.
match \{access-group acl-index-or-name | cos cos-list | [lp] dscp dscp-list | [Ip] precedence ip-precedence-list | qos-group value | protocol [ip | ipv6 | arp]
no match \{access-group acl-index-or-name | \(\mathbf{c o s}\) cos-list | [lp] dscp dscp-list | [Ip] precedence ip-precedence-list | qos-group value | protocol [ip | ipv6 | arp]

Syntax Description

Defaults

\section*{Command Modes}

Number or name of an IP standard or extended access control list (ACL) or MAC ACL. For an IP standard ACL, the ACL index range is 1 to 99 and 1300 to 1999. For an IP extended ACL, the ACL index range is 100 to 199 and 2000 to 2699.
\(\overline{\cos \text { cos-list } \quad \text { Lists up to four Layer } 2 \text { class of service (CoS) values to match against a }}\) packet. Separate each value with a space. The range is 0 to 7 .
[lp] dscp dscp-list (Optional) IP keyword. It specifies that the match is for IPv4 packets only. If not used, the match is for both IPv4 and IPv6 packets.
Lists up to eight IP Differentiated Services Code Point (DSCP) values to match against a packet. Separate each value with a space. The range is 0 to 63. You also can enter a mnemonic name for a commonly used value.
[lp] precedence (Optional) IP keyword. It specifies that the match is for IPv4 packets only. If ip-precedence-list not used, the match is for both IPv4 and IPv6 packets.
Lists up to eight IP-precedence values to match against a packet. Separate each value with a space. The range is 0 to 7 . You also can enter a mnemonic name for a commonly used value.
\begin{tabular}{|c|c|}
\hline access-group acl-index-or-name & Number or name of an IP standard or extended access control list (ACL) or MAC ACL. For an IP standard ACL, the ACL index range is 1 to 99 and 1300 to 1999. For an IP extended ACL, the ACL index range is 100 to 199 and 2000 to 2699. \\
\hline \(\boldsymbol{\operatorname { c o s } \text { cos-list }}\) & Lists up to four Layer 2 class of service ( CoS ) values to match against a packet. Separate each value with a space. The range is 0 to 7 . \\
\hline [ \(\mathbf{p}\) ] dscp dscp-list & \begin{tabular}{l}
(Optional) IP keyword. It specifies that the match is for IPv4 packets only. If not used, the match is for both IPv4 and IPv6 packets. \\
Lists up to eight IP Differentiated Services Code Point (DSCP) values to match against a packet. Separate each value with a space. The range is 0 to 63. You also can enter a mnemonic name for a commonly used value.
\end{tabular} \\
\hline [lp] precedence ip-precedence-list & \begin{tabular}{l}
(Optional) IP keyword. It specifies that the match is for IPv4 packets only. If not used, the match is for both IPv4 and IPv6 packets. \\
Lists up to eight IP-precedence values to match against a packet. Separate each value with a space. The range is 0 to 7 . You also can enter a mnemonic name for a commonly used value.
\end{tabular} \\
\hline qos-group value & Specifies the internally generated qos-group value assigned to a packet on the input qos classification. \\
\hline protocol ip & Specifies IP in the Ethernet header. The match criteria are supported on the Supervisor Engine 6-E and Catalyst 4900M chassis. Though visible in the command-line help strings, the only protocol types supported are IP, IPv6, and ARP. \\
\hline protocol ipv6 & Specifies IPv6 in the Ethernet header. The match criteria are supported on the Supervisor Engine 6-E and Catalyst 4900M chassis. Though visible in the command-line help strings the only protocol types supported are IP, IPv6, and ARP. \\
\hline protocol arp & Specifies ARP in the Ethernet header. The match criteria are supported on the Supervisor Engine 6-E and Catalyst 4900M chassis. Though visible in the command-line help strings the only protocol types supported are IP, IPv6, and ARP. \\
\hline
\end{tabular}

No match criteria are defined.

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series \\
switches.
\end{tabular} \\
\hline \(12.2(40) \mathrm{SG}\) & Added support for the Supervisor Engine 6-E and Catalyst 4900M chassis. \\
\hline \(12.2(46) \mathrm{SG}\) & \begin{tabular}{l} 
Added support for the match protocol arp command on the Supervisor \\
Engine 6-E and Catalyst 4900M chassis.
\end{tabular} \\
\hline
\end{tabular}

Before entering the match command, you must first enter the class-map global configuration command to specify the name of the class whose match criteria you want to establish. The match command is used to specify which fields in the packets are examined to classify the packets. If a packet matches the specified criteria, the packet is considered a member of the class and is forwarded according to the quality of service ( QoS ) specifications set in the traffic policy.

For the match ip dscp dscp-list or the match ip precedence ip-precedence-list command, you can enter a mnemonic name for a commonly used value. For example, you can enter the match ip dscp af11 command, which is the same as entering the match ip dscp 10 command. You can enter the match ip precedence critical command, which is the same as entering the match ip precedence 5 command. For a list of supported mnemonics, enter the match ip dscp? or the match ip precedence ? command to see the command-line help strings.
To match only IPv6 packets, you must use the match protocol ipv6 command. To match only IPv4 packets you can use either the ip prefix or the protocol ip keyword.

To match only ARP packets, you must use the match protocol arp command.
You can configure the match cos cos-list, match ip dscp dscp-list, match ip precedence ip-precedence-list command in a class map within a policy map.
The match cos cos-list command applies only to Ethernet frames that carry a VLAN tag.
The match qos-group command is used by the class-map to identify a specific QoS group value assigned to a packet. The QoS group value is local to the switch and is associated with a packet on the input Qos classification.
Packets that do not meet any of the matching criteria are classified as members of the default traffic class. You configure it by specifying class-default as the class name in the class policy-map configuration command. For more information, see the "class" section on page 2-58.

This example shows how to create a class map called class2, which matches all the inbound traffic with DSCP values of 10,11 , and 12 :
```

Switch\# configure terminal
Switch(config)\# class-map class2
Switch(config-cmap)\# match ip dscp 10 11 12
Switch(config-cmap)\# exit
Switch\#

```

This example shows how to create a class map called class3, which matches all the inbound traffic with IP-precedence values of 5, 6, and 7 for both \(\operatorname{IPv} 4\) and IPv6 traffic:
```

Switch\# configure terminal
Switch(config)\# class-map class3
Switch(config-cmap)\# match ip precedence 5 6 7
Switch(config-cmap)\# exit
Switch\#

```

This example shows how to delete the IP-precedence match criteria and to classify traffic using acl1:
```

Switch\# configure terminal
Switch(config)\# class-map class2
Switch(config-cmap)\# match ip precedence 5 6 7
Switch(config-cmap)\# no match ip precedence
Switch(config-cmap) \# match access-group acll
Switch(config-cmap)\# exit
Switch\#

```

This example shows how to specify a class-map that applies only to IPv6 traffic on a Supervisor Engine 6-E:
```

Switch\# configure terminal
Switch(config)\# class-map match all ipv6 only
Switch(config-cmap)\# match dscp af21
Switch(config-cmap)\# match protocol ipv6
Switch(config-cmap) \# exit
Switch\#

```

You can verify your settings by entering the show class-map privileged EXEC command.
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } class-map & \begin{tabular}{l} 
Creates a class map to be used for matching packets to the \\
class whose name you specify and to enter class-map \\
configuration mode.
\end{tabular} \\
& show class-map & Displays class map information. \\
\hline
\end{tabular}

\section*{match flow ip}

To specify match criteria to treat flows with a unique source or destination address as new flows, use the match flow ip command. To disable this function, use the no form of this command.

\section*{match flow ip \{source-address [ip destination-address ip protocol \(\mathbf{L 4}\) source-address \(\mathbf{L} 4\) destination-address] | destination-address \} \\ no match flow ip \{source-address [ip destination-address ip protocol L4 source-address L4 destination-address] | destination-address \}}

Syntax Description

Defaults

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

When you specify the source-address keyword, each flow with a unique source address is treated as a new flow.

When you specify the destination-address keyword, each flow with a unique destination address is treated as a new flow.

A policy map is called a flow-based policy map when you configure the flow keywords on the class map that it uses. To attach a flow-based policy map as a child to an aggregate policy map, use the service-policy command.

The match flow command is available on the Catalyst 4500 series switch only when Supervisor Engine VI (WS-X4516-10GE) is present.

This example shows how to create a flow-based class map associated with a source address:
```

Switch(config)\# class-map match-all c1
Switch(config-cmap)\# match flow ip source-address
Switch(config-cmap)\# end
Switch\#
Switch\# show class-map c1
Class Map match-all c1 (id 2)
Match flow ip source-address
Switch\#

```

This example shows how to create a flow-based class map associated with a destination address:
```

Switch(config)\# class-map match-all c1
Switch(config-cmap)\# match flow ip destination-address
Switch(config-cmap)\# end
Switch\#
Switch\# show class-map c1
Class Map match-all c1 (id 2)
Match flow ip destination-address
Switch\#

```

Assume there are two active flows on the Fast Ethernet interface \(6 / 1\) with source addresses 192.168.10.20 and 192.168.10.21. The following example shows how to maintain each flow to 1 Mbps with an allowed burst value of 9000 bytes:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map c1
Switch(config-cmap)\# match flow ip source-address
Switch(config-cmap)\# exit
Switch(config)\# policy-map p1
Switch(config-pmap)\# class c1
Switch(config-pmap-c)\# police 1000000 9000
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
Switch(config)\# interface fastethernet6/1
Switch(config-if)\# service-policy input p1
Switch(config-if)\# end
Switch\# write memory
Switch\# show policy-map interface
FastEthernet6/1
Service-policy input: p1
Class-map: c1 (match-all)
15432182 packets
Match: flow ip source-address
police: Per-interface
Conform: }64995654\mathrm{ bytes Exceed: 2376965424 bytes
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
Switch\#

```

This example shows two active flows on the Fast Ethernet interface \(6 / 1\) with destination addresses of 192.168.20.20 and 192.168.20.21. The following example shows how to maintain each flow to 1 Mbps with an allowed burst value of 9000 bytes:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map c1
Switch(config-cmap)\# match flow ip destination-address
Switch(config-cmap)\# exit
Switch(config)\# policy-map p1
Switch(config-pmap) \# class c1
Switch(config-pmap-c)\# police 1000000 9000
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
Switch(config)\# interface fastethernet6/1
Switch(config-if)\# service-policy input p1
Switch(config-if)\# end
Switch\# write memory
Switch\# show policy-map interface
FastEthernet6/1
Service-policy input: p1
Class-map: c1 (match-all)
2965072 packets
Match: flow ip destination-address
police: Per-interface
Conform: 6105636 bytes Exceed: 476652528 bytes
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
Switch\#

```

Assume there are two active flows as shown below on the Fast Ethernet interface 6/1:
\begin{tabular}{|c|c|c|c|c|}
\hline SrcIp & DstIp & \multicolumn{3}{|l|}{IpProt SrcL4Port DstL4Port} \\
\hline 192.168.10.10 & 192.168 .20 .20 & 20 & 6789 & 81 \\
\hline 192.168.10.10 & 192.168.20.20 & 20 & 6789 & 21 \\
\hline
\end{tabular}

With the following configuration, each flow is policed to a 1000000 bps with an allowed 9000 -byte burst value.

If you use the match flow ip source-addressidestination-address command, these two flows are consolidated into one flow because they have the same source and destination address.
```

Switch\# conf terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map c1
Switch(config-cmap)\# match flow ip source-address ip destination-address ip protocol l4
source-port 14 destination-port
Switch(config-cmap)\# exit
Switch(config)\# policy-map p1
Switch(config-pmap)\# class c1
Switch(config-pmap-c)\# police 1000000 9000
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
Switch(config)\# interface fastEthernet 6/1

```
```

Switch(config-if)\# service-policy input p1
Switch(config-if)\# end
Switch\# write memory
Switch\# show policy-map interface
FastEthernet6/1
class-map c1
match flow ip source-address ip destination-address ip protocol l4 source-port l4
destination-port
!
policy-map p1
class c1
police 1000000 bps 9000 byte conform-action transmit exceed-action drop
!
interface FastEthernet 6/1
service-policy input p1
Switch\# show class-map c1
Class Map match-all c1 (id 2)
Match flow ip source-address ip destination-address ip protocol l4 source-port l4
destination-port
Switch\# show policy-map p1
Policy Map p1
Class c1
police 1000000 bps 9000 byte conform-action transmit exceed-action drop
Switch\# show policy-map interface
FastEthernet6/1
Service-policy input: p1
Class-map: c1 (match-all)
15432182 packets
Match: flow ip source-address ip destination-address ip protocol l4 source-port l4
destination-port
police: Per-interface
Conform: 64995654 bytes Exceed: 2376965424 bytes
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
Switch\#

```
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline service-policy (interface configuration) & Attaches a policy map to an interface. \\
\hline show class-map & Displays class map information. \\
\hline show policy-map & Displays information about the policy map. \\
\hline show policy-map interface & \begin{tabular}{l} 
Displays the statistics and configurations of the input and \\
output policies that are attached to an interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{mdix auto}

To enable the automatic medium-dependent interface crossover (auto-MDIX) feature on the interface, use the mdix auto command. When auto-MDIX is enabled, the interface automatically detects the required cable connection type (straight-through or crossover) and configures the connection appropriately. Use the no form of this command to disable auto-MDIX.

\section*{mdix auto}
no mdix auto

Syntax Description

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

The following linecards support Auto-MDIX through the CLI on their copper media ports: WS-X4124-RJ45, WS-X4148-RJ45 (hardware revision 3.0 or higher), and WS-X4232-GB-RJ45 (hardware revision 3.0, or higher), WS-X4920-GE-RJ45, and WS-4648-RJ45V+E (Auto-MDIX support when inline power is disabled on the port).

Linecards that support auto-MDIX by default when port auto-negotiation enabled and cannot be turned off using an mdix CLI command include: WS-X4448-GB-RJ45, WS-X4548-GB-RJ45, WS-X4424-GB-RJ45, and WS-X4412-2GB-T.
Linecards that cannot support auto-MDIX functionality, either by default or CLI commands, include: WS-X4548-GB-RJ45V, WS-X4524-GB-RJ45V, WS-X4506-GB-T, WS-X4148-RJ, WS-X4248-RJ21V, WS-X4248-RJ45V, WS-X4224-RJ45V, and WS-X4232-GB-RJ.

When you enable auto-MDIX on an interface, you must also set the interface speed to be autoneogiated so that the feature operates correctly.
When auto-MDIX (and autonegotiation of speed) is enabled on one or both of connected interfaces, link up occurs even if the cable type (straight-through or crossover) is incorrect.

This example shows how to enable auto MDIX on a port:
```

Switch\# configure terminal
Switch(config)\# interface FastEthernet6/3
Switch(config-if)\# speed auto
Switch(config-if) \# mdix auto
Switch(config-if)\# end
Switch(config-if) \# end

```

\section*{Examples}

This command has no arguments or keywords.

Auto-MDIX is enabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31) \mathrm{SGA}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(46) \mathrm{SG}\) & Added supported and unsupported linecard information to the usage guidelines. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } speed & Configures the interface speed. \\
\cline { 3 - 3 } show interfaces & Displays traffic on a specific interface. \\
\cline { 3 - 3 } show interfaces capabilities & \begin{tabular}{l} 
Displays the interface capabilities for an interface or for all the \\
interfaces on a switch.
\end{tabular} \\
& show interfaces status & Displays the interface status. \\
\hline
\end{tabular}

\section*{media-type}

To select the connector for a dual-mode capable port, use the media-type command.
media-type \(\{\mathbf{r j 4 5} \mid \mathbf{s f p}\}\)

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline rj45 & Uses the RJ-45 connector. \\
\hline \(\mathbf{s f p}\) & Uses the SFP connector.
\end{tabular}
sfp

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(20)\) EWA & \begin{tabular}{l} 
Support for this command was introduced for the WS-X4306-GB-T module \\
and the WS-X4948 chassis.
\end{tabular} \\
\hline
\end{tabular}

This command is supported on all ports on the WS-X4306-GB-T module and ports 1/45-48 on the WS-X4948 chassis.

Entering the show interface capabilities command provides the Multiple Media Types field, which displays the value no if a port is not dual-mode capable and lists the media types ( \(\mathbf{s f p}\) and \(\mathbf{r j 4 5}\) ) for dual-mode capable ports.

This example shows how to configure port 5/45 on a WS-X4948 chassis to use the RJ-45 connector:
```

Switch(config)\# interface gigabitethernet 5/45
Switch(config-if)\# media-type rj45

```

\section*{mode}

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines

\section*{Examples}

RPR and SSO mode are not supported on Catalyst 4500 series switches that are configured with Supervisor Engine 2.

The mode command can be entered only from within redundancy configuration mode.
Follow these guidelines when configuring your system to RPR or SSO mode:
- You must use identical Cisco IOS images and supervisor engines to support RPR and SSO mode. Redundancy may not work due to differences between the Cisco IOS release and supervisor engine capabilities.
- Any modules that are not online at the time of a switchover are reset and reloaded on a switchover.
- If you perform an OIR of the module within 60 seconds before a stateful switchover, the module resets during the stateful switchover and the port states are restarted.
- The FIB tables are cleared on a switchover. Routed traffic is interrupted until route tables reconverge.

The redundant supervisor engine reloads on any mode change and begins to work in the current mode.
To set the redundancy mode, use the mode command.
```

mode {rpr | sso }

```
\begin{tabular}{ll}
\hline rpr & Specifies RPR mode. \\
\hline sso & Specifies SSO mode. \\
\hline
\end{tabular}

If you are upgrading the current supervisor engine from Cisco IOS Release 12.2(18)EW or an earlier release to \(12.2(20)\) EWA, and the RPR mode has been saved to the startup configuration, both supervisor engines will continue to operate in RPR mode after the software upgrade. To use SSO mode, you must manually change the redundancy mode to SSO.

Redundancy configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.2(20)EWA & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to set the redundancy mode to SSO:
```

Switch(config)\# redundancy
Switch(config-red)\# mode sso
Switch(config-red)\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } redundancy & Enters the redundancy configuration mode. \\
\cline { 2 - 3 } redundancy force-switchover & \begin{tabular}{l} 
Forces a switchover from the active to the standby supervisor \\
engine.
\end{tabular} \\
& show redundancy & Displays redundancy facility information. \\
\cline { 3 - 3 } show running-config & Displays the running configuration of a switch. \\
\hline
\end{tabular}

\section*{monitor session}

To enable the SPAN sessions on interfaces or VLANs, use the monitor session command. To remove one or more source or destination interfaces from a SPAN session, or a source VLAN from a SPAN session, use the no form of this command.
monitor session session \{destination interface \{FastEthernet interface-number \(\}\) GigabitEthernet interface-number\} [encapsulation \{isl|dot1q\}] [ingress [vlan vlan_id] [learning]]\}| \{remote vlan vlan_id\} | \{source \{interface \{FastEthernet interface-number \(\mid\) GigabitEthernet interface-number | Port-channel interface-number\} \} | [vlan vlan_id] \(\mid\{\) remote vlan vlan_id \(\} \mid\left\{\mathbf{c p u}\left[\right.\right.\) queue \(q u e u e \_i d \mid\) acl \(\{\) input \(\{\mathbf{c o p y}\{\mathbf{r x}\} \mid\) error \(\{\mathbf{r x}\} \mid\) forward \(\{\mathbf{r x}\} \mid\) punt \(\{\mathbf{r x}\} \mid \mathbf{r x}\}\} \mid\) output \(\{\mathbf{c o p y}\{\mathbf{r x}\} \mid\) error \(\{\mathbf{r x}\} \mid\) forward \(\{\mathbf{r x}\} \mid\) punt \(\{\mathbf{r x}\} \mid \mathbf{r x}\} \mid\) all \(\{\mathbf{r x}\} \mid\) control-packet \(\{\mathbf{r x}\} \mid\) esmp \(\{\mathbf{r x}\} \mid\) |2-forward \(\{\) adj-same-if \(\{\mathbf{r x}\} \mid\) bridge-cpu \(\{\mathbf{r x}\} \mid\) ip-option \(\{\mathbf{r x}\} \mid\) ipv6-scope-check-fail \(\{\mathbf{r x}\} \mid 12\)-src-index-check-fail \(\{\mathbf{r x}\} \mid\) mcast-rpf-fail \(\{\mathbf{r x}\} \mid\) non-arpa \(\{\mathbf{r x}\} \mid\) router-cpu \(\{\mathbf{r x}\} \mid\) ttl-expired \(\{\mathbf{r x}\} \mid\) ucast-rpf-fail \(\{\mathbf{r x}\} \mid \mathbf{r x}\} \mid\) 13-forward \(\{\) forward \(\{\mathbf{r x}\} \mid\) glean \(\{\mathbf{r x}\} \mid\) receive \(\{\mathbf{r x}\} \mid \mathbf{r x}\}\) mtu-exceeded \(\{\mathbf{r x}\} \mid\) unknown-port-vlan-mapping \(\{\mathbf{r x}\} \mid\) unknown-sa \(\{\mathbf{r x}\}]\}[,|-|\mathbf{x x}|\) tx \(|\) both \(\}\} \mid\{\) filter \(\{\mathbf{i p}\) access-group [name \(\mid\) id \(]\}\{\) vlan van_id \([, \mid-]\} \mid\{\) packet-type \(\{\operatorname{good} \mid\) bad \(\}\} \mid\{\) address-type \{unicast | multicast | broadcast \(\}[\mathbf{r x} \mid\) tx \(\mid\) both \(]\}\)
no monitor session session \{destination interface \{FastEthernet interface-number \(\}\) GigabitEthernet interface-number\} [encapsulation \{isl|dot1q\}] [ingress [vlan vlan_id] [learning]]\}|\{remote vlan \(v\) lan_id \(\mid\) | source \(\{\mathbf{c p u}\{\) both \(\mid\) queue \(|\mathbf{r x}|\) tx \(\} \mid\) interface \{FastEthernet interface-number \(\mid\) GigabitEthernet interface-number \(\mid\) Port-channel interface-number \(\}\} \mid[\) vlan vlan_id] \(\mid\{\) remote vlan vlan_id \(\} \mid\{\) cpu [queue queue_id \(\mid\) acl \{input \(\{\mathbf{c o p y}\{\mathbf{r x}\} \mid\) error \(\{\mathbf{r x}\} \mid\) forward \(\{\mathbf{r x}\} \mid\) punt \(\{\mathbf{r x}\} \mid \mathbf{r x}\}\} \mid\) output \(\{\mathbf{c o p y}\{\mathbf{r x}\} \mid\) error \(\{\mathbf{r x}\} \mid\) forward \(\{\mathbf{r x}\} \mid\) punt \(\{\mathbf{r x}\} \mid \mathbf{r x}\} \mid\) all \(\{\mathbf{r x}\} \mid\) control-packet \(\{\mathbf{r x}\} \mid\) esmp \(\{\mathbf{r x}\} \mid\) |2-forward \{ adj-same-if \(\{r x\} \mid\) bridge-cpu \(\{\mathbf{r x}\} \mid\) ip-option \(\{\mathbf{r x}\} \mid\) ipv6-scope-check-fail \(\{\mathbf{r x}\} \mid\) 12-sre-index-check-fail \(\{\mathbf{r x}\} \mid\) meast-rpf-fail \(\{\mathbf{r x}\} \mid\) non-arpa \(\{\mathbf{r x}\} \mid\) router-cpu \(\{\mathbf{r x}\} \mid\) ttl-expired \(\{\mathbf{r x}\} \mid\) ucast-rpf-fail \(\{\mathbf{r x}\} \mid \mathbf{r x}\} \mid\) 13-forward \(\{\) forward \(\{\mathbf{r x}\} \mid\) glean \(\{\mathbf{r x}\} \mid\) receive \(\{\mathbf{r x}\} \mid \mathbf{r x}\}\) mtu-exceeded \(\{\mathbf{r x}\} \mid\) unknown-port-vlan-mapping \(\{\mathbf{r x}\} \mid\) unknown-sa \(\{\mathbf{r x}\}]\}[, \mid\) \(-|\mathbf{r x}| \mathbf{t x} \mid\) both \(]\} \mid\{\) filter \(\{\) ip access-group [name | id \(]\}\{\) van vlan_id \([, \mid-]\} \mid\{\) packet-type \{good | bad\}\}| \{address-type \{unicast | multicast | broadcast\} [rx | tx | both]\}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{10}{*}{Syntax Description} & session & Number of a SPAN session; valid values are from 1 to 6. \\
\hline & destination & Specifies a SPAN destination. \\
\hline & interface & Specifies an interface. \\
\hline & FastEthernet interface-number & Specifies a Fast Ethernet module and port number; valid values are from 1 to 6 . \\
\hline & GigabitEthernet interface-number & Specifies a Gigabit Ethernet module and port number; valid values are from 1 to 6 . \\
\hline & encapsulation & (Optional) Specifies the encapsulation type of the destination port. \\
\hline & isl & (Optional) Specifies ISL encapsulation. \\
\hline & dot1q & (Optional) Specifies dot1q encapsulation. \\
\hline & ingress & (Optional) Indicates whether the ingress option is enabled. \\
\hline & vlan vlan_id & (Optional) Specifies the VLAN; valid values are from 1 to 4094. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline learning & (Optional) Enables host learning on ingress-enabled destination ports. \\
\hline remote vlan vlan_id & Specifies an RSPAN source or destination session on a switch. \\
\hline source & Specifies a SPAN source. \\
\hline Port-channel interface-number & Specifies a port-channel interface; valid values are from 1 to 64. \\
\hline cpu & Causes traffic received or sent from the CPU to be copied to the destination of the session. \\
\hline queue queue_id & (Optional) Specifies that only traffic received on the specific CPU subqueue should be copied to the destination of the session. Valid values are from 1 to 64 , or by the following names: all, control-packet, esmp, mtu-exceeded, unknown-port-vlan-mapping, unknown-sa, acl input, acl input copy, acl input error, acl input forward, acl input punt, acl output, acl output copy, acl output error, acl output forward, acl output punt, 12 -forward, adj-same-if, bridge-cpu, ip-option, ipv6-scope-check-fail, 12 -src-index-check-fail, mcast-rpf-fail, non-arpa, router-cpu, ttl-expired, ucast-rpf-fail, 13-forward, forward, glean, receive. \\
\hline acl & (Optional) Specifies input and output ACLs; valid values are from 14 to 20. \\
\hline input & Specifies input ACLs; valid values are from 14 to 16. \\
\hline error & Specifies the ACL software errors. \\
\hline log/copy & Specifies packets for ACL logging. \\
\hline punt & Specifies packets punted due to overflows. \\
\hline rx & Specifies monitoring received traffic only. \\
\hline output & Specifies output ACLs; valid values are from 17 to 20. \\
\hline 12-forward & (Optional) Layer 2 or Layer 3 exception packets. \\
\hline bridge-cpu & Specifies packets bridged to CPU. \\
\hline ip-option & Specifies packets with an IP option. \\
\hline ipv6-scope-check-fail & Specifies IPv6 packets with scope-check failures. \\
\hline 12-src-index-check-fail & Specifies IP packets with mismatched SRC MAC and SRC IP addresses. \\
\hline mcast-rpf-fail & Specifies IPv4/IPv6 multicast RPF failures. \\
\hline non-arpa & Specifies packets with non-ARPA encapsulation. \\
\hline router-cpu & Specifies software routed packets. \\
\hline ttl-expired & Specifies IPv4 routed pacekts exceed TTL. \\
\hline adj-same-if & Specifies packets routed to the incoming interface. \\
\hline bridged & Specifies Layer 2 bridged packets. \\
\hline 1 & Specifies packets with the highest priority. \\
\hline 2 & Specifies packets with the a high priority. \\
\hline 3 & Specifies packets with the a medium priority. \\
\hline 4 & Specifies packets with the a low priority. \\
\hline ucast-rpf-fail & Specifies IPv4/IPv6 Unicast RPF failures. \\
\hline all & (Optional) all queues. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline learning & (Optional) Enables host learning on ingress-enabled destination ports. \\
\hline remote vlan vlan_id & Specifies an RSPAN source or destination session on a switch. \\
\hline source & Specifies a SPAN source. \\
\hline Port-channel interface-number & Specifies a port-channel interface; valid values are from 1 to 64. \\
\hline cpu & Causes traffic received or sent from the CPU to be copied to the destination of the session. \\
\hline queue queue_id & (Optional) Specifies that only traffic received on the specific CPU subqueue should be copied to the destination of the session. Valid values are from 1 to 64 , or by the following names: all, control-packet, esmp, mtu-exceeded, unknown-port-vlan-mapping, unknown-sa, acl input, acl input copy, acl input error, acl input forward, acl input punt, acl output, acl output copy, acl output error, acl output forward, acl output punt, 12 -forward, adj-same-if, bridge-cpu, ip-option, ipv6-scope-check-fail, 12-src-index-check-fail, mcast-rpf-fail, non-arpa, router-cpu, ttl-expired, ucast-rpf-fail, 13-forward, forward, glean, receive. \\
\hline acl & (Optional) Specifies input and output ACLs; valid values are from 14 to 20. \\
\hline input & Specifies input ACLs; valid values are from 14 to 16. \\
\hline error & Specifies the ACL software errors. \\
\hline log/copy & Specifies packets for ACL logging. \\
\hline punt & Specifies packets punted due to overflows. \\
\hline rx & Specifies monitoring received traffic only. \\
\hline output & Specifies output ACLs; valid values are from 17 to 20. \\
\hline 12-forward & (Optional) Layer 2 or Layer 3 exception packets. \\
\hline bridge-cpu & Specifies packets bridged to CPU. \\
\hline ip-option & Specifies packets with an IP option. \\
\hline ipv6-scope-check-fail & Specifies IPv6 packets with scope-check failures. \\
\hline 12-src-index-check-fail & Specifies IP packets with mismatched SRC MAC and SRC IP addresses. \\
\hline mcast-rpf-fail & Specifies IPv4/IPv6 multicast RPF failures. \\
\hline non-arpa & Specifies packets with non-ARPA encapsulation. \\
\hline router-cpu & Specifies software routed packets. \\
\hline ttl-expired & Specifies IPv4 routed pacekts exceed TTL. \\
\hline adj-same-if & Specifies packets routed to the incoming interface. \\
\hline bridged & Specifies Layer 2 bridged packets. \\
\hline 1 & Specifies packets with the highest priority. \\
\hline 2 & Specifies packets with the a high priority. \\
\hline 3 & Specifies packets with the a medium priority. \\
\hline 4 & Specifies packets with the a low priority. \\
\hline ucast-rpf-fail & Specifies IPv4/IPv6 Unicast RPF failures. \\
\hline all & (Optional) all queues. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 13-forward & (Optional) Layer 3 packets. \\
\hline forward & Specifies special Layer 3 forwards tunnel encapsulation. \\
\hline glean & Specifies special Layer 3 forwards glean. \\
\hline receive & Specifies packets addressed to a port. \\
\hline control-packet & (Optional) Layer 2 control packets. \\
\hline esmp & (Optional) ESMP packets. \\
\hline mtu-exceeded & (Optional) Output Layer 3 interface MTU exceeded. \\
\hline routed & Specifies Layer 3 routed packets. \\
\hline received & Specifies packets addressed to a port. \\
\hline rpf-failure & Specifies Multicast RPF failed packets. \\
\hline unknown-port-vlan-mapping & (Optional) Packets with missing port-VLAN mapping. \\
\hline unknown-sa & (Optional) Packets with missing source-IP-addresses. \\
\hline , & (Optional) Symbol to specify another range of SPAN VLANs; valid values are from 1 to 4094. \\
\hline - & (Optional) Symbol to specify a range of SPAN VLANs. \\
\hline both & (Optional) Monitors and filters received and transmitted traffic. \\
\hline rx & (Optional) Monitors and filters received traffic only. \\
\hline tx & (Optional) Monitors and filters transmitted traffic only. \\
\hline filter & Limits SPAN source traffic to specific VLANs. \\
\hline ip access-group & (Optional) Specifies an IP access group filter, either a name or a number. \\
\hline name & (Optional) Specifies an IP access list name. \\
\hline id & (Optional) Specifies an IP access list number. Valid values are 1 to 199 for an IP access list and 1300 to 2699 for an IP expanded access list. \\
\hline vlan vlan_id & (Optional) Specifies the VLAN to be filtered. The number is entered as a single value or a range; valid values are from 1 to 4094. \\
\hline packet-type & Limits SPAN source traffic to packets of a specified type. \\
\hline good & Specifies a good packet type \\
\hline bad & Specifies a bad packet type. \\
\hline address-type unicast | multicast | broadcast & Limits SPAN source traffic to packets of a specified address type. Valid types are unicast, multicast, and broadcast. \\
\hline
\end{tabular}

\section*{Defaults}

Received and transmitted traffic, as well as all VLANs, packet types, and address types are monitored on a trunking interface.
Packets are transmitted untagged out the destination port; ingress and learning are disabled.
All packets are permitted and forwarded "as is" on the destination port.

\section*{Command Modes}

Global configuration mode
\begin{tabular}{lll}
\hline Command History & & Melease \\
\cline { 3 - 3 } \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\cline { 2 - 3 } \(12.1(11 \mathrm{~b}) \mathrm{EW}\) & \begin{tabular}{l} 
Support for differing directions within a single-user session and extended VLAN \\
addressing was added.
\end{tabular} \\
\cline { 2 - 3 } \(12.1(19) \mathrm{EW}\) & \begin{tabular}{l} 
Support for ingress packets, encapsulation specification, packet and address type \\
filtering, and CPU source sniffing enhancements was added.
\end{tabular} \\
\(12.1(20) \mathrm{EW}\) & \begin{tabular}{l} 
Support for remote SPAN and host learning on ingress-enabled destination ports \\
was added.
\end{tabular} \\
\hline \(12.2(20) \mathrm{EW}\) & \begin{tabular}{l} 
Support for an IP access group filter was added. \\
\hline \(12.2(40) \mathrm{SG}\)
\end{tabular} \begin{tabular}{l} 
Support for Supervisor Engine 6-E and Catlyst 4900M chassis CPU queue options \\
were added.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines Only one SPAN destination for a SPAN session is supported. If you attempt to add another destination} interface to a session that already has a destination interface that is configured, you will get an error. You must first remove a SPAN destination interface before changing the SPAN destination to a different interface.

Beginning in Cisco IOS Release 12.1(12c)EW, you can configure sources from different directions within a single user session.

Note
Beginning in Cisco IOS Release 12.1(12c)EW, SPAN is limited to two sessions containing ingress sources and four sessions containing egress sources. Bidirectional sources support both ingress and egress sources.

A particular SPAN session can either monitor VLANs or monitor individual interfaces: you cannot have a SPAN session that monitors both specific interfaces and specific VLANs. If you first configure a SPAN session with a source interface, and then try to add a source VLAN to the same SPAN session, you will receive an error. You will also receive an error message if you configure a SPAN session with a source VLAN, and then try to add a source interface to that session. You must first clear any sources for a SPAN session before switching to another type of source. CPU sources may be combined with source interfaces and source VLANs.

When configuring the ingress option on a destination port, you must specify an ingress VLAN if the configured encapsulation type is untagged (the default) or is 802.1 Q . If the encapsulation type is ISL, then no ingress VLAN specification is necessary.
By default, when you enable ingress, no host learning is performed on destination ports. When you enter the learning keyword, host learning is performed on the destination port, and traffic to learned hosts is forwarded out the destination port.
If you enter the filter keyword on a monitored trunking interface, only traffic on the set of specified VLANs is monitored. Port-channel interfaces are displayed in the list of interface options if you have them configured. VLAN interfaces are not supported. However, you can span a particular VLAN by entering the monitor session session source vlan vlan-id command.
The packet-type filters are supported only in the Rx direction. You can specify both Rx- and Tx-type filters and multiple-type filters at the same time (for example, you can use good and unicast to only sniff nonerror unicast frames). As with VLAN filters, if you do not specify the type, the session will sniff all packet types.

The queue identifier allows sniffing for only traffic that is sent or received on the specified CPU queues. The queues may be identified either by number or by name. The queue names may contain multiple numbered queues for convenience.

\section*{Examples}

This example shows how to configure IP access group 100 on a SPAN session:
```

Switch\# configure terminal
Switch(config)\# monitor session 1 filter ip access-group 100
Switch(config)\# end
Switch(config)\#

```

This example shows how to add a source interface to a SPAN session:
```

Switch\# configure terminal
Switch(config)\# monitor session 1 source interface fa2/3
Switch(config)\# end
Switch(config)\#
Switch(config)\#
Switch(config)\#

```

This example shows how to configure the sources with different directions within a SPAN session:
```

Switch\# configure terminal
Switch(config)\# monitor session 1 source interface fa2/3 rx
Switch(config)\# monitor session 1 source interface fa2/2 tx
Switch(config)\# end

```

This example shows how to remove a source interface from a SPAN session:
```

Switch\# configure terminal
Switch(config)\# no monitor session 1 source interface fa2/3
Switch(config)\# end

```

This example shows how to limit SPAN traffic to VLANs 100 through 304:
```

Switch\# configure terminal
Switch(config)\# monitor session 1 filter vlan 100 - 304
Switch(config)\# end

```

This example shows how to configure RSPAN VLAN 20 as the destination:
```

Switch\# configure terminal
Switch(config)\# monitor session 2 destination remote vlan 20
Switch(config)\# end

```

This example shows how to use queue names and queue number ranges for the CPU as a SPAN source on Supervisor Engine 6-E:
```

Switch\# configure terminal
Switch(config)\# monitor session 2 source cpu queue control-packet rx
Switch(config)\# monitor session 3 source cpu queue 10 rx
Switch(config)\# end

```
control-packet is mapped to queue 10 .

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show monitor & Displays information about the SPAN session. \\
\hline
\end{tabular}
\(\overline{\text { Syntax Description }} \overline{\text { bytes }} \quad\) Byte size; valid values are from 1500 to 9198.

\section*{Defaults}

Command Modes

Command History

To enable jumbo frames on an interface by adjusting the maximum size of a packet or maximum transmission unit (MTU), use the mtu command. To return to the default setting, use the no form of this command.
mtu bytes
no mtu

The default settings are as follows:
- Jumbo frames are disabled
- 1500 bytes for all ports

Interface configuration mode
\(\overline{\text { Usage Guidelines }}\) Jumbo frames are supported on nonblocking Gigabit Ethernet ports, switch virtual interfaces (SVI), and EtherChannels. Jumbo frames are not available for stub-based ports.

The baby giants feature uses the global system mtu size command to set the global baby giant MTU. It allows all stub-based port interfaces to support an Ethernet payload size of up to 1552 bytes.

Both the system mtu command and the per-interface mtu command work on interfaces that can support jumbo frames, but the per-interface mtu command takes precedence.

\section*{Examples}

This example shows how to specify an MTU of 1800 bytes:
Switch(config) \# interface GigabitEthernet 1/1
Switch(config-if) \# mtu 1800

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline system mtu & Sets the maximum Layer 2 or Layer 3 payload size. \\
\hline
\end{tabular}

\section*{name}
\(\overline{\text { Syntax Description }} \quad\)\begin{tabular}{l} 
name
\end{tabular} \begin{tabular}{l} 
Specifies the name of the MST region. The name can be any string with a maximum \\
length of 32 characters.
\end{tabular}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

MST configuration mode

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Two or more Catalyst 4500 series switches with the same VLAN mapping and configuration version number are considered to be in different MST regions if the region names are different.

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline instance & Maps a VLAN or a set of VLANs to an MST instance. \\
\hline revision & Sets the MST configuration revision number. \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline \begin{tabular}{l} 
spanning-tree mst \\
configuration
\end{tabular} & Enters the MST configuration submode. \\
\hline
\end{tabular}

\section*{pagp learn-method}

To learn the input interface of the incoming packets, use the pagp learn-method command. To return to the default value, use the no form of this command.
pagp learn-method \{aggregation-port | physical-port \}
no pagp learn-method


\section*{Examples}

This example shows how to enable physical port address learning within the bundle:
Switch(config-if) \# pagp learn-method physical-port
Switch(config-if) \#
This example shows how to enable aggregation port address learning within the bundle:
Switch(config-if) \# pagp learn-method aggregation-port
Switch(config-if) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show pagp & Displays information about the port channel. \\
\hline
\end{tabular}

\section*{pagp port-priority}

To select a port in hot standby mode, use the pagp port-priority command. To return to the default value, use the no form of this command.
pagp port-priority priority
no pagp port-priority

\section*{Syntax Description}

\section*{Defaults}

Command Modes
Interface configuration mode

\section*{Command History}

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to set the port priority:
Switch(config-if) \# pagp port-priority 45
Switch(config-if) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline pagp learn-method & Learns the input interface of the incoming packets. \\
\hline show pagp & Displays information about the port channel. \\
\hline
\end{tabular}

\section*{passive-interface}

To disable sending routing updates on an interface, use the passive-interface command. To reenable the sending of routing updates, use the no form of this command.
passive-interface [[default] \{interface-type interface-number\}] | \{range interface-type interface-number-interface-type interface-number\}
no passive-interface [[default] \{interface-type interface-number\}] | \{range interface-type interface-number-interface-type interface-number \(\}\)

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline default & (Optional) All interfaces become passive. \\
\hline interface-type & Specifies the interface type. \\
\hline interface-number & Specifies the interface number. \\
\hline range range & \begin{tabular}{l} 
Specifies the range of subinterfaces being configured; see the "Usage \\
Guidelines" section.
\end{tabular} \\
\hline
\end{tabular}

Routing updates are sent on the interface.

Router configuration mode

You can use the passive-interface range command on the following interfaces: FastEthernet, GigabitEthernet, VLAN, Loopback, Port-channel, 10-GigabitEthernet, and Tunnel. When you use the passive-interface range command on a VLAN interface, the interface should be the existing VLAN SVIs. To display the VLAN SVIs, enter the show running config command. The VLANs that are not displayed cannot be used in the passive-interface range command.

The values that are entered with the passive-interface range command are applied to all the existing VLAN SVIs.

Before you can use a macro, you must define a range using the define interface-range command.
All configuration changes that are made to a port range through the passive-interface range command are retained in the running-configuration as individual passive-interface commands.

You can enter the range in two ways:
- Specifying up to five interface ranges
- Specifying a previously defined macro

You can either specify the interfaces or the name of an interface-range macro. An interface range must consist of the same interface type, and the interfaces within a range cannot span across the modules.

You can define up to five interface ranges on a single command; separate each range with a comma:
```

interface range gigabitethernet 5/1-20, gigabitethernet4/5-20.

```

Use this format when entering the port-range:
- interface-type \(\{\bmod \} /\{\) first-port \(\}-\{\) last-port \(\}\)

You cannot specify both a macro and an interface range in the same command. After creating a macro, you can enter additional ranges. If you have already entered an interface range, the CLI does not allow you to enter a macro.
You can specify a single interface in the range range value. This makes the command similar to the passive-interface interface-number command.

The range keyword is only supported in OSPF, EIGRP, RIP, and ISIS router mode.

If you disable the sending of routing updates on an interface, the particular subnet will continue to be advertised to other interfaces, and updates from other routers on that interface continue to be received and processed.

The default keyword sets all interfaces as passive by default. You can then configure individual interfaces where adjacencies are desired using the no passive-interface command. The default keyword is useful in Internet service provider (ISP) and large enterprise networks where many of the distribution routers have more than 200 interfaces.

For the Open Shortest Path First (OSPF) protocol, OSPF routing information is neither sent nor received through the specified router interface. The specified interface address appears as a stub network in the OSPF domain.

For the Intermediate System-to-Intermediate System (IS-IS) protocol, this command instructs IS-IS to advertise the IP addresses for the specified interface without actually running IS-IS on that interface. The no form of this command for IS-IS disables advertising IP addresses for the specified address.

For IS-IS you must keep at least one active interface and configure the interface with the ip router isis command.

Enhanced Interior Gateway Routing Protocol (EIGRP) is disabled on an interface that is configured as passive although it advertises the route.

\section*{Examples}

The following example sends EIGRP updates to all interfaces on network 10.108.0.0 except
GigabitEthernet interface 1/1:
Switch(config) \# interface gigabitethernet 1/1
Switch(config-if) \# router eigrp 109
Switch(config-router) \# network 10.108.0.0
Switch(config-router) \# passive-interface gigabitethernet 1/1
Switch(config-router) \#

The following configuration enables IS-IS on Ethernet interface 1 and serial interface 0 and advertises the IP addresses of Ethernet interface 0 in its link-state protocol data units (PDUs):
```

Switch(config-if)\# router isis Finance
Switch(config-router)\# passive-interface Ethernet 0
Switch(config-router)\# interface Ethernet 1
Switch(config-router)\# ip router isis Finance
Switch(config-router)\# interface serial 0
Switch(config-router)\# ip router isis Finance
Switch(config-router)\#

```

The following example sets all interfaces as passive, then activates Ethernet interface 0:
```

Switch(config-if)\# router ospf 100
Switch(config-router) \# passive-interface default
Switch(config-router)\# no passive-interface ethernet0
Switch(config-router)\# network 10.108.0.1 0.0.0.255 area 0
Switch(config-router)\#

```

The following configuration sets the Ethernet ports 3 through 4 on module 0 and GigabitEthernet ports 4 through 7 on module 1 as passive:
```

Switch(config-if)\# router ospf 100
Switch(config-router) \# passive-interface range ethernet0/3-4,gigabitethernet1/4-7
Switch(config-router)\#

```

To permit an ARP packet based on matches against the DHCP bindings, use the permit command. To remove a specified ACE from an access list, use the no form of this command
permit \(\{[\) request \(]\) ip \(\{\) any \(\mid\) host sender-ip I sender-ip sender-ip-mask\} mac \(\{\) any | host sender-mac I sender-mac sender-mac-mask\} I response ip \{any I host sender-ip I sender-ip sender-ip-mask\} [\{any | host target-ip I target-ip target-ip-mask\}] mac \{any l host sender-mac | sender-mac sender-mac-mask\} [\{any | host target-mac I target-mac target-mac-mask\}]\} [log]
no permit \(\{[\) request \(]\) ip \(\{\) any \(\mid\) host sender-ip I sender-ip sender-ip-mask\} mac \{any | host sender-mac \(\mid\) sender-mac sender-mac-mask\} \(\mid\) response ip \{any I host sender-ip I sender-ip sender-ip-mask\} [\{any I host target-ip I target-ip target-ip-mask\}] mac \{any I host sender-mac I sender-mac sender-mac-mask \(\}[\{\) any | host target-mac I target-mac target-mac-mask \(\}]\}[\log ]\)

\section*{Syntax Description}
\begin{tabular}{|c|c|}
\hline request & (Optional) Requests a match for the ARP request. When request is not specified, matching is performed against all ARP packets. \\
\hline ip & Specifies the sender IP address. \\
\hline any & Specifies that any IP or MAC address will be accepted. \\
\hline host sender-ip & Specifies that only a specific sender IP address will be accepted. \\
\hline sender-ip sender-ip-mask & Specifies that a specific range of sender IP addresses will be accepted. \\
\hline mac & Specifies the sender MAC address. \\
\hline host sender-mac & Specifies that only a specific sender MAC address will be accepted. \\
\hline sender-mac sender-mac-mask & Specifies that a specific range of sender MAC addresses will be accepted. \\
\hline response & Specifies a match for the ARP responses. \\
\hline ip & Specifies the IP address values for the ARP responses. \\
\hline host target-ip & (Optional) Specifies that only a specific target IP address will be accepted. \\
\hline target-ip target-ip-mask & (Optional) Specifies that a specific range of target IP addresses will be accepted. \\
\hline mac & Specifies the MAC address values for the ARP responses. \\
\hline host target-mac & (Optional) Specifies that only a specific target MAC address will be accepted. \\
\hline target-mac target-mac-mask & (Optional) Specifies that a specific range of target MAC addresses will be accepted. \\
\hline log & (Optional) Logs a packet when it matches the access control entry (ACE). \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}
\(\overline{\text { Command History }}\)\begin{tabular}{lll}
\hline Release & Modification \\
\(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Permit clauses can be added to forward or drop ARP packets based on some matching criteria.

\section*{Examples}

This example shows a host with a MAC address of 0000.0000.abcd and an IP address of 1.1.1.1. This example shows how to permit both requests and responses from this host:
```

Switch(config)\# arp access-list static-hosts
Switch(config-arp-nacl)\# permit ip host 1.1.1.1 mac host 0000.0000.abcd
Switch(config-arp-nacl)\# end
Switch\# show arp access-list
ARP access list static-hosts
permit ip host 1.1.1.1 mac host 0000.0000.abcd
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline arp access-list & \begin{tabular}{l} 
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline deny & \begin{tabular}{l} 
Denies an ARP packet based on matches against the DHCP \\
bindings.
\end{tabular} \\
\hline ip arp inspection filter vlan & \begin{tabular}{l} 
Permits ARPs from hosts that are configured for static IP when \\
\\
\\
\\
\\
\\
\end{tabular} \begin{tabular}{l} 
a VLI is enabled and to define an ARP access list and applies it to
\end{tabular} \\
\hline
\end{tabular}

\section*{police}

To configure the Traffic Policing feature, use the police QoS policy-map class configuration command. To remove the Traffic Policing feature from the configuration, use the no form of this command.
police \(\{b p s|k b p s| m b p s \mid g b p s\}[b u r s t-n o r m a l][b u r s t-m a x]\) conform-action action exceed-action action [violate-action action]
no police \(\{b p s|k b p s| m b p s \mid g b p s\}\) [burst-normal] [burst-max] conform-action action exceed-action action [violate-action action]

Syntax Description

\section*{Defaults}

\section*{Command Modes}
\begin{tabular}{ll}
\hline bps & Average rate, in bits per second. Valid values are 32,000 to 32,000,000,000. \\
\hline kbps & Average rate, in kilobytes per second. Valid values are 32 to \(32,000,000\). \\
\hline mbps & Average rate, in megabits per second. Valid values are 1 to \(32,000\). \\
\hline gbps & Average rate, in gigabits per second. Valid values are 1 to 32. \\
\hline burst-normal & (Optional) Normal burst size, in bytes. Valid values are 64 to 2,596,929,536. \\
& Burst value of up to four times the configured rate can be supported. \\
\hline burst-max & (Optional) Excess burst size, in bytes. Valid values are 64 to 2,596,929,536. \\
& Burst value of upto four times the configured rate can be supported. \\
\hline conform-action & Action to take on packets that conform to the rate limit. \\
\hline exceed-action & Action to take on packets that exceed the rate limit. \\
\hline violate-action & (Optional) Action to take on packets that violate the normal and maximum \\
& burst sizes.
\end{tabular}
action Action to take on packets. Specify one of the following keywords:
- drop-Drops the packet.
- set-cos-transmit new-ios-Set the class of services \((\operatorname{CoS})\) value to a new value and send the packet. The range is 0 to 7 .
- set-dscp-transmit value-Sets the IP differentiated services code point (DSCP) value and transmits the packet with the new IP DSCP value setting.
- set-prec-transmit value-Sets the IP precedence and transmits the packet with the new IP precedence value setting.
- transmit-Transmits the packet. The packet is not altered.

This command is disabled by default.

Policy-map class configuration mode (when specifying a single action to be applied to a market packet)
Policy-map class police configuration mode (when specifying multiple actions to be applied to a marked packet)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & This command was introduced on the Catalyst 4500 series switch
\end{tabular} using a Supervisor Engine 6E.

Use the police command to mark a packet with different quality of service (QoS) values based on conformance to the service-level agreement.
Traffic policing will not be executed for traffic that passes through an interface.

\section*{Specifying Multiple Actions}

The police command allows you to specify multiple policing actions. When specifying multiple policing actions when configuring the police command, note the following points:
- You can specify a maximum of four actions at one time.
- You cannot specify contradictory actions such as conform-action transmit and conform-action drop.

\section*{Using the Police Command with the Traffic Policing Feature}

The police command can be used with Traffic Policing feature. The Traffic Policing feature works with a token bucket algorithm. Two types of token bucket algorithms are a single-token bucket algorithm and a two-token bucket algorithm. A single-token bucket system is used when the violate-action option is not specified, and a two-token bucket system is used when the violate-action option is specified.

\section*{Token Bucket Algorithm with One Token Bucket}

The one token bucket algorithm is used when the violate-action option is not specified in the police command of the command-line interface (CLI).

The conform bucket is initially set to the full size (the full size is the number of bytes specified as the normal burst size).

When a packet of a given size (for example, "B" bytes) arrives at specific time (time "T") the following actions occur:
- Tokens are updated in the conform bucket. If the previous arrival of the packet was at T1 and the current time is T , the bucket is updated with ( \(\mathrm{T}-\mathrm{T} 1\) ) worth of bits based on the token arrival rate. The token arrival rate is calculated as follows:
(time between packets <which is equal to \(\mathrm{T}-\mathrm{T} 1>\) * policer rate)/8 bytes
- If the number of bytes in the conform bucket \(B\) is greater than or equal to 0 , the packet conforms and the conform action is taken on the packet. If the packet conforms, B bytes are removed from the conform bucket and the conform action is completed for the packet.
- If the number of bytes in the conform bucket B (minus the packet size to be limited) is fewer than 0 , the exceed action is taken.

\section*{Token Bucket Algorithm with Two Token Buckets (Refer to RFC 2697)}

The two-token bucket algorithm is used when the violate-action is specified in the police command CLI.
The conform bucket is initially full (the full size is the number of bytes specified as the normal burst size).
The exceed bucket is initially full (the full exceed bucket size is the number of bytes specified in the maximum burst size).

The tokens for both the conform and exceed token buckets are updated based on the token arrival rate, or committed information rate (CIR).

When a packet of given size (for example, "B" bytes) arrives at specific time (time "T") the following actions occur:
- Tokens are updated in the conform bucket. If the previous arrival of the packet was at T1 and the current arrival of the packet is at t , the bucket is updated with \(\mathrm{T}-\mathrm{T} 1\) worth of bits based on the token arrival rate. The refill tokens are placed in the conform bucket. If the tokens overflow the conform bucket, the overflow tokens are placed in the exceed bucket.

The token arrival rate is calculated as follows:
(time between packets <which is equal to T-T1> * policer rate)/8 bytes
- If the number of bytes in the conform bucket - B is greater than or equal to 0 , the packet conforms and the conform action is taken on the packet. If the packet conforms, B bytes are removed from the conform bucket and the conform action is taken. The exceed bucket is unaffected in this scenario.
- If the number of bytes in the conform bucket \(B\) is less than 0 , the excess token bucket is checked for bytes by the packet. If the number of bytes in the exceed bucket \(B\) is greater than or equal to 0 , the exceed action is taken and B bytes are removed from the exceed token bucket. No bytes are removed from the conform bucket.
- If the number bytes in the exceed bucket \(B\) is fewer than 0 , the packet violates the rate and the violate action is taken. The action is complete for the packet.

\section*{Examples}

\section*{Token Bucket Algorithm with One Token Bucket}

This example shows how to define a traffic class (using the class-map command) and associate the match criteria from the traffic class with the Traffic Policing configuration, which is configured in the service policy (using the policy-map command). The service-policy command is then used to attach this service policy to the interface.

In this particular example, Traffic Policing is configured with the average rate at 8000 bits per second and the normal burst size at 1000 bytes for all packets leaving Gigabit Ethernet interface \(6 / 1\) :
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map access-match
Switch(config-cmap) \# match access-group 1
Switch(config-cmap)\# exit
Switch(config)\# policy-map police-setting
Switch(config-pmap)\# class access-match
Switch(config-pmap-c)\# police 8000 1000 conform-action transmit exceed-action drop
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
Switch(config)\# interface gigabitethernet 6/1
Switch(config-if)\# service-policy output police-setting
Switch(config-if)\# end

```

In this example, the initial token buckets starts full at 1000 bytes. If a 450 -byte packet arrives, the packet conforms because enough bytes are available in the conform token bucket. The conform action (send) is taken by the packet and 450 bytes are removed from the conform token bucket (leaving 550 bytes).
If the next packet arrives 0.25 seconds later, 250 bytes are added to the token bucket \(((0.25 * 8000) / 8)\), leaving 800 bytes in the token bucket. If the next packet is 900 bytes, the packet exceeds and the exceed action (drop) is taken. No bytes are taken from the token bucket.

\section*{Token Bucket Algorithm with Two Token Buckets Example (Refer to RFC 2697)}

In this particular example, Traffic Policing is configured with the average rate at 8000 bits per second, the normal burst size at 1000 bytes, and the excess burst size at 1000 bytes for all packets leaving Gigabit Ethernet interface 6/1.
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map access-match
Switch(config-cmap)\# match access-group 1
Switch(config-cmap)\# exit
Switch(config)\# policy-map police-setting
Switch(config-pmap)\# class access-match
Switch(config-pmap-c)\# police 8000 1000 1000 conform-action transmit exceed-action set-qos-transmit 1
violate-action drop
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
Switch(config)\# interface gigabitethernet 6/1
Switch(config-if)\# service-policy output police-setting
Switch(config-if)\# end

```

In this example, the initial token buckets starts full at 1000 bytes. If a 450 -byte packet arrives, the packet conforms because enough bytes are available in the conform token bucket. The conform action (send) is taken by the packet and 450 bytes are removed from the conform token bucket (leaving 550 bytes).
If the next packet arrives 0.25 seconds later, 250 bytes are added to the conform token bucket \(((0.25 * 8000) / 8)\), leaving 800 bytes in the conform token bucket. If the next packet is 900 bytes, the packet does not conform because only 800 bytes are available in the conform token bucket.

The exceed token bucket, which starts full at 1000 bytes (as specified by the excess burst size) is then checked for available bytes. Because enough bytes are available in the exceed token bucket, the exceed action (set the QoS transmit value of 1) is taken and 900 bytes are taken from the exceed bucket (leaving 100 bytes in the exceed token bucket.

If the next packet arrives 0.40 seconds later, 400 bytes are added to the token buckets \(((.40 * 8000) / 8)\). Therefore, the conform token bucket now has 1000 bytes (the maximum number of tokens available in the conform bucket) and 200 bytes overflow the conform token bucket (because it only 200 bytes were needed to fill the conform token bucket to capacity). These overflow bytes are placed in the exceed token bucket, giving the exceed token bucket 300 bytes.
If the arriving packet is 1000 bytes, the packet conforms because enough bytes are available in the conform token bucket. The conform action (transmit) is taken by the packet and 1000 bytes are removed from the conform token bucket (leaving 0 bytes).
If the next packet arrives 0.20 seconds later, 200 bytes are added to the token bucket ( \((.20 * 8000) / 8)\). Therefore, the conform bucket now has 200 bytes. If the arriving packet is 400 bytes, the packet does not conform because only 200 bytes are available in the conform bucket. Similarly, the packet does not exceed because only 300 bytes are available in the exceed bucket. Therefore, the packet violates and the violate action (drop) is taken.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{Related Commands} & Command & Description \\
\hline & police (percent) & Configures traffic policing on the basis of a percentage of bandwidth available on an interface. \\
\hline & police (two rates) & Configures traffic policing using two rates, the committed information rate (CIR) and the peak information rate (PIR). \\
\hline & policy-map & Creates or modifies a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & service-policy (policy-map class) & Creates a service policy that is a quality of service ( QoS ) policy within a policy map. \\
\hline & show policy-map & Displays information about the policy map. \\
\hline & show policy-map interface & Displays the statistics and configurations of the input and output policies that are attached to an interface. \\
\hline
\end{tabular}

\section*{police (percent)}

To configure traffic policing on the basis of a percentage of bandwidth available on an interface, use the police command in QoS policy-map class configuration mode. To remove traffic policing from the configuration, use the no form of this command.
police cir percent percent [bc conform-burst-in-msec] [pir percent percentage] [be peak-burst-inmsec]
no police cir percent percent [bc conform-burst-in-msec] [pir percent percentage] [be peak-burst-inmsec]

Syntax Description
\begin{tabular}{ll}
\hline cir & \begin{tabular}{l} 
Committed information rate. Indicates that the CIR will be used for policing \\
traffic.
\end{tabular} \\
\hline percent & \begin{tabular}{l} 
Specifies that a percentage of bandwidth will be used for calculating the \\
CIR.
\end{tabular} \\
\hline percent & Specifies the bandwidth percentage. Valid range is a number from 1 to 100. \\
\hline bc & \begin{tabular}{l} 
(Optional) Conform burst (bc) size used by the first token bucket for policing \\
traffic.
\end{tabular} \\
\hline conform-burst-in-msec & \begin{tabular}{l} 
(Optional) Specifies the bc value in milliseconds. Valid range is a number \\
from 1 to 2000.
\end{tabular} \\
\hline pir & \begin{tabular}{l} 
(Optional) Peak information rate (PIR). Indicates that the PIR will be used \\
for policing traffic.
\end{tabular} \\
\hline percent & \begin{tabular}{l} 
(Optional) Specifies that a percentage of bandwidth will be used for \\
calculating the PIR.
\end{tabular} \\
\hline percent & \begin{tabular}{l} 
(Optional) Specifies the bandwidth percentage. Valid range is a number from \\
1 to 100.
\end{tabular} \\
\hline be & \begin{tabular}{l} 
(Optional) Peak burst (be) size used by the second token bucket for policing \\
traffic.
\end{tabular} \\
\hline peak-burst-in-msec & \begin{tabular}{l} 
(Optional) Specifies the be size in milliseconds. Valid range is a number \\
from 1 to 2000.
\end{tabular} \\
\hline action & Action to take on packets. Specify one of the following keywords:
\end{tabular}
- drop-Drops the packet.
- set-cos-transmit new-ios-Set the class of services \((\operatorname{CoS})\) value to a new value and send the packet. The range is 0 to 7 .
- set-dscp-transmit value-Sets the IP differentiated services code point (DSCP) value and transmits the packet with the new IP DSCP value setting.
- set-prec-transmit value-Sets the IP precedence and transmits the packet with the new IP precedence value setting.
- transmit-Transmits the packet. The packet is not altered.

\section*{Command Default \\ This command is disabled by default.}

\section*{Command Modes}

Command History

Usage Guidelines

\section*{Examples}

Policy-map class configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & \begin{tabular}{l} 
This command was introduced on the Catalyst 4500 series switch using a \\
Supervisor Engine 6E.
\end{tabular} \\
\hline
\end{tabular}

This command calculates the cir and pir on the basis of a percentage of the maximum amount of bandwidth available on the interface. When a policy map is attached to the interface, the equivalent cir and pir values in bits per second (bps) are calculated on the basis of the interface bandwidth and the percent value entered with this command. The show policy-map interface command can then be used to verify the bps rate calculated.

The calculated cir and pir bps rates must be in the range of 32,000 and \(32,000,000,000 \mathrm{bps}\). If the rates are outside this range, the associated policy map cannot be attached to the interface. If the interface bandwidth changes (for example, more is added), the bps values of the cir and the pir are recalculated on the basis of the revised amount of bandwidth. If the cir and pir percentages are changed after the policy map is attached to the interface, the bps values of the cir and pir are recalculated.
This command also allows you to specify the values for the conform burst size and the peak burst size in milliseconds. If you want bandwidth to be calculated as a percentage, the conform burst size and the peak burst size must be specified in milliseconds (ms).

This example shows how to configure traffic policing using a CIR and a PIR based on a percentage of bandwidth on Gigabit interface \(6 / 2\). In this example, a CIR of 20 percent and a PIR of 40 percent have been specified. Additionally, an optional bc value and be value ( 300 ms and 400 ms , respectively) have been specified.
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# policy-map policy1
Switch(config-pmap)\# class-map class1
Switch(config-pmap-c)\# police cir percent 20 bc 3 ms pir percent 40 be 4 ms
Switch(config-pmap-c)\# exit
Switch(config-pmap-c)\# interface gigabitethernet 6/2
Switch(config-if)\# service-policy output policy
Switch(config-if)\# end

```

\section*{police rate}

To configure single or dual rate policer, use the police rate command in policy-map configuration mode.
To remove traffic policing from the configuration, use the no form of this command.

\section*{Syntax for Bytes Per Second}
police rate units bps [burst burst-in-bytes bytes] [peak-rate peak-rate-in-bps bps] [pack-burst peak-burst-in-bytes bytes]
no police rate units bps [burst burst-in-bytes bytes] [peak-rate peak-rate-in-bps bps] [pack-burst peak-burst-in-bytes bytes]

\section*{Syntax for Percent}
police rate percent percentage [burst \(\mathrm{ms} \mathbf{m s}\) ] [peak-rate percent percentage] [pack-burst \(\mathrm{ms} \mathbf{m s}\) ]
no police rate percent percentage [burst \(\mathrm{ms} \mathbf{m s}\) ] [peak-rate percent percentage] [pack-burst ms ms ]
\begin{tabular}{|c|c|}
\hline units & Specifies the traffic police rate in bits per second. Valid range is 32,000 to 32,000,000,000. \\
\hline \multirow[t]{3}{*}{bps} & (Optional) Bits per second (bps) will be used to determine the rate at which traffic is policed. \\
\hline & \[
\mathbb{N}_{4}
\] \\
\hline & Note If a rate is not specified, traffic is policed via bps. \\
\hline burst burst-in-bytes bytes & (Optional) Specifies the burst rate, in bytes, will be used for policing traffic. Valid range is from 64 to \(2,596,929,536\). \\
\hline \begin{tabular}{l}
peak-rate \\
peak-rate-in-bps bps
\end{tabular} & (Optional) Specifies the peak burst value, in bytes, for the peak rate. Valid range is from 32,000 to \(32,000,000,000\). \\
\hline \begin{tabular}{l}
peak-burst \\
peak-burst-in-bytes \\
bytes
\end{tabular} & (Optional) Specifies the peak burst value, in bytes, will be used for policing traffic. If the police rate is specified in bps, the valid range of values is 64 to 2,596,929,536. \\
\hline percent & (Optional) A percentage of interface bandwidth will be used to determine the rate at which traffic is policed. \\
\hline percentage & (Optional) Bandwidth percentage. Valid range is a number from 1 to 100. \\
\hline burst \(m s\) ms & (Optional) Burst rate, in milliseconds, will be used for policing traffic. Valid range is a number from 1 to 2,000 . \\
\hline peak-rate percent percentage & (Optional) A percentage of interface bandwidth will be used to determine the PIR. Valid range is a number from 1 to 100. \\
\hline peak-burst \(m s\) ms & (Optional) Peak burst rate, in milliseconds, will be used for policing traffic. Valid range is a number from 1 to 2,000 . \\
\hline
\end{tabular}

\footnotetext{
Command Default
This command is disabled by default.
}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

Policy-map configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.2(40)SG & \begin{tabular}{l} 
This command was introduced on the Catalyst 4500 series switch using a Supervisor \\
Engine 6E.
\end{tabular} \\
\hline
\end{tabular}

Use the police rate command to limit traffic on the basis of pps , bps , or a percentage of interface bandwidth.

If the police rate command is issued, but the a rate is not specified, traffic that is destined will be policed on the basis of bps.

This example shows how to configure policing on a class to limit traffic to an average rate of \(1,500,000\) bps:
```

Switch(config)\# class-map c1
Switch(config-cmap)\# match access-group 140
Switch(config-cmap) \# exit
Switch(config)\# policy-map p1
Switch(config-pmap) \# class c1
Switch(config-pmap-c)\# police rate 1500000 burst 500000
Switch(config-pmap-c) \# exit

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline policy-map & \begin{tabular}{l} 
Creates or modifies a policy map that can be attached to multiple \\
ports to specify a service policy and to enter policy-map \\
configuration mode.
\end{tabular} \\
\hline show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{police (two rates)}

To configure traffic policing using two rates, the committed information rate (CIR) and the peak information rate (PIR), use the police command in policy-map configuration mode. To remove two-rate traffic policing from the configuration, use the no form of this command.
police cir cir [bc conform-burst] pir pir [be peak-burst] [conform-action action [exceed-action action [violate-action action]]]
no police cir cir [be conform-burst] pir pir [be peak-burst] [conform-action action [exceed-action action [violate-action action]]]

Syntax Description

Command Default

Command Modes
\begin{tabular}{ll}
\hline cir & Committed information rate (CIR) at which the first token bucket is updated. \\
\hline cir & \begin{tabular}{l} 
Specifies the CIR value in bits per second. The value is a number from 32,000 \\
to \(32,000,000,000\).
\end{tabular} \\
\hline bc & (Optional) Conform burst (bc) size used by the first token bucket for policing. \\
\hline conform-burst & (Optional) Specifies the bc value in bytes. The value is a number from 64 to \\
& \(2,596,929,536\).
\end{tabular} \begin{tabular}{ll} 
pir & Peak information rate (PIR) at which the second token bucket is updated. \\
\hline pir & \begin{tabular}{l} 
Specifies the PIR value in bits per second. The value is a number from 32,000 \\
to 32,000,000,000.
\end{tabular} \\
\hline be & (Optional) Peak burst (be) size used by the second token bucket for policing. \\
\hline peak-burst & (Optional) Specifies the peak burst (be) size in bytes. The value is a number \\
& from 64 to 2,596,929,536. \\
\hline conform-action & (Optional) Action to take on packets that conform to the CIR and PIR. \\
\hline exceed-action & (Optional) Action to take on packets that conform to the PIR but not the CIR. \\
\hline violate-action & (Optional) Action to take on packets exceed the PIR. \\
\hline action & (Optional) Action to take on packets. Specify one of the following keywords:
\end{tabular}
- drop-Drops the packet.
- set-cos-transmit new-ios-Set the class of services ( CoS ) value to a new value and send the packet. The range is 0 to 7 .
- set-dscp-transmit new-dscp-Sets the IP differentiated services code point (DSCP) value and sends the packet with the new IP DSCP value setting.
- set-prec-transmit new-prec-Sets the IP precedence and sends the packet with the new IP precedence value setting.
- transmit-Sends the packet with no alteration.

This command is disabled by default.

Policy-map configuration mode

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & \begin{tabular}{l} 
This command was introduced on the Catalyst 4500 series switch using a Supervisor \\
Engine 6E.
\end{tabular} \\
\hline
\end{tabular}

Refer to RFC 2698-Two Rate Three Color Marker.
Two-rate traffic policing uses two token buckets- Tc and Tp -for policing traffic at two independent rates. Note the following points about the two token buckets:
- The Tc token bucket is updated at the CIR value each time a packet arrives at the two-rate policer. The Tc token bucket can contain up to the confirm burst ( Bc ) value.
- The Tp token bucket is updated at the PIR value each time a packet arrives at the two-rate policer. The Tp token bucket can contain up to the peak burst ( Be ) value.

\section*{Updating Token Buckets}

The following scenario illustrates how the token buckets are updated:
A packet of B bytes arrives at time \(t\). The last packet arrived at time \(t 1\). The CIR and the PIR token buckets at time \(t\) are represented by \(\mathrm{Tc}(\mathrm{t})\) and \(\mathrm{Tp}(\mathrm{t})\), respectively. Using these values and in this scenario, the token buckets are updated as follows:
\[
\begin{aligned}
& \mathrm{Tc}(\mathrm{t})=\min (\mathrm{CIR} *(\mathrm{t}-\mathrm{t} 1)+\mathrm{Tc}(\mathrm{t} 1), \mathrm{Bc}) \\
& \mathrm{Tp}(\mathrm{t})=\min (\mathrm{PIR} *(\mathrm{t}-\mathrm{t} 1)+\mathrm{Tp}(\mathrm{t} 1), \mathrm{Be})
\end{aligned}
\]

\section*{Marking Traffic}

The two-rate policer marks packets as either conforming, exceeding, or violating a specified rate. The following points (using a packet of B bytes) illustrate how a packet is marked:
- If \(B>\operatorname{Tp}(\mathrm{t})\), the packet is marked as violating the specified rate.
- If \(B>\operatorname{Tc}(\mathrm{t})\), the packet is marked as exceeding the specified rate, and the \(\mathrm{Tp}(\mathrm{t})\) token bucket is updated as \(T p(t)=T p(t)-B\).
Otherwise, the packet is marked as conforming to the specified rate, and both token buckets- \(\mathrm{Tc}(\mathrm{t})\) and \(\mathrm{Tp}(\mathrm{t})\) —are updated as follows:
\[
\begin{aligned}
& \mathrm{Tp}(\mathrm{t})=\mathrm{Tp}(\mathrm{t})-\mathrm{B} \\
& \mathrm{Tc}(\mathrm{t})=\mathrm{Tc}(\mathrm{t})-\mathrm{B}
\end{aligned}
\]

For example, if the CIR is 100 kbps , the PIR is 200 kbps , and a data stream with a rate of 250 kbps arrives at the two-rate policer, the packet would be marked as follows:
- 100 kbps would be marked as conforming to the rate.
- 100 kbps would be marked as exceeding the rate.
- 50 kbps would be marked as violating the rate.

\section*{Marking Packets and Assigning Actions Flowchart}

The flowchart in Figure 2-1 illustrates how the two-rate policer marks packets and assigns a corresponding action (that is, violate, exceed, or conform) to the packet.

Figure 2-1 Marking Packets and Assigning Actions with the Two-Rate Policer


\section*{Examples}

This example shows how to configure two-rate traffic policing on a class to limit traffic to an average committed rate of 500 kbps and a peak rate of 1 Mbps :
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map police
Switch(config-cmap)\# match access-group 101
Switch(config-cmap) \# policy-map policy1
Switch(config-pmap)\# class police
Switch(config-pmap-c)\# police cir 500000 bc 10000 pir 1000000 be 10000 conform-action
transmit exceed-action set-prec-transmit 2 violate-action drop
Switch(config-pmap-c)\# interface gigabitethernet 6/1
Switch(config-if)\# service-policy output policy1
Switch(config-if)\# end
Switch\# show policy-map policy1
Policy Map policy1
Class police
police cir 500000 conform-burst 10000 pir 1000000 peak-burst 10000 conform-action
transmit exceed-action set-prec-transmit 2 violate-action drop
Switch\#

```

Traffic marked as conforming to the average committed rate ( 500 kbps ) will be sent as is. Traffic marked as exceeding 500 kbps , but not exceeding 1 Mbps , will be marked with IP Precedence 2 and then sent. All traffic marked as exceeding 1 Mbps will be dropped. The burst parameters are set to 10000 bytes.

In the following example, 1.25 Mbps of traffic is sent ("offered") to a policer class:
```

Switch\# show policy-map interface gigabitethernet 6/1
GigabitEthernet6/1
Service-policy output: policy1
Class-map: police (match all)
148803 packets, }36605538\mathrm{ bytes
30 second offered rate 1249000 bps, drop rate 249000 bps
Match: access-group 101
police:
cir 500000 bps, conform-burst 10000, pir 1000000, peak-burst 100000
conformed }59538\mathrm{ packets, }14646348\mathrm{ bytes; action: transmit
exceeded 59538 packets, }14646348\mathrm{ bytes; action: set-prec-transmit 2
violated 29731 packets, }7313826\mathrm{ bytes; action: drop
conformed 499000 bps, exceed 500000 bps violate 249000 bps
Class-map: class-default (match-any)
1 9 packets, 1 9 9 0 bytes
30 seconds offered rate 0 bps, drop rate 0 bps
Match: any
Switch\#

```

The two-rate policer marks 500 kbps of traffic as conforming, 500 kbps of traffic as exceeding, and 250 kbps of traffic as violating the specified rate. Packets marked as conforming to the rate will be sent as is, and packets marked as exceeding the rate will be marked with IP Precedence 2 and then sent. Packets marked as violating the rate are dropped.

\section*{policy-map}

To create or modify a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode, use the policy-map global configuration command. To delete an existing policy map and to return to global configuration mode, use the no form of this command.
policy-map policy-map-name
no policy-map policy-map-name

Syntax Description

\section*{Defaults}

No policy maps are defined.

\section*{Command Modes}

Global configuration mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(40) \mathrm{SG}\) & Added support for the Supervisor Engine 6-E and Catalyst 4900M chassis. \\
\hline
\end{tabular}

Before configuring policies for classes whose match criteria are defined in a class map, use the policy-map command to specify the name of the policy map to be created or modified. After you enter the policy-map command, the switch enters policy-map configuration mode. You can configure or modify the class policies for that policy map and decide how to treat the classified traffic.
These configuration commands are available in policy-map configuration mode:
- class: defines the classification match criteria for the specified class map. For more information, see the "class" section on page 2-58.
- description: describes the policy map (up to 200 characters).
- exit: exits policy-map configuration mode and returns you to global configuration mode.
- no: removes a previously defined policy map.

To return to global configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

You can configure class policies in a policy map only if the classes have match criteria defined for them. To configure the match criteria for a class, use the class-map global configuration and match class-map configuration commands.

\section*{Examples}

This example shows how to configure multiple classes in a policy map called "policymap2":
```

Switch\# configure terminal
Switch(config)\# policy-map policymap2
Switch(config-pmap)\# class class1

```
```

Switch(config-pmap-c)\# police 100000 20000 exceed-action
Switch(config-pmap-c)\# set-dscp-transmit cs3
Switch(config-pmap-c)\# set-cos-transmit 3
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# class class2
Switch(config-pmap-c)\# police cir 32000 pir 64000 conform-action transmit exceed-action
Switch(config-pmap-c)\# set-dscp-transmit cs3 violate-action drop
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# class class3
Switch(config-pmap-c)\# set dscp cs3
Switch(config-pmap-c)\# exit
Switch\#

```

This example shows how to delete the policy map called "policymap2":
```

Switch\# configure terminal
Switch(config)\# no policy-map policymap2
Switch\#

```

You can verify your settings by entering the show policy-map privileged EXEC command.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{Related Commands} & Command & Description \\
\hline & class & Specifies the name of the class whose traffic policy you want to create or change. \\
\hline & class-map & Creates a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode. \\
\hline & policy-map & Creates or modifies a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & service-policy (interface configuration) & Attaches a policy map to an interface or applies different QoS policies on VLANs that an interface belongs to. \\
\hline & show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{port-channel load-balance}

To set the load-distribution method among the ports in the bundle, use the port-channel load-balance command. To reset the load distribution to the default, use the no form of this command.
port-channel load-balance method
no port-channel load-balance

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

Usage Guidelines
The following values are valid for the load-distribution method:
- dst-ip-Load distribution on the destination IP address
- dst-mac-Load distribution on the destination MAC address
- dst-port-Load distribution on the destination TCP/UDP port
- src-dst-ip-Load distribution on the source XOR destination IP address
- src-dst-mac-Load distribution on the source XOR destination MAC address
- sre-dst-port-Load distribution on the source XOR destination TCP/UDP port
- src-ip-Load distribution on the source IP address
- sre-mac-Load distribution on the source MAC address
- sre-port-Load distribution on the source port

This example shows how to set the load-distribution method to the destination IP address:
```

Switch(config) \# port-channel load-balance dst-ip
Switch(config) \#

```

This example shows how to set the load-distribution method to the source XOR destination IP address:
```

Switch(config)\# port-channel load-balance src-dst-port

```

Switch(config)\#
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 2 - 3 } & interface port-channel & Accesses or creates a port-channel interface. \\
\cline { 2 - 3 } show etherchannel & Displays EtherChannel information for a channel. \\
\hline
\end{tabular}

\section*{port-channel standalone-disable}

To disable the EtherChannel standalone option in a port channel, use the port-channel standalone-disable command in interface configuration mode. To enable this option, use the no form of this command.
port-channel standalone-disable
no port-channel standalone-disable
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes Interface configuration mode

Command History

Usage Guidelines

\section*{Examples}

Related Commands an LACP EtherChannel.

This command can only be used when the port channel protocol type is Link Aggregation Control Protocol (LACP). It allows you to change the current behavior when a physical port cannot bundle with

The following example shows how to enable the EtherChannel standalone option in a port channel:
```

Switch(config-if)\# no port-channel standalone-disable

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show etherchannel & Displays EtherChannel information for a channel. \\
\hline
\end{tabular}

\section*{port-security mac-address}

To configure a secure address on an interface for a specific VLAN or VLAN range, use the port-security mac-address command.
port-security mac-address mac_address

\section*{Syntax Description}

\section*{Command Modes}

\section*{Usage Guidelines}

\section*{Examples}
mac_address The MAC-address that needs to be secured.

VLAN-range interface submode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) EWA & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Layer 2 interfaces can be part of multiple VLANs (for example, a typical trunk port). In conjunction with the vlan command, you can use the port-security mac-address command to specify different addresses on different VLANs.

This example shows how to configure the secure address 1.1.1 on interface Gigabit Ethernet \(1 / 1\) for VLANs 2-3:

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface gigabitethernet1/1
Switch(config-if) \# switchport trunk encapsulation dotiq
Switch(config-if) \# switchport mode trunk
Switch(config-if) \# vlan 2-3
Switch(config-if-vlan-range) \# port-security mac-address 1.1.1
Switch(config-if-vlan-range) \# end
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
port-security mac-address \\
sticky
\end{tabular} & \begin{tabular}{l} 
Configures a sticky address on an interface for a specific VLAN \\
or VLAN range.
\end{tabular} \\
\hline port-security maximum & \begin{tabular}{l} 
Configures the maximum number of addresses on an interface for \\
a specific VLAN or VLAN range.
\end{tabular} \\
\hline
\end{tabular}

\section*{port-security mac-address sticky}

To configure a sticky address on an interface for a specific VLAN or VLAN range, use the port-security mac-address sticky command.
port-security mac-address sticky mac_address

\section*{Syntax Description}
Command Modes

Usage Guidelines

Usage Guidelines
mac_address The MAC-address that needs to be secured.

VLAN-range interface submode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) EWA & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

The Sticky feature must be enabled on an interface before you can configure the port-security mac-address sticky command.

Layer 2 interfaces can be part of multiple VLANs (for example, a typical trunk port). In conjunction with the vlan command, you can use the port-security mac-address sticky command to specify different sticky addresses on different VLANs.

The Sticky feature must be enabled on an interface before you can configure the port-security mac-address sticky command.

Sticky MAC addresses are addresses that persist across switch reboots and link flaps.

\section*{Examples}

This example shows how to configure the sticky address 1.1.1 on interface Gigabit Ethernet \(1 / 1\) for VLANs 2-3:
```

Switch\# configure terminal

```
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface gigabitethernet1/1
Switch(config-if) \# switchport trunk encapsulation dotiq
Switch(config-if) \# switchport mode trunk
Switch(config-if) \# vlan 2-3
Switch(config-if-vlan-range) \# port-security mac-address sticky 1.1 .1
Switch(config-if-vlan-range) \# end
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline port-security mac-address & \begin{tabular}{l} 
Configures a secure address on an interface for a specific VLAN \\
or VLAN range.
\end{tabular} \\
\hline port-security maximum & \begin{tabular}{l} 
Configures the maximum number of addresses on an interface for \\
a specific VLAN or VLAN range.
\end{tabular} \\
\hline
\end{tabular}

\section*{port-security maximum}

To configure the maximum number of addresses on an interface for a specific VLAN or VLAN range, use the port-security maximum command.
port-security maximum max_value

\section*{Syntax Description}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

\section*{Examples}
max_value The maximum number of MAC-addresses.

VLAN-range interface submode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) EWA & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

Layer 2 interfaces can be part of multiple VLANs (for example, a typical trunk port). In conjunction with the vlan command, you can use the port-security maximum command to specify the maximum number of secure addresses on different VLANs.

If a specific VLAN on a port is not configured with a maximum value, the maximum configured for the port is used for that VLAN. In this situation, the maximum number of addresses that can be secured on this VLAN is limited to the maximum value configured on the port.
Each VLAN can be configured with a maximum count that is greater than the value configured on the port. Also, the sum total of the maximum configured values for all the VLANs can exceed the maximum configured for the port. In either of these situations, the number of MAC addresses secured on each VLAN is limited to the lesser of the VLAN configuration maximum and the port configuration maximum.

This example shows how to configure a maximum number of addresses (5) on interface Gigabit Ethernet 1/1 for VLANs 2-3:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface g1/1
Switch(config-if)\# switchport trunk encapsulation dot1q
Switch(config-if)\# switchport mode trunk
Switch(config-if)\# vlan 2-3
Switch(config-if-vlan-range)\# port-security maximum 5
Switch(config-if-vlan-range) \# exit
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{ll} 
Command & Description \\
\cline { 3 - 4 } port-security mac-address & \begin{tabular}{l} 
Configures a secure address on an interface for a specific VLAN \\
or VLAN range.
\end{tabular} \\
& \begin{tabular}{l} 
port-security mac-address \\
sticky
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Configures a sticky address on an interface for a specific VLAN \\
or VLAN range.
\end{tabular} \\
\hline
\end{tabular}

\section*{power dc input}

To configure the power DC input parameters on the switch, use the power dc input command. To return to the default power settings, use the no form of this command.
power dc input watts
no power dc input

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to set the total capacity of the external DC power source to 5000 W :
Switch(config) \# power dc input 5000
Switch(config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline dc input & Specifies the external DC source for both power supply slots. \\
\hline watts & Sets the total capacity of the external DC source in watts; valid values are from \\
& 300 to 8500.
\end{tabular}

DC power input is 2500 W .

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(11) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(13) \mathrm{EW}\) & Support for dc input was added. \\
\hline
\end{tabular}

If your interface is not capable of supporting Power over Ethernet, you will receive this message:
Power over Ethernet not supported on interface Admin
\(\qquad\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline show power & Displays information about the power status. \\
\hline
\end{tabular}

\section*{power efficient-ethernet auto}

To enable EEE, use the power efficient-ethernet auto command. To disable EEE, use the no form of this command.

\section*{power efficient-ethernet auto}
no power efficient-ethernet auto
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{\(\overline{\text { Defaults }}\) EEE is disabled}

Command Modes Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline Release IOS XE & Support for this command was introduced on the Catalyst 4500 series switch. \\
3.4.0SG and IOS & \\
15.1(2)SG &
\end{tabular}

\section*{Usage Guidelines}

EEE is supported on WS-X4748-UPOE+E and WS-X4748-RJ45-E.
EEE defines support for physical layer devices (PHYs) to operate in Low Power Idle (LPI) mode. When enabled, EEE supports QUIET times during low link utilization allowing both sides of a link to disable portions of each PHY's operating circuitry and save power. This functionality is provided per port and is not enabled by default. To avoid issues with EEE functionality on any port during run-time, Cisco provides the power efficient-ethernet auto command to enable or disable EEE.

Because EEE relies on Auto Negotiation pulse to determine whether to activate EEE, the port must initially enable auto negotiation. Furthermore, EEE is the correct action provided the speed is auto 100 M , auto 1000 M , or auto 100 M and 1000 M . 10 M (either auto or forced mode) does not require EEE for power saving.

\section*{Examples}

This example shows how to enable EEE:
```

Switch\# config t
Switch(config)\# interface gigabitethernet 1/1
Switch(config-if)\# power efficient-ethernet auto
Switch(config-if) \# exit

```

\section*{power inline}

To set the inline-power state for the inline-power-capable interfaces, use the power inline command. To return to the default values, use the no form of this command.
```

power inline {auto [max milliwatt] | never | static [max milliwatt] | consumption milliwatt}
no power inline

```

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline auto & \begin{tabular}{l} 
Sets the Power over Ethernet state to auto mode for inline-power-capable \\
interfaces.
\end{tabular} \\
\hline max milliwatt & \begin{tabular}{l} 
(Optional) Sets the maximum power that the equipment can consume; valid \\
range is from 2000 to 15400 mW for classic modules. For the \\
WS-X4648-RJ45V-E, the maximum is 20000. For the \\
WS-X4648-RJ45V+E, the maximum is 30000.
\end{tabular} \\
\hline never & \begin{tabular}{l} 
Disables both the detection and power for the inline-power capable \\
interfaces.
\end{tabular} \\
\hline static & Allocates power statically. \\
\hline consumption milliwatt & \begin{tabular}{l} 
Sets power allocation per interface; valid range is from 4000 to 15400 for \\
classic modules. Any non-default value disables automatic adjustment of \\
power allocation.
\end{tabular} \\
\hline
\end{tabular}

The default settings are as follows:
- Auto mode for Power over Ethernet is set.
- Maximum mW mode is set to 15400 . For the WS-X4648-RJ45V-E, the maximum mW is set to 20000. For the WS-X4648-RJ45V+E, the maximum mW is set to 30000.
- Default allocation is set to 15400 .

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(11) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(19) \mathrm{EW}\) & Support added for static power allocation. \\
\hline \(12.1(20) \mathrm{EW}\) & Support added for Power over Ethernet. \\
\hline \(12.2(44) \mathrm{SG}\) & \begin{tabular}{l} 
Maximum supported wattage increased beyond 15400 for the WS-X4648-RJ45V-E \\
and the WS-X4648-RJ45V+E.
\end{tabular} \\
\hline
\end{tabular}

If your interface is not capable of supporting Power over Ethernet, you will receive this message:
Power over Ethernet not supported on interface Admin

This example shows how to set the inline-power detection and power for the inline-power-capable interfaces:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet 4/1
Switch(config-if)\# power inline auto
Switch(config-if)\# end
Switch\#

```

This example shows how to disable the inline-power detection and power for the inline-power-capable interfaces:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet 4/1
Switch(config-if)\# power inline never
Switch(config-if)\# end
Switch\#

```

This example shows how to set the permanent Power over Ethernet allocation to 8000 mW for Fast Ethernet interface \(4 / 1\) regardless what is mandated either by the 802.3 af class of the discovered device or by any CDP packet that is received from the powered device:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet 4/1
Switch(config-if)\# power inline consumption 8000
Switch(config-if)\# end
Switch\#

```

This example shows how to pre-allocate Power over Ethernet to 16500 mW for Gigabit Ethernet interface \(2 / 1\) regardless of what is mandated either by the 802.3 af class of the discovered device or by any CDP packet that is received from the powered device:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gigabitethernet 2/1
Switch(config-if)\# power inline static max }1650
Switch(config-if)\# end
Switch\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show power & Displays information about the power status.
\end{tabular}

\section*{power inline consumption}

To set the default power that is allocated to an interface for all the inline-power-capable interfaces on the switch, use the power inline consumption command. To return to the default values, use the no form of this command.
power inline consumption default milliwatts
no power inline consumption default

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline default & Specifies the switch to use the default allocation. \\
\hline milliwatts & \begin{tabular}{l} 
Sets the default power allocation in milliwatts; the valid range is from \\
4000 to 15400. Any non-default value disables automatic adjustment of power \\
allocation.
\end{tabular}
\end{tabular}

Milliwatt mode is set to 15400 .

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(11) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(20) \mathrm{EW}\) & Support added for Power over Ethernet. \\
\hline
\end{tabular}

If your interface is not capable of supporting Power over Ethernet, you will receive this message:
Power over Ethernet not supported on interface Admin

This example shows how to set the Power over Ethernet allocation to use 8000 mW , regardless of any CDP packet that is received from the powered device:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# power inline consumption default 8000
Switch(config)\# end
Switch\#

```
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } power inline & \begin{tabular}{l} 
Sets the inline-power state for the inline-power-capable \\
interfaces.
\end{tabular} \\
& show power & Displays information about the power status. \\
\hline
\end{tabular}

\section*{power inline four-pair forced}

This command is available only on Supervisor Engine 7-E and Supervoisor Engine 7L-E.

To automatically enable power on both signal and spare pairs from a switch port, provided the end-device is PoE capable on both signal and spare pairs but does not support the CDP or LLDP extensions required for UPOE, use the power inline four-pair forced command.

\section*{power inline four-pair forced}

Syntax Description

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

Examples

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(15.0(2) \mathrm{SG}\) & This command was introduced on the Catalyst 4500 series switch using a \\
& Supervisor Engine 7-E and 7L-E. \\
\hline
\end{tabular}

Although IEEE 802.at only provides for power up to 30W per port, the WS-X4748-UPOE+E module can provide up to 60 W using the spare pair of an RJ45 cable (wires \(4,5,7,8\) ) with the signal pair (wires \(1,2,3,6)\). Power on the spare pair is enabled when the switch port and end-device mutually identify themselves as UPOE capable using CDP or LLDP and the end-device requests for power on the spare pair to be enabled. When the spare pair is powered, the end-device can negotiate up to 60 W power from the switch using CDP or LLDP.

If the end-device is PoE capable on both signal and spare pairs but does not support the CDP or LLDP extensions required for UPOE, then the following configuration automatically enables power on both signal and spare pairs from the switch port

The following example shows how to automatically enable power on both signal and spare pairs from switch port gigabit ethernet 2/1:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface gigabitethernet 2/1
Switch(config-if)\# power inline four-pair forced
Switch(config-if)\# shutdown
Switch(config-if)\# no shutdown
Switch(config-if)\# end
Switch\#

```

Do not enter this command if the end-device is incapable of sourcing inline power on the spare pair or if the end-device supports the CDP or LLDP extensions for UPOE.

\section*{power inline logging global}

To enable console messages that show when a PoE device has been detected and to show when a PoE device has been removed, use the power inline logging global command.

\section*{power inline logging global}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Disabled

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

Related Commands
Be aware of the potential for console flooding if this command is used on a switch connected to several PoE devices.

This example shows how to globally enable PoE status messaging on each interface:
To enable PoE event logging, you use the logging event poe-status global command:
```

Switch\# conf terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# power inline logging global
Switch(config)\# int gigabitEthernet 5/5
Switch(config-if)\# shut
Switch(config-if)\#
*Oct 17 12:02:48.407: %ILPOWER-5-IEEE_DISCONNECT: Interface Gi5/5: PD removed
Switch(config-if)\# no shut
Switch(config-if)\#
*Oct 17 12:02:54.915: %ILPOWER-7-DETECT: Interface Gi5/5: Power Device detected: IEEE PD

```

\section*{power inline police}

To configure PoE policing on a particular interface, use the power inline police command. The no form of the command disables PoE policing on an interface.
power inline police [action] [errdisable | log]
no power inline police [action] [errdisable | log]

Syntax Description

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline action & \begin{tabular}{l} 
(optional) Specifies the action to take on the port when a PoE policing fault occurs \\
(the device consumes more power than it's allocated).
\end{tabular} \\
\hline errdisable & \begin{tabular}{l} 
(optional) Enables PoE policing on the interface and places the port in an \\
errdisable state when a PoE policing fault occurs.
\end{tabular} \\
\hline \(\mathbf{l o g}\) & \begin{tabular}{l} 
(optional) Enables PoE policing on the interface and, if a PoE policing fault \\
occurs, shuts, restarts the port, and logs an error message.
\end{tabular} \\
\hline
\end{tabular}

PoE policing is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(50)\) SG & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series \\
switch.
\end{tabular} \\
\hline
\end{tabular}

If a port is in the errdisable state because of a PoE policing fault, enter the shut command followed by a no shut on the interface to make the port operational again.

You can also configure inline-power errdisable autorecovery so that an errdisabled interface is automatically revived when the errdisable autorecovery timer expires.

This example shows how to enable PoE policing and configure a policing action:
```

Switch(config)\# int gigabitEthernet 2/1
Switch(config-if)\# power inline police
Switch(config-if)\# do show power inline police gigabitEthernet 2/1
Available:421(w) Used:39(w) Remaining:382(w)

Interface	Admin	Oper	Admin	Oper	Cutoff	Oper
	State	State	Police	Police	Power	Power
Gi2/1	auto	on	errdis		17.4	7.6

```

Switch(config-if) \# power inline police action log
Available:421(w) Used:39(w) Remaining:382(w)

\begin{tabular}{lll}
\hline Related Commands & & \\
\cline { 3 - 3 } & Command & Description \\
& show power inline police & \begin{tabular}{l} 
Displays the PoE policing status of an interface, module, or \\
chassis.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
enrdisable recovery \\
itself after going to the errdisable state after its errdisable \\
autorecovery timer expires.
\end{tabular} \\
\hline
\end{tabular}

\section*{power redundancy-mode}

To configure the power settings for the chassis, use the power redundancy-mode command. To return to the default setting, use the default form of this command.
```

power redundancy-mode {redundant | combined }
default power redundancy-mode

```
\begin{tabular}{ll}
\hline redundant & Configures the switch to redundant power management mode. \\
\hline combined & Configures the switch to combined power management mode.
\end{tabular}

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series switch. \\
(Catalyst 4500 series switches only: 4503, 4506, and 4507).
\end{tabular}
\end{tabular}

\section*{Usage Guidelines}

The two power supplies must be the same type and wattage.

Caution
If you have power supplies with different types or wattages installed in your switch, the switch will not recognize one of the power supplies. A switch set to redundant mode will not have power redundancy. A switch set to combined mode will use only one power supply.

In redundant mode, the power from a single power supply must provide enough power to support the switch configuration.
Table 2-11 lists the maximum available power for chassis and Power over Ethernet for each power supply.

Table 2-11 Available Power
\begin{tabular}{l|l|l}
\hline Power Supply & Redundant Mode (W) & Combined Mode (W) \\
\hline 1000 W AC & System \(^{1}=1000\) & System \(=1667\) \\
& Inline \(=0\) & Inline \(=0\) \\
\hline 2800 W AC & System \(=1360\) & System \(=2473\) \\
& Inline \(=1400\) & Inline \(=2333\) \\
\hline
\end{tabular}

\footnotetext{
1. The system power includes power for the supervisor engines, all modules, and the fan tray.
}
\begin{tabular}{lll}
\hline Examples & \(\left.\begin{array}{l}\text { This example shows how to set the power management mode to combined: } \\
\\
\begin{array}{ll}\text { Switch (config) \# power redundancy-mode combined } \\
\text { Switch (config) \# }\end{array} \\
\hline \text { Related Commands }\end{array} \begin{array}{ll}\begin{array}{ll}\text { Command } & \text { Description } \\
\hline \text { show power } & \text { Displays information about the power status. } \\
\hline\end{array}\end{array}\right]\)
\end{tabular}

To enable the strict priority queue (low-latency queueing [LLQ]) and to give priority to a class of traffic belonging to a policy map attached to a physical port, use the priority policy-map class configuration command. To return to the default setting, use the no form of this command.
```

priority
no priority

```
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

The strict priority queue is disabled.

Policy-map class configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & This command was introduced on the Catalyst 4500 series switch using a \\
& Supervisor Engine 6E. \\
\hline
\end{tabular}

Use the priority command only in a policy map attached to a physical port. You can use this command only in class-level classes, you cannot use this command in class class-default.

This command configures LLQ and provides strict-priority queueing. Strict-priority queueing enables delay-sensitive data, such as voice, to be sent before packets in other queues are sent. The priority queue is serviced first until it is empty.

You cannot use the bandwidth, dbl, and the shape policy-map class configuration commands with the priority policy-map class configuration command in the same class within the same policy map.
However, you can use these commands in the same policy map.
You can use police or set class configuration commands with the priority police-map class configuration command.

If the priority queuing class is not rate limited, you cannot use the bandwidth command, you can use the bandwidth remaining percent command instead.

\section*{Examples}

This example shows how to enable the LLQ for the policy map called policyl:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# policy-map policy1
Switch(config-pmap)\# class voice
Switch(config-pmap-c)\# priority

```

You can verify your settings by entering the show policy-map privileged EXEC command.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{Related Commands} & Command & Description \\
\hline & bandwidth & Specifies or modifies the minimum bandwidth provided to a class belonging to a policy map attached to a physical port. \\
\hline & class & Specifies the name of the class whose traffic policy you want to create or change. \\
\hline & policy-map & Creates or modifies a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & dbl & Enables dynamic buffer limiting for traffic hitting this class. \\
\hline & service-policy (policy-map class) & Creates a service policy that is a quality of service (QoS) policy within a policy map. \\
\hline & shape (class-based queueing) & Enables traffic shaping a class of traffic in a policy map attached to a physical port. \\
\hline & show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{private-vlan}

To configure private VLANs and the association between a private VLAN and a secondary VLAN, use the private-vlan command. To return to the default value, use the no form of this command.
```

private-vlan {isolated | community | twoway-community | primary}
private-vlan association secondary-vlan-list [{add secondary-vlan-list} |
{remove secondary-vlan-list}]
no private-vlan {isolated | community | twoway-community | primary}
no private-vlan association

```

\section*{Syntax Description}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline isolated & Designates the VLAN as an isolated private VLAN. \\
\hline community & Designates the VLAN as the community private VLAN. \\
\hline twoway-community & \begin{tabular}{l} 
Designates the VLAN as a host port that belongs to a twoway-community \\
secondary VLAN
\end{tabular} \\
\hline primary & Designates the VLAN as the primary private VLAN. \\
\hline association & Creates an association between a secondary VLAN and a primary VLAN. \\
\hline secondary-vlan-list & \begin{tabular}{l} 
Specifies the number of the secondary VLAN. \\
The list can contain only one isolated VLAN ID; it can also contain multiple \\
community or twoway-community VLAN IDs
\end{tabular} \\
\hline add & \begin{tabular}{l} 
(Optional) Associates a secondary VLAN to a primary VLAN. \\
\hline remove
\end{tabular} \begin{tabular}{l} 
(Optional) Clears the association between a secondary VLAN and a primary \\
VLAN.
\end{tabular} \\
\hline
\end{tabular}

Private VLANs are not configured.

VLAN configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline 12.2(20)EW & Support for community VLAN was added. \\
\hline 3.1.1SG & Support for twoway-community was introduced on Supervisor 7-E. \\
\hline
\end{tabular}

You cannot configure VLAN 1 or VLANs 1001 to 1005 as private VLANs.
VTP does not support private VLANs. You must configure private VLANs on each device where you want private VLAN ports.

The secondary_vlan_list parameter cannot contain spaces; it can contain multiple comma-separated items. Each item can be a single private VLAN ID or a range of private VLAN IDs separated by hyphens.
The secondary_vlan_list parameter can contain multiple community VLAN IDs.
The secondary_vlan_list parameter can contain only one isolated VLAN ID. A private VLAN is defined as a set of private ports characterized by a common set of VLAN number pairs: each pair is made up of at least two special unidirectional VLANs and is used by isolated ports or by a community of ports to communicate with the switches.

An isolated VLAN is a VLAN that is used by the isolated ports to communicate with the promiscuous ports. The isolated VLAN traffic is blocked on all other private ports in the same VLAN and can be received only by the standard trunking ports and the promiscuous ports that are assigned to the corresponding primary VLAN.

A community VLAN is the VLAN that carries the traffic among the community ports and from the community ports to the promiscuous ports on the corresponding primary VLAN. A community VLAN is not allowed on a private VLAN trunk.
A promiscuous port is a private port that is assigned to a primary VLAN.
A primary VLAN is a VLAN that is used to convey the traffic from the switches to the customer end stations on the private ports.

You can specify only one isolated vlan-id value, while multiple community VLANs are allowed. You can only associate isolated and community VLANs to one VLAN. The associated VLAN list may not contain primary VLANs. Similarly, a VLAN that is already associated to a primary VLAN cannot be configured as a primary VLAN.
The private-vlan commands do not take effect until you exit the config-VLAN submode.
If you delete either the primary or secondary VLAN, the ports that are associated with the VLAN become inactive.

Refer to the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide for additional configuration guidelines.

\section*{Examples}

This example shows how to configure VLAN 202 as a primary VLAN and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# vlan 202
Switch(config-vlan)\# private-vlan primary
Switch(config-vlan)\# end
Switch\# show vlan private-vlan
Primary Secondary Type Interfaces
------- --------- -------

```

This example shows how to configure VLAN 303 as a community VLAN and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# vlan 303
Switch(config-vlan)\# private-vlan community
Switch(config-vlan)\# end
Switch\# show vlan private-vlan
Primary Secondary Type Interfaces
------- --------- ----------------- ---
202 primary
303 community

```

This example shows how to configure VLAN 440 as an isolated VLAN and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# vlan 440
Switch(config-vlan)\# private-vlan isolated
Switch(config-vlan)\# end
Switch\# show vlan private-vlan
Primary Secondary Type Interfaces
------- --------- --
202 primary
303 community
440 isolated

```

This example shows how to create a private VLAN relationship among the primary VLAN 14, the isolated VLAN 19, and community VLANs 20 and 21:
```

Switch(config)\# vlan 19
Switch(config-vlan) \# private-vlan isolated
Switch(config)\# vlan 14
Switch(config-vlan)\# private-vlan primary
Switch(config-vlan)\# private-vlan association 19

```

This example shows how to remove a private VLAN relationship and delete the primary VLAN. The associated secondary VLANs are not deleted.
```

Switch(config-vlan) \# no private-vlan 14
Switch(config-vlan)\#

```

This example shows how to configure VLAN 550 as a twoway-community VLAN and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# vlan 550
Switch(config-vlan)\# private-vlan twoway-community
Switch(config-vlan)\# end
Switch\# show vlan private-vlan
Primary Secondary Type Interfaces
---------------- ---
202 primary
303 community
440 isolated
550 twoway-community

```

This example shows how to associate community VLANs 303 through 307 and 309 and isolated VLAN 440 with primary VLAN 202 and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# vlan 202
Switch(config-vlan)\# private-vlan association 303-307,309,440
Switch(config-vlan)\# end
Switch\# show vlan private-vlan
Primary Secondary Type Interfaces
---------------- --
202 303 community
202 304 community
202 305 community
202 306 community
202 307 community
202 309 community
202 440 isolated
308 community

```

This example shows how to remove an isolated VLAN from the private VLAN association:
```

Switch(config)\# vlan 14
Switch(config-vlan)\# private-vlan association remove 18
Switch(config-vlan)\#

```

This example shows how to configure interface FastEthernet \(5 / 1\) as a PVLAN host port and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/1
Switch(config-if)\# switchport mode private-vlan host
Switch(config-if)\# switchport private-vlan host-association 202 440
Switch(config-if)\# end

```
```

Switch\# show interfaces fastethernet 5/1 switchport
Name: Fa5/1
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: private-vlan host
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Voice VLAN: none
Appliance trust: none
Administrative Private Vlan
Host Association: 202 (VLAN0202) 440 (VLAN0440)
Promiscuous Mapping: none
Trunk encapsulation : dot1q
Trunk vlans:
Operational private-vlan(s):
202 (VLAN0202) 440 (VLAN0440)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vlan & Displays VLAN information. \\
\hline show vlan private-vlan & Displays private VLAN information. \\
\hline
\end{tabular}

\section*{private-vlan mapping}

To create a mapping between the primary and the secondary VLANs so that both share the same primary VLAN SVI, use the private-vlan mapping command. To remove all PVLAN mappings from an SVI, use the no form of this command.
private-vlan mapping primary-vlan-id \(\{[\) secondary-vlan-list \(\mid\{\) add secondary-vlan-list \(\} \mid\)
\{remove secondary-vlan-list \}]\}
no private-vlan mapping

Syntax Description

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline primary-vlan-id & VLAN ID of the primary VLAN of the PVLAN relationship. \\
\hline secondary-vlan-list & (Optional) VLAN ID of the secondary VLANs to map to the primary VLAN. \\
\hline add & (Optional) Maps the secondary VLAN to the primary VLAN. \\
\hline remove & \begin{tabular}{l} 
(Optional) Removes the mapping between the secondary VLAN and the \\
primary VLAN.
\end{tabular} \\
\hline
\end{tabular}

All PVLAN mappings are removed.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The secondary_vlan_list parameter cannot contain spaces. It can contain multiple, comma-separated items. Each item can be a single PVLAN ID or a range of PVLAN IDs separated by hyphens.
This command is valid in the interface configuration mode of the primary VLAN.
The SVI of the primary VLAN is created at Layer 3.
The traffic that is received on the secondary VLAN is routed by the SVI of the primary VLAN.
The SVIs of the existing secondary VLANs do not function and are considered down after this command is entered.

A secondary SVI can be mapped to only one primary SVI. If the configured PVLANs association is different from what is specified in this command (if the specified primary-vlan-id is configured as a secondary VLAN), all the SVIs that are specified in this command are brought down.
If you configure a mapping between two VLANs that do not have a valid Layer 2 association, the mapping configuration does not take effect.

This example shows how to map the interface of VLAN 20 to the SVI of VLAN 18:
```

Switch(config)\# interface vlan 18
Switch(config-if)\# private-vlan mapping 18 20
Switch(config-if)\#

```

This example shows how to permit the routing of the secondary VLAN ingress traffic from PVLANs 303 through 307,309 , and 440 and how to verify the configuration:
```

Switch\# config terminal
Switch(config)\# interface vlan 202
Switch(config-if)\# private-vlan mapping add 303-307,309,440
Switch(config-if)\# end
Switch\# show interfaces private-vlan mapping
Interface Secondary VLAN Type
--------- -------------- -------------------
vlan202 303 isolated
vlan202 304 isolated
vlan202 305 isolated
vlan202 306 isolated
vlan202 307 isolated
vlan202 309 isolated
vlan202 440 isolated
Switch\#

```

This example shows the displayed message that you will see if the VLAN that you are adding is already mapped to the SVI of VLAN 18. You must delete the mapping from the SVI of VLAN 18 first.
```

Switch(config)\# interface vlan 19
Switch(config-if)\# private-vlan mapping 19 add 21
Command rejected: The interface for VLAN 21 is already mapped as s secondary.
Switch(config-if)\#

```

This example shows how to remove all PVLAN mappings from the SVI of VLAN 19:
```

Switch(config)\# interface vlan 19
Switch(config-if)\# no private-vlan mapping
Switch(config-if)\#

```
```

Switch\# configure terminal
Switch(config)\# interface vlan 202
Switch(config-if)\# private-vlan mapping add 303-307,309,440
Switch(config-if)\# end
Switch\# show interfaces private-vlan mapping
Interface Secondary VLAN Type
--------- -------------- ---------------------
vlan202 303 community
vlan202 304 community
vlan202 305 community
vlan202 306 community
vlan202 307 community
vlan202 309 community
vlan202 440 isolated
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{ll} 
Command & Description \\
\cline { 2 - 3 } \begin{tabular}{ll} 
show interfaces private-vlan \\
mapping
\end{tabular} & Displays PVLAN mapping information for VLAN SVIs. \\
& \begin{tabular}{ll} 
show vlan & Displays VLAN information. \\
\hline & show vlan private-vlan
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{private-vlan synchronize}

To map the secondary VLANs to the same instance as the primary VLAN, use the private-vlan synchronize command.

\section*{private-vlan synchronize}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

Related Commands

If you do not map the VLANs to the same instance as the associated primary VLAN when you exit the MST configuration submode, a warning message displays and lists the secondary VLANs that are not mapped to the same instance as the associated primary VLAN. The private-vlan synchronize command automatically maps all secondary VLANs to the same instance as the associated primary VLANs.

This example shows how to initialize PVLAN synchronization:
```

Switch(config-mst) \# private-vlan synchronize
Switch(config-mst)\#

```

This example assumes that a primary VLAN 2 and a secondary VLAN 3 are associated to VLAN 2, and that all VLANs are mapped to the CIST instance 1 . This example also shows the output if you try to change the mapping for the primary VLAN 2 only:
```

Switch(config)\# spanning-tree mst configuration
Switch(config-mst)\# instance 1 vlan 2
Switch(config-mst)\# exit
These secondary vlans are not mapped to the same instance as their primary:
->3
Switch(config)\#

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline
\end{tabular}

\section*{profile}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode, use the profile command.
profile profile_name
Syntax Description
profile_name Specifies the profile name.
\(\overline{\text { Defaults }}\) This command has no default settings.

\section*{Command Modes cfg-call-home}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52) \mathrm{SG}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines When you enter the profile profile_name command in call-home mode, the prompt changes to Switch(cfg-call-home-profile)\#, and you have access to the following profile configuration commands:}
- active
- destination address
- destination message-size-limit bytes
- destination preferred-msg-format
- destination transport-method
- end
- exit
- subscribe-to-alert-group all
- subscribe-to-alert-group configuration
- subscribe-to-alert-group diagnostic
- subscribe-to-alert-group environment
- subscribe-to-alert-group inventory
- subscribe-to-alert-group syslog
\begin{tabular}{|c|c|}
\hline Examples & \begin{tabular}{l}
This example shows how to create and configure a user-defined call-home profile: \\
Switch(config)\# call-home \\
Switch(cfg-call-home) \# profile cisco \\
Switch(cfg-call-home-profile) \# destination transport-method http \\
Switch(cfg-call-home-profile)\# destination address http \\
https://172.17.46.17/its/service/oddce/services/DDCEService \\
Switch(cfg-call-home-profile) \# subscribe-to-alert-group configuration \\
Switch (cfg-call-home-profile) \# subscribe-to-alert-group diagnostic severity normal \\
Switch (cfg-call-home-profile) \# subscribe-to-alert-group environment severity notification \\
Switch(cfg-call-home-profile)\# subscribe-to-alert-group syslog severity notification \\
pattern "UPDOWN" \\
Switch(cfg-call-home-profile) \# subscribe-to-alert-group inventory periodic daily 21:12
\end{tabular} \\
\hline \multirow[t]{11}{*}{Related Commands} & Command Description \\
\hline & \begin{tabular}{ll} 
destination address & Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline & destination message-size-limit bytes \(\quad\)\begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline & destination preferred-msg-format Configures a preferred message format. \\
\hline & destination transport-method Enables the message transport method. \\
\hline & subscribe-to-alert-group all Subscribes to all available alert groups. \\
\hline & \begin{tabular}{ll}
\hline subscribe-to-alert-group configuration & \begin{tabular}{l} 
Subscribes this destination profile to the Configuration \\
alert group.
\end{tabular}
\end{tabular} alert group. \\
\hline & \(\begin{array}{ll}\text { subscribe-to-alert-group diagnostic } & \begin{array}{l}\text { Subscribes this destination profile to the Diagnostic alert } \\ \text { group. }\end{array}\end{array}\) \\
\hline & \begin{tabular}{ll}
\hline subscribe-to-alert-group environment & \(\begin{array}{l}\text { Subscribes this destination profile to the Environment alert } \\
\text { group. }\end{array}\)
\end{tabular} \\
\hline & \begin{tabular}{ll}
\hline subscribe-to-alert-group inventory & \begin{tabular}{l} 
Subscribes this destination profile to the Inventory alert \\
group.
\end{tabular}
\end{tabular} \\
\hline & subscribe-to-alert-group syslog Subscribes this destination profile to the Syslog alert group. \\
\hline
\end{tabular}

\section*{qos account layer-all encapsulation}

To account for Layer 1 header length of 20 bytes in QoS policing features, use the qos account layer-all encapsulation command. To disable the use of additional bytes, use the no form of this command.
qos account layer-all encapsulation
no qos account layer-all encapsulation
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

On Supervisor Engine 7-E, policers account only for the Layer 2 header length in policing features. In contrast, shapers account for header length as well as IPG in rate calculations.

Global configuration

Release Modification
IOS-XE 3.2.0SG Support for this command was introduced on the Catalyst 4500 series switch.

On Supervisor Engine 7-E, use the qos account layer-all encapsulation command to account for Layer 1 header of 20 bytes ( preamble + IPG) and Layer 2 header in policing features. When this command is configured, policer statistics (in bytes ) observed in the output of the show policy-map interface command reflect the Layer 1 header length as well ( 20 bytes per packet).

This example shows how to include IPG in policing:
Switch) \# config t
Switch(config)\# qos account layer-all encapsulation
Switch(config) \# end
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show policy-map interface & Displays policer statistics on a specific interface. \\
\hline
\end{tabular}

\section*{q0S trust}

Syntax Description
\begin{tabular}{ll}
\hline cos & \begin{tabular}{l} 
Specifies that the CoS bits in incoming frames are trusted and derives the \\
internal DSCP value from the CoS bits.
\end{tabular} \\
\hline device cisco-phone & Specifies the Cisco IP phone as the trust device for a port. \\
\hline dscp & Specifies that the ToS bits in the incoming packets contain a DSCP value. \\
\hline extend & \begin{tabular}{l} 
Specifies to extend the trust to Port VLAN ID (PVID) packets coming from \\
the PC.
\end{tabular} \\
\hline cos priority & \begin{tabular}{l} 
(Optional) Specifies that the CoS priority value is set to PVID packets; valid \\
values are from 0 to 7.
\end{tabular} \\
\hline
\end{tabular}

\section*{Defaults}

The default settings are as follows:
- If global QoS is enabled, trust is disabled on the port.
- If global QoS is disabled, trust DSCP is enabled on the port.
- The CoS priority level is 0 .

Command Modes Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(11) \mathrm{EW}\) & Support for extending trust for voice was added. \\
\hline \(12.1(19) \mathrm{EW}\) & Support for trust device Cisco IP phone was added. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.
You can only configure the trusted state on physical LAN interfaces.
By default, the trust state of an interface when QoS is enabled is untrusted; when QoS is disabled on the interface, the trust state is reset to trust DSCP.

When the interface trust state is qos trust cos, the transmit CoS is always the incoming packet CoS (or the default CoS for the interface, if the packet is not tagged).

When the interface trust state is not qos trust dscp, the security and QoS ACL classification will always use the interface DSCP and not the incoming packet DSCP.

Trusted boundary should not be configured on the ports that are part of an EtherChannel (that is, a port channel).
Examples This example shows how to set the trusted state of an interface to CoS:
```

Switch(config-if)\# qos trust cos
Switch(config-if)\#

```

This example shows how to set the trusted state of an interface to DSCP:
```

Switch(config-if)\# qos trust dscp
Switch(config-if)\#

```

This example shows how to set the PVID CoS level to 6:
```

Switch(config-if)\# qos trust extend cos 6
Switch(config-if)\#

```

This example shows how to set the Cisco phone as the trust device:
```

Switch(config-if)\# qos trust device cisco-phone
Switch(config-if)\#

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show qos interface & Displays QoS information for an interface. \\
\hline
\end{tabular}

\section*{queue-limit}

To specify or modify the maximum number of packets the queue can hold for a class policy configured in a policy map, use the queue-limit command. To remove the queue packet limit from a class, use the no form of this command.
queue-limit number-of-packets
no queue-limit number-of-packets

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines
This class-based queuing (CBQ) command applies only to the Supervisor 6E as part of the MQC support on the Catalyst 4500 supervisor.

By default, each physical interface on a Catalyst 4500 switch comes up with a default queue. The size of this queue is based on the number of slots in a chassis as well as the number of ports on the line card in each slot. The switch supports 512 K queue entries of which 100 K are set aside as a common sharable pool. The remaining 412 K entries are equally distributed among the slots. Each slot further divides its allocated queue entries equally among its ports.
CBQ creates a queue for every class for which a class map is defined. Packets satisfying the match criterion for a class accumulate in the queue reserved for the class until they are sent, which occurs when the queue is serviced by the fair queuing process. When the maximum packet threshold you defined for the class is reached, queuing of any further packets to the class queue causes tail drop or, if DBL is configured for the class policy, packet drop to take effect.

The queue-limit command is supported only after you first configure a scheduling action, such as bandwidth, shape, or priority, except when you configure queue-limit in the class-default class of an output QoS policy-map.s

\section*{Examples}

This example shows how to configure a policy-map called policyll to contain policy for a class called acl203. Policy for this class is set so that the queue reserved for it has a maximum packet limit of 40:
```

Switch\# configure terminal
Switch (config)\# policy-map policy11
Switch (config-pmap)\# class acl203
Switch (config-pmap-c)\# bandwidth 2000
Switch (config-pmap-c)\# queue-limit 40
Switch (config-pmap-c)\# end
Switch\#

```

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline bandwidth & \begin{tabular}{l} 
Specifies or modifies the minimum bandwidth provided to a class \\
belonging to a policy map attached to a physical port.
\end{tabular} \\
\hline class & \begin{tabular}{l} 
Specifies the name of the class whose traffic policy you want to \\
create or change.
\end{tabular} \\
\hline policy-map & \begin{tabular}{l} 
Creates or modifies a policy map that can be attached to multiple \\
ports to specify a service policy and to enter policy-map \\
configuration mode.
\end{tabular} \\
\hline shape (class-based queueing) & \begin{tabular}{l} 
Enables traffic shaping a class of traffic in a policy map attached \\
to a physical port.
\end{tabular} \\
\hline
\end{tabular}

\section*{redundancy}

To enter the redundancy configuration mode, use the redundancy command in the global configuration mode.
redundancy

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands

The redundancy configuration mode is used to enter the main CPU submode.
To enter the main CPU submode, use the main-cpu command in the redundancy configuration mode.
The main CPU submode is used to manually synchronize the configurations on the two supervisor engines.

From the main CPU submode, use the auto-sync command to enable automatic synchronization of the configuration files in NVRAM.

Use the no command to disable redundancy. If you disable redundancy, then reenable redundancy, the switch returns to default redundancy settings.

Use the exit command to exit the redundancy configuration mode.

This example shows how to enter redundancy mode:
```

Switch(config)\# redundancy

```
Switch(config-red) \#

This example shows how to enter the main CPU submode:
```

Switch(config)\# redundancy
Switch(config-red)\# main-cpu
Switch(config-r-mc) \#

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline auto-sync & \begin{tabular}{l} 
Enables automatic synchronization of the configuration files in \\
\\
NVRAM.
\end{tabular} \\
\hline main-cpu & \begin{tabular}{l} 
Enters the main CPU submode and manually synchronize the \\
configurations on the two supervisor engines.
\end{tabular} \\
\hline
\end{tabular}

\section*{redundancy config-sync mismatched-commands}

If your active and standby supervisors are running different versions of IOS, some of their CLIs will not be compatible. If such commands are already present in the running configuration of the active supervisor engine and the syntax-check for the command fails at the standby supervisor engine while it is booting, the redundancy config-sync mismatched-commands command moves the active supervisor engine into the Mismatched Command List (MCL) and resets the standby supervisor engine.
redundancy config-sync \(\{\) ignore \(\mid\) validate \(\}\) mismatched-commands

Syntax Description

\section*{Defaults}

Command Modes Privileged EXEC mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(44) \mathrm{SG}\) & Updated command syntax from issu config-sync to redundancy config-sync. \\
\hline
\end{tabular}

Usage Guidelines
\begin{tabular}{ll}
\hline ignore & Ignore the mismatched command list. \\
\hline validate & \begin{tabular}{l} 
Revalidate the mismatched command list with the modified \\
running-configuration.
\end{tabular}
\end{tabular}

This command has no default settings.

The following is a log entry example for mismatched commands:
```

00:06:31: Config Sync: Bulk-sync failure due to Servicing Incompatibility. Please check
full list of mismatched commands via:
show redundancy config-sync failures mcl
00:06:31: Config Sync: Starting lines from MCL file:
interface GigabitEthernet7/7
! <submode> "interface"

- ip address 11.0.0.1 255.0.0.0
! </submode> "interface"

```

To display all mismatched commands, use the show redundancy config-sync failures mel command.
To clean the MCL, follow these steps:

Step 1 Remove all mismatched commands from the active supervisor engine's running configuration.
Step 2 Revalidate the MCL with a modified running configuration using the redundancy config-sync validate mismatched-commands command.

Step 3 Reload the standby supervisor engine.

You could also ignore the MCL by doing the following:

Step 1 Enter the redundancy config-sync ignore mismatched-commands command.
Step 2 Reload the standby supervisor engine; the system changes to SSO mode.
\(\qquad\) engine and the standby supervisor engine still exists.

Step 3 You can verify the ignored MCL with the show redundancy config-sync ignored mel command.

If SSO mode cannot be established between the active and standby supervisor engines because of an incompatibility in the configuration file, a mismatched command list (MCL) is generated at the active supervisor engine and a reload into RPR mode is forced for the standby supervisor engine. Subsequent attempts to establish SSO, after removing the offending configuration and rebooting the standby supervisor engine with the exact same image, might cause the C4K_REDUNDANCY-2-IOS_VERSION_CHECK_FAIL and ISSU-3-PEER_IMAGE_INCOMPATIBLE messages to appear because the peer image is listed as incompatible. If the configuration problem can be corrected, you can clear the peer image from the incompatible list with the redundancy config-sync ignore mismatched-commands EXEC command while the peer is in a standby cold (RPR) state. This action allows the standy supervisor engine to boot in standby hot (SSO) state when it reloads.

\section*{Examples}

This example shows how you can validate removal of entries from the MCL:
Switch\# redundancy config-sync validate mismatched-commands
Switch\#
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 3 - 3 } show redundancy config-sync & \begin{tabular}{l} 
Displays an ISSU config-sync failure or the ignored mismatched \\
command list (MCL).
\end{tabular} \\
\hline
\end{tabular}

\section*{redundancy force-switchover}

To force a switchover from the active to the standby supervisor engine, use the redundancy force-switchover command.

\section*{redundancy force-switchover}

Syntax Description
\(\overline{\text { Defaults }}\)

Command Modes

Command History

Usage Guidelines

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series switch \\
\\
(Catalyst 4507R only).
\end{tabular} \\
\hline
\end{tabular}

Before using this command, refer to the "Performing a Software Upgrade" section of the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide for additional information.

The redundancy force-switchover command conducts a manual switchover to the redundant supervisor engine. The redundant supervisor engine becomes the new active supervisor engine running the Cisco IOS image. The modules are reset.

The old active supervisor engine reboots with the new image and becomes the standby supervisor engine.

This example shows how to switch over manually from the active to the standby supervisor engine:
Switch\# redundancy force-switchover
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline redundancy & Enters the redundancy configuration mode. \\
\hline show redundancy & Displays redundancy facility information. \\
\hline
\end{tabular}

\section*{redundancy reload}

To force a reload of one or both supervisor engines, use the redundancy reload command.
redundancy reload \(\{\) peer \(\mid\) shelf \(\}\)

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline peer & Reloads the peer unit. \\
\hline shelf & Reboots both supervisor engines. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series switch \\
(Catalyst 4507R only).
\end{tabular} \\
\hline
\end{tabular}

Before using this command, refer to the "Performing a Software Upgrade" section of the Catalyst 4500 Series Switch Cisco IOS Software Configuration Guide for additional information.
The redundancy reload shelf command conducts a reboot of both supervisor engines. The modules are reset.

This example shows how to manually reload one or both supervisor engines:
Switch\# redundancy reload shelf
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline redundancy & Enters the redundancy configuration mode. \\
\hline show redundancy & Displays redundancy facility information. \\
\hline
\end{tabular}

\section*{remote login module}

To remotely connect to a specific module, use the remote login module configuration command.
remote login module mod

\section*{Syntax Description}

Defaults

Command Modes

Command History
mod Target module for the command.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

Related Commands

This command applies only to the Access Gateway Module on Catalyst 4500 series switches.
The valid values for mod depends on the chassis used. For example, if you have a Catalyst 4506 chassis, valid values for the module are from 2 to 6 . If you have a 4507 R chassis, valid values are from 3 to 7 .
When you execute the remote login module mod command, the prompt changes to Gateway\#
The remote login module command is identical to the session module mod and the attach module mod commands.

This example shows how to remotely log in to the Access Gateway Module:
Switch\# remote login module 5
Attaching console to module 5
Type 'exit' at the remote prompt to end the session

Gateway>
\begin{tabular}{ll}
\hline Command & Description \\
\hline attach module & Remotely connects to a specific module. \\
\hline session module & Logs in to the standby supervisor engine using a virtual console. \\
\hline
\end{tabular}

\section*{remote-span}

To convert a VLAN into an RSPAN VLAN, use the remote-span command. To convert an RSPAN VLAN to a VLAN, use the no form of this command.
remote-span
no remote-span
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(20) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Examples & This example shows how to convert a VLAN into an RSPAN VLAN: \\
Switch\# config terminal \\
Switch (config) \# vlan 20 \\
Switch (config-vlan)\# remote-span \\
Switch(config-vlan)\# end \\
Switch\#
\end{tabular}
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 2 - 3 } & monitor session & Enables the SPAN sessions on interfaces or VLANs. \\
\hline
\end{tabular}

\section*{renew ip dhcp snooping database}

To renew the DHCP binding database, use the renew ip dhcp snooping database command.
renew ip dhcp snooping database [validation none] [url]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline validation none & \begin{tabular}{l} 
(Optional) Specifies that the checksum associated with the contents of the file \\
specified by the URL is not verified.
\end{tabular} \\
\hline url & (Optional) Specifies the file from which the read is performed. \\
\hline
\end{tabular}

\section*{Defaults}

This command has no default settings.

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

Related Commands

This example shows how to renew the DHCP binding database while bypassing the CRC checks:
Switch\# renew ip dhcp snooping database validation none
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline ip dhcp snooping & Globally enables DHCP snooping. \\
\hline ip dhcp snooping binding & \begin{tabular}{l} 
Sets up and generates a DHCP binding configuration to \\
restore bindings across reboots. \\
\hline ip dhcp snooping information option
\end{tabular} \\
\hline Enables DHCP option 82 data insertion. \\
\hline ip dhcp snooping trust & Enables DHCP snooping on a trusted VLAN. \\
\hline show ip dhcp snooping & Enables DHCP snooping on a VLAN or a group of VLANs. \\
\hline show ip dhcp snooping binding & Displays the DHCP snooping configuration. \\
\hline
\end{tabular}

\section*{reset}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This command has no default settings.

VLAN configuration mode

This example shows how to reset the proposed new VLAN database to the current VLAN database:

To leave the proposed new VLAN database but remain in VLAN configuration mode and reset the proposed new database to be identical to the VLAN database currently implemented, use the reset command.
reset
```

Switch(vlan-config)\# reset
RESET completed.
Switch(vlan-config)\#

```

\section*{revision}

Syntax Description

\section*{Defaults}

Revision version is set to 0 .

\section*{Command Modes \\ MST configuration mode}
\begin{tabular}{lll}
\(\overline{\text { Command History }}\) & & Modification \\
\cline { 3 - 4 } & Release & Support for this command was introduced on the Catalyst 4500 series switch. \\
\cline { 3 - 4 } &
\end{tabular}

Usage Guidelines
If two Catalyst 4500 series switches have the same configuration but have different configuration revision numbers, they are considered to be part of two different regions.

Be careful when using the revision command to set the MST configuration revision number because a mistake can put the switch in a different region.

Examples
This example shows how to set the configuration revision number:
Switch(config-mst) \# revision 5
Switch(config-mst) \#

\begin{tabular}{ll}
\hline Command & Description \\
\hline instance & Maps a VLAN or a set of VLANs to an MST instance. \\
\hline name & Sets the MST region name. \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline spanning-tree mst configuration & Enters the MST configuration submode. \\
\hline
\end{tabular}

\section*{service-policy (interface configuration)}

To attach a policy map to an interface or to apply different QoS policies on VLANs that an interface belongs to, use the service-policy command. To remove a policy map from an interface, use the no form of this command.
```

service-policy {input | output} policy-map name
no service-policy {input | output} policy-map name

```

Syntax Description

\section*{Defaults}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.1(8a)EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline 12.2(25)EWA & Support for applying different QoS policies on VLANs was introduced. \\
\hline
\end{tabular}

Layer 2 interfaces can be part of multiple VLANs (for example, a typical trunk port). In conjunction with the vlan-range command, you can use the service-policy command to specify different QoS policies on different VLANs.

This capability is restricted to Layer 2 interfaces.

You can apply a service policy under an interface as well as a VLAN range at the same time. However, this is allowed only when the interface policy has only queuing actions whereas a VLAN has only non-queueing actions (QoS marking and/or policing) actions.

To attach a service policy to a VLAN, the VLAN configuration mode has to be used.

\section*{Examples}
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet 5/20
Switch(config-if)\# service-policy input pmap1
Switch(config-if)\# end

```

This example shows how to apply policy map p1 for traffic in VLANs 20 and 400, and policy map p2 for traffic in VLANs 300 through 301:
```

Switch\# configure terminal
Switch(config)\# interface gigabitEthernet 6/1
Switch(config-if)\# switchport trunk encapsulation dot1q
Switch(config-if)\# switchport mode trunk
Switch(config-if)\# vlan-range 20,400
Switch(config-if-vlan-range)\# service-policy input p1
Switch(config-if-vlan-range)\# exit
Switch(config-if)\# vlan-range 300-301
Switch(config-if-vlan-range)\# service-policy output p2
Switch(config-if-vlan-range)\# end
Switch\# show policy-map interface gigabitEthernet 6/1 vlan 20
GigabitEthernet6/1 vlan 20
Service-policy input: p1
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
police: Per-interface
Conform: 0 bytes Exceed: 0 bytes
Switch\# show policy-map interface gigabitEthernet 6/1
GigabitEthernet6/1 vlan 20
Service-policy input: p1
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
police: Per-interface
Conform: 0 bytes Exceed: 0 bytes
GigabitEthernet6/1 vlan 300
Service-policy output: p2
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
police: Per-interface
Conform: 0 bytes Exceed: 0 bytes
GigabitEthernet6/1 vlan 301
Service-policy output: p2
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
police: Per-interface
Conform: O bytes Exceed: 0 bytes
GigabitEthernet6/1 vlan 400

```
```

Service-policy input: p1

```
    Class-map: class-default (match-any)
        0 packets
        Match: any
            0 packets
        police: Per-interface
            Conform: 0 bytes Exceed: 0 bytes

This example shows how to attach a policy map to a VLAN:
```

Switch\# configure terminal
Switch(config)\#vlan configuration 20
Switch(config-vlan-config)\#service-policy out policy-vlan
Switch(config-vlan-config) \#end
Switch\#

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{Related Commands} & Command & Description \\
\hline & class-map & Creates a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode. \\
\hline & policy-map & Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & service-policy (interface configuration) & Attaches a policy map to an interface. \\
\hline & \[
\begin{aligned}
& \text { show policy-map interface } \\
& \text { vlan }
\end{aligned}
\] & Displays the QoS policy-map information applied to a specific VLAN on an interface. \\
\hline
\end{tabular}

\section*{service-policy (policy-map class)}

To create a service policy that is a quality of service ( QoS ) policy within a policy map (called a hierarchical service policy), use the service-policy policy-map class configuration command. To disable the service policy within a policy map, use the no form of this command.
service-policy policy-map-name
no service-policy policy-map-name

Syntax Description

\section*{Defaults}

\section*{Command Modes}
Command History
policy-map-name \(\quad\) Name of the policy map.

No service policies maps are defined.

Policy-map class configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(40)\) SG & Added support for Supervisor Engine 6-E and Catalyst 4900M chassis. \\
\hline
\end{tabular}

Use the service-policy command only in a hierarchical policy map attached to a physical port. This command is valid in policy maps at level two of the hierarchy.

You can create a hierarchy by having the parent policy map specify marking and/or policing actions and having the child policy map specify the queueing actions.

If you enter this command in policy-map class configuration mode, you return to policy-map configuration mode by using the exit command. To return to privileged EXEC mode, use the end command.

This example shows how to create a hierarchical service policy in the service policy called "parent":
```

Switch\# configure terminal
Switch(config)\# policy-map child
Switch(config-pmap)\# class voice
Switch(config-pmap-c) \# priority
Switch(config-pmap-c) \# exit
Switch(config-pmap) \# exit
Switch(config) \# policy-map parent
Switch(config-pmap) \# class class1
Switch(config-pmap-c) \# police 32k
Switch(config-pmap-c) \# service-policy child
Switch\#

```

You can verify your settings by entering the show policy-map privileged EXEC command.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{Related Commands} & Command & Description \\
\hline & bandwidth & Creates a signaling class structure that can be referred to by its name. \\
\hline & class & Specifies the name of the class whose traffic policy you want to create or change. \\
\hline & dbl & Enables active queue management on a transmit queue used by a class of traffic. \\
\hline & policy-map & Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & priority & Enables the strict priority queue (low-latency queueing [LLQ]) and to give priority to a class of traffic belonging to a policy map attached to a physical port. \\
\hline & random-detect (refer to Cisco IOS documentation) & Enables Weighted Random Early Detection (WRED) or distributed WRED (DWRED). \\
\hline & shape (class-based queueing) & Enables traffic shaping a class of traffic in a policy map attached to a physical port. \\
\hline & show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{service-policy input (control-plane)}

To attach a policy map to a control plane for aggregate control plane services, use the service-policy input command. Use the no form of this command to remove a service policy from a control plane.
service-policy input policy-map-name

\section*{Syntax Description}

Defaults

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}
\begin{tabular}{ll}
\hline input & \begin{tabular}{l} 
Applies the specified service policy to the packets that are entering the \\
control plane.
\end{tabular} \\
\hline policy-map-name & \begin{tabular}{l} 
Name of a service policy map (created using the policy-map command) to \\
be attached.
\end{tabular}
\end{tabular}

No service policy is specified.

Control-plane configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

In this release, the only policy-map accepted on the control-plane is system-cpp-policy. It is already attached to the control-plane at start up. If not (due to some error conditions), it is recommended to use the global macro system-cpp command to attach it to the control-plane. The system-cpp-policy created by the system contains system pre-defined classes. For these pre-defined classes, you can change the policing parameters but you should not make any other change to the classes.

You can define your own class-maps and append them to the end of the system-cpp-policy policy-map.

This example shows how to configure trusted hosts with source addresses 10.1.1.1 and 10.1.1.2 to forward Telnet packets to the control plane without constraint, while allowing all remaining Telnet packets to be policed at the specified rate:
```

Switch(config)\# access-list 140 deny tcp host 10.1.1.1 any eq telnet
! Allow 10.1.1.2 trusted host traffic.
Switch(config)\# access-list 140 deny tcp host 10.1.1.2 any eq telnet
! Rate limit all other Telnet traffic.
Switch(config)\# access-list 140 permit tcp any any eq telnet
! Define class-map "telnet-class."
Switch(config)\# class-map telnet-class
Switch(config-cmap)\# match access-group 140
Switch(config-cmap) \# exit
Switch(config)\# policy-map control-plane-policy
Switch(config-pmap)\# class telnet-class
Switch(config-pmap-c)\# police 80000 conform transmit exceed drop
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
! Define aggregate control plane service for the active Route Processor.

```

Switch(config) \# control-plane
Switch(config-cp) \# service-policy input control-plane-policy
Switch(config-cp) \# exit
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
\begin{tabular}{ll} 
control-plane
\end{tabular} \\
\begin{tabular}{l} 
macro global apply \\
system-cpp
\end{tabular} \\
\begin{tabular}{ll} 
policy-map
\end{tabular} \\
\\
\end{tabular} \begin{tabular}{l} 
show policy-map \\
control-plane
\end{tabular} & \begin{tabular}{l} 
Applies the control plane policing default template to the switch. \\
specify a service policy and to enter policy-map configuration \\
mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{session module}

This command is only supported in SSO mode and does not work in RPR mode.

To login to the standby supervisor engine using a virtual console, use the session module configuration command.
session module \(\bmod\)
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

\section*{Usage Guidelines}

Catalyst 4500 series switches can be configured with 2 supervisor engines to provide redundancy. When the switch is powered, one of the supervisor engines becomes active and remains active until a switchover occurs. The other supervisor engine remains in standby mode.
Each supervisor engine has its own console port. Access to the standby supervisor engine is possible only through the console port of the standby supervisor engine. Therefore, you must connect to the standby console to access, monitor or debug the standby supervisor.

Virtual Console for Standby Supervisor Engine enables you to access the standby console from the active supervisor engine without requiring a physical connection to the standby console. It uses IPC over EOBC to communicate with the standby supervisor engine and thus emulate the standby console on the active supervisor engine. Only one active standby console session is active at any time.
The Virtual Console for Standby Supervisor Engine allows users who are logged onto the active supervisor engine to remotely execute show commands on the standby supervisor engine and view the results on the active supervisor engine. Virtual Console is available only from the active supervisor engine.

You can access the standby virtual console from the active supervisor engine with the attach module, session module, or remote login commands on the active supervisor engine. You must be in privilege EXEC mode (level 15) to run these commands to access the standby console.

Note The session module command is identical to the attach module mod and the remote login module mod commands.

Once you enter the standby virtual console, the terminal prompt automatically changes to "<hostname>-standby-console\#" where hostname is the configured name of the switch. The prompt is restored back to the original prompt when you exit the virtual console.
You exit the virtual console with the exit or quit commands. When the inactivity period of the terminal on the active supervisor engine where you logged in exceeds the configured idle time, you are automatically logged out of the terminal on the active supervisor engine. In such a case, the virtual console session is also terminated. Virtual console session is also automatically terminated when the standby is rebooted. After the standby boots up, you need to create another virtual console session.

The following limitations apply to the standby virtual console:
All commands on the virtual console run to completion. It does not provide the auto-more feature; it behaves as if the terminal length \(\mathbf{0}\) command has been executed. It is also non-interactive. Therefore, a running command cannot be interrupted or aborted by any key sequence on the active supervisor engine. Therefore if a command produces considerable output, the virtual console displays it on the supervisor screen.

The virtual console is non-interactive. Because the virtual console does not detect the interactive nature of a command, any command that requires user interaction causes the virtual console to wait until the RPC timer aborts the command.
The virtual console timer is set to 60 seconds. The virtual console returns to its prompt after 60 seconds. During this time, you cannot abort the command from the key board. You must wait for the timer to expire before you continue.

You cannot use virtual console to view debug and syslog messages that are being displayed on the standby supervisor engine. The virtual console only displays the output of commands that are executed from the virtual console. Other information that is displayed on the real standby console does not appear on the virtual console.

\section*{Examples}

To login to the standby supervisor engine using a virtual console, do the following:
```

Switch\# session module 2
Connecting to standby virtual console
Type "exit" or "quit" to end this session
Switch-standby-console\# exit
Switch\#

```

If the standby console is not enabled, the following message appears.
```

Switch-standby-console\#
Standby console disabled.
Valid commands are: exit, logout

```
\begin{tabular}{lll}
\cline { 3 - 3 } Related Commands & Command & Description \\
\cline { 2 - 3 } & attach module & Remotely connects to a specific module. \\
\cline { 2 - 3 } & remote login module & Remotely connects to a specific module. \\
\hline
\end{tabular}

To mark IP traffic by setting a class of service (CoS), a Differentiated Services Code Point (DSCP), or IP-precedence in the packet, use the set policy-map class configuration command. To remove the traffic classification, use the no form of this command.
```

set {cos new-cos | [ip]{dscp new-dscp | precedence new-precedence}|q|s group value}
no set cos new-cos | ip {dscp new-dscp | precedence new-precedence}| qos group value}

```

\section*{Defaults}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(40) \mathrm{SG}\) & Added support for Supervisor Engine 6-E and Catalyst 4900M chassis. \\
\hline
\end{tabular}

New CoS value assigned to the classified traffic. The range is 0 to 7 .
New DSCP value assigned to the classified traffic. The range is 0 to 63 . You also can enter a mnemonic name for a commonly used value. The specified value sets the type of service (ToS) traffic class byte in the IPv4/IPv6 packet header.
ip precedence new-precedence New IP-precedence value assigned to the classified traffic. The range is 0 to 7 . You also can enter a mnemonic name for a commonly used value. The specified value sets the precedence bit in the IP header.
qos group value
Internal QoS group assigned to a classified packet on ingress to an interface.

No marking is enabled on packets.

Policy-map class configuration mode

You can use the set command only in class-level classes.
The set dscp new-dscp and the set precedence new-precedence commands are the same as the set ip dscp new-dscp and the set ip precedence new-precedence commands.

For the set dscp new-dscp or the set precedence new-precedence command, you can enter a mnemonic name for a commonly used value. For example, you can enter the set dscp af11 command, which is the as same entering the set dscp 10 command. You can enter the set precedence critical command, which is the same as entering the set precedence 5 command. For a list of supported mnemonics, enter the set dscp? or the set precedence? command to see the command-line help strings.
You can configure the set \(\cos n e w-\cos\), set dscp new-dscp, or set precedence new-precedence command in an ingress and an egress policy map attached to an interface or VLAN.

To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.
\(\overline{\text { Examples }}\) This example shows how to create a policy map called \(p l\) with \(\operatorname{CoS}\) values assigned to different traffic types. Class maps for "voice" and "video-data" have already been created.
```

Switch\# configure terminal
Switch(config)\# policy-map p1
Switch(config-pmap)\# class voice
Switch(config-pmap-c)\# set cos 1
Switch(config-pmap)\# exit
Switch(config-pmap)\# class video-data
Switch(config-pmap-c)\# set cos 2
Switch(config-pmap)\# exit
Switch\#

```

You can verify your settings by entering the show policy-map privileged EXEC command.
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 2 - 3 } class & \begin{tabular}{l} 
Specifies the name of the class whose traffic policy you want to \\
create or change.
\end{tabular} \\
\cline { 1 - 3 } policy-map & \begin{tabular}{l} 
Creates or modifies a policy map that can be attached to multiple \\
ports to specify a service policy and to enter policy-map \\
configuration mode.
\end{tabular} \\
\hline trust policy-map & \begin{tabular}{l} 
Displays information about the policy map.
\end{tabular} \\
& \begin{tabular}{l} 
Defines a trust state for traffic classified through the class \\
policy-map configuration command.
\end{tabular} \\
\hline
\end{tabular}

To set the Layer 2 class of service ( CoS ) value of a packet, use the set cos command in policy-map class configuration mode. To remove a specific CoS value setting, use the no form of this command.
set \(\cos \{\) cos-value \(\mid\) from-field [table table-map-name \(]\}\)
no set \(\cos \{\) cos-value \(\mid\) from-field [table table-map-name \(]\}\)

Syntax Description
\begin{tabular}{ll}
\hline cos-value & Specific IEEE 802.1 Q CoS value from 0 to 7. \\
\hline from-field & \begin{tabular}{l} 
Specific packet-marking category to be used to set the CoS value of the \\
packet. If you are using a table map for mapping and converting \\
packet-marking values, this establishes the "map from" packet-marking \\
category. Packet-marking category keywords are as follows:
\end{tabular}
\end{tabular}
- precedence
- dscp
- \(\mathbf{c o s}\)
- qos group
\begin{tabular}{ll} 
table & \begin{tabular}{l} 
(Optional) Indicates that the values set in a specified table map will be used \\
to set the CoS value.
\end{tabular} \\
\hline table-map-name & \begin{tabular}{l} 
(Optional) Name of the table map used to specify the CoS value. The table \\
map name can be a maximum of 64 alphanumeric characters.
\end{tabular}
\end{tabular}
\(\overline{\text { Command Default }}\) No CoS value is set for the outgoing packet.

\section*{Command Modes}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series \\
switch using a Supervisor Engine 6-E and Catalyst 4900M chassis.
\end{tabular} \\
\hline
\end{tabular}

Usage Guidelines
The set cos command can be used in an ingress as well as an egress policy map attached to an interface or VLAN.

You can use this command to specify the "from-field" packet-marking category to be used for mapping and setting the CoS value. The "from-field" packet-marking categories are as follows:
- Precedence
- Differentiated services code point (DSCP)
- Cost of Service (CoS)
- Quality of Service (QoS) group

If you specify a "from-field" category but do not specify the table keyword and the applicable table-map-name argument, the default action will be to copy the value associated with the "from-field" category as the CoS value. For instance, if you configure the set cos precedence command, the precedence value will be copied and used as the CoS value.
You can do the same for the DSCP marking category. That is, you can configure the set cos dscp command, and the DSCP value will be copied and used as the CoS value.

If you configure the set cos dscp command, only the first three bits (the class selector bits) of the DSCP field are used.

\section*{Examples}

This example shows how to configure a policy map called "cos-set" and assign different CoS values for different types of traffic. This example assumes that the class maps called "voice" and "video-data" have already been created.
```

Switch\# configure terminal
Switch(config)\# policy-map cos-set
Switch(config-pmap)\# class voice
Switch(config-pmap-c)\# set cos 1
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# class video-data
Switch(config-pmap-c)\# set cos 2
Switch(config-pmap-c)\# end
Switch\#

```

This example shows how to configure a policy map called "policy-cos" and to use the values defined in a table map called "table-map1". The table map called "table-map1" was created earlier with the table-map (value mapping) command. For more information about the table-map (value mapping) command, see the table-map (value mapping) command page.

This example shows how the setting of the CoS value is based on the precedence value defined in "table-map1":
```

Switch\# configure terminal
Switch(config)\# policy-map policy-cos
Switch(config-pmap)\# class class-default
Switch(config-pmap-c)\# set cos precedence table table-map1
Switch(config-pmap-c)\# end
Switch\#

```

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
match (class-map \\
configuration)
\end{tabular} & Defines the match criteria for a class map. \\
\hline policy-map & \begin{tabular}{l} 
Creates or modifies a policy map that can be attached to multiple \\
ports to specify a service policy and to enter policy-map \\
configuration mode.
\end{tabular} \\
\hline \begin{tabular}{l} 
service-policy (policy-map \\
class)
\end{tabular} & \begin{tabular}{l} 
Creates a service policy that is a quality of service (QoS) policy \\
within a policy map.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline set dscp & \begin{tabular}{l} 
Marks a packet by setting the differentiated services code \\
point (DSCP) value in the type of service (ToS) byte.
\end{tabular} \\
\hline set precedence & Sets the precedence value in the packet header. \\
\hline show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{set dscp}

To mark a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte, use the set dscp command in policy-map class configuration mode. To remove a previously set DSCP value, use the no form of this command.
set [ip] dscp \{dscp-value \(\mid\) from-field [table table-map-name] \(\}\)
no set [ip] dscp \{dscp-value | from-field [table table-map-name]
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{\(\overline{\text { Syntax Description }}\)} & ip & (Optional) Specifies that the match is for IPv4 packets only. If not used, the match is on both \(\operatorname{IPv} 4\) and IPv6 packets. \\
\hline & dscp-value & A number from 0 to 63 that sets the DSCP value. A mnemonic name for commonly used values can also be used. \\
\hline & from-field & \begin{tabular}{l}
Specific packet-marking category to be used to set the DSCP value of the packet. If you are using a table map for mapping and converting packet-marking values, this establishes the "map from" packet-marking category. Packet-marking category keywords are as follows: \\
- cos \\
- qos-group \\
- dscp \\
- precedence
\end{tabular} \\
\hline & table & (Optional) Used in conjunction with the from-field argument. Indicates that the values set in a specified table map will be used to set the DSCP value. \\
\hline & table-map-name & (Optional) Used in conjunction with the table keyword. Name of the table map used to specify the DSCP value. The name can be a maximum of 64 alphanumeric characters. \\
\hline
\end{tabular}

Command Default

Command Modes

Command History

Policy-map class configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(40) \mathrm{SG}\) & \begin{tabular}{l} 
Added support for 'from-field' for policy-map configured on a Supervisor \\
Engine 6-E.
\end{tabular} \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) Once the DSCP bit is set, other quality of service ( QoS ) features can then operate on the bit settings.

\section*{DSCP and Precedence Values Are Mutually Exclusive}

The set dscp command cannot be used with the set precedence command to mark the same packet. The two values, DSCP and precedence, are mutually exclusive. A packet can have one value or the other, but not both.

You can use this command to specify the "from-field" packet-marking category to be used for mapping and setting the DSCP value. The "from-field" packet-marking categories are as follows:
- Class of service (CoS)
- QoS group
- Precedence
- Differentiated services code point (DSCP)

If you specify a "from-field" category but do not specify the table keyword and the applicable table-map-name argument, the default action will be to copy the value associated with the "from-field" category as the DSCP value. For instance, if you configure the set dscp cos command, the CoS value will be copied and used as the DSCP value.

The CoS field is a three-bit field, and the DSCP field is a six-bit field. If you configure the set dsep cos command, only the three bits of the CoS field will be used.

If you configure the set dscp qos-group command, the QoS group value will be copied and used as the DSCP value.

The valid value range for the DSCP is a number from 0 to 63. The valid value range for the QoS group is a number from 0 to 63 .

\section*{Set DSCP Values in IPv6 Environments}

When this command is used in IPv6 environments, the default match occurs on both IP and IPv6 packets. However, the actual packets set by this function are only those which meet the match criteria of the class-map containing this function.

\section*{Set DSCP Values for IPv6 Packets Only}

To set DSCP values for IPv6 values only, the match protocol ipv6 command must also be used. Without that command, the DSCP match defaults to match both IPv4 and IPv6 packets.

\section*{Set DSCP Values for IPv4 Packets Only}

To set DSCP values for IPv4 packets only, use the ip keyword in the match command for classification. Without the ip keyword, the match occurs on both IPv4 and IPv6 packets.

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
match (class-map \\
configuration)
\end{tabular} & Defines the match criteria for a class map. \\
\hline policy-map & \begin{tabular}{l} 
Creates or modifies a policy map that can be attached to multiple \\
ports to specify a service policy and to enter policy-map \\
configuration mode.
\end{tabular} \\
\hline \begin{tabular}{l} 
service-policy (policy-map \\
class)
\end{tabular} & \begin{tabular}{l} 
Creates a service policy that is a quality of service (QoS) policy \\
within a policy map.
\end{tabular} \\
\hline set cos & Sets IP traffic by setting a class of service (CoS). \\
\hline set precedence & Sets the precedence value in the packet header. \\
\hline show policy-map & Displays information about the policy map. \\
\hline show policy-map interface & \begin{tabular}{l} 
Displays the statistics and configurations of the input and output \\
policies that are attached to an interface.
\end{tabular} \\
\hline \begin{tabular}{l} 
table-map (value mapping) \\
(refer to Cisco IOS \\
documentation)
\end{tabular} & \begin{tabular}{l} 
Modifies metric and tag values when the IP routing table is \\
updated with BGP learned routes.
\end{tabular} \\
\hline
\end{tabular}

\section*{set precedence}

To set the precedence value in the packet header, use the set precedence command in policy-map class configuration mode. To remove the precedence value, use the no form of this command.
set precedence \(\{\) precedence-value \(\mid\) from-field [table table-map-name] \(\}\)
no set precedence \(\{\) precedence-value \(\mid\) from-field [table table-map-name] \}

Syntax Description
\(\overline{\text { Command Default }}\)

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(40) \mathrm{SG}\) & \begin{tabular}{l} 
Added support for 'from-field' for policy-map configured on a Supervisor \\
\\
Engine 6-E.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Disabled

Policy-map class configuration mode

\section*{Command Compatibility}

A number from 0 to 7 that sets the precedence bit in the packet header.
\begin{tabular}{ll}
\hline precedence-value & A number from 0 to 7 that sets the precedence bit in the packet header. \\
\hline from-field & \begin{tabular}{l} 
Specific packet-marking category to be used to set the precedence value of \\
the packet. If you are using a table map for mapping and converting \\
packet-marking values, this argument value establishes the "map from", \\
packet-marking category. Packet-marking category keywords are as follows:
\end{tabular}
\end{tabular}
- cos
- qos-group
- dscp
- precedence
\begin{tabular}{ll} 
table & \begin{tabular}{l} 
(Optional) Indicates that the values set in a specified table map will be used \\
to set the precedence value.
\end{tabular} \\
\hline table-map-name & \begin{tabular}{l} 
(Optional) Name of the table map used to specify a precedence value based \\
on the class of service \((\mathrm{CoS})\) value. The name can be a maximum of 64 \\
alphanumeric characters.
\end{tabular}
\end{tabular}

The set precedence command cannot be used with the set dscp command to mark the same packet. The two values, DSCP and precedence, are mutually exclusive. A packet can be one value or the other, but not both.

You can use this command to specify the "from-field" packet-marking category to be used for mapping and setting the precedence value. The "from-field" packet-marking categories are as follows:
- CoS
- QoS group
- DSCP
- Precedence

If you specify a "from-field" category but do not specify the table keyword and the applicable table-map-name argument, the default action will be to copy the value associated with the "from-field" category as the precedence value. For instance, if you configure the set precedence cos command, the CoS value will be copied and used as the precedence value.

You can do the same for the QoS group-marking category. That is, you can configure the set precedence qos-group command, and the QoS group value will be copied and used as the precedence value.
The valid value range for the precedence value is a number from 0 to 7 . The valid value range for the QoS group is a number from 0 to 63 . Therefore, when configuring the set precedence qos-group command the three least significant bits of qos-group are copied to precedence.

\section*{Precedence Values in IPv6 Environments}

When this command is used in IPv6 environments it can set the value in both IPv4 and IPv6 packets. However, the actual packets set by this function are only those that meet the match criteria of the class-map containing this function.

\section*{Setting Precedence Values for IPv6 Packets Only}

To set the precedence values for IPv6 packets only, the match protocol ipv6 command must also be used in the class-map that classified packets for this action. Without the match protocol ipv6 command, the class-map may classify both IPv6 and IPv4 packets, (depending on other match criteria) and the set precedence command will act upon both types of packets.

\section*{Setting Precedence Values for IPv4 Packets Only}

To set the precedence values for IPv4 packets only, use a command involving the ip keyword like the match ip precedence or match ip dscp command or include the match protocol ip command along with the others in the class map. Without the additional ip keyword, the class-map may match both IPv6 and IPv4 packets (depending on the other match criteria) and the set precedence or set dscp command may act upon both types of packets.

\section*{Examples}

In the following example, the policy map named policy-cos is created to use the values defined in a table map named table-map1. The table map named table-map1 was created earlier with the table-map (value mapping) command. For more information about the table-map (value mapping) command, see the table-map (value mapping) command page.

This example shows how the precedence value is set according to the \(\operatorname{CoS}\) value defined in table-map1.
```

Switch\# configure terminal
Switch(config)\# policy-map policy-cos
Switch(config-pmap)\# class class-default
Switch(config-pmap-c)\# set precedence cos table table-map1
Switch(config-pmap-c)\# end
Switch\#

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{11}{*}{Related Commands} & Command & Description \\
\hline & match (class-map configuration) & Defines the match criteria for a class map. \\
\hline & policy-map & Creates or modifies a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & service-policy (policy-map class) & Creates a service policy that is a quality of service (QoS) policy within a policy map. \\
\hline & set cos & Sets IP traffic by setting a class of service (CoS). \\
\hline & set dscp & Marks a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte. \\
\hline & set qos-group & Sets a quality of service (QoS) group identifier (ID) that can be used later to classify packets. \\
\hline & set precedence & Sets the precedence value in the packet header. \\
\hline & show policy-map & Displays information about the policy map. \\
\hline & show policy-map interface & Displays the statistics and configurations of the input and output policies that are attached to an interface. \\
\hline & table-map (value mapping) (refer to Cisco IOS documentation) & Modifies metric and tag values when the IP routing table is updated with BGP learned routes. \\
\hline
\end{tabular}

\section*{set qos-group}

To set a quality of service (QoS) group identifier (ID) that can be used later to classify packets, use the set qos-group command in policy-map class configuration mode. To remove the group ID, use the no form of this command.
set qos-group group-id
no set qos-group group-id

Syntax Description

Command Default

\section*{Command Modes}
Command History

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to set the qos-group to 5:
```

Switch\#configure terminal
Switch(config)\#policy-map p1
Switch(config-pmap)\#class c1
Switch(config-pmap-c)\#set qos
Switch(config-pmap-c)\#set qos-group 5
Switch(config-pmap-c)\#end
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
\begin{tabular}{ll} 
match (class-map \\
configuration)
\end{tabular} \\
\hline policy-map
\end{tabular} & Description \\
& \begin{tabular}{l} 
Defines the match criteria for a class map. \\
rereates or modifies a policy map that can be attached to multiple \\
configuration mode
\end{tabular} \\
\hline service-policy (policy-map \\
class) & \begin{tabular}{l} 
Creates a service policy that is a quality of service (QoS) policy \\
within a policy map.
\end{tabular} \\
\hline show policy-map & Displays information about the policy map. \\
\hline show policy-map interface & \begin{tabular}{l} 
Displays the statistics and configurations of the input and output \\
policies that are attached to an interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{shape (class-based queueing)}

To enable traffic shaping a class of traffic in a policy map attached to a physical port, use the shape average policy-map class command. Traffic shaping limits the data transmission rate. To return to the default setting, use the no form of this command.
```

shape average {rate} [bps | kbps | mbps | gbps]
shape average percent {percent_value}
no shape average

```

\section*{Defaults}

Command Modes
Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline rate & \begin{tabular}{l} 
Specifies an average rate for traffic shaping; the range is 16000 to 100000000000. \\
Post-fix notation \((\mathrm{k}, \mathrm{m}\), and g\()\) is optional and a decimal point is allowed.
\end{tabular} \\
\hline bps & (Optional) Specifies a rate in bits per seconds. \\
\hline \(\mathbf{k b p s}\) & (Optional) Specifies a rate in kilobytes per seconds. \\
\hline mbps & (Optional) Specifies a rate in megabits per seconds. \\
\hline gbps & (Optional) Specifies a rate in gigabits per seconds. \\
\hline percent & Specifies a percentage of bandwidth for traffic shaping. \\
\hline percent_value & \begin{tabular}{l} 
(Optional) Specifies a percentage of the bandwidth used for traffic shaping; valid \\
values are from 1 to 100 percent.
\end{tabular} \\
\hline
\end{tabular}

Average-rate traffic shaping is disabled.

Policy-map class configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.2(40)SG & \begin{tabular}{l} 
This command was introduced on the Catalyst 4500 series switch using a \\
Supervisor Engine 6E.
\end{tabular} \\
\hline
\end{tabular}

Use the shape command only in a policy map attached to a physical port. This command is valid in policy maps at any level of the hierarchy.
Shaping is the process of delaying out-of-profile packets in queues so that they conform to a specified profile. Shaping is distinct from policing. Policing drops packets that exceed a configured threshold, but shaping buffers packets so that traffic remains within the threshold. Shaping offers greater smoothness in handling traffic than policing.
You cannot use the bandwidth, dbl, and the shape policy-map class configuration commands with the priority policy-map class configuration command in the same class within the same policy map. However, you can use these commands in the same policy map.

To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.
```

Examples
This example shows how to limit the specified traffic class to a data transmission rate of 256 kbps :

```
```

Switch\# configure terminal

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# policy-map policy1
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# shape average 256000
Switch(config-pmap-c)# shape average 256000
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # exit
Switch(config-pmap)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet1/1
Switch(config)# interface gigabitethernet1/1
Switch(config-if)# service-policy output policy1
Switch(config-if)# service-policy output policy1
Switch(config-if)# end
```

Switch(config-if)\# end

```

You can verify your settings by entering the show policy-map privileged EXEC command.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{Related Commands} & Command & Description \\
\hline & bandwidth & Creates a signaling class structure that can be referred to by its name. \\
\hline & class & Specifies the name of the class whose traffic policy you want to create or change. \\
\hline & dbl & Enables active queue management on a transmit queue used by a class of traffic. \\
\hline & policy-map & Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode. \\
\hline & ```
service-policy (policy-map
class)
``` & Creates a service policy that is a quality of service (QoS) policy within a policy map. \\
\hline & show policy-map & Displays information about the policy map. \\
\hline
\end{tabular}

\section*{shape (interface configuration)}

To specify traffic shaping on an interface, use the shape command. To remove traffic shaping, use the no form of this command
shape [rate] [percent]
no shape [rate] [percent]

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to configure a maximum bandwidth (70 percent) for the interface fa3/1:
```

Switch(config)\# interface fastethernet3/1

```
Switch(config-if) \# tx-queue 3

\section*{show access-group mode interface}

To display the ACL configuration on a Layer 2 interface, use the show access-group mode interface command.
show access-group mode interface [interface interface-number]

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Related Commands

This example shows how to display the ACL configuration on the Fast Ethernet interface 6/1:
Switch\# show access-group mode interface fa6/1
Interface FastEthernet6/1:
Access group mode is: merge
Switch\#
interface
(Optional) Interface type; valid values are ethernet, fastethernet, gigabitethernet, tengigabitethernet, and port-channel.
interface-number (Optional) Interface number.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & \begin{tabular}{l}
Support for this command was introduced on the Catalyst 4500 series \\
switch.
\end{tabular} \\
\hline \(12.2(25) \mathrm{EW}\) & \begin{tabular}{l}
Support for the 10-Gigabit Ethernet interface was introduced on the \\
Catalyst 4500 series switch.
\end{tabular} \\
\hline
\end{tabular}

The valid values for the port number depend on the chassis used.
\begin{tabular}{ll}
\hline Command & Description \\
\hline access-group mode & Specifies the override modes (for example, VACL overrides \\
& PACL) and the non-override modes (for example, merge or strict \\
mode).
\end{tabular}

\section*{show adjacency}

To display information about the Layer 3 switching adjacency table, use the show adjacency command.
```

show adjacency [{interface interface-number} | {null interface-number} | {port-channel number}
| {vlan vlan-id} | detail | internal | summary]

```

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{EW}\) & Extended to include the 10-Gigabit Ethernet interface.
\end{tabular}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline interface & \begin{tabular}{l}
(Optional) Interface type; possible valid values are ethernet, fastethernet, \\
gigabitethernet, tengigabitethernet, pos, ge-wan, and atm.
\end{tabular} \\
\hline interface-number & \begin{tabular}{l}
(Optional) Module and port number; see the "Usage Guidelines" section for \\
valid values.
\end{tabular} \\
\hline \begin{tabular}{l}
null \\
interface-number
\end{tabular} & (Optional) Specifies the null interface; the valid value is \(\mathbf{0}\). \\
\hline port-channel & \begin{tabular}{l}
(Optional) Specifies the channel interface; valid values are a maximum of \\
number
\end{tabular} \\
\hline 64 values ranging from 1 to 256.
\end{tabular}

This command has no default settings.

EXEC

The interface-number argument designates the module and port number. Valid values for interface-number depend on the specified interface type and the chassis and module that are used. For example, if you specify a Gigabit Ethernet interface and have a 48-port 10/100BASE-T Ethernet module that is installed in a 13-slot chassis, valid values for the module number are from 1 to 13 , and valid values for the port number are from 1 to 48 .

Hardware Layer 3 switching adjacency statistics are updated every 60 seconds.
The following information is contained in the show adjacency command:
- Protocol interface.
- Type of routing protocol that is configured on the interface.
- Interface address.
- Method of adjacency that was learned.
- MAC address of the adjacent router.
- Time left before the adjacency rolls out of the adjacency table. After it rolls out, a packet must use the same next hop to the destination.
\begin{tabular}{lll}
Examples & \multicolumn{2}{l}{ This example shows how to display adjacency information: } \\
& \multicolumn{2}{l}{ Switch\# show adjacency } \\
Protocol & Interface & \\
IP & FastEthernet2/3 & Address \\
& IP & FastEthernet2/3
\end{tabular}

This example shows how to display a summary of adjacency information:
```

Switch\# show adjacency summary
Adjacency Table has 2 adjacencies
Interface Adjacency Count
FastEthernet2/3 2
Switch\#

```

This example shows how to display protocol detail and timer information:
```

Switch\# show adjacency detail
Protocol Interface Address
IP FastEthernet2/3 172.20.52.1(3045)
0 packets, 0 bytes
000000000FF920000380000000000000
00000000000000000000000000000000
00605C865B2800D0BB0F980B0800
ARP 03:58:12
IP FastEthernet2/3 172.20.52.22(11)
0 packets, 0 bytes
000000000FF920000380000000000000
00000000000000000000000000000000
00801C93804000D0BB0F980B0800
ARP 03:58:06

```
Switch\#

This example shows how to display adjacency information for a specific interface:
\begin{tabular}{lll}
Switch\# show adjacency fastethernet2/3 \\
Protocol & Interface & Address \\
IP & FastEthernet \(2 / 3\) & \(172.20 .52 .1(3045)\) \\
IP & FastEthernet2/3 & \(172.20 .52 .22(11)\) \\
Switch\# & &
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 4 } & debug adjacency & Displays information about the adjacency debugging. \\
\cline { 2 - 3 } &
\end{tabular}

\section*{show arp access-list}

To display detailed information on an ARP access list, use the show arp command.
show arp access-list

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Examples}

This command has no arguments or keywords.

This command has no default settings.

EXEC
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & \begin{tabular}{l}
Support for this command was introduced on the Catalyst 4500 series \\
switch.
\end{tabular} \\
\hline
\end{tabular}

This example shows how to display the ARP ACL information for a switch:
```

Switch\# show arp access-list
ARP access list rose
permit ip 10.101.1.1 0.0.0.255 mac any
permit ip 20.3.1.0 0.0.0.255 mac any

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline access-group mode & \begin{tabular}{l}
Specifies the override modes (for example, VACL overrides \\
PACL) and the non-override modes (for example, merge or strict \\
mode).
\end{tabular} \\
\hline arp access-list & \begin{tabular}{l}
Defines an ARP access list or adds clauses at the end of a \\
predefined list.
\end{tabular} \\
\hline ip arp inspection filter vlan & \begin{tabular}{l}
Permits ARPs from hosts that are configured for static IP when \\
\\
\\
DAI is enabled, defines an ARP access list, and applies the access \\
list to a VLAN.
\end{tabular} \\
\hline
\end{tabular}

\section*{show authentication}

To display the Auth Manager information, use the show authentication command in EXEC or Privileged EXEC mode.
show authentication \{interface interface \(\mid\) registrations \(\mid\) sessions [session-id session-id] [handle handle] [interface interface] [mac mac] [method method]

Syntax Description

\section*{Command Default}

\section*{Command Modes EXEC}
\begin{tabular}{llll}
\(\overline{\text { Command History }}\) & & Modification \\
\cline { 3 - 4 } & & Release & This command was introduced. \\
\hline
\end{tabular}

Usage Guidelines
Table 2-12 describes the significant fields shown in the show authentication display.

The possible values for the status of sessions are given below. For a session in terminal state, "Authz Success" or "Authz Failed" are displayed, with "No methods" if no method has provided a result.

Table 2-12 show authentication Command Output
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Idle & The session has been initialized and no methods have run yet \\
\hline Running & A method is running for this session \\
\hline No methods & No method has provided a result for this session \\
\hline Authc Success & A method has resulted in authentication success for this session \\
\hline Authc Failed & A method has resulted in authentication fail for this session \\
\hline Authz Success & All features have been successfully applied for this session \\
\hline Authz Failed & A feature has failed to be applied for this session \\
\hline
\end{tabular}

Table 2-13 lists the possible values for the state of methods. For a session in terminal state, "Authc Success," "Authc Failed," or "Failed over" are displayed (the latter indicates a method ran and failed over to the next method which did not provide a result), with "Not run" in the case of sessions that are synchronized on standby.

Table 2-13 State Method Values
\begin{tabular}{l|l|l|}
\hline Method State & State Level & Description \\
\hline Not run & Terminal & The method has not run for this session. \\
\hline Running & Intermediate & The method is running for this session. \\
\hline Failed over & Terminal & \begin{tabular}{l}
The method has failed and the next method is expected to \\
provide a result.
\end{tabular} \\
\hline Authc Success & Terminal & \begin{tabular}{l}
The method has provided a successful authentication result \\
for the session.
\end{tabular} \\
\hline Authc Failed & Terminal & \begin{tabular}{l}
The method has provided a failed authentication result for \\
the session.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

The following example shows how to display authentication methods registered with Auth Manager:
```

Switch\# show authentication registrations
Auth Methods registered with the Auth Manager:
Handle Priority Name
3 0 dot1x
2 1 mab
1 2 webauth
Switch\#

```

The following example shows how to display Auth Manager details for a specific interface:
```

Switch\# show authentication interface gigabitethernet1/23
Client list:
MAC Address Domain Status Handle Interface
000e.84af.59bd DATA Authz Success 0xE0000000 GigabitEthernet1/0/23
Available methods list:
Handle Priority Name

```
```

3 0 dot1x
Runnable methods list:
Handle Priority Name
3 0 dot1x
Switch\#

```

The following example shows how to display all Auth Manager sessions on the switch:
\begin{tabular}{llllll}
Switch\# show authentication sessions & & \\
Interface & MAC Address & Method & Domain & Status & Session ID \\
Gi3/45 & (unknown) & N/A & DATA & Authz Failed & 0908140400000007003651 EC \\
Gi3/46 & (unknown) & N/A & DATA & Authz Success & 09081404000000080057C274
\end{tabular}

The following example shows how to display all Auth Manager sessions on an interface:
```

Switch\# show authentication sessions int gi 3/46
Interface: GigabitEthernet3/46
MAC Address: Unknown
IP Address: Unknown
Status: Authz Success
Domain: DATA
Oper host mode: multi-host
Oper control dir: both
Authorized By: Guest Vlan
Vlan Policy: 4094
Session timeout: N/A
Idle timeout: N/A
Common Session ID: 09081404000000080057C274
Acct Session ID: 0x0000000A
Handle: 0xCC000008
Runnable methods list:
Method State
dot1x Failed over

```

The following example shows how to display Auth Manager session for a specified MAC address:
```

Switch\# show authentication sessions mac 000e.84af.59bd
Interface: GigabitEthernet1/23
MAC Address: 000e.84af.59bd
Status: Authz Success
Domain: DATA
Oper host mode: single-host
Authorized By: Authentication Server
Vlan Policy: 10
Handle: 0xE0000000
Runnable methods list:
Method State
dot1x Authc Success
Switch\#

```

The following example shows how to display all clients authorized via a specified auth method:
```

Switch\# show authentication sessions method mab
No Auth Manager contexts match supplied criteria
Switch\# show authentication sessions method dot1x
MAC Address Domain Status Handle Interface
000e.84af.59bd DATA Authz Success 0xE0000000 GigabitEthernet1/23
Switch\#

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{13}{*}{Related Commands} & Command & Description \\
\hline & authentication control-direction & Changes the port control to unidirectional or bidirectional. \\
\hline & authentication critical recovery delay & Configures the 802.1X critical authentication parameters. \\
\hline & authentication event & Configures the actions for authentication events. \\
\hline & authentication fallback & Enables the Webauth fallback and specifies the fallback profile to use when failing over to Webauth. \\
\hline & authentication host-mode & Defines the classification of a session that will be used to apply the access-policies using the host-mode configuration. \\
\hline & authentication port-control & Configures the port-control value. \\
\hline & authentication open & Enables open access on this port. \\
\hline & authentication order & Specifies the order in which authentication methods should be attempted for a client on an interface. \\
\hline & authentication priority & Specifies the priority of authentication methods on an interface. \\
\hline & authentication periodic & Enables reauthentication for this port. \\
\hline & authentication timer & Configures the authentication timer. \\
\hline & authentication violation & Specifies the action to be taken when a security violation exists on a port. \\
\hline
\end{tabular}

\section*{show auto install status}

To display the status of an automatic installation, use the show auto install status command.
show auto install status

Syntax Description

Defaults

Command Modes

Command History

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(20) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

\section*{Examples}

This example shows how to display the IP address of the TFTP server and to display whether or not the switch is currently acquiring the configuration file on the TFTP server:
```

Switch\# show auto install status
Status : Downloading config file
DHCP Server : 20.0.0.1
TFTP Server : 30.0.0.3
Config File Fetched : Undetermined

```

The first IP address in the display indicates the server that is used for the automatic installation. The second IP address indicates the TFTP server that provided the configuration file.

\section*{show auto qos}

To display the automatic quality of service (auto-QoS) configuration that is applied, use the show auto qos user EXEC command.
show auto qos [interface [interface-id]] [\{begin | exclude | include \} expression]

\section*{Syntax Description}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline interface interface-id & \begin{tabular}{l}
(Optional) Displays auto-QoS information for the specified interface or \\
for all interfaces. Valid interfaces include physical ports.
\end{tabular} \\
\hline begin & (Optional) Begins with the line that matches the expression. \\
\hline exclude & (Optional) Excludes lines that match the expression. \\
\hline include & (Optional) Includes lines that match the specified expression. \\
\hline expression & (Optional) Expression in the output to use as a reference point. \\
\hline
\end{tabular}

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The show auto qos interface interface-id command displays the auto-QoS configuration; it does not display any user changes to the configuration that might be in effect.

To display information about the QoS configuration that might be affected by auto-QoS on a non-Supervisor Engine 6-E, use one of these commands:
- show qos
- show qos map
- show qos interface interface-id
- show running-config

Expressions are case sensitive. For example, if you enter exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline auto qos voip & \begin{tabular}{l}
Automatically configures quality of service (auto-QoS) for Voice \\
over IP (VoIP) within a QoS domain.
\end{tabular} \\
\hline
\end{tabular}

\section*{show bootflash:}

To display information about the bootflash: file system, use the show bootflash: command.
show bootflash: [all | chips | filesys]
\begin{tabular}{ll}
\hline all & (Optional) Displays all possible Flash information. \\
\hline chips & (Optional) Displays Flash chip information. \\
\hline filesys & (Optional) Displays file system information.
\end{tabular}

Defaults

\section*{Command Modes}

Command History
Release Modification
12.1(8a)EW Support for this command was introduced on the Catalyst 4500 series switch.

\section*{Examples}

This example shows how to display file system status information:
```

Switch> show bootflash: filesys
-------- F I L E S Y S T E M S T A T U S ---------
Device Number = 0
DEVICE INFO BLOCK: bootflash
Magic Number = 6887635 File System Vers = 10000
Length = 1000000 Sector Size = 40000
Programming Algorithm = 39 Erased State = FFFFFFFF
File System Offset = 40000 Length = F40000
MONLIB Offset = 100 Length = C628
Bad Sector Map Offset = 3FFF8 Length = 8
Squeeze Log Offset = F80000 Length = 40000
Squeeze Buffer Offset = FC0000 Length = 40000
Num Spare Sectors = 0
Spares:
STATUS INFO:
Writable
NO File Open for Write
Complete Stats
No Unrecovered Errors
No Squeeze in progress
USAGE INFO:
Bytes Used = 917CE8 Bytes Available = 628318
Bad Sectors = 0 Spared Sectors = 0
OK Files = 2 Bytes = 917BE8
Deleted Files = 0 Bytes = 0
Files w/Errors = 0 Bytes = 0

```
Switch>

This example shows how to display system image information:
```

Switch> show bootflash:
-\# - ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name
1.. image 8C5A393A 237E3C 14 2063804 Aug 23 1999 16:18:45 c4-boot-mz
2.. image D86EE0AD 957CE8 9 7470636 Sep 20 1999 13:48:49 rp.halley
Switch>

```

This example shows how to display all bootflash information:
```

Switch> show bootflash: all
-\# - ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name
1 .. image 8C5A393A 237E3C 14 2063804 Aug 23 1999 16:18:45 c4-boot-
mz
2.. image D86EE0AD 957CE8 9 7470636 Sep 20 1999 13:48:49 rp.halley
6 4 5 6 0 8 8 ~ b y t e s ~ a v a i l a b l e ~ ( 9 5 3 4 6 9 6 ~ b y t e s ~ u s e d )
-------- F I L E S Y S T E M S T A T U S ---------
Device Number = 0
DEVICE INFO BLOCK: bootflash
Magic Number =6887635 File System Vers = 10000 (1.0)
Length = 1000000 Sector Size = 40000
Programming Algorithm = 39 Erased State = FFFFFFFF
File System Offset = 40000 Length = F40000
MONLIB Offset = 100 Length = C628
Bad Sector Map Offset = 3FFF8 Length = 8
Squeeze Log Offset = F80000 Length = 40000
Squeeze Buffer Offset = FC0000 Length = 40000
Num Spare Sectors = 0
Spares:
STATUS INFO:
Writable
NO File Open for Write
Complete Stats
No Unrecovered Errors
No Squeeze in progress
USAGE INFO:
Bytes Used = 917CE8 Bytes Available = 628318
Bad Sectors = 0 Spared Sectors = 0
OK Files = 2 Bytes = 917BE8
Deleted Files = 0 Bytes = 0
Files w/Errors = 0 Bytes = 0
Switch>

```

\section*{show bootvar}

To display BOOT environment variable information, use the show bootvar command
show bootvar

Syntax Description

Defaults

\section*{Command Modes}

Command History

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to display BOOT environment variable information:
```

Switch\# show bootvar
BOOT variable = sup:1;
CONFIG_FILE variable does not exist
BOOTLDR variable does not exist
Configuration register is 0x0
Switch\#

```

\section*{show cable-diagnostics tdr}

To display the test results for the TDR cable diagnostics, use the show cable-diagnostics tdr command. show cable-diagnostics tdr \{interface \{interface interface-number\} \}

\section*{Defaults}

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

This command will be deprecated in future Cisco IOS releases. Please use the diagnostic start command.
\begin{tabular}{ll}
interface interface & Interface type; valid values are fastethernet and gigabitethernet. \\
\hline interface-number & Module and port number.
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{SG}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The TDR test is supported on Catalyst 4500 series switches running Cisco IOS Release 12.2(25)SG for the following line cards only:
- WS-X4548-GB-RJ45
- WS-X4548-GB-RJ45V
- WS-X4524-GB-RJ45V
- WS-X4013+TS
- WS-C4948
- WS-C4948-10GE

The distance to the fault is displayed in meters (m).

\section*{Examples}

This example shows how to display information about the TDR test:
\begin{tabular}{lccccll}
Switch\# show cable-diagnostics tdr interface gi4/13 \\
Interface Speed & Local pair Cable length Remote channel & Status \\
Gi4/13 & OMbps & \(1-2\) & \(102+-2 m\) & Unknown & Fault \\
& & \(3-6\) & \(100+-2 m\) & Unknown & Fault \\
& & \(4-5\) & \(102+-2 m\) & Unknown & Fault \\
& & \(7-8\) & \(102+-2 m\) & Unknown & Fault
\end{tabular}

Switch\#

Table 2-14 describes the fields in the show cable-diagnostics tdr command output.
Table 2-14 show cable-diagnostics tdr Command Output Fields
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Interface & Interface tested. \\
\hline Speed & Current line speed. \\
\hline Pair & Local pair name. \\
\hline Cable Length & Distance to the fault in meters (m). \\
\hline Channel & Pair designation (A, B, C, or D). \\
\hline Status & \begin{tabular}{l}
Pair status displayed is one of the following: \\
\\
\\
\\
\\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 3 } test cable-diagnostics tdr & \begin{tabular}{l}
Tests the condition of copper cables on 48-port 10/100/1000 \\
\\
\\
\end{tabular} & BASE-T modules.
\end{tabular}

\section*{show call-home}

To display the configured call-home information, use the show call-home command in privileged EXEC mode.
show call-home [alert-group | detail| mail-server | profile \{all| name\} | statistics]

\section*{Syntax Description}

\section*{Command Default}

Command Modes

Command History
\begin{tabular}{ll}
\hline alert-group & (Optional) Displays the available alert group. \\
\hline detail & (Optional) Displays the call-home configuration in detail. \\
\hline mail-server & (Optional) Displays the call-home mail server-related information. \\
\hline profile all & (Optional) Displays configuration information for all existing profiles. \\
\hline profile name & \begin{tabular}{l}
(Optional) Displays configuration information for a specific destination \\
profile.
\end{tabular} \\
\hline (Optional) Displays the call-home statistics. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC (\#)

\section*{Examples}

The following example displays the configured call-home settings:
```

Switch\# show call-home
Current call home settings:
call home feature : disable
call home message's from address: switch@example.com
call home message's reply-to address: support@example.com
vrf for call-home messages: Not yet set up
contact person's email address: technical@example.com
contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara
Mail-server[1]: Address: smtp.example.com Priority: 1
Mail-server[2]: Address: 192.168.0.1 Priority: 2
Rate-limit: 20 message(s) per minute

```
```

Available alert groups:
Keyword State Description
------------------------ ------- ---------------------------------------
configuration Disable configuration info
diagnostic Disable diagnostic info
environment Disable environmental info
inventory Enable inventory info
syslog Disable syslog info
Profiles:
Profile Name: campus-noc
Profile Name: CiscoTAC-1

```

Switch\#

\section*{Configured Call Home Information in Detail}
```

Switch\# show call-home detail
Current call home settings:
call home feature : disable
call home message's from address: switch@example.com
call home message's reply-to address: support@example.com
vrf for call-home messages: Not yet set up
contact person's email address: technical@example.com
contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara
Mail-server[1]: Address: smtp.example.com Priority: 1
Mail-server[2]: Address: 192.168.0.1 Priority: 2
Rate-limit: 20 message(s) per minute
Available alert groups:

Keyword	State Description
configuration	Disable configuration info
diagnostic	Disable diagnostic info
environment	Disable environmental info
inventory	Enable inventory info
syslog	Disable syslog info

```
Profiles:
Profile Name: campus-noc
 Profile status: ACTIVE
 Preferred Message Format: long-text
 Message Size Limit: 3145728 Bytes
 Transport Method: email
 Email address(es): noc@example.com
 HTTP address(es): Not yet set up
 Alert-group Severity
 inventory normal
 Syslog-Pattern Severity

 N/A N/A
Profile Name: CiscoTAC-1
 Profile status: ACTIVE
 Preferred Message Format: xml
```

Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService
Periodic configuration info message is scheduled every 1 day of the month at 09:27
Periodic inventory info message is scheduled every 1 day of the month at 09: 12

Alert-group	Severity
diagnostic environment inventory	minor   warning   normal
Syslog-Pattern	Severity
$\begin{gathered} .^{*} \\ \text { ch\# } \end{gathered}$	major

```

Available Call Home Alert Groups
```

Switch\# show call-home alert-group
Available alert groups:

Keyword	State	Description

    configuration Disable configuration info
    diagnostic Disable diagnostic info
    environment Disable environmental info
    inventory Enable inventory info
    syslog Disable syslog info
    ```
Switch\#

\section*{E-Mail Server Status Information}
```

Switch\# show call-home mail-server status
Please wait. Checking for mail server status ...
Translating "smtp.example.com"
Mail-server[1]: Address: smtp.example.com Priority: 1 [Not Available]
Mail-server[2]: Address: 192.168.0.1 Priority: 2 [Not Available]
Switch\#

```

\section*{Information for All Destination Profiles (Predefined and User-Defined)}
```

Switch\# show call-home profile all
Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: long-text
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up
Alert-group Severity
--------------------------------------
inventory normal
Syslog-Pattern
N/A N/A

```
```

Profile Name: CiscoTAC-1
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService
Periodic configuration info message is scheduled every 1 day of the month at 09:27
Periodic inventory info message is scheduled every 1 day of the month at 09:12

| Alert-group | Severity |
| :---: | :---: |
| diagnostic | minor |
| environment | warning |
| inventory | normal |
| Syslog-Pattern | Severity |
|  | major |

Switch\#

```

Information for a User-Defined Destination Profile
```

Switch\# show call-home profile CiscoTAC-1
Profile Name: CiscoTAC-1
Profile status: INACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService
Periodic configuration info message is scheduled every 11 day of the month at 11:25
Periodic inventory info message is scheduled every 11 day of the month at 11:10

| Alert-group | Severity |
| :---: | :---: |
| diagnostic | minor |
| environment | warning |
| inventory | normal |
| Syslog-Pattern | Severity |
| . * | major |

```

\section*{Call Home Statistics}
\begin{tabular}{|c|c|c|c|}
\hline Switch\# show cal Message Types & 1-home Total & Email & HTTP \\
\hline Total Success & 0 & 0 & 0 \\
\hline Config & 0 & 0 & 0 \\
\hline Diagnostic & 0 & 0 & 0 \\
\hline Environment & 0 & 0 & 0 \\
\hline Inventory & 0 & 0 & 0 \\
\hline SysLog & 0 & 0 & 0 \\
\hline Test & 0 & 0 & 0 \\
\hline Request & 0 & 0 & 0 \\
\hline Send-CLI & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{clll}
Total In-Queue & 0 & 0 & 0 \\
Config & 0 & 0 & 0 \\
Diagnostic & 0 & 0 & 0 \\
Environment & 0 & 0 & 0 \\
Inventory & 0 & 0 & 0 \\
SysLog & 0 & 0 & 0 \\
Test & 0 & 0 & 0 \\
Request & 0 & 0 & 0 \\
Send-CLI & 0 & 0 & 0 \\
Total Failed & 0 & 0 & 0 \\
Config & 0 & 0 & 0 \\
Diagnostic & 0 & 0 & 0 \\
Environment & 0 & 0 & 0 \\
Inventory & 0 & 0 & 0 \\
SysLog & 0 & 0 & 0 \\
Test & 0 & 0 & 0 \\
Request & 0 & 0 & 0 \\
Send-CLI & 0 & & 0 \\
& & 0 & 0 \\
Total Ratelimit & & 0 & 0 \\
-dropped & 0 & 0 & 0 \\
Config & 0 & 0 & 0 \\
Diagnostic & 0 & 0 & 0 \\
Environment & 0 & 0 & 0 \\
Inventory & 0 & 0 & 0 \\
SysLog & 0 & 0 & 0 \\
Test & 0 & 0 & 0 \\
Request & 0 & 0 & 0 \\
Send-CLI & 0 & 0 & 0 \\
Last call-home \(m e s s a g e ~ s e n t ~\) & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & \begin{tabular}{ll}
call-home (global configuration) & Enters call-home configuration mode. \\
\hline & \begin{tabular}{l}
call-home send alert-group \\
\begin{tabular}{l}
service call-home (refer to Cisco IOS \\
documentation)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular} & Enables or disables call home. \\
\hline
\end{tabular}

\section*{show cdp neighbors}

To display detailed information about the neighboring devices that are discovered through CDP, use the show cdp neighbors command.
show cdp neighbors [type number] [detail]
Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines
The vlan keyword is supported in Catalyst 4500 series switches that are configured with a Supervisor Engine 2.

The port-channel values are from 0 to 282; values from 257 to 282 are supported on the CSM and the FWSM only.

\section*{Examples}
\begin{tabular}{ll}
\hline type & \begin{tabular}{l}
(Optional) Interface type that is connected to the neighbors about which you \\
want information; possible valid values are ethernet, fastethernet, \\
gigabitethernet, tengigabitethernet, port-channel, and vlan.
\end{tabular} \\
\hline number & \begin{tabular}{l}
(Optional) Interface number that is connected to the neighbors about which \\
you want information.
\end{tabular} \\
\hline detail & \begin{tabular}{l}
(Optional) Displays detailed information about a neighbor (or neighbors) \\
including network address, enabled protocols, hold time, and software \\
version.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

\section*{Privileged EXEC mode}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{EW}\) & Extended to include the 10-Gigabit Ethernet interface. \\
\hline
\end{tabular}

This example shows how to display the information about the CDP neighbors:

Switch\#

Table 2-15 describes the fields that are shown in the example.
Table 2-15 show cdp neighbors Field Descriptions
\begin{tabular}{l|l}
\hline Field & Definition \\
\hline Device ID & \begin{tabular}{l}
Configured ID (name), MAC address, or serial number of the neighbor \\
device.
\end{tabular} \\
\hline Local Intrfce & (Local Interface) The protocol that is used by the connectivity media. \\
\hline Holdtme & \begin{tabular}{l}
(Holdtime) Remaining amount of time, in seconds, that the current \\
device holds the CDP advertisement from a transmitting router before \\
discarding it.
\end{tabular} \\
\hline Capability & \begin{tabular}{l}
Capability code that is discovered on the device. This device type is \\
listed in the CDP Neighbors table. Possible values are as follows: \\
R—Router \\
T—Transparent bridge \\
B—Source-routing bridge \\
S—Switch \\
H—Host \\
I—IGMP device
\end{tabular} \\
\hline r-Repeater \\
P——Phone
\end{tabular}

This example shows how to display detailed information about your CDP neighbors:
```

Switch\# show cdp neighbors detail
--------------------------
Device ID: lab-7206
Entry address(es):
IP address: 172.19.169.83
Platform: cisco 7206VXR, Capabilities: Router
Interface: Ethernet0, Port ID (outgoing port): FastEthernet0/0/0
Holdtime : 123 sec
Version :
Cisco Internetwork Operating System Software
IOS (tm) 5800 Software (C5800-P4-M), Version 12.1(2)
Copyright (c) 1986-2002 by Cisco Systems, Inc.
advertisement version: 2
Duplex: half
--------------------------
Device ID: lab-as5300-1
Entry address(es):
IP address: 172.19.169.87
·
•
Switch\#

```

Table 2-16 describes the fields that are shown in the example.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Table 2-16 show cdp neighbors detail Field Descriptions} \\
\hline Field & Definition \\
\hline Device ID & Name of the neighbor device and either the MAC address or the serial number of this device. \\
\hline Entry address(es) & List of network addresses of neighbor devices. \\
\hline [network protocol] address & Network address of the neighbor device. The address can be in IP, IPX, AppleTalk, DECnet, or CLNS protocol conventions. \\
\hline Platform & Product name and number of the neighbor device. \\
\hline Capabilities & Device type of the neighbor. This device can be a router, a bridge, a transparent bridge, a source-routing bridge, a switch, a host, an IGMP device, or a repeater. \\
\hline Interface & Protocol and port number of the port on the current device. \\
\hline Holdtime & Remaining amount of time, in seconds, that the current device holds the CDP advertisement from a transmitting router before discarding it. \\
\hline Version: & Software version running on the neighbor device. \\
\hline advertisement version: & Version of CDP that is being used for CDP advertisements. \\
\hline Duplex: & Duplex state of connection between the current device and the neighbor device. \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{ll}
Command & Description \\
& \begin{tabular}{l}
show cdp (refer to Cisco IOS \\
documentation)
\end{tabular}
\end{tabular} \begin{tabular}{l}
Displays global CDP information, including timer and hold-time \\
information.
\end{tabular} \\
\cline { 3 - 3 } \begin{tabular}{l}
show cdp entry (refer to Cisco
\end{tabular} & \begin{tabular}{l}
Displays information about a specific neighboring device \\
discovered using Cisco Discovery Protocol (CDP).
\end{tabular} \\
& \begin{tabular}{ll}
IOS documentation)
\end{tabular} & \begin{tabular}{l}
show cdp interface (refer to \\
Cisco IOS documentation)
\end{tabular} \\
& \begin{tabular}{l}
Displays information about the interfaces on which Cisco \\
Dhow cdp traffic (refer to Cisco Protocol (CDP) is enabled.
\end{tabular} \\
& Displays traffic information from the CDP table. \\
& IOS documentation) & \\
\hline
\end{tabular}

\section*{show class-map}

To display class map information, use the show class-map command.
show class-map class_name

\section*{Syntax Description}

\section*{Defaults}
\(\overline{\text { Command Modes }}\)

Command History
class_name Name of the class map.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(25) \mathrm{SG}\) & Displays results from the full flow option. \\
\hline
\end{tabular}

This example shows how to display class map information for all class maps:
```

Switch\# show class-map
Class Map match-any class-default (id 0)
Match any
Class Map match-any class-simple (id 2)
Match any
Class Map match-all ipp5 (id 1)
Match ip precedence 5
Class Map match-all agg-2 (id 3)
Switch\#

```

This example shows how to display class map information for a specific class map:
```

Switch\# show class-map ipp5
Class Map match-all ipp5 (id 1)
Match ip precedence 5
Switch\#

```

Assume there are two active flows as shown below on Fast Ethernet interface 6/1:
\begin{tabular}{|c|c|c|c|c|}
\hline SrcIp & DstIp & \multicolumn{3}{|l|}{IpProt SrcL4Port DstL4Port} \\
\hline 192.168.10.10 & 192.168 .20 .20 & 20 & 6789 & 81 \\
\hline 192.168.10.10 & 192.168.20.20 & 20 & 6789 & 21 \\
\hline
\end{tabular}

With following configuration, each flow will be policed to a 1000000 bps with an allowed 9000 -byte burst value.

If you use the match flow ip source-addressldestination-address command, these two flows are consolidated into one flow and they have the same source and destination address.
```

Switch\# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# class-map c1
Switch(config-cmap)\# match flow ip source-address ip destination-address ip protocol 14
source-port }14\mathrm{ destination-port
Switch(config-cmap) \# exit
Switch(config)\# policy-map p1
Switch(config-pmap)\# class c1
Switch(config-pmap-c)\# police 1000000 9000
Switch(config-pmap-c)\# exit
Switch(config-pmap)\# exit
Switch(config)\# interface fastEthernet 6/1
Switch(config-if)\# service-policy input p1
Switch(config-if)\# end
Switch\# write memory
Switch\# show policy-map interface
FastEthernet6/1
class-map c1
match flow ip source-address ip destination-address ip protocol l4 source-port l4
destination-port
!
policy-map p1
class c1
police 1000000 bps 9000 byte conform-action transmit exceed-action drop
!
interface FastEthernet 6/1
service-policy input p1
Switch\# show class-map c1
Class Map match-all c1 (id 2)
Match flow ip source-address ip destination-address ip protocol 14 source-port 14
destination-port
Switch\#

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline class-map & \begin{tabular}{l}
Creates a class map to be used for matching packets to the class \\
whose name you specify and to be used enter class-map \\
configuration mode.
\end{tabular} \\
\hline show policy-map & Displays information about the policy map. \\
\hline show policy-map interface & \begin{tabular}{l}
Displays the statistics and configurations of the input and output \\
policies that are attached to an interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{show diagnostic content}

To display test information about the test ID, test attributes, and supported coverage test levels for each test and for all modules, use the show diagnostic content command.
show diagnostic content module \{all|num\}

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

Command History

\section*{Examples}
\begin{tabular}{ll}
\hline all & Displays all the modules on the chassis. \\
\hline num & Module number.
\end{tabular}

This command has no default settings.

\section*{EXEC}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(20)\) EWA & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to display the test suite, monitoring interval, and test attributes for all the modules of the chassis:
```

Switch\# show diagnostic content module all
module 1:
Diagnostics test suite attributes:
B/* - Basic ondemand test / NA
P/V/* - Per port test / Per device test / NA
D/N/* - Disruptive test / Non-disruptive test / NA
S/* - Only applicable to standby unit / NA
X/* - Not a health monitoring test / NA
F/* - Fixed monitoring interval test / NA
E/* - Always enabled monitoring test / NA
A/I - Monitoring is active / Monitoring is inactive
m/* - Mandatory bootup test, can't be bypassed / NA
o/* - Ongoing test, always active / NA
Testing Interval
ID Test Name Attributes (day hh:mm:ss.ms)
==== ========================================== ============= ===================
1) supervisor-bootup -----------------------> **D****I** not configured
2) packet-memory-bootup --------------------> **D****I** not configured
3) packet-memory-ongoing -------------------> **N****I*O not configured

```
```

module 6:
Diagnostics test suite attributes:
B/* - Basic ondemand test / NA
P/V/* - Per port test / Per device test / NA
D/N/* - Disruptive test / Non-disruptive test / NA
S/* - Only applicable to standby unit / NA
X/* - Not a health monitoring test / NA
F/* - Fixed monitoring interval test / NA
E/* - Always enabled monitoring test / NA
A/I - Monitoring is active / Monitoring is inactive
m/* - Mandatory bootup test, can't be bypassed / NA
o/* - Ongoing test, always active / NA
ID Test Name Attributes (day hh:mm:ss.ms)

```

```

    1) linecard-online-diag --------------------> ** D****I** not configured
    ```
Switch\#
\begin{tabular}{lll}
Related Commands & Command & Description \\
\begin{tabular}{l}
show diagnostic result module
\end{tabular} & Displays the module-based diagnostic test results. \\
\hline \begin{tabular}{l}
show diagnostic result module \\
test 2
\end{tabular} & Displays the results of the bootup packet memory test. \\
& \begin{tabular}{l}
show diagnostic result module \\
test 3
\end{tabular} & Displays the results from the ongoing packet memory test. \\
\hline
\end{tabular}

\section*{show diagnostic result module}

To display the module-based diagnostic test results, use the show diagnostic result module command.
show diagnostic result module [slot-num | all] [test [test-id | test-id-range | all]] [detail]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline slot-num & (Optional) Specifies the slot on which diagnostics are displayed. \\
\hline all & (Optional) Displays the diagnostics for all slots. \\
\hline test & (Optional) Displays selected tests on the specified module. \\
\hline test-id & (Optional) Specifies a single test ID. \\
\hline test-id-range & (Optional) Specifies a range of test IDs. \\
\hline all & (Optional) Displays the diagnostics for all tests. \\
\hline detail & (Optional) Displays the complete test results. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to display the summary results for all modules in the chassis:
```

Switch\# show diagnostic result module
Current bootup diagnostic level: minimal
module 1:
Overall diagnostic result: PASS
Diagnostic level at card bootup: bypass
Test results: (. = Pass, F = Fail, U = Untested)
1) supervisor-bootup -----------------------> U
2) packet-memory-bootup --------------------> U
3) packet-memory-ongoing -------------------> U
module 4:
Overall diagnostic result: PASS
Diagnostic level at card bootup: minimal
Test results: (. = Pass, F = Fail, U = Untested)
1) linecard-online-diag

```
```

module 5:
Overall diagnostic result: PASS
Diagnostic level at card bootup: minimal
Test results: (. = Pass, F = Fail, U = Untested)
1) linecard-online-diag --------------------> .
module 6:
Overall diagnostic result: PASS
Diagnostic level at card bootup: minimal
Test results: (. = Pass, F = Fail, U = Untested
1) linecard-online-diag -----------------------

```

This example shows how to display the online diagnostics for module 1 :
```

Switch\# show diagnostic result module 1 detail
Current bootup diagnostic level: minimal
module 1:
Overall diagnostic result: PASS
Diagnostic level at card bootup: minimal
Test results: (. = Pass, F = Fail, U = Untested)

```
```

    1) supervisor-bootup ------------------------> .
    Error code --------------------------> 0 (DIAG_SUCCESS)
    Total run count --------------------->> 0
    Last test execution time ------------> n/a
    First test failure time -------------> n/a
    Last test failure time --------------> n/a
    Last test pass time -----------------> n/a
    Total failure count -----------------> 0
    Consecutive failure count -----------> 0
    Power-On-Self-Test Results for ACTIVE Supervisor
Power-on-self-test for Module 1: WS-X4014
Port/Test Status: (. = Pass, F = Fail)
Reset Reason: PowerUp Software/User
Port Traffic: L2 Serdes Loopback ...
0: . 1: . 2: . 3: . 4: . 5: . 6: . 7: . 8: . 9: . 10: . 11: .
12: . 13: . 14: . 15: . 16: . 17: . 18: . 19: . 20: . 21: . 22: . 23: .
24: . 25: . 26: . 27: . 28: . 29: . 30: . 31: .
Port Traffic: L2 Asic Loopback ..
0: . 1: . 2: . 3: . 4: . 5: . 6: . 7: . 8: . 9: . 10: . 11: .

```
```

12: . 13: . 14: . 15: . 16: . 17: . 18: . 19: . 20: . 21: . 22: . 23: .
24: . 25: . 26: . 27: . 28: . 29: . 30: . 31:.
Port Traffic: L3 Asic Loopback ...
0: . 1: . 2: . 3: . 4: . 5: . 6: . 7: . 8: . 9: . 10: . 11: .
12: . 13: . 14: . 15: . 16: . 17: . 18: . 19: . 20: . 21: . 22: . 23: .
24: . 25: . 26: . 27: . 28: . 29: . 30: . 31: . au: .
Switch Subsystem Memory ...
1: . 2: . 3: . 4: . 5: . 6: . 7: . 8: . 9: . 10: . 11: . 12:.
13: . 14: . 15: . 16: . 17: . 18: . 19: . 20: . 21: . 22: . 23: . 24: .
25: . 26: . 27: . 28: . 29: . 30: . 31: . 32: . 33: . 34: . 35: . 36:
37: . 38: . 39: . 40: . 41: . 42: . 43: . 44: . 45: . 46: . 47: . 48: .
49: . 50: . 51: . 52: . 53: . 54: .
Module 1 Passed

```
```

    2) packet-memory-bootup ---------------------> .
    Error code --------------------------> 0 (DIAG_SUCCESS)
    Total run count --------------------->}
    Last test execution time ------------> n/a
    First test failure time -------------> n/a
    Last test failure time --------------> n/a
    Last test pass time -----------------> n/a
    Total failure count -----------------> 0
    Consecutive failure count -----------> 0
    packet buffers on free list: 64557 bad: 0 used for ongoing tests: 979

```
Number of errors found: 0
Cells with hard errors (failed two or more tests): 0
Cells with soft errors (failed one test, includes hard): 0
Suspect bad cells (uses a block that tested bad): 0
total buffers: 65536
bad buffers: 0 (\(0.0 \%\))
good buffers: 65536 (100.0\%)
Bootup test results:1
No errors.
```

    3) packet-memory-ongoing ----------------------}\mathrm{ U
    Error code --------------------------> 0 (DIAG_SUCCESS)
    Total run count ---------------------> 0
    Last test execution time ------------> n/a
    First test failure time -------------> n/a
    Last test failure time --------------> n/a
    Last test pass time -----------------> n/a
    Total failure count -----------------> 0
    Consecutive failure count -----------> 0
    packet buffers on free list: 64557 bad: 0 used for ongoing tests: 979
Packet memory errors: 0 0

```
```

Current alert level: green
Per 5 seconds in the last minute:
0 0 0 0 0 0 0 0 0 0
0
Per minute in the last hour:
0 0 0 0 0 0 0 0 0 0
0}00<000000000 0 0 0
0}0000000000000
0}00000000000000
0}0000000000000
0 0 0 0 0 0 0 0 0 0
Per hour in the last day:
0 0 0 0 0 0 0 0 0 0
0}00000000000000
0 0 0
Per day in the last 30 days:
0}0000000000000
0 0 0 0 0 0 0 0 0 0
0}000000000000
Direct memory test failures per minute in the last hour:
0 0 0 0 0 0 0 0 0 0
0}00<000000000 0 0 0
0}0000000000000
0
0}00<000000000000
0 0 0 0 0 0 0 0 0 0
Potential false positives: 0 0
Ignored because of rx errors: 0 0
Ignored because of cdm fifo overrun: 0 0
Ignored because of oir: 0 0
Ignored because isl frames received: 0 0
Ignored during boot: 0 0
Ignored after writing hw stats: 0 0
Ignored on high gigaport: 0
Ongoing diag action mode: Normal
Last 1000 Memory Test Failures:
Last 1000 Packet Memory errors:
First 1000 Packet Memory errors:

```

\section*{show diagnostic result module test}

To display the results of the bootup packet memory test, use the show diagnostic result module test command. The output indicates whether the test passed, failed, or was not run.
show diagnostic result module [\(N\) | all] [test test-id] [detail]

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline\(N\) & Specifies the module number. \\
\hline all & Specifies all modules. \\
\hline test test-id & Specifies the number for the tdr test on the platform. \\
\hline detail & (Optional) Specifies the display of detailed information for analysis. \\
& This option is recommended. \\
\hline
\end{tabular}

Non-detailed results

EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25)\) SG & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The detail keyword is intended for use by Cisco support personnel when analyzing failures.

This example shows how to display the results of the bootup packet memory tests:
```

Switch\# show diagnostic result module 6 detail
module 6:
Overall diagnostic result:PASS
Test results:(. = Pass, F = Fail, U = Untested)

```
```

1) linecard-online-diag --------------------> .
Error code --------------------------> 0 (DIAG_SUCCESS)
Total run count ---------------------> 1
Last test execution time ------------> Jan 21 2001 19:48:30
First test failure time -------------> n/a
Last test failure time --------------> n/a
Last test pass time -----------------> Jan 21 2001 19:48:30
Total failure count -----------------> 0
Consecutive failure count -----------> 0
```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{Diag Status} \\
\hline 648 & \multicolumn{9}{|l|}{10/100/1000BaseT (RJ45)V, Cisco/IEEE} & \multicolumn{3}{|c|}{Passed} & \multicolumn{2}{|r|}{None} \\
\hline \multicolumn{15}{|l|}{Detailed Status} \\
\hline \multicolumn{15}{|l|}{```
. = Pass U = Unknown
L = Loopback failure S = Stub failure
I = Ilc failure P = Port failure
E = SEEPROM failure G = GBIC integrity check failure
```} \\
\hline \multirow[t]{2}{*}{Ports 1} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 & 16 \\
\hline & . & . & - & - & . & - & - & - & . & - & . & . & - & . \\
\hline \multirow[t]{2}{*}{Ports 17} & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 29 & 30 & 31 & 32 \\
\hline & - & - & - & - & . & - & - & . & . & - & . & . & - & - \\
\hline Ports 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 45 & 46 & 47 & 48 \\
\hline
\end{tabular}

> 2) online-diag-tdr:
 Port \(25 \begin{array}{lllllllllllllllllllllll}26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48\end{array}\) -------------------------------------------------------------------------------------\(\begin{array}{llllllllllllllllllllllll}U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & U & & U\end{array}\)
            Error code -----------------------------> 0 (DIAG_SUCCESS)
            Total run count ---------------------> 1
            Last test execution time ------------> Jan 222001 03:01:54
            First test failure time -------------> n/a
            Last test failure time --------------> n/a
            Last test pass time -----------------> Jan 222001 03:01:54
            Total failure count -----------------> 0
            Consecutive failure count ------------> 0

Detailed Status

TDR test is in progress on interface Gi6/1

Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline diagnostic start & Runs the specified diagnostic test. \\
\hline
\end{tabular}

\section*{show diagnostic result module test 2}

To display the results of the bootup packet memory test, use the show diagnostic result module test 2 command. The output indicates whether the test passed, failed, or was not run.
show diagnostic result module \(N\) test 2 [detail]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline\(N\) & Specifies the module number. \\
\hline detail & (Optional) Specifies the display of detailed information for analysis. \\
\hline
\end{tabular}

\section*{Defaults \\ Non-detailed results}

\section*{Command Modes}

EXEC mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to display the results of the bootup packet memory tests:
```

Switch\# show diagnostic result module 1 test 2
Test results: (. = Pass, F = Fail, U = Untested)
2) packet-memory-bootup ------------> .

```

This example shows how to display detailed results from the bootup packet memory tests:
```

Switch\# show diagnostic result module 2 test 2 detail
Test results: (. = Pass, F = Fail, U = Untested)

```
```

 2) packet-memory-bootup ------------> .
 Error code ------------------> 0 (DIAG_SUCCESS)
 Total run count -------------> 0
 Last test execution time ----> n/a
 First test failure time -----> n/a
 Last test failure time ------> n/a
 Last test pass time ---------> n/a
 Total failure count ---------> 0
 Consecutive failure count ---> 0
 packet buffers on free list: 64557 bad: 0 used for ongoing tests: 979

```
```

Number of errors found: 0
Cells with hard errors (failed two or more tests): 0
Cells with soft errors (failed one test, includes hard): 0
Suspect bad cells (uses a block that tested bad): 0
total buffers: 65536
bad buffers: 0 (0.0%)
good buffers: 65536 (100.0%)
Bootup test results:
No errors.

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline diagnostic monitor action & \begin{tabular}{l} 
Directs the action of the switch when it detects a packet memory \\
failure.
\end{tabular} \\
\hline \begin{tabular}{l} 
show diagnostic result module \\
test 3
\end{tabular} & Displays the results from the ongoing packet memory test. \\
\hline
\end{tabular}

\section*{show diagnostic result module test 3}

To display the results from the ongoing packet memory test, use the show diagnostic result module test \(\mathbf{3}\) command. The output indicates whether the test passed, failed, or was not run.
show diagnostic result module \(N\) test 3 [detail]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline\(N\) & Module number. \\
\hline detail & (Optional) Specifies the display of detailed information for analysis. \\
\hline
\end{tabular}

\section*{Defaults}

Non-detailed results

\section*{Command Modes}

EXEC mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & This command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to display the results from the ongoing packet memory tests:
```

Switch\# show diagnostic result module 1 test 3
Test results: (. = Pass, F = Fail, U = Untested)

```
3) packet-memory-ongoing \(\qquad\)
This example shows how to display the detailed results from the ongoing packet memory tests:
```

Switch\# show diagnostic result module 1 test 3 detail
Test results: (. = Pass, F = Fail, U = Untested)

```
```

 3) packet-memory-ongoing -----------> .
 Error code ------------------> 0 (DIAG_SUCCESS)
 Total run count -------------> 0
 Last test execution time ----> n/a
 First test failure time -----> n/a
 Last test failure time ------> n/a
 Last test pass time ---------> n/a
 Total failure count ---------> 0
 Consecutive failure count ---> 0
 packet buffers on free list: 64557 bad: 0 used for ongoing tests: 979

```
```

Packet memory errors: 0 0
Current alert level: green
Per 5 seconds in the last minute:
0 0 0 0 0 0 0 0 0 0
0 0
Per minute in the last hour:
0 0 0 0 0 0 0 0 0 0
0}00<00000000000
0}00000000000000
0}0000000000000
0}000000000000000
0 0 0 0 0 0 0 0 0 0
Per hour in the last day:
0}00000000000000
0 0 0 0 0 0 0 0 0 0
0 0 0
Per day in the last 30 days:
0 0 0 0 0 0 0 0 0 0
0}000000000 00 0 0 0
0 0 0 0 0 0 0 0 0 0
Direct memory test failures per minute in the last hour:
0 0 0 0 0 0 0 0 0 0
0}0000000000000
0}00000000000000
0 0 0 0 0 0 0 0 0 0
0}000000000000000
0}00000000000
Potential false positives: 0 0
Ignored because of rx errors: 0 0
Ignored because of cdm fifo overrun: 0 0
Ignored because of oir: 0 0
Ignored because isl frames received: 0 0
Ignored during boot: 0 0
Ignored after writing hw stats: 0 0
Ignored on high gigaport: 0
Ongoing diag action mode: Normal
Last }1000\mathrm{ Memory Test Failures: v
Last 1000 Packet Memory errors:
First 1000 Packet Memory errors:

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{ll} 
Command & Description \\
& diagnostic monitor action
\end{tabular} & \begin{tabular}{l} 
Directs the action of the switch when it detects a packet memory \\
failure.
\end{tabular} \\
& \begin{tabular}{l} 
show diagnostic result module \\
test 2
\end{tabular} & Displays the results of the bootup packet memory test. \\
\hline
\end{tabular}

\section*{show dot1x}

To display the 802.1 X statistics and operational status for the entire switch or for a specified interface, use the show dot1x command.
show dot1x [interface interface-id] | [statistics [interface interface-id]] | [all]
Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline interface interface-id & (Optional) Displays the 802.1 X status for the specified port. \\
\hline statistics & (Optional) Displays 802.1X statistics for the switch or the specified interface. \\
\hline all & \begin{tabular}{l} 
(Optional) Displays per-interface 802.1X configuration information for all \\
\\
interfaces with a non-default 802.1X configuration.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(19) \mathrm{EW}\) & Display enhanced to show the guest-VLAN value. \\
\hline \(12.2(25) \mathrm{EW}\) & \begin{tabular}{l} 
Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 \\
series switch.
\end{tabular} \\
\hline \(12.2(25) \mathrm{EWA}\) & \begin{tabular}{l} 
Support for currently-assigned reauthentication timer (if the timer is configured to \\
honor the Session-Timeout value) was added.
\end{tabular} \\
\hline \(12.2(31) \mathrm{SG}\) & Support for port direction control and critical recovery was added. \\
\hline
\end{tabular}

If you do not specify an interface, the global parameters and a summary are displayed. If you specify an interface, the details for that interface are displayed.

If you enter the statistics keyword without the interface option, the statistics are displayed for all interfaces. If you enter the statistics keyword with the interface option, the statistics are displayed for the specified interface.
Expressions are case sensitive. For example, if you enter exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

The show dot 1 x command displays the currently assigned reauthentication timer and time remaining before reauthentication, if reauthentication is enabled.

This example shows how to display the output from the show dot1x command:
```

Switch\# show dot1x
Sysauthcontrol = Disabled
Dot1x Protocol Version = 2
Dot1x Oper Controlled Directions = Both
Dot1x Admin Controlled Directions = Both
Critical Recovery Delay = 500
Critical EAP = Enabled
Switch\#

```

This example shows how to display the 802.1 X statistics for a specific port:
```

Switch\# show dot1x interface fastethernet6/1
Dot1x Info for FastEthernet6/1

PAE = AUTHENTICATOR
PortControl = AUTO
ControlDirection = Both
HostMode = MULTI_DOMAIN
ReAuthentication = Disabled
QuietPeriod = 60
ServerTimeout = 30
SuppTimeout = 30
ReAuthPeriod = 3600 (Locally configured)
ReAuthMax = 2
MaxReq = 2
TxPeriod = 30
RateLimitPeriod = 0
Dot1x Authenticator Client List

Domain = DATA
Supplicant = 0000.0000.ab01
Auth SM State = AUTHENTICATED
Auth BEND SM Stat = IDLE
Port Status = AUTHORIZED
Authentication Method = Dot1x
Authorized By = Authentication Server
Vlan Policy = 12
Domain = VOICE
Supplicant = 0060.b057.4687
Auth SM State = AUTHENTICATED
Auth BEND SM Stat = IDLE
Port Status = AUTHORIZED
Authentication Method = Dot1x
Authorized By = Authentication Server

```
Switch\#

Table 2-17 provides a partial list of the displayed fields. The remaining fields in the display show internal state information. For a detailed description of these state machines and their settings, refer to the 802.1X specification.

Table 2-17 show dot1x interface Field Description
\begin{tabular}{l|l}
\hline Field & Description \\
\hline PortStatus & \begin{tabular}{l} 
Status of the port (authorized or unauthorized). The status of a port is \\
displayed as authorized if the dot1x port-control interface configuration \\
command is set to auto and has successfully completed authentication.
\end{tabular} \\
\hline Port Control & Setting of the dot1x port-control interface configuration command. \\
\hline MultiHosts & \begin{tabular}{l} 
Setting of the dot1x multiple-hosts interface configuration command \\
(allowed or disallowed).
\end{tabular} \\
\hline
\end{tabular}

This is an example of output from the show dot1x statistics interface gigabitethernet \(\mathbf{1 / 1}\) command. Table 2-18 describes the fields in the display.
```

Switch\# show dot1x statistics interface gigabitethernet1/1
PortStatistics Parameters for Dot1x

TxReqId = 0 TxReq = 0 TxTotal = 0
RxStart = 0 RxLogoff = 0 RxRespId = 0 RxResp = 0
RxInvalid = 0 RxLenErr = 0 RxTotal= 0
RxVersion = 0 LastRxSrcMac 0000.0000.0000
Switch\#

```

Table 2-18 show dot1x statistics Field Descriptions
\begin{tabular}{l|l}
\hline Field & Description \\
\hline TxReq/TxReqId & Number of EAP-request/identity frames that have been sent. \\
\hline TxTotal & Number of EAPOL frames of any type that have been sent. \\
\hline RxStart & Number of valid EAPOL-start frames that have been received. \\
\hline RxLogoff & Number of EAPOL-logoff frames that have been received. \\
\hline RxRespId & Number of EAP-response/identity frames that have been received. \\
\hline RxResp & \begin{tabular}{l} 
Number of valid EAP-response frames (other than response/identity \\
frames) that have been received.
\end{tabular} \\
\hline RxInvalid & \begin{tabular}{l} 
Number of EAPOL frames that have been received and have an \\
unrecognized frame type.
\end{tabular} \\
\hline RxLenError & \begin{tabular}{l} 
Number of EAPOL frames that have been received in which the packet \\
body length field is invalid.
\end{tabular} \\
\hline RxTotal & Number of valid EAPOL frames of any type that have been received. \\
\hline RxVersion & \begin{tabular}{l} 
Protocol version number carried in the most recently received EAPOL \\
frame.
\end{tabular} \\
\hline LastRxSrcMac & \begin{tabular}{l} 
Source MAC address carried in the most recently received EAPOL \\
frame.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{Related Commands} & Command & Description \\
\hline & dot1x critical & Enables the 802.1X critical authentication on a port. \\
\hline & dot1x critical eapol & Enables sending EAPOL success packets when a port is critically authorized partway through an EAP exchange. \\
\hline & dot1x critical recovery delay & Sets the time interval between port reinitializations. \\
\hline & dot1x critical vlan & Assigns a critically authenticated port to a specific VLAN. \\
\hline & dot1x guest-vlan & Enables a guest VLAN on a per-port basis. \\
\hline & dot1x max-reauth-req & Sets the maximum number of times that the switch will retransmit an EAP-Request/Identity frame to the client before restarting the authentication process. \\
\hline & dot1x port-control & Enables manual control of the authorization state on a port. \\
\hline & mac-address-table notification & Enables MAC address notification on a switch. \\
\hline
\end{tabular}

\section*{show energywise}

Use the show energywise privileged EXEC command to display the EnergyWise settings and status of the entity and the power over Ethernet (PoE) ports.
show energywise [categories | children | domain | events | level [children | current [children] | delta children] | neighbors | recurrences | statistics | usage [children] | version] [ | \{begin | exclude | include \} expression]

Syntax Description
\begin{tabular}{ll}
\hline categories & (Optional) Display the power levels. \\
\hline children & (Optional) Display the status of the entity and the PoE ports. \\
\hline domain & (Optional) Display the domain to which the entity belongs. \\
\hline events & \begin{tabular}{l} 
(Optional) Displays the last ten events (messages) sent to other entities in the \\
domain.
\end{tabular} \\
\hline
\end{tabular}
level [children I (Optional) Display the available power level for the entity. current [children] I delta | delta children]
- children-Available power levels for the entity and the PoE ports.
- current-Current power level for the entity.
(Optional) children-Current power levels for the entity and the PoE ports.
- delta-Difference between the current and available power levels for the entity.
(Optional) children-Difference between the current and available power levels for the entity and the PoE ports.
\begin{tabular}{ll}
\hline neighbors & \begin{tabular}{l} 
(Optional) Display the neighbor tables for the domains to which the entity \\
belongs.
\end{tabular} \\
\hline recurrence & (Optional) Display the EnergyWise settings and status for recurrence. \\
\hline statistics & (Optional) Display the counters for events and errors. \\
\hline usage [children] & \begin{tabular}{l} 
(Optional) Display the power for the entity. \\
\\
- children-Display the power for the PoE ports.
\end{tabular} \\
\hline version & (Optional) Display the EnergyWise version. \\
\hline
\end{tabular}

Command Modes

Command History
Privileged EXEC

\section*{Usage Guidelines}

Expressions are case sensitive. For example, if you enter I exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & Lev & ( & & & & \\
\hline Interface & Name & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}

Switch\# show energywise level children

\begin{tabular}{lllll} 
Switch\# show energywise level current & & \\
Interface & Name & Level & Value & \\
------- & ------ & ---- & \\
& lobby. 1 & 10 & 558.0 & (W)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Interface & Name & Level & Value \\
\hline & lobby. 1 & 10 & 558.0 \\
\hline Gi1/0/1 & Gi1.0.1 & 1 & 15.4 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Gi1/0/2 & Gi1.0.2 & 1 & 15.4 & (W) \\
Gi1/0/3 & Gi1.0.3 & 1 & 15.4 & (W) \\
Gi1/0/4 & Gi1.0.4 & 1 & 15.4 & (W) \\
Gi1/0/5 & Gi1.0.5 & 1 & 15.4 & (W)
\end{tabular}

\section*{Switch\# show energywise level delta}


Switch\# show energywise level delta child
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Interface} & & \multicolumn{11}{|c|}{Levels (Watts)} \\
\hline & Name & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & lobby. 1 & -558.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Gi1/0/1 & Gi1.0.1 & 0.0 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 \\
\hline Gi1/0/2 & Gi1.0.2 & 0.0 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 \\
\hline Gi1/0/3 & Gi1.0.3 & 0.0 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 \\
\hline Gi1/0/4 & Gi1.0.4 & 0.0 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 & 15.4 \\
\hline
\end{tabular}
<output truncated>

\section*{Switch\# show energywise neighbors}

Switch\# show energywise recurrences
Id
Addr
--
----

Switch\# show energywise statistics
Children: 48 Errors: 2 Drops: 0 Events: 14
Switch\# show energywise usage
\begin{tabular}{llll} 
Interface & Name & Usage & Caliber \\
------- & --- & \(\overline{558.0}\) & (W) \(\overline{\max }\)
\end{tabular}

Switch\# show energywise usage child
\begin{tabular}{lllll} 
Interface & Name & Usage & Caliber \\
------- & ---- & & & \\
& lobby.1 & 558.0 & (W) & max \\
Gi1/0/1 & Gi1.0.1 & 0.0 & (W) & presumed \\
Gi1/0/2 & Gi1.0.2 & 0.0 & (W) & presumed \\
Gi1/0/3 & Gi1.0.3 & 0.0 & (W) & presumed \\
Gi1/0/4 & Gi1.0.4 & 0.0 & (W) & presumed \\
Gi1/0/5 & Gi1.0.5 & 0.0 & (W) & presumed \\
<output truncated> & & &
\end{tabular}
```

Switch\# show energywise version
EnergyWise is Enabled
IOS Version: 12.2(52)SG(0.91)
EnergyWise Specification: (t_nrgyz_v122_52_sg_throttle)1.0.14

```
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } & energywise (global configuration) & Enables and configures EnergyWise on the entity. \\
\cline { 2 - 3 } & energywise (interface configuration) & Configures EnergyWise on the PoE port. \\
\hline
\end{tabular}

\section*{show environment}

To display the environment alarm, operational status, and current reading for the chassis, use the show environment command.
```

show environment [alarm] | [status [chassis | fantray | powersupply | supervisor]] |
[temperature]

```

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}
\begin{tabular}{ll}
\hline alarm & (Optional) Specifies the alarm status of the chassis. \\
\hline status & (Optional) Specifies the operational status information. \\
\hline chassis & (Optional) Specifies the operational status of the chassis. \\
\hline fantray & (Optional) Specifies the status of the fan tray, and shows fan tray power consumption. \\
\hline powersupply & (Optional) Specifies the status of the power supply. \\
\hline supervisor & (Optional) Specifies the status of the supervisor engine. \\
\hline temperature & (Optional) Specifies the current chassis temperature readings. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & \begin{tabular}{l} 
Support for the ability to display generic environment information with the show \\
environment command was added.
\end{tabular} \\
\hline
\end{tabular}

This example shows how to display information about the environment alarms, operational status, and current temperature readings for the chassis:

```

Power supplies needed by system : 1
Chassis Type : WS-C4507R
Supervisor Led Color : Green
Fantray : good
Fantray removal timeout: 240
Power consumed by Fantray : }50\mathrm{ Watts

```

This example shows how to display information about the environment alarms:
```

Switch\# show environment alarm
no alarm
Switch\#

```

This example shows how to display information about the power supplies, chassis type, and fan trays:


This example shows how to display information about the chassis:
```

Switch\# show environment status chassis
Chassis Type :WS-C4507R
Switch\#

```

This example shows how to display information about the fan tray:
```

Switch\# show environment status fantray
Fantray : good
Power consumed by Fantray : 50 Watts
Switch\#

```

This example shows how to display information about the power supply:
\begin{tabular}{lllll} 
Switch\# show environment status powersupply & \\
Power & & & & Fan \\
Supply Model No & Type & Status & Sensor \\
\(------~--------------~\) & \(---------~\) & ------- & ------ \\
PS1 & WS-X4008 & AC 400W & good & good \\
PS2 & WS-X4008 & AC 400W & good & good \\
PS3 none & -- & -- & --
\end{tabular}

This example shows how to display information about the supervisor engine:
```

Switch\# show environment status supervisor
Supervisor Led Color :Green
Switch\#

```

This example shows how to display information about the temperature of the chassis:
```

Switch\# show environment temperature
Chassis Temperature = 32 degrees Celsius
Chassis Over Temperature Threshold = 75 degrees Celsius
Chassis Critical Temperature Threshold = 95 degrees Celsius
Switch\#

```

\section*{show errdisable detect}

To display the error disable detection status, use the show errdisable detect command.
show errdisable detect

Syntax Description

Defaults

Command Modes

Command History

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(19) \mathrm{EW}\) & Display includes the status of storm control. \\
\hline
\end{tabular}

\section*{Examples}

Related Commands

This example shows how to display the error disable detection status:
\begin{tabular}{ll} 
Switch\# show errdisable detect \\
ErrDisable Reason & Detection status \\
-------------- & ------------- \\
udld & Enabled \\
bpduguard & Enabled \\
security-violatio & Enabled \\
channel-misconfig & Disabled \\
psecure-violation & Enabled \\
vmps & Enabled \\
pagp-flap & Enabled \\
dtp-flap & Enabled \\
link-flap & Enabled \\
l2ptguard & Enabled \\
gbic-invalid & Enabled \\
dhcp-rate-limit & Enabled \\
unicast-flood & Enabled \\
storm-control & Enabled \\
ilpower & Enabled \\
arp-inspection & Enabled \\
Switch\# &
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline errdisable detect & Enables error-disable detection. \\
\hline errdisable recovery & Configures the recovery mechanism variables. \\
\hline show interfaces status & \begin{tabular}{l} 
Displays the interface status or a list of interfaces in \\
error-disabled state.
\end{tabular} \\
\hline
\end{tabular}

\section*{show errdisable recovery}

To display error disable recovery timer information, use the show errdisable recovery command.

\section*{show errdisable recovery}

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(19) \mathrm{EW}\) & Display includes the status of storm control. \\
\hline
\end{tabular}

This example shows how to display recovery timer information for error disable:
```

Switch\# show errdisable recovery
ErrDisable Reason Timer Status
----------------- ---------------
udld Disabled
bpduguard Disabled
security-violatio Disabled
channel-misconfig Disabled
vmps Disabled
pagp-flap Disabled
dtp-flap Disabled
link-flap Disabled
l2ptguard Disabled
psecure-violation Disabled
gbic-invalid Disabled
dhcp-rate-limit Disabled
unicast-flood Disabled
storm-control Disabled
arp-inspection Disabled
Timer interval:30 seconds
Interfaces that will be enabled at the next timeout:
Interface Errdisable reason Time left(sec)

Fa7/32
arp-inspect

	Command	Description
	errdisable detect	Enables error-disable detection.
	errdisable recovery	Configures the recovery mechanism variables.
show interfaces status	Displays the interface status or a list of interfaces in error-disabled state.	

show etherchannel

To display EtherChannel information for a channel, use the show etherchannel command.
show etherchannel [channel-group] \{port-channel | brief | detail | summary | port | load-balance | protocol\}

channel-group	(Optional) Number of the channel group; valid values are from 1 to 64.
port-channel	Displays port-channel information.
brief	Displays a summary of EtherChannel information.
detail	Displays detailed EtherChannel information.
summary	Displays a one-line summary per channel group.
port	Displays EtherChannel port information.
load-balance	Displays load-balance information.
protocol	Displays the enabled protocol.

Defaults

Command Modes

Command History

Release	Modification
$12.1(8 a) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(13) \mathrm{EW}$	Support for LACP was added to this command.

Usage Guidelines

If you do not specify a channel group, all channel groups are displayed.
In the output below, the Passive port list field is displayed for Layer 3 port channels only. This field means that the physical interface, which is still not up, is configured to be in the channel group (and indirectly is in the only port channel in the channel group).

Examples

This example shows how to display port-channel information for a specific group:

```
Switch# show etherchannel 1 port-channel
    Port-channels in the group:
    -----------------------
Port-channel: Po1
------------
Age of the Port-channel = 02h:35m:26s
Logical slot/port = 10/1 Number of ports in agport = 0
GC = 0x00000000 HotStandBy port = null
Passive port list = Fa5/4 Fa5/5
Port state = Port-channel L3-Ag Ag-Not-Inuse
```

```
Ports in the Port-channel:
Index Load Port
-------------------
Switch#
```

This example shows how to display load-balancing information:

```
Switch# show etherchannel load-balance
Source XOR Destination mac address
Switch#
```

This example shows how to display a summary of information for a specific group:

```
Switch# show etherchannel 1 brief
Group state = L3
Ports: 2 Maxports = 8
port-channels: 1 Max port-channels = 1
Switch#
```

This example shows how to display detailed information for a specific group:

```
Switch# show etherchannel 1 detail
Group state = L3
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
                        Ports in the group:
                        -------------------
Port: Fa5/4
------------
Port state = EC-Enbld Down Not-in-Bndl Usr-Config
Channel group = 1 Mode = Desirable Gcchange = 0
Port-channel = null GC = 0x00000000 Psudo-agport = Po1
Port indx = 0 Load = 0x00
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.
    A - Device is in Auto mode. P - Device learns on physical port.
Timers: H - Hello timer is running. Q - Quit timer is running.
    S - Switching timer is running. I - Interface timer is running.
Local information:
\begin{tabular}{lllllllcc} 
& & & Hello & Partner & PAgP & Learning Group \\
Port & Flags & State & Timers & Interval & Count & Priority & Method & Ifindex \\
Fa5/4 & d & U1/S1 & & is & 0 & 128 & Any & 0
\end{tabular}
Age of the port in the current state: 02h:33m:14s
Port: Fa5/5
------------
Port state = EC-Enbld Down Not-in-Bndl Usr-Config
Channel group = 1 Mode = Desirable Gcchange = 0
Port-channel = null GC = 0x00000000 Psudo-agport = Po1
Port indx = 0 Load = 0x00
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.
    A - Device is in Auto mode. P - Device learns on physical port.
Timers: H - Hello timer is running. Q - Quit timer is running.
    S - Switching timer is running. I - Interface timer is running.
Local information:
\begin{tabular}{lllllllcc} 
& & & & Hello & Partner & PAgP & Learning & Group \\
Port & Flags & State & Timers & Interval & Count & Priority & Method & Ifindex \\
Fa5/5 & d & U1/S1 & & 1s & 0 & 128 & Any & 0
\end{tabular}
```

```
Age of the port in the current state: 02h:33m:17s
    Port-channels in the group:
    ----------------------
Port-channel: Po1
Age of the Port-channel = 02h:33m:52s
Logical slot/port = 10/1 Number of ports in agport = 0
GC = 0x00000000 HotStandBy port = null
Passive port list = Fa5/4 Fa5/5
Port state = Port-channel L3-Ag Ag-Not-Inuse
Ports in the Port-channel:
Index Load Port
-------------------
Switch#
```

This example shows how to display a one-line summary per channel group:

```
Switch# show etherchannel summary
Flags: D - down P - bundled in port-channel
    I - stand-alone s - suspended
    H - Hot-standby (LACP only)
    R - Layer3 S - Layer2
    U - in use f - failed to allocate aggregator
    M - not in use, minimum links not met
    u - unsuitable for bundling
    w - waiting to be aggregated
    d - default port
Number of channel-groups in use: 2
Number of aggregators: 2
Group Port-channel Protocol Ports
-------+-------------+-----------+-----------------------------------------------------------
1 Po1(SD) LACP Gi1/23(H) Gi1/24(H)
Switch#
```

This example shows how to display EtherChannel port information for all ports and all groups:

```
Switch# show etherchannel port
    Channel-group listing:
    ----------------------
Group: 1
----------
    Ports in the group:
    -------------------
Port: Fa5/4
Port state = EC-Enbld Down Not-in-Bndl Usr-Config
Channel group = 1 Mode = Desirable Gcchange = 0
Port-channel = null GC = 0x00000000 Psudo-agport = Po1
Port indx = 0 Load = 0x00
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.
    A - Device is in Auto mode. P - Device learns on physical port.
Timers: H - Hello timer is running. Q - Quit timer is running.
    S - Switching timer is running. I - Interface timer is running.
Local information:
    Hello Partner PAgP Learning Group
```

```
\begin{tabular}{llllllccc} 
Port & Flags & State & Timers & Interval Count & Priority & Method & Ifindex \\
Fa5/4 & d & \(\mathrm{U} 1 / \mathrm{S} 1\) & & 1 s & 0 & 128 & Any & 0
\end{tabular}
Age of the port in the current state: 02h:40m:35s
Port: Fa5/5
------------
Port state = EC-Enbld Down Not-in-Bndl Usr-Config
Channel group = 1 Mode = Desirable Gcchange = 0
Port-channel = null GC = 0x00000000 Psudo-agport = Po1
Port indx = 0 Load = 0x00
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.
    A - Device is in Auto mode. P - Device learns on physical port.
Timers: H - Hello timer is running. Q - Quit timer is running.
    S - Switching timer is running. I - Interface timer is running.
<...output truncated...>
Switch#
```

This example shows how to display the protocol enabled:

```
Switch# show etherchannel protocol
    Channel-group listing:
    ------------------------
Group: 12
-----------
Protocol: PAgP
Group: 24
----------
Protocol: - (Mode ON)
Switch#
```

Command	Description
channel-group	Assigns and configures an EtherChannel interface to an
	EtherChannel group.
interface port-channel	Accesses or creates a port-channel interface.

show flowcontrol

To display the per-interface status and statistics related to flow control, use the show flowcontrol command.
show flowcontrol [module slot | interface interface]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

module slot	(Optional) Limits the display to interfaces on a specific module.
interface interface	(Optional) Displays the status on a specific interface.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 series switch.

Table 2-19 describes the fields in the show flowcontrol command output.
Table 2-19 show flowcontrol Command Output

Field	Description
Port	Module and port number.
Send-Flowcontrol-Admin	Flow-control administration. Possible settings: on indicates the local port sends flow control to the far end; off indicates the local port does not send flow control to the far end; desired indicates the local end sends flow control to the far end if the far end supports it.
Send-Flowcontrol-Oper	Flow-control operation. Possible setting: disagree indicates the two ports could not agree on a link protocol.
Receive-Flowcontrol-Admin	Flow-control administration. Possible settings: on indicates the local port requires the far end to send flow control; off indicates the local port does not allow the far end to send flow control; desired indicates the local end allows the far end to send flow control.
Receive-Flowcontrol-Oper	Flow-control operation. Possible setting: disagree indicates the two ports could not agree on a link protocol.
RxPause	Number of pause frames received.
TxPause	Number of pause frames transmitted.

This example shows how to display the flow control status on module 1:

Switch\# Port	show flowcontrol module 1					
	Send Flo admin	Control oper	Rec adm	FlowControl oper		TxPause
Gi1/1	desired	off	off	off	0	0
Gi1/2	on	disagree	on	on	0	0
Switch\#						

This example shows how to display the flow control status on Gigabit Ethernet interface 3/4:

This example shows how to display the flow control status on 10-Gigabit Ethernet interface $1 / 1$:

Related Commands	Command	Description
channel-group	Configures a Gigabit Ethernet interface to send or receive pause frames.	
	show interfaces status	Displays the interface status or a list of interfaces in error-disabled state.

show hw-module port-group

To display how the X2 holes on a module are grouped, use the show hw-module port-group command.
show hw-module module number port-group

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

module	Specifies a line module.
number	Specifies a slot or module number.
port-group	Specifies a port-group on a switch.

X2 mode.

Global configuration mode

Release	Modification
$12.2(40)$ SG	Support for WS-X4606-10GE-E Twin Gigabit convertor introduced.

When a TwinGig Convertor is enabled or disabled, the number and type of ports on the linecard change dynamically. The terminology must reflect this behavior. In Cisco IOS, 10-Gigabit ports are named TenGigabit and 1-Gigabit ports are named Gigabit. Starting with Cisco IOS Release 12.2(40)SG, to avoid having ports named TenGigabit $1 / 1$ and Gigabit $1 / 1$, the 10-Gigabit and 1-Gigabit port numbers are independent. The WS-X4606-10GE-E module with six X2 ports are named TenGigabit<slot-num $>/<1-6>$, and the SFP ports are named Gigabit<slot-num $>/<7-18$.
In the Supervisor Engine 6-E and Catalyst 4900M chassis, the ports are connected to the switching engine through a stub ASIC. This stub ASIC imposes some limitations on the ports: Gigabit and 10-Gigabit ports cannot be mixed on a single stub ASIC; they must either be all 10-Gigabit (X2), or all Gigabit (TwinGig Converter and SFP). The faceplates of X2 modules show this stub-port grouping, either with an actual physical grouping, or a box drawn around a grouping.

This example shows to determine how the X2 holes on a module are grouped on a WS-X4606-10GE-E:

Switch\# show hw-module module 1 port-group			
Module	Port-group	Active	Inactive
1	1	Te1/1-3	Gi1/7-12
1	2	Te1/4-6	Gi1/13-18

Command	Description
hw-module port-group	Selects either Gigabit Ethernet or Ten Gigabit Ethernet interfaces on your module.

show hw-module uplink

To display the current uplink mode, use the show hw-module uplink command.

show hw-module uplink

Defaults

Command Modes

Command History

Examples
This example shows the output displaying the current (active) uplinks:
Switch\# show hw-module uplink
Active uplink configuration is TenGigabitEthernet
This example shows the output for redundant systems in SSO mode if the 10-Gigabit Ethernet uplinks are active, and the Gigabit Ethernet uplinks are selected:

This example shows the output for redundant systems in RPR mode if the 10-Gigabit Ethernet uplinks are active, and the Gigabit Ethernet uplinks are selected:

```
Switch# show hw-module uplink
Active uplink configuration is TenGigabitEthernet
(will be GigabitEthernet after next reload)
A reload of active supervisor is required to apply the new configuration. Switch\# show hw-module uplink
Active uplink configuration is TenGigabitEthernet
(will be GigabitEthernet after next reload)
A reload of active supervisor is required to apply the new configuration.
```


Related Commands

```
Switch# show hw-module uplink
```

Switch\# show hw-module uplink
Active uplink configuration is TenGigabitEthernet
Active uplink configuration is TenGigabitEthernet
(will be GigabitEthernet after next reload)
(will be GigabitEthernet after next reload)
A 'redundancy reload shelf' or power-cycle of chassis is required to
A 'redundancy reload shelf' or power-cycle of chassis is required to
apply the new configuration

```
apply the new configuration
```

If the active uplink mode is different than configured mode, the output displays the change. By default, the current (operational) uplink selection is displayed.

Command	Description
hw-module uplink select	Selects the 10-Gigabit Ethernet or Gigabit Ethernet uplinks on the Supervisor Engine V-10GE within the W-C4510R chassis.

show idprom

To display the IDPROMs for the chassis, supervisor engine, module, power supplies, fan trays, clock module, and multiplexer (mux) buffer, use the show idprom command.
show idprom \{all| chassis | module [mod] | interface int_name | supervisor | power-supply number \mid fan-tray $\}$

all	Displays information for all IDPROMs.
chassis	Displays information for the chassis IDPROMs.
module	Displays information for the module IDPROMs.
mod	(Optional) Specifies the module name.
interface int_name	Displays information for the GBIC or SFP IDPROMs.
supervisor	Displays information for the supervisor engine IDPROMs.
power-supply number	Displays information for the power supply IDPROMs.
fan-tray	Displays information for the fan tray IDPROMs.

Defaults

Command Modes

Command History

Usage Guidelines

 (receive) power measurement may not be displayed for all GBICs.This example shows how to display IDPROM information for module 4:

```
Switch# show idprom module 4
Module 4 Idprom:
    Common Block Signature = 0xABAB
    Common Block Version = 1
    Common Block Length = 144
    Common Block Checksum = 4199
    Idprom Size = 256
    Block Count = 2
    FRU Major Type = 0x4201
    FRU Minor Type = 303
    OEM String = Cisco Systems, Inc.
    Product Number = WS-X4306
    Serial Number = 00000135
    Part Number = <tbd>
    Hardware Revision = 0.2
    Manufacturing Bits = 0x0000
    Engineering Bits = 0x0000
    Snmp OID = 0.0.0.0.0.0.0.0
    Power Consumption = 0
    RMA Failure Code = 0 0 0 0
    Linecard Block Signature = 0x4201
    Linecard Block Version = 1
    Linecard Block Length = 24
    Linecard Block Checksum = 658
    Feature Bits = 0x0000000000000000
    Card Feature Index = 50
    MAC Base = 0010.7bab.9830
    MAC Count = 6
Switch#
```

This example shows how to display IDPROM information for the GBICs on the Gigabit Ethernet interface $1 / 2$:

```
Switch# show idprom interface gigabitethernet1/2
GBIC Serial EEPROM Contents:
Common Block:
\begin{tabular}{ll} 
Identifier & \(=\) GBIC [0x1] \\
Extended Id & \(=\) Not specified/compliant with defined MOD_DEF [0x0]
\end{tabular}
Connector = SC connector [0x1]
Transceiver
    Speed = Not available [0x0]
    Media = Not available [0x0]
    Technology = Not available [0x0]
    Link Length = Not available [0x0]
    GE Comp Codes = Not available [0x0]
    SONET Comp Codes = Not available [0x0]
Encoding = 8B10B [0x1]
BR, Nominal = 1300000000 MHz
Length(9u) in km = GBIC does not support single mode fibre, or the length
    must be determined from the transceiver technology.
Length(9u) = > 25.4 km
Length(50u) = GBIC does not support 50 micron multi-mode fibre, or the
    length must be determined from the transceiver technology.
Length(62.5u) = GBIC does not support 62.5 micron multi-mode fibre, or
    the length must be determined from transceiver technology.
Length(Copper) = GBIC does not support copper cables, or the length must
    be determined from the transceiver technology.
Vendor name = CISCO-FINISAR
Vendor OUI = 36965
Vendor Part No. = FTR-0119-CSC
Vendor Part Rev. = B
Wavelength = Not available
```


This example shows how to display IDPROM information for the 10-Gigabit Ethernet interface 1/1:

Switch\# show idprom interface tengigabitethernet1/1	
Non-Volatile Register (NVR) Fields	
X2 MSA Version supported	: 0xA
NVR Size in bytes	: 0x100
Number of bytes used	: 0xD0
Basic Field Address	: $0 x B$
Customer Field Address	: 0x77
Vendor Field Address	: 0xA7
Extended Vendor Field Address	: 0x100
Reserved	: 0x0
Transceiver type	: 0x2 =x2
Optical connector type	:0x1 =SC
Bit encoding	: 0×1 =NRZ
Normal BitRate in multiple of 1m b/s	: 0x2848
Protocol Type	: 0×1 =10GgE
Standards Compliance Codes :	
10GbE Code Byte 0	: 0×2 =10GBASE-LR
10 GbE Code Byte 1	: 0x0
SONET/SDH Code Byte 0	: 0x0
SONET/SDH Code Byte 1	: 0x0
SONET/SDH Code Byte 2	: 0x0
SONET/SDH Code Byte 3	: 0x0
10GFC Code Byte 0	: 0x0
10GFC Code Byte 1	: 0x0
10GFC Code Byte 2	: 0x0
10 GFC Code Byte 3	: 0x0
Transmission range in 10m	: 0x3E8
Fibre Type :	
Fibre Type Byte 0	:0x40 =NDSF only

```
Fibre Type Byte 1 :0x0 =Unspecified
Centre Optical Wavelength in 0.01nm steps - Channel 0 :0x1 0xFF 0xB8
Centre Optical Wavelength in 0.01nm steps - Channel 1 :0x0 0x0 0x0
Centre Optical Wavelength in 0.01nm steps - Channel 2 :0x0 0x0 0x0
Centre Optical Wavelength in 0.01nm steps - Channel 3 :0x0 0x0 0x0
Package Identifier OUI :0xC09820
Transceiver Vendor OUI :0x3400800
Transceiver vendor name :CISCO-OPNEXT,INC
Part number provided by transceiver vendor :TRT5021EN-SMC-W
Revision level of part number provided by vendor :00
Vendor serial number :ONJ08290041
Vendor manufacturing date code :2004072000
Reserved1 : 00 02 02 20 D1 00 00
Basic Field Checksum :0x10
Customer Writable Area :
    0x00: 58 32 2D 31 30 47 42 2D 4C 52 20 20 20 20 20 20
    0x10: 20 20 20 20 20 4F 4E 4A 30 38 32 39 30 30 34 31
    0x20: 31 30 2D 32 30 33 36 2D 30 31 20 20 41 30 31 20
Vendor Specific :
    0x00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    0x10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    0x20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    0x30: 00 00 00 00 11 E2 69 A9 2F 95 C6 EE D2 DA B3 FD
    0x40: 9A 34 4A 24 CB 00 00 00 00 00 00 00 00 00 EF FC
    0x50: F4 AC 1A D7 11 08 01 36 00
Switch#
```

This example shows how to display IDPROM information for the supervisor engine:

```
Switch# show idprom supervisor
Supervisor Idprom:
    Common Block Signature = 0xABAB
    Common Block Version = 1
    Common Block Length = 144
    Common Block Checksum = 4153
    Idprom Size = 256
    Block Count = 2
    FRU Major Type = 0x4101
    FRU Minor Type = 333
    OEM String = Cisco Systems, Inc.
    Product Number = WS-X4014
    Serial Number = JAB05320CCE
    Part Number = 73-6854-04
    Part Revision = 05
    Manufacturing Deviation String = 0
    Hardware Revision = 0.4
    Manufacturing Bits = 0x0000
    Engineering Bits = 0x0000
    Snmp OID = 0.0.0.0.0.0.0.0
    Power Consumption = 0
    RMA Failure Code = 0 0 0 0
    Supervisor Block Signature = 0x4101
    Supervisor Block Version = 1
    Supervisor Block Length = 24
    Supervisor Block Checksum = 548
    Feature Bits = 0x0000000000000000
    Card Feature Index = 95
    MAC Base = 0007.0ee5.2a44
    MAC Count = 2
Switch#
```

This example shows how to display IDPROM information for the chassis:

```
Switch# show idprom chassis
Chassis Idprom:
    Common Block Signature = 0xABAB
    Common Block Version = 1
    Common Block Length = 144
    Common Block Checksum = 4285
    Idprom Size = 256
    Block Count = 2
    FRU Major Type = 0x4001
    FRU Minor Type = 24
    OEM String = Cisco Systems, Inc.
    Product Number = WS-C4507R
    Serial Number = FOX04473737
    Part Number = 73-4289-02
    Part Revision = 02
    Manufacturing Deviation String = 0x00
    Hardware Revision = 0.2
    Manufacturing Bits = 0x0000
    Engineering Bits = 0x0000
    Snmp OID = 0.0.0.0.0.0.0.0
    Chassis Block Signature = 0x4001
    Chassis Block Version = 1
    Chassis Block Length = 22
    Chassis Block Checksum = 421
    Feature Bits = 0x0000000000000000
    MAC Base = 0004.dd42.2600
    MAC Count = 1024
Switch#
```

This example shows how to display IDPROM information for power supply 1 :

```
Switch# show idprom power-supply 1
Power Supply 0 Idprom:
    Common Block Signature = 0xABAB
    Common Block Version = 1
    Common Block Length = 144
    Common Block Checksum = 10207
    Idprom Size = 256
    Block Count = 1
    FRU Major Type = 0xAB01
    FRU Minor Type = 8224
    OEM String = Cisco Systems, Inc.
    Product Number = WS-CAC-1440W
    Serial Number = ACP05180002
    Part Number = 34-XXXX-01
    Part Revision = AO
    Manufacturing Deviation String =
    Hardware Revision = 1.1
    Manufacturing Bits = 0x0000
    Engineering Bits = 0x3031
    Snmp OID = 9.12.3.65535.65535.65535.65535.65535
    Power Consumption = -1
    RMA Failure Code = 255 255 255 255
    Power Supply Block Signature = 0xFFFF
    PowerSupply Block Version = 255
    PowerSupply Block Length = 255
    PowerSupply Block Checksum = 65535
    Feature Bits = 0x00000000FFFFFFFF
    Current @ 110V = -1
    Current @ 220V = -1
    StackMIB OID = 65535
```

This example shows how to display IDPROM information for the fan tray:

```
Switch# show idprom fan-tray
Fan Tray Idprom :
    Common Block Signature = 0xABAB
    Common Block Version = 1
    Common Block Length = 144
    Common Block Checksum = 19781
    Idprom Size = 256
    Block Count = 1
    FRU Major Type = 0x4002
    FRU Minor Type = 0
    OEM String = "Cisco Systems"
    Product Number = WS-X4502-fan
    Serial Number =
    Part Number =
    Part Revision =
    Manufacturing Deviation String =
    Hardware Revision = 0.1
    Manufacturing Bits = 0xFFFF
    Engineering Bits = 0xFFFF
    Snmp OID = 65535.65535.65535.65535.65535.65535.65535.65535
    Power Consumption = -1
    RMA Failure Code = 255 255 255 255
Switch#
```


show interfaces

To display traffic on a specific interface, use the show interfaces command.

```
show interfaces [{{fastethernet mod/interface-number} | {gigabitethernet
    mod/interface-number} | {tengigabitethernet mod/interface-number} | {null
    interface-number} | vlan vlan_id} | status}]
```


Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

fastethernet

mod/interface-number
gigabitethernet
mod/interface-number
tengigabitethernet (Optional) Specifies the 10-Gigabit Ethernet module and interface. mod/interface-number

null interface-number	(Optional) Specifies the null interface; the valid value is 0.
vlan vlan_id	(Optional) Specifies the VLAN; valid values are from 1 to 4094.
status	(Optional) Displays status information.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Support for extended VLAN addresses was added.
$12.2(25) \mathrm{EW}$	Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 series switch.
$12.2(31) \mathrm{SGA}$	Support for auto-MDIX reflected in command output.
$12.2(52) \mathrm{SG}$	Added support for per-VLAN error-disable detection.

The statistics are collected per VLAN for Layer 2 switched packets and Layer 3 switched packets. The statistics are available for both unicast and multicast. The Layer 3 switched packet counts are available for both the ingress and egress directions. The per-VLAN statistics are updated every 5 seconds.
In some cases, the duplex mode that is displayed by the show interfaces command is different than that displayed by the show running-config command. The duplex mode that is displayed in the show interfaces command is the actual duplex mode that the interface is running. The show interfaces command shows the operating mode for an interface, but the show running-config command shows the configured mode for an interface.

If you do not enter any keywords, all counters for all modules are displayed.
Linecards that support auto-MDIX configuration on their copper media ports include: WS-X4124-RJ45, WS-X4148-RJ with hardware revision 3.0 or later, and WS-X4232-GB-RJ with hardware revision 3.0 or later.

Examples

This example shows how to display traffic for Gigabit Ethernet interface 2/5:

```
Switch# show interfaces gigabitethernet2/5
GigabitEthernet9/5 is up, line protocol is up (connected) (vlan-err-dis)
Hardware is C4k 1000Mb 802.3, address is 0001.64f8.3fa5 (bia 0001.64f8.3fa5)
Internet address is 172.20.20.20/24
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full-duplex, 1000Mb/s
ARP type: ARPA, ARP Timeout 04:00:00
Last input 00:00:00, output never, output hang never
Last clearing of "show interface" counters never
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 1000 bits/sec, 2 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
L2 Switched: ucast: 8199 pkt, }1362060\mathrm{ bytes - mcast: }6980\mathrm{ pkt, 371952 bytes
L3 in Switched: ucast: 0 pkt, 0 bytes - mcast: 0 pkt, 0 bytes mcast
L3 out Switched: ucast: 0 pkt, 0 bytes - mcast: 0 pkt, 0 bytes
3 0 0 1 1 4 \text { packets input, 27301436 bytes, 0 no buffer}
Received 43458 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 ~ i n p u t ~ p a c k e t s ~ w i t h ~ d r i b b l e ~ c o n d i t i o n ~ d e t e c t e d ~
1 5 1 8 1 ~ p a c k e t s ~ o u t p u t , ~ 1 9 5 5 8 3 6 ~ b y t e s , ~ 0 ~ u n d e r r u n s
0 output errors, 0 collisions, 3 interface resets
O babbles, O late collision, O deferred
0 lost carrier, 0 no carrier
O output buffer failures, 0 output buffers swapped out
Switch#
```

This example shows how to display traffic for 10-Gigabit Ethernet interface 1/1:

```
Switch# show interfaces tengigabitethernet1/1
Name: Tengigabitethernet1/1
Switchport: Enabled
Administrative Mode: private-vlan promiscuous trunk
Operational Mode: private-vlan promiscuous (suspended member of bundle Po1)
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: none
Trunking Native Mode VLAN: none
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: 202 (VLAN0202) 303 (VLAN0303) 304 (VLAN0304)
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk
Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: 802.1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk private VLANs: none
Administrative private-vlan mapping trunk: New 202 (VLAN0202) 303 (VLAN0303) 304
(VLAN0304) 204 (VLAN0204) 305 (VLAN0305) 306 (VLANO306)
```

Operational private-vlan: 202 (VLANO202) 303 (VLANO303) 304 (VLANO304)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Switch\#
This example shows how to verify the status of auto-MDIX on an RJ-45 port:

Note You can verify the configuration setting and the operational state of auto-MDIX on the interface by entering the show interfaces EXEC command. This field is applicable and appears only on the show interfaces command output for $10 / 100 / 1000$ BaseT RJ-45 copper ports on supported linecards including WS-X4124-RJ45, WS-X4148-RJ with hardware revision 3.0 or later, and WS-X4232-GB-RJ with hardware revision 3.0 or later.

```
FastEthernet6/3 is up, line protocol is up (connected)
    Hardware is Fast Ethernet Port, address is 0003.6ba8.ee68 (bia 0003.6ba8.ee68)
    MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
        reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full-duplex, 100Mb/s, link type is auto, media type is 10/100BaseTX
    input flow-control is unsupported output flow-control is unsupported
Auto-MDIX on (operational: on)
ARP type: ARPA, ARP Timeout 04:00:00
    Last input never, output never, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 \text { minute output rate 0 bits/sec, 0 packets/sec}
        0 \text { packets input, 0 bytes, 0 no buffer}
        Received 0 broadcasts (0 multicasts)
        O runts, 0 giants, 0 throttles
        O input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
        0 ~ i n p u t ~ p a c k e t s ~ w i t h ~ d r i b b l e ~ c o n d i t i o n ~ d e t e c t e d ~
        1 5 7 0 8 2 \text { packets output, 13418032 bytes, 0 underruns}
        0 output errors, 0 collisions, 0 interface resets
        O babbles, O late collision, O deferred
        1 lost carrier, 0 no carrier
        O output buffer failures, 0 output buffers swapped out
Switch#
```

This example shows how to display status information for Gigabit Ethernet interface 1/2:

Switch\#	show interfaces gigabitethernet1/2 status					
Port	Name	Status	Vlan	Duplex	Speed	Type
Gi1/2		notconnect	1	auto	1000	1000-XWDM-RXONLY
Switch\#						

This example shows how to display status information for the interfaces on the supervisor engine:

Switch\# show interfaces status					
Port	Name	Status			
Te1/1		Connected	1	Duplex	Speed Type
Tel/2	connected	1	full	10G 10GBase-LR	
Switch\#				full	10G 10GBase-LR

show interfaces capabilities

To display the interface capabilities for an interface or for all the interfaces on a switch, use the show interfaces capabilities command.
show interfaces capabilities [\{module $\bmod \}$]
show interfaces [interface interface-number] capabilities

Syntax Description

Defaults

Command Modes

Command History

module mod	(Optional) Display information for the specified module only.
interface	(Optional) Interface type; valid values are fastethernet, gigabitethernet, tengigabitethernet, and port-channel.

interface-number (Optional) Port number.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Support for the 10-Gigabit Ethernet interface was introduced on the Catalyst 4500 series switch.
$12.2(31)$ SGA	Support for auto-MDIX reflected in command output.

Usage Guidelines

The interface-number argument designates the module and port number. Valid values for interface-number depend on the chassis and module used. For example, if you have a 48 -port 10/100-Mbps Fast Ethernet RJ-21 (telco connector) switching module installed in a Catalyst 4507 chassis, valid values for the slot number are from 2 to 13 and valid values for the port number are 1 to 48 .
Linecards that support auto-MDIX configuration on their copper media ports include: WS-X4124-RJ45, WS-X4148-RJ with hardware revision 3.0 or higher, and WS-X4232-GB-RJ with hardware revision 3.0 or higher.

Examples

This example shows how to display the interface capabilities for a module:

GigabitEthernet1/1	
Model:	WS-X4516-Gbic
Type:	Unsupported GBIC
Speed:	1000
Duplex:	full
Trunk encap. type:	802.1Q,ISL
Trunk mode:	on, off, desirable, nonegotiate
Channel:	yes
Broadcast suppression	:percentage(0-100), hw
Flowcontrol:	rx-(off, on, desired), tx-(off,on, desired)
VLAN Membership:	static, dynamic
Fast Start:	yes
Queuing:	rx-(N/A), tx-(4q1t, Sharing/Shaping)
CoS rewrite:	yes
ToS rewrite:	yes
Inline power:	no
SPAN:	source/destination
UDLD	yes
Link Debounce:	no
Link Debounce Time:	no
Port Security	yes
Dot1x	yes
GigabitEthernet1/2	
Model:	WS-X4516-Gbic
Type:	Unsupported GBIC
Speed:	1000
Duplex:	full
Trunk encap. type:	802.1Q,ISL
Trunk mode:	on, off, desirable, nonegotiate
Channel:	yes
Broadcast suppression:percentage(0-100), hw	
Flowcontrol:	rx-(off, on, desired), tx-(off,on, desired)
VLAN Membership:	static, dynamic
Fast Start:	yes
Queuing:	rx-(N/A), tx-(4q1t, Sharing/Shaping)
CoS rewrite:	yes
ToS rewrite:	yes
Inline power:	no
SPAN:	source/destination
UDLD	yes
Link Debounce:	no
Link Debounce Time:	no
Port Security	yes
Dot1x	yes
Switch\#	

This example shows how to display the interface capabilities for the 10-Gigabit Ethernet interface $1 / 1$:

Switch\# show interfaces	tengigabitethernet1/1 capabilities
TenGigabitEthernet1/1	
Model:	WS-X4517-X2
Type:	$10 G B a s e-L R$
Speed:	10000
Duplex:	full
Trunk encap. type:	$802.1 Q$, ISL
Trunk mode:	on,off,desirable, nonegotiate
Channel:	yes
Broadcast suppression: percentage(0-100), hw	
Flowcontrol:	rx-(off,on),tx-(off,on)
VLAN Membership:	static, dynamic
Fast Start:	yes

```
    Queuing: rx-(N/A), tx-(1p3q1t, Sharing/Shaping)
    CoS rewrite: yes
    ToS rewrite: yes
    Inline power: no
    SPAN: source/destination
    UDLD: yes
    Link Debounce: no
    Link Debounce Time: no
    Port Security: yes
    Dot1x: yes
    Maximum MTU: 9198 bytes (Jumbo Frames)
    Multiple Media Types: no
    Diagnostic Monitoring: N/A
Switch#
```

This example shows how to display the interface capabilities for Gigabit Ethernet interface 1/1:

```
Switch# show interfaces gigabitethernet1/1 capabilities
GigabitEthernet1/1
    Model: WS-X4014-Gbic
    Type: No Gbic
    Speed: 1000
    Duplex: full
    Trunk encap. type: 802.1Q,ISL
    Trunk mode: on,off,desirable,nonegotiate
    Channel: yes
    Broadcast suppression:percentage(0-100), hw
    Flowcontrol: rx-(off,on,desired),tx-(off,on,desired)
    VLAN Membership: static, dynamic
    Fast Start: yes
    Queuing: rx-(N/A), tx-(4q1t, Sharing/Shaping)
    CoS rewrite: yes
    ToS rewrite: yes
    Inline power: no
    SPAN: source/destination
    UDLD: yes
    Link Debounce: no
    Link Debounce Time: no
    Port Security: yes
    Dot1x: yes
    MTU Supported: jumbo frames, baby giants
Switch#
```

This example shows how to display the interface capabilities for Fast Ethernet interface 3/1:

```
Switch# show interfaces fastethernet3/1 capabilities
FastEthernet3/1
    Model: WS-X4148-RJ-RJ-45
    Type: 10/100BaseTX
    Speed: 10,100,auto
    Duplex: half,full,auto
    Trunk encap. type: 802.1Q,ISL
    Trunk mode: on,off,desirable,nonegotiate
    Channel: yes
    Broadcast suppression:percentage(0-100), sw
    Flowcontrol: rx-(none),tx-(none)
    VLAN Membership: static, dynamic
    Fast Start: yes
    Queuing: rx-(N/A), tx-(4q1t, Shaping)
    CoS rewrite: yes
    ToS rewrite: yes
    Inline power: no
    SPAN: source/destination
    UDLD: yes
```

```
    Link Debounce: no
    Link Debounce Time: no
    Port Security: yes
    Dot1x: yes
    MTU Supported: no jumbo frames, baby giants
Switch#
```

This example shows how to verify that the auto-MDIX configuration is supported on a port:

```
Switch# show interfaces fastethernet6/3 capabilities
FastEthernet6/3
    Model: WS-X4232-GB-RJ-RJ-45
    Type: 10/100BaseTX
    Speed: 10,100,auto
    Duplex: half,full,auto
    Auto-MDIX yes
    Trunk encap. type: 802.1Q,ISL
    Trunk mode: on,off,desirable,nonegotiate
    Channel: yes
    Broadcast suppression: percentage(0-100), hw
    Flowcontrol: rx-(none),tx-(none)
    VLAN Membership: static, dynamic
    Fast Start: yes
    Queuing: rx-(N/A), tx-(1p3q1t, Sharing/Shaping)
    CoS rewrite: yes
    ToS rewrite: yes
    Inline power: no
    SPAN: source/destination
    UDLD: yes
    Link Debounce: no
    Link Debounce Time: no
    Port Security: yes
    Dot1x: yes
    Maximum MTU: }1552\mathrm{ bytes (Baby Giants)
    Multiple Media Types: no
    Diagnostic Monitoring: N/A
Switch#
```

Related Commands	Command	Description
show interfaces counters	Displays the traffic on the physical interface.	

show interfaces counters

To display the traffic on the physical interface, use the show interfaces counters command.
show interfaces counters [all| detail| errors | storm-control| trunk] [module mod]

Syntax Description

Defaults

Command Modes

Command History

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(19) \mathrm{EW}$	Support for storm control.
$12.2(18) \mathrm{EW}$	Support for the display of total suppression discards.

Usage Guidelines

Examples

all	(Optional) Displays all the interface counters including errors, trunk, and detail.
detail	(Optional) Displays the detailed interface counters.
errors	(Optional) Displays the interface error counters.
storm-control	(Optional) Displays the number of packets discarded due to suppression on the interface.
trunk	(Optional) Displays the interface trunk counters.
module mod	(Optional) Limits the display to interfaces on a specific module.

This command has no default settings.

Privileged EXEC mode
(18)EW Support for the display of total suppression discards.

If you do not enter any keywords, all the counters for all modules are displayed. The display for the storm-control keyword includes the suppressed multicast bytes.

This example shows how to display the error counters for a specific module:

This example shows how to display the traffic that is seen by a specific module:

This example shows how to display the trunk counters for a specific module:

Switch\# show interfaces counters trunk module 1			
	TrunkFramesTx	TrunkFramesRx	WrongEncap
Port	0	0	0
Gil/1	0	0	0
Gi1/2			

This example shows how to display the number of packets that are discarded due to suppression:

```
Switch# show interfaces counters storm-control
Multicast Suppression : Enabled
Port BcastSuppLevel TotalSuppressionDiscards
Fa5/35 10.00% 6278550
Switch#
```

	Command	Description
Rhow interfaces capabilities	Displays the interface capabilities for an interface or for all the interfaces on a switch.	

show interfaces description

To display a description and status of an interface, use the show interfaces description command.
show interfaces [interface] description

Syntax Description	interface (Optional) Type of interface.
Defaults	This command has no default settings.
Command Modes	Privileged EXEC mode
Command History	Release Modification
	12.1(8a)EW Support for this command was introduced on the Catalyst 4500 series switch.
Examples	This example shows how to display information for all interfaces:
Related Commands	Command Description
	description (refer to Cisco IOS Includes a specific description about the digital signal documentation) processor (DSP) interface.

show interfaces link

To display how long a cable has been disconnected from an interface, use the show interfaces link command:
show interfaces link [module mod_num]
Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

If the interface state is up, the command displays 0:00. If the interface state is down, the time (in hours, minutes, and seconds) is displayed.

Examples

Switch\# show interfaces link	
Port Name	Down Time
Gi1/1	$00: 00: 00$
Gi1/2	$00: 00: 00$
Gi3/1	$00: 00: 00$
Gi3/2	$00: 00: 00$
Fa4/1	$00: 00: 00$
Fa4/2	$00: 00: 00$
Fa4/3	$00: 00: 00$
Fa4/4	$00: 00: 00$

This example shows how to display inactive link-level information:

| Switch\# show interfaces link | | |
| :--- | :--- | :--- | :--- |
| Port Name | | |
| Gi3/4 | Down Time | |
| Gi3/5 | 1 minute 28 | secs |
| Gi3/6 | 1 minute 28 | secs |
| Gi4/1 | 1 minute 28 | secs |

In this example, the cable has been disconnected from the port for 1 minute and 28 seconds.

show interfaces mtu

To display the maximum transmission unit (MTU) size of all the physical interfaces and SVIs on the switch, use the show interfaces mtu command.

show interfaces mtu [module mod]

Defaults

Command Modes EXEC

Examples

This example shows how to display the MTU size for all interfaces on module 1:

Port	Name	MTU
Gi1/1		1500
Gi1/2		1500

Command	Description	
	Enables jumbo frames on an interface by adjusting the maximum size of a packet or maximum transmission unit (MTU).	

show interfaces private-vlan mapping

To display PVLAN mapping information for VLAN SVIs, use the show interfaces private-vlan mapping command.

> show interfaces private-vlan mapping [active]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

This example shows how to display PVLAN mapping information:
Switch\# show interfaces private-vlan mapping
Interface Secondary VLAN Type
--------- -------------- --------------------
vlan2 301 isolated
vlan2 302 isolated
Switch\#

Command	Description
private-vlan	Configures private VLANs and the association between a
	private VLAN and a secondary VLAN.
private-vlan mapping	Creates a mapping between the primary and the secondary
	VLANs so that both share the same primary VLAN SVI.

show interfaces status

To display the interface status or a list of interfaces in error-disabled state, use the show interfaces status command.

```
show interfaces status [err-disabled | inactive ] [module {module}]
```


Syntax Description

Defaults

Command Modes
Privileged EXEC mode

Command History

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(40)$ SG	Support for WS-X4606-10GE-E Twin Gigabit convertor introduced.
$12.2(52)$ SG	Support for per-VLAN error-disable was introduced by adding Err-Disabled VLAN column to output.

Usage Guidelines

When at least one VLAN on a port is error-disabled the output for the show interfaces status command will display vl-err-dis in the VLAN column.

Examples

This example shows how to display the status of all interfaces:

Switch\# show interfaces status					
Port	Name	Status	Vlan	Duplex Speed Type	
Te1/1		connected	1	full	10G
Te1/2		connected	vl-err-dis full	10G	10GBase-LR

Switch\#
This example shows how to display the status of interfaces in an error-disabled state:

Port	Name	Status	Reason	Err-Disabled VLANs
Fa9/4		notconnect	link-flap	
Fa9/5		err-disabled	psecure_violation	3-5
Fa9/6		connected	psecure_violation	10,15

This example shows how to display the Gigabit Ethernet interfaces on a WS-X4606-10GE-E switch using the TwinGig Convertor:

```
Switch# show interfaces status module 1
Port Name Status Vlan Duplex Speed Type
Te1/1 inactive 1 full 10G No X2
Te1/2 inactive 1 full 10G No X2
Te1/3 inactive 1 full 10G No X2
Te1/4 notconnect 1 full 10G No X2
Te1/5 notconnect 1 full 10G No X2
Te1/6 notconnect 1 full 10G No X2
Gi1/7 notconnect 1 full 1000 No Gbic
Gi1/8 notconnect 1 full 1000 No Gbic
Gi1/9 notconnect 1 full 1000 No Gbic
Gi1/10 notconnect 1 full 1000 No Gbic
Gi1/11 notconnect 1 full 1000 No Gbic
Gil/12 notconnect 1 full 1000 No Gbic
Gi1/13 inactive 1 full 1000 No Gbic
Gil/14 inactive 1 full 1000 No Gbic
Gil/15 inactive 1 full 1000 No Gbic
Gil/16 inactive 1 full 1000 No Gbic
Gil/17 inactive 1 full 1000 No Gbic
Gi1/18 inactive 1 full 1000 No Gbic
Switch#
```

Related Commands	Command	Description
	errdisable detect	Enables error-disable detection.
	Selects either Gigabit Ethernet or Ten Gigabit Ethernet interfaces on your module.	
	show errdisable recovery	Displays error-disable recovery timer information.

show interfaces switchport

To display the administrative and operational status of a switching (nonrouting) port, use the show interfaces switchport command.
show interfaces [interface-id] switchport [module mod]

Syntax Description

Defaults

Command Modes

Command History

interface-id	(Optional) Interface ID for the physical port.
module $m o d$	(Optional) Limits the display to interfaces on the specified module; valid values are from 1 to 6.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 a) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(19) \mathrm{EW}$	Support for per-interface display.
$12.2(18) \mathrm{EW}$	Support for displaying the status of native VLAN tagging in the command output.
3.1 .1 SG	Support for PVLAN modes over EtherChannel. Modes include: private-vlan host, private-vlan promiscuous, private-vlan trunk secondary, and private-vlan trunk promiscuous.

Examples

This example shows how to display switch-port information using the begin output modifier:

```
Switch# show interfaces switchport | include vLAN
Name: Fa5/6
Access Mode VLAN: 200 (VLANO200)
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: ALL
Switch#
```

This example shows how to display switch-port information for module 1:

```
Switch# show interfaces switchport module 1
Name:Gi1/1
Switchport:Enabled
Administrative Mode:dynamic auto
Operational Mode:down
Administrative Trunking Encapsulation:negotiate
Negotiation of Trunking:On
Access Mode VLAN:1 (default)
Trunking Native Mode VLAN:1 (default)
Administrative private-vlan host-association:none
Administrative private-vlan mapping:none
Operational private-vlan:none
Trunking VLANs Enabled:ALL
```

Pruning VLANs Enabled:2-1001

```
Name:Gi1/2
Switchport:Enabled
Administrative Mode:dynamic auto
Operational Mode:down
Administrative Trunking Encapsulation:negotiate
Negotiation of Trunking:On
Access Mode VLAN:1 (default)
Trunking Native Mode VLAN:1 (default)
Administrative private-vlan host-association:none
Administrative private-vlan mapping:none
Operational private-vlan:none
Trunking VLANs Enabled:ALL
Pruning VLANs Enabled:2-1001
Switch#
```

This example shows how to display the status of native VLAN tagging on the port:

```
Switch# show interfaces f3/1 switchport
show interface f3/1 switchport
Name: Fa3/1
Switchport: Enabled
Administrative Mode: private-vlan promiscuous
Operational Mode: private-vlan trunk secondary
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: 1
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: 1
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings:
    10 (VLANO010) 100 (VLAN0100)
Operational private-vlan:
    10 (VLAN0010) 100 (VLAN0100)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
Switch#
```

$\overline{\text { Related Commands }}$	Command Description show interfaces capabilities	Displays the interface capabilities for an interface or for all the interfaces on a switch.
	show interfaces counters	Displays the traffic on the physical interface.

show interfaces transceiver

To display diagnostic-monitoring data for all interfaces that have transceivers installed, use the show interfaces transceiver command.
show interfaces $\{\{[$ int_name $]$ transceiver $\{[$ detail $]\} \mid\{$ transceiver [module mod] | detail [module $\bmod]\}\}$

Syntax Description

int_name	(Optional) Interface.
detail	(Optional) Displays the calibrated values and the A2D readouts if the readout values differ from the calibrated values. Also displays the high-alarm, high-warning, low-warning, and low-alarm thresholds.
module mod	(Optional) Limits the display to interfaces on a specific module.

Defaults

Command Modes

Command History

Release	Modification
$12.1(20) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(18) \mathrm{EW}$	Support for the calibration keyword was withdrawn.

Usage Guidelines
The show interfaces transceiver command provides useful information under the following conditions:

- At least one transceiver is installed on a chassis that is configured for diagnostic monitoring.
- The transceiver is in a module that supports diagnostic monitoring.

If you notice that the alarm and warning flags have been set on a transceiver, reenter the command to confirm.

Examples

This example shows how to display diagnostic monitoring data for all interfaces with transceivers installed on the switch:

Note The value for the Optical Tx Power (in dBm) equals ten times \log (Tx Power in mW). If the Tx Power value is 3 mW , then the Optical Tx Power value equals $10 * \log (3)$, which equals $10 *$.477 or 4.77 dBm . The Optical Rx Power value behaves similarly. If the Tx Power or the Rx Power is zero, then its dBm value is undefined and is shown as N/A (not applicable).

This example shows how to display detailed diagnostic monitoring data, including calibrated values, alarm and warning thresholds, A2D readouts, and alarm and warning flags. The A2D readouts are reported separately in parentheses only if they differ from the calibrated values:

$\mathrm{mA}:$ milliamperes, $d B m:$ decibels (milliwatts), NA or N/A: not applica ++ : high alarm, + : high warning, - : low warning, -- : low alarm A2D readouts (if they differ), are reported in parentheses. The threshold values are calibrated.						
Port	Temperature (Celsius)		High Alarm Threshold (Celsius)	High Warn Threshold (Celsius)	Low Warn Threshold (Celsius)	Low Alarm Threshold (Celsius)
Gi1/1	48.1		100.0	100.0	0.0	0.0
Gi1/2	34.9		100.0	100.0	0.0	0.0
Gi2/1	43.5		70.0	60.0	5.0	0.0
Gi2/2	39.1		70.0	60.0	5.0	0.0
Port	Voltage (Volts)		High Alarm Threshold (Volts)	High Warn Threshold (Volts)	Low Warn Threshold (Volts)	Low Alarm Threshold (Volts)
Gi1/1	3.30		6.50	6.50	N/A	N/A
Gi1/2	3.30		6.50	6.50	N/A	N/A
Gi2/1	5.03		5.50	5.25	4.75	4.50
Gi2/2	5.02		5.50	5.25	4.75	4.50
Port	Current (milliamperes)		High Alarm Threshold (mA)	High Warn Threshold (mA)	Low Warn Threshold (mA)	Low Alarm Threshold (mA)
Gi1/1	0.0		130.0	130.0	N/A	N/A
Gi1/2	1.7		130.0	130.0	N/A	N/A
Gi2/1	$50.6+$	+	60.0	40.0	10.0	5.0
Gi2/2	25.8		60.0	40.0	10.0	5.0

Port	Optical Transmit Power (dBm)	High Alarm Threshold (dBm)	High Warn Threshold (dBm)	Low Warn Threshold (dBm)	Low Alarm Threshold (dBm)
Gi1/1	8.1 ++	8.1	8.1	N/A	N/A
Gi1/2	-9.8	8.1	8.1	N/A	N/A
Gi2/1	-16.7 (-13.0) --	3.4	3.2	-0.3	-0.5
Gi2/2	0.8 (5.1)	3.4	3.2	-0.3	-0.5
Port	Optical Receive Power (dBm)	High Alarm Threshold (dBm)	High Warn Threshold (dBm)	Low Warn Threshold (dBm)	Low Alarm Threshold (dBm)
Gi1/1	N/A	8.1	8.1	N/A	N/A
Gi1/2	-30.9	8.1	8.1	N/A	N/A
Gi2/1	N/A (-28.5)	5.9	-6.7	-28.5	-28.5
Gi2/2	N/A (-19.5)	5.9	-6.7	-28.5	-28.5

This example shows how to display the monitoring data for the interfaces that have transceivers installed on module 2 :

```
Switch# show interfaces transceiver module 2
    If device is externally calibrated, only calibrated values are printed.
    ++ : high alarm, + : high warning, - : low warning, -- : low alarm.
    NA or N/A: not applicable, Tx: transmit, Rx: receive.
    mA: milliamperes, dBm: decibels (milliwatts).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Port & Temperature (Celsius) & Voltage (Volts) & Current
\[
(m A)
\] & \begin{tabular}{l}
Optical \\
Tx Power (dBm)
\end{tabular} & \begin{tabular}{l}
Optical \\
Rx Power ( dBm )
\end{tabular} \\
\hline Gi2/1 & 43.7 & 5.03 & \(50.6+\) & -16.7 & N/A \\
\hline Gi2/2 & 39.2 & 5.02 & 25.7 & 0.8 & N/A \\
\hline
\end{tabular}
Switch#
```

This example shows how to display the detailed monitoring data for the interfaces that have transceivers installed on module 2 :

mA : milliamperes, $\mathrm{dBm}:$ decibels (milliwatts), NA or N/A: not applicabl ++ : high alarm, + : high warning, - : low warning, -- : low alarm. A2D readouts (if they differ), are reported in parentheses. The threshold values are calibrated.					
Port	Temperature (Celsius)	High Alarm Threshold (Celsius)	High Warn Threshold (Celsius)	Low Warn Threshold (Celsius)	Low Alarm Threshold (Celsius)
Gi2/1	43.5	70.0	60.0	5.0	0.0
Gi2/2	39.1	70.0	60.0	5.0	0.0
Port	Voltage (Volts)	High Alarm Threshold (Volts)	High Warn Threshold (Volts)	Low Warn Threshold (Volts)	Low Alarm Threshold (Volts)
Gi2/1	5.03	5.50	5.25	4.75	4.50
Gi2/2	5.02	5.50	5.25	4.75	4.50

This example shows how to display the monitoring data for the transceivers on interface Gi1/2:

```
Switch# show interfaces g1/2 transceiver
    ITU Channel 23 (1558.98 nm),
    Transceiver is externally calibrated.
    If device is externally calibrated, only calibrated values are printed.
    ++ : high alarm, + : high warning, - : low warning, -- : low alarm.
    NA or N/A: not applicable, Tx: transmit, Rx: receive.
    mA: milliamperes, dBm: decibels (milliwatts).
\begin{tabular}{llllll} 
& & & & & \\
& Temperature & Optical & Optical \\
Port & (Celsius) & (Volts) & Current & Tx Power & Rx Power
\end{tabular}
Switch#
```

This example shows how to display detailed the monitoring data for the transceivers on interface Gi1/2:

	Command	Description
	show idprom	Displays the IDPROMs for the chassis.
show interfaces status	Displays the interface status or a list of interfaces in error-disabled state.	

show interfaces trunk

To display port and module interface-trunk information, use the show interfaces trunk command.
show interfaces trunk [module mod]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Port	Mode	Encapsulation	Status	Native vlan
Fa5/1	routed	negotiate	routed	1
Fa5/2	routed	negotiate	routed	1
Fa5/3	routed	negotiate	routed	1
Fa5/4	routed	negotiate	routed	1
Fa5/5	routed	negotiate	routed	1
Fa5/6	off	negotiate	not-trunking	10
Fa5/7	off	negotiate	not-trunking	10
Fa5/8	off	negotiate	not-trunking	1
Fa5/9	desirable	n-isl	trunking	1
Fa5/10	desirable	negotiate	not-trunking	1
Fa5/11	routed	negotiate	routed	1
Fa5/12	routed	negotiate	routed	1
Fa5/48	routed	negotiate	routed	1
Port	Vlans allo	d on trunk		
Fa5/1	none			
Fa5/2	none			
Fa5/3	none			
Fa5/4	none			
Fa5/5	none			
Fa5/6	none			
Fa5/7	none			
Fa5/8	200			
Fa5/9	1-1005			

Fa5/10	none
Fa5/11	none
Fa5/12	none
Fa5/48	none
Port	Vlans allowed and active in management domain
Fa5/1	none
Fa5/2	none
Fa5/3	none
Fa5/4	none
Fa5/5	none
Fa5/6	none
Fa5/7	none
Fa5/8	200
Fa5/9	$1-6,10,20,50,100,152,200,300,303-305,349-351,400,500,521,524,570,801-8$
02, 850, 917, 999,1002-1005	
Fa5/10	none
Fa5/11	none
Fa5/12	none
Fa5/48	none
Port	Vlans in spanning tree forwarding state and not pruned
Fa5/1	none
Fa5/2	none
Fa5/3	none
Fa5/4	none
Fa5/5	none
Fa5/6	none
Fa5/7	none
Fa5/8	200
Fa5/9	$1-6,10,20,50,100,152,200,300,303-305,349-351,400,500,521,524,570,801-8$
02,850, 917,999,1002-1005	
Fa5/10	none
Fa5/11	none
Fa5/48	none
Switch\#	

This example shows how to display trunking information for active trunking ports:

show ip arp inspection

To show the status of dynamic ARP inspection for a specific range of VLANs, use the show ip arp inspection command.
show ip arp inspection \{[statistics] vlan vlan-range | interfaces [interface-name]\}

Syntax Description

Defaults

Command Modes

Command History

Examples

statistics	(Optional) Displays statistics for the following types of packets that have been processed by this feature: forwarded, dropped, MAC validation failure, and IP validation failure.
vlan vlan-range	(Optional) When used with the statistics keyword, displays the statistics for the selected range of VLANs. Without the statistics keyword, displays the configuration and operating state of DAI for the selected range of VLANs.
interfaces interface-name	(Optional) Displays the trust state and the rate limit of ARP packets for the provided interface. When the interface name is not specified, the command displays the trust state and rate limit for all applicable interfaces in the system.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

This example shows how to display the statistics of packets that have been processed by DAI for VLAN 3:
Switch\# show ip arp inspection statistics vlan 3
Vlan
Forwarded

This example shows how to display the statistics of packets that have been processed by DAI for all active VLANs:

This example shows how to display the configuration and operating state of DAI for VLAN 1:

This example shows how to display the trust state of Fast Ethernet interface 6/1:

This example shows how to display the trust state of the interfaces on the switch:

Switch\# show ip arp inspection	interfaces	
Interface	Trust State	Rate (pps)
----------------------------	- -----	15
Gi1/1	Untrusted	15
Gi1/2	Untrusted	15
Gi3/1	Untrusted	15
Gi3/2	Untrusted	None
Fa3/3	Trusted	15
Fa3/4	Untrusted	15
Fa3/5	Untrusted	15
Fa3/6	Untrusted	15
Fa3/7	Untrusted	
Switch\#		

Related Commands	Command	Description
arp access-list	Defines an ARP access list or adds clauses at the end of a predefined list.	
	clear ip arp inspection \log Clears the status of the log buffer. show ip arp inspection \log	Displays the status of the log buffer.

show ip arp inspection log

To show the status of the log buffer, use the show ip arp inspection log command.

show ip arp inspection log

Syntax Description

Defaults

Command Modes

Command History

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Examples

This example shows how to display the current contents of the log buffer before and after the buffers are
cleared:

```
Switch# show ip arp inspection log
Total Log Buffer Size : 10
Syslog rate : 0 entries per 10 seconds.
```

Interface	Vlan	Sender MAC	Sender IP	Num of Pkts		
Fa6/3	1	0002.0002 .0002	1.1.1.2	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.3	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.4	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.5	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.6	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.7	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.8	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.9	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.10	1(12:02:52	UTC Fri Apr 25	2003)
Fa6/3	1	0002.0002 .0002	1.1.1.11	1(12:02:52	UTC Fri Apr 25	2003)
--		--	--	5 12:02:52	UTC Fri Apr 25	2003)
Switch\#						

This example shows how to clear the buffer with the clear ip arp inspection log command:

```
Switch# clear ip arp inspection log
Switch# show ip arp inspection log
Total Log Buffer Size : 10
Syslog rate : 0 entries per 10 seconds.
No entries in log buffer.
Switch#
```

Related Commands	Command	Description
arp access-list	Defines an ARP access list or adds clauses at the end of a predefined list.	
	clear ip arp inspection \log	Clears the status of the log buffer.

show ip cef vlan

To view IP CEF VLAN interface status and configuration information and display the prefixes for a specific interface, use the show ip cef vlan command.
show ip cef vlan vlan_num [detail]
Syntax Description

vlan_num	Number of the VLAN.
detail	(Optional) Displays detailed information.

Defaults

Command Modes

Privileged EXEC mode

Command History

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Examples

This example shows how to display the prefixes for a specific VLAN:

Switch\# show ip cef vlan $\mathbf{1 0 0 3}$ Prefix	Next Hop	Interface
$0.0 .0 .0 / 0$	172.20 .52 .1	FastEthernet3/3
$0.0 .0 .0 / 32$	receive	
$10.7 .0 .0 / 16$	172.20 .52 .1	FastEthernet3/3
$10.16 .18 .0 / 23$	172.20 .52 .1	FastEthernet3/3
Switch\#		

This example shows how to display detailed IP CEF information for a specific VLAN:

```
Switch# show ip cef vlan 1003 detail
IP Distributed CEF with switching (Table Version 2364), flags=0x0
    1383 routes, O reresolve, 0 unresolved (0 old, 0 new)
    1 3 8 3 \text { leaves, } 2 0 1 \text { nodes, } 3 8 0 5 3 2 \text { bytes, 2372 inserts, } 9 8 9 \text { invalidations}
    0 load sharing elements, 0 bytes, 0 references
    universal per-destination load sharing algorithm, id 9B6C9823
    3 CEF resets, 0 revisions of existing leaves
    refcounts: }54276\mathrm{ leaf, }51712\mathrm{ node
Adjacency Table has 5 adjacencies
Switch#
```


show ip dhcp snooping

To display the DHCP snooping configuration, use the show ip dhep snooping command.

show ip dhcp snooping

Syntax Description

Defaults

Command Modes

Command History

Examples

Related Commands

This example shows how to display the DHCP snooping configuration:

```
Switch# show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
500,555
DHCP snooping is operational on following VLANs:
500,555
DHCP snooping is configured on the following L3 Interfaces:
Insertion of option 82 is enabled
circuit-id default format: vlan-mod-port
remote-id: switch123 (string)
Option 82 on untrusted port is not allowed Verification of hwaddr field is enabled DHCP
snooping trust/rate is configured on the following Interfaces:
Interface Trusted Rate limit (pps)
------------------- ---------------------------
FastEthernet5/1 yes 100
Custom circuit-ids:
VLAN 555: customer-555
FastEthernet2/1 no unlimited
Custom circuit-ids:
VLAN 500: customer-500
Switch#
```

Command	Description
ip dhcp snooping	Globally enables DHCP snooping.
ip dhcp snooping information option	Enables DHCP option 82 data insertion.
ip dhcp snooping limit rate	Configures the number of the DHCP messages that an interface can receive per second.

Command	Description
ip dhcp snooping trust	Enables DHCP snooping on a trusted VLAN.
ip dhcp snooping vlan	Enables DHCP snooping on a VLAN or a group of VLANs.

show ip dhep snooping binding

To display the DHCP snooping binding entries, use the show ip dhep snooping binding command.
show ip dhep snooping binding [ip-address] [mac-address] [vlan vlan_num]
[interface interface_num]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

ip-address	(Optional) IP address for the binding entries.
mac-address	(Optional) MAC address for the binding entries.
vlan vlan_num	(Optional) Specifies a VLAN.
interface interface_num	(Optional) Specifies an interface.

If no argument is specified, the switch will display the entire DHCP snooping binding table.

Privileged EXEC mode

Switch\#
DHCP snooping is enabled on a VLAN only if both the global snooping and the VLAN snooping are enabled.

To configure a range of VLANs, use the optional last_vlan argument to specify the end of the VLAN range.

This example shows how to display the DHCP snooping binding entries for a switch:

This example shows how to display an IP address for DHCP snooping binding entries:

MacAddress	IP Address	Lease (seconds)	Type	VLAN	Interface
0000.0100 .0201	172.100.101.102	1600	dhcp-snooping	100	FastEthernet3/1
Switch\#					

This example shows how to display the MAC address for the DHCP snooping binding entries:

	MacAddress	IpAddress	Lease (sec)	Type	VLAN	Interface
	00:02:B3:3F:3D: 5F	55.5.5.2	492	dhcp-snooping	99	astEthernet6/36
	Switch\#					

This example shows how to display the DHCP snooping binding entries' MAC address for a specific VLAN:

This example shows how to display the dynamic DHCP snooping binding entries:

Switch\# show ip dhep snooping binding dynamic					
MacAddress	IP Address	Lease (seconds)	Type	VLAN	Interface
0000.0100 .0201	10.0.0.1	1600	dhcp-snooping	100	FastEthernet3/1

Switch\#
This example shows how to display the DHCP snooping binding entries on VLAN 100:

This example shows how to display the DHCP snooping binding entries on Ethernet interface $0 / 1$:
Switch\# show ip dhcp snooping binding interface fastethernet3/1

MacAddress	IP Address	Lease (seconds)	Type	VLAN	Interface
0000.0100 .0201	10.0.0.1	1600	dhcp-snooping	100	FastEthernet3/1

Switch\#
Table 2-20 describes the fields in the show ip dhep snooping command output.
Table 2-20 show ip dhcp snooping Command Output

Field	Description
Mac Address	Client hardware MAC address.
IP Address	Client IP address assigned from the DHCP server.
Lease (seconds)	IP address lease time.
Type	Binding type; statically configured from CLI or dynamically learned.
VLAN	VLAN number of the client interface.
Interface	Interface that connects to the DHCP client host.

Related Commands	Command	Description
ip dhcp snooping information option	Enables DHCP option 82 data insertion.	
ip dhcp snooping limit rate	Configures the number of the DHCP messages that an interface can receive per second.	
	ip dhcp snooping trust Enables DHCP snooping on a trusted VLAN. ip dhcp snooping vlan Enables DHCP snooping on a VLAN or a group of VLANs. ip igmp snooping Enables IGMP snooping. ip igmp snooping vlan	Enables IGMP snooping for a VLAN.

show ip dhep snooping database

To display the status of the DHCP snooping database agent, use the show ip dhcp snooping database command.

show ip dhep snooping database [detail]

$\overline{\text { Syntax Description } \quad \text { detail (Optional) Provides additional operating state and statistics information. }}$

Defaults
 This command has no default settings.

Command Modes Privileged EXEC mode

Command History

Release	Modification
$12.1(12 \mathrm{c}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(19) \mathrm{EW}$	Added support of state and statistics information.

Examples
This example shows how to display the DHCP snooping database:

```
Switch# show ip dhcp snooping database
Agent URL :
Write delay Timer : 300 seconds
Abort Timer : 300 seconds
Agent Running : No
Delay Timer Expiry : Not Running
Abort Timer Expiry : Not Running
Last Succeded Time : None
Last Failed Time : None
Last Failed Reason : No failure recorded.
Total Attempts : 0 Startup Failures : 0
Successful Transfers : 0 Failed Transfers : 0
Successful Reads : 0 Failed Reads : 0
Successful Writes : 0 Failed Writes : 0
Media Failures : 0
```

Switch\#

This example shows how to view additional operating statistics:

Related Commands	Command ip dhcp snooping	Description
ip dhcp snooping database	Globally enables DHCP snooping.	
ip dhcp snooping information option	Stores the bindings that are generated by DHCP snooping.	
ip dhcp snooping limit rate	Configures the number of the DHCP messages that an interface can receive per second.	
	ip dhcp snooping trust Enables DHCP snooping on a trusted VLAN. ip dhcp snooping vlan Enables DHCP snooping on a VLAN or a group of VLANs.	

show ip igmp interface

To view IP IGMP interface status and configuration information, use the show ip igmp interface command.
show ip igmp interface [fastethernet slot/port | gigabitethernet slot/port | tengigabitethernet slot/port \mid null interface-number \mid vlan $\left.v l a n _i d\right]$
$\overline{\text { Syntax Description }}$
\(\left.$$
\begin{array}{ll}\hline \begin{array}{l}\text { fastethernet } \\
\text { slot/port }\end{array} & \begin{array}{l}\text { (Optional) Specifies the Fast Ethernet interface and the number of the slot and } \\
\text { port. }\end{array} \\
\hline \begin{array}{l}\text { gigabitethernet } \\
\text { slot/port }\end{array} & \begin{array}{l}\text { (Optional) Specifies the Gigabit Ethernet interface and the number of the slot } \\
\text { and port; valid values are from 1 to } 9 .\end{array} \\
\hline \text { tengigabitethernet } \\
\text { slot/port }\end{array}
$$ \begin{array}{l}(Optional) Specifies the 10-Gigabit Ethernet interface and the number of the

slot and port; valid values are from 1 to 2.\end{array}\right]\)| (Optional) Specifies the null interface and the number of the interface; the only |
| :--- |
| null |
| interface-number |
| valid value is $\mathbf{0}$. |

Defaults

Command Modes
Privileged EXEC mode

Command History

Usage Guidelines
If you omit the optional arguments, the show ip igmp interface command displays information about all interfaces.

Examples

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Added support for extended VLAN addresses.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

```
Switch# show ip igmp interface vlan 200
IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP-ONLY mode on this VLAN
Switch#
```

Related Commands	Command	Description
clear ip igmp group	Deletes the IGMP group cache entries.	
show ip igmp snooping mrouter	Displays information on the dynamically learned and manually configured multicast switch interfaces.	

show ip igmp profile

To view all configured IGMP profiles or a specified IGMP profile, use the show ip igmp profile privileged EXEC command.
show ip igmp profile [profile number]

Syntax Description

Defaults

Command Modes

Command History
profile number (Optional) IGMP profile number to be displayed; valid ranges are from 1 to 4294967295.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(11 \mathrm{~b}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

If no profile number is entered, all IGMP profiles are displayed.

This example shows how to display IGMP profile 40:

```
Switch# show ip igmp profile 40
IGMP Profile 40
    permit
    range 233.1.1.1 233.255.255.255
Switch#
```

This example shows how to display all IGMP profiles:

```
Switch# show ip igmp profile
IGMP Profile 3
    range 230.9.9.0 230.9.9.0
IGMP Profile 4
    permit
    range 229.9.9.0 229.255.255.255
Switch#
```

$\overline{\text { Related Commands }}$

Command	Description
ip igmp profile	Creates an IGMP profile.

show ip igmp snooping

To display information on dynamically learned and manually configured VLAN switch interfaces, use the show ip igmp snooping command.
show ip igmp snooping [querier | groups | mrouter] [vlan vlan_id] a.b.c.d [summary | sources | hosts] [count]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

querier	(Optional) Specifies that the display will contain IP address and version information.
groups	(Optional) Specifies that the display will list VLAN members sorted by group IP addresses.
mrouter	(Optional) Specifies that the display will contain information on dynamically learned and manually configured multicast switch interfaces.
vlan vlan_id	(Optional) Specifies a VLAN; valid values are from 1 to 1001 and from 1006 to 4094.
a.b.c.d	Group or multicast IP address.
summary	(Optional) Specifies a display of detailed information for a v2 or v3 group.
sources	(Optional) Specifies a list of the source IPs for the specified group.
hosts	(Optional) Specifies a list of the host IPs for the specified group.
count	(Optional) Specifies a display of the total number of group addresses learned by the system on a global or per-VLAN basis.

This command has no default settings.

EXEC

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(19) \mathrm{EW}$	Support for extended addressing was added.
$12.1(20) \mathrm{EW}$	Added support to display configuration state for IGMPv3 explicit host tracking.

You can also use the show mac-address-table multicast command to display the entries in the MAC address table for a VLAN that has IGMP snooping enabled.

You can display IGMP snooping information for VLAN interfaces by entering the show ip igmp snooping command.

Examples
This example shows how to display the global snooping information on the switch:

```
Switch# show ip igmp snooping
Global IGMP Snooping configuration:
------------------------------------
IGMP snooping : Enabled
IGMPv3 snooping : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Vlan 1:
--------
IGMP snooping : Enabled
IGMPv2 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Vlan 2:
-----
IGMP snooping : Enabled
IGMPv2 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Switch>
```

This example shows how to display the snooping information on VLAN 2:

```
Switch# show ip igmp snooping vlan 2
Global IGMP Snooping configuration:
IGMP snooping : Enabled
IGMPv3 snooping : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Vlan 2:
--------
IGMP snooping : Enabled
IGMPv2 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
CGMP interoperability mode : IGMP_ONLY
Switch>
```

This example shows how to display IGMP querier information for all VLANs on a switch:

This example shows how to display IGMP querier information for VLAN 5 when running IGMPv2:

Switch\# show ip igmp snooping querier vlan 5	
IP address	$: 5.5 .5 .10$
IGMP version	$: v 2$
Port	$: F a 3 / 1$
Max response time	$: 10 s$
Switch>	

This example shows how to display IGMP querier information for VLAN 5 when running IGMPv3:

Switch\# show ip igmp snooping querier vlan 5	
IP address	$: 5.5 .5 .10$
IGMP version	$: v 3$
Port	$: F a 3 / 1$
Max response time	$: 10 s$
Query interval	$: 60 \mathrm{~s}$
Robustness variable	$: 2$
Switch>	

This example shows how to display snooping information for a specific group:

This example shows how to display the group's host types and ports in VLAN 1:

This example shows how to display the group's host types and ports in VLAN 1:

This example shows how to display the current state of a group with respect to a source IP address:

```
Switch# show ip igmp snooping group vlan 10 226.6.6.7 sources
Source information for group 226.6.6.7:
Timers: Expired sources are deleted on next IGMP General Query
\begin{tabular}{lllll} 
SourceIP & Expires & Uptime & Inc Hosts Exc Hosts \\
--0.0 & \(00: 03: 04\) & \(00: 03: 48\) & 2 & 0 \\
2.0 .0 .1 & \(00: 03: 04\) & \(00: 02: 07\) & 2 & 0
\end{tabular}
Switch>
```

This example shows how to display the current state of a group with respect to a host MAC address:

This example shows how to display summary information for a v3 group:

```
Switch# show ip igmp snooping group vlan 10 226.6.6.7 summary
Group Address (Vlan 10) : 226.6.6.7
Host type : v3
Member Ports : Fa7/13, Fa7/14
Filter mode : INCLUDE
Expires : stopped
Sources : 2
Reporters (Include/Exclude) : 2/0
Switch>
```

This example shows how to display multicast router information for VLAN 1:

```
Switch# show ip igmp snooping mrouter vlan 1
vlan ports
-----+----------------------------------------------
    1 Gi1/1,Gi2/1,Fa3/48,Router
Switch#
```

This example shows how to display the total number of group addresses learned by the system globally:

```
Switch# show ip igmp snooping group count
Total number of groups: 54
Switch>
```

This example shows how to display the total number of group addresses learned on VLAN 5:

```
Switch# show ip igmp snooping group vlan 5 count
Total number of groups: 30
Switch>
```

Related Commands

Command	Description
ip igmp snooping	Enable IGMP snooping.
ip igmp snooping vlan immediate-leave	Enable IGMP immediate-leave processing.
ip igmp snooping vlan mrouter	Configures a Layer 2 interface as a multicast router interface for a VLAN.
ip igmp snooping vlan static	Configures a Layer 2 interface as a member of a group.
show ip igmp interface	Displays the information about the IGMP-interface status and configuration.
show ip igmp snooping mrouter	Displays information on the dynamically learned and manually configured multicast switch interfaces.
show mac-address-table multicast	Displays information about the multicast MAC address table.

show ip igmp snooping membership

To display host membership information, use the show ip igmp snooping membership command.
show ip igmp snooping membership [interface interface_num] [vlan vlan_id]
[reporter a.b.c.d] [source a.b.c.d group a.b.c.d]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

interface interface_num	(Optional) Displays IP address and version information of an interface.
vlan vlan_id	(Optional) Displays VLAN members sorted by group IP address of a
	VLAN; valid values are from 1 to 1001 and from 1006 to 4094.
reporter a.b.c.d	(Optional) Displays membership information for a specified reporter.
source a.b.c.d	(Optional) Specifies a reporter, source, or group IP address.
group a.b.c.d	(Optional) Displays all members of a channel (source, group), sorted by interface or VLAN.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(20) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

This command is valid only if explicit host tracking is enabled on the switch.

This example shows how to display host membership for the Gigabit Ethernet interface 4/1:

```
Switch# show ip igmp snooping membership interface gigabitethernet4/1
#channels: 5
#hosts : 1
Source/Group Interface Reporter Uptime Last-Join Last-Leave
40.40.40.2/224.10.10.10 Gi4/1 20.20.20.20 00:23:37 00:06:50 00:20:30
40.40.40.4/224.10.10.10Gi4/1 20.20.20.20 00:39:42 00:09:17 -
Switch#
```

This example shows how to display host membership for VLAN 20 and group 224.10.10.10:

```
Switch# show ip igmp snooping membership vlan 20 source 40.40.40.2 group 224.10.10.10
#channels: 5
#hosts : 1
Source/Group Interface Reporter Uptime Last-Join Last-Leave
40.40.40.2/224.10.10.10 Gi4/1 20.20.20.20 00:23:37 00:06:50 00:20:30
Switch#
```

This example shows how to display host membership information for VLAN 20 and to delete the explicit host tracking:

```
Switch# show ip igmp snooping membership vlan 20
Snooping Membership Summary for Vlan 20
--------------------------------------------
Total number of channels:5
Total number of hosts :4
Source/Group Interface Reporter Uptime Last-Join/
40.0.0.1/224.1.1.1 Fa7/37 0002.4ba0.a4f6 00:00:04 00:00:04 /
40.0.0.2/224.1.1.1 Fa7/37 0002.fd80.f770 00:00:17 00:00:17 /
40.0.0.3/224.1.1.1 Fa7/36 20.20.20.20 00:00:04 00:00:04
40.0.0.4/224.1.1.1 Fa7/35 20.20.20.210 00:00:17 00:00:17 /
40.0.0.5/224.1.1.1 Fa7/37 0002.fd80.f770 00:00:17 00:00:17 /
Switch# clear ip igmp snooping membership vlan 20
Switch#
```

Related Commands	Command Description clear ip igmp snooping membership Clears the explicit host tracking database. ip igmp snooping vlan explicit-tracking	Enables per-VLAN explicit host tracking.
	show ip igmp snooping	Displays information on dynamically learned and manually configured VLAN switch interfaces.

show ip igmp snooping mrouter

To display information on the dynamically learned and manually configured multicast switch interfaces, use the show ip igmp snooping mrouter command.
show ip igmp snooping mrouter [\{van vlan-id $\}$]

Syntax Description

$\overline{\text { Defaults }}$

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

vlan vlan-id (Optional) Specifies a VLAN; valid values are from 1 to 1001 and from 1006 to 4094.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(19) \mathrm{EW}$	Added support for extended VLAN addresses.

You can also use the show mac-address-table multicast command to display entries in the MAC address table for a VLAN that has IGMP snooping enabled.

You can display IGMP snooping information for the VLAN interfaces by entering the show ip igmp interface vlan vlan-num command.

This example shows how to display snooping information for a specific VLAN:

```
Switch# show ip igmp snooping mrouter vlan 1
vlan ports
-----+-----------------------------------------
    1 Gi1/1,Gi2/1,Fa3/48,Switch
Switch#
```

Command	Description
ip igmp snooping vlan mrouter	Statically configures a Layer 2 interface as a multicast router interface for a VLAN.
show ip igmp interface	Displays the information about the IGMP-interface status and configuration.
show mac-address-table multicast	Displays information about the multicast MAC address table.

show ip igmp snooping vlan

To display information on the dynamically learned and manually configured VLAN switch interfaces, use the show ip igmp snooping vlan command.
show ip igmp snooping vlan vlan_num

Syntax Description	vlan_num Number of the VLAN; valid values are from 1 to 1001 and from 1006 to 4094.
Defaults	This command has no default settings.
Command Modes	Privileged EXEC mode
Command History	Release Modification
	12.1(8a)EW Support for this command was introduced on the Catalyst 4500 series switch.
	12.1(12c)EW Support for extended addressing was added.

Usage Guidelines You can also use the show mac-address-table multicast command to display the entries in the MAC address table for a VLAN that has IGMP snooping enabled.

```
Examples This example shows how to display snooping information for a specific VLAN:
Switch# show ip igmp snooping vlan 2
vlan 2
----------
IGMP snooping is globally enabled
IGMP snooping TCN solicit query is globally enabled
IGMP snooping global TCN flood query count is 2
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
Switch#
```

Related Commands	Command	Description
ip igmp snooping	Enable IGMP snooping.	
ip igmp snooping vlan immediate-leave	Enable IGMP immediate-leave processing.	
ip igmp snooping vlan mrouter	Statically configures a Layer 2 interface as a multicast router interface for a VLAN.	
	ip igmp snooping vlan static Configures a Layer 2 interface as a member of a group. show ip igmp interface Displays the information about the IGMP-interface status and configuration. show ip igmp snooping mrouter Displays information on the dynamically learned and manually configured multicast switch interfaces.	Displays information about the multicast MAC address table.

show ip interface

To display the usability status of interfaces that are configured for IP, use the show ip interface command.
show ip interface [type number]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

type	(Optional) Interface type.
number	(Optional) Interface number.

This command has no default settings.

EXEC

Release	Modification
$12.2(25)$ EW	Extended to include the 10-Gigabit Ethernet interface.

The Cisco IOS software automatically enters a directly connected route in the routing table if the interface is usable. A usable interface is one through which the software can send and receive packets. If the software determines that an interface is not usable, it removes the directly connected routing entry from the routing table. Removing the entry allows the software to use dynamic routing protocols to determine backup routes to the network, if any.

If the interface can provide two-way communication, the line protocol is marked "up." If the interface hardware is usable, the interface is marked "up."
If you specify an optional interface type, you see information only on that specific interface.
If you specify no optional arguments, you see information on all the interfaces.
When an asynchronous interface is encapsulated with PPP or Serial Line Internet Protocol (SLIP), IP fast switching is enabled. The show ip interface command on an asynchronous interface that is encapsulated with PPP or SLIP displays a message indicating that IP fast switching is enabled.

This example shows how to display the usability status for a specific VLAN:

```
Switch# show ip interface vlan 1
Vlan1 is up, line protocol is up
    Internet address is 10.6.58.4/24
    Broadcast address is 255.255.255.255
    Address determined by non-volatile memory
    MTU is 1500 bytes
    Helper address is not set
    Directed broadcast forwarding is disabled
    Outgoing access list is not set
    Inbound access list is not set
    Proxy ARP is enabled
```

```
    Local Proxy ARP is disabled
    Security level is default
    Split horizon is enabled
    ICMP redirects are always sent
    ICMP unreachables are always sent
    ICMP mask replies are never sent
    IP fast switching is enabled
    IP fast switching on the same interface is disabled
    IP Flow switching is disabled
    IP CEF switching is enabled
    IP Fast switching turbo vector
    IP Normal CEF switching turbo vector
    IP multicast fast switching is enabled
    IP multicast distributed fast switching is disabled
    IP route-cache flags are Fast, CEF
    Router Discovery is disabled
    IP output packet accounting is disabled
    IP access violation accounting is disabled
    TCP/IP header compression is disabled
    RTP/IP header compression is disabled
    Probe proxy name replies are disabled
    Policy routing is disabled
    Network address translation is disabled
    WCCP Redirect outbound is disabled
    WCCP Redirect inbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled
Sampled Netflow is disabled
IP multicast multilayer switching is disabled
Netflow Data Export (hardware) is enabled
Switch#
```

Table 2-21 describes the fields that are shown in the example.
Table 2-21 show ip interface Field Descriptions

Field	Description
Ethernet0 is up	If the interface hardware is usable, the interface is marked "up." For an interface to be usable, both the interface hardware and line protocol must be up.
line protocol is up	If the interface can provide two-way communication, the line protocol is marked "up." For an interface to be usable, both the interface hardware and line protocol must be up.
Internet address and subnet mask	IP address and subnet mask of the interface.
Broadcast address	Broadcast address.
Address determined by...	Status of how the IP address of the interface was determined.
MTU	MTU value that is set on the interface.
Helper address	Helper address, if one has been set.
Secondary address	Secondary address, if one has been set.
Directed broadcast forwarding	Status of directed broadcast forwarding.
Multicast groups joined	Multicast groups to which this interface belongs.
Outgoing access list	Status of whether the interface has an outgoing access list set.
Inbound access list	Status of whether the interface has an incoming access list set.

Table 2-21 show ip interface Field Descriptions (continued)

Field	Description
Proxy ARP	Status of whether Proxy Address Resolution Protocol (ARP) is enabled for the interface.
Security level	IP Security Option (IPSO) security level set for this interface.
Split horizon	Status of split horizon.
ICMP redirects	Status of the redirect messages on this interface.
ICMP unreachables	Status of the unreachable messages on this interface.
ICMP mask replies	Status of the mask replies on this interface.
IP fast switching	Status of whether fast switching has been enabled for this interface. Fast switching is typically enabled on serial interfaces, such as this one.
IP SSE switching	Status of the IP silicon switching engine (SSE).
Router Discovery	Status of the discovery process for this interface. It is typically disabled on serial interfaces.
IP output packet accounting	Status of IP accounting for this interface and the threshold (maximum number of entries).
TCP/IP header compression	Status of compression.
Probe proxy name	Status of whether the HP Probe proxy name replies are generated.
WCCP Redirect outbound is enabled	Status of whether packets that are received on an interface are redirected to a cache engine.
WCCP Redirect exclude is disabled	Status of whether packets that are targeted for an interface are excluded from being redirected to a cache engine.
Netflow Data Export (hardware) is enabled	NDE hardware flow status on the interface.

show ip mfib

To display all active Multicast Forwarding Information Base (MFIB) routes, use the show ip mfib command.
show ip mfib [all | counters | $\log [n]]$

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

all	(Optional) Specifies all routes in the MFIB, including those routes that are used to accelerate fast switching but that are not necessarily in the upper-layer routing protocol table.
counters	(Optional) Specifies the counts of MFIB-related events. Only nonzero counters are shown.
$\mathbf{l o g}$	(Optional) Specifies a log of the most recent number of MFIB-related events. The most recent event is first.
n	(Optional) Number of events.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(40) \mathrm{SG}$	Support for command introduced on the Supervisor Engine 6-E and Catalyst 4900M chassis.

In the Supervisor Engine 6-E and Catalyst 4900M chassis, the output of the show ip mfib command does not display any hardware counters.

The MFIB table contains a set of IP multicast routes; each route in the MFIB table contains several flags that associate to the route.

The route flags indicate how a packet that matches a route is forwarded. For example, the IC flag on an MFIB route indicates that some process on the switch needs to receive a copy of the packet. These flags are associated with MFIB routes:

- Internal Copy (IC) flag-Set on a route when a process on the switch needs to receive a copy of all packets matching the specified route.
- Signaling (S) flag-Set on a route when a switch process needs notification that a packet matching the route is received. In the expected behavior, the protocol code updates the MFIB state in response to having received a packet on a signaling interface.
- Connected (C) flag-When set on a route, the C flag has the same meaning as the S flag, except that the C flag indicates that only packets sent by directly connected hosts to the route should be signaled to a protocol process.

A route can also have a set of flags associated with one or more interfaces. For an (S,G) route, the flags on interface 1 indicate how the ingress packets should be treated and whether packets matching the route should be forwarded onto interface 1 . These per-interface flags are associated with the MFIB routes:

- Accepting (A)—Set on the RPF interface when a packet that arrives on the interface and that is marked as Accepting (A) is forwarded to all Forwarding (F) interfaces.
- Forwarding (F)—Used with the A flag as described above. The set of forwarding interfaces together form a multicast olist or output interface list.
- Signaling (S)—Set on an interface when a multicast routing protocol process in Cisco IOS needs to be notified of ingress packets on that interface.
- Not Platform (NP) fast-switched—Used with the F flag. A forwarding interface is also marked as Not Platform fast-switched whenever that output interface cannot be fast-switched by the platform hardware and requires software forwarding.

For example, the Catalyst 4506 switch with Supervisor Engine III cannot switch tunnel interfaces in hardware so these interfaces are marked with the NP flag. When an NP interface is associated with a route, a copy of every ingress packet arriving on an Accepting interface is sent to the switch software forwarding path for software replication and then forwarded to the NP interface.

Examples	This example shows how to display all active MFIB routes: ```Switch# show ip mfib IP Multicast Forwarding Information Base Entry Flags: C - Directly Connected, S - Signal, IC - Internal Copy Interface Flags: A - Accept, F - Forward, NS - Signal, NP - Not platform switched Packets: Fast/Partial/Slow Bytes: Fast/Partial/Slow: (171.69.10.13, 224.0.1.40), flags (IC) Packets: 2292/2292/0, Bytes: 518803/0/518803 Vlan7 (A) Vlan100 (F NS) Vlan105 (F NS) (*, 224.0.1.60), flags () Packets: 2292/0/0, Bytes: 518803/0/0 Vlan7 (A NS) (*, 224.0.1.75), flags () Vlan7 (A NS) (10.34.2.92, 239.192.128.80), flags () Packets: 24579/100/0, 2113788/15000/0 bytes Vlan7 (F NS) Vlan100 (A) (*, 239.193.100.70), flags () Packets: 1/0/0, 1500/0/0 bytes Vlan7 (A)``` Switch\#

Command	Description
clear ip mfib counters	Clears the global MFIB counters and the counters for all active MFIB routes.

show ip mfib fastdrop

To display all currently active fast-drop entries and to show whether fast drop is enabled, use the show ip mfib fastdrop command.

show ip mfib fastdrop

Syntax Description This command has no arguments or keywords.

Defaults

Command Modes

Command History

Examples

Related Commands

Command	Description
clear ip mfib fastdrop	Clears all the MFIB fast-drop entries.

show ip mroute

To display IP multicast routing table information, use the show ip mroute command.
show ip mroute [interface_type slot/port | host_name | host_address [source] | active [kbps | interface_type num] | count | pruned | static | summary]

Syntax Description

Defaults

Command Modes

Command History

interface_type slot/port	(Optional) Interface type and number of the slot and port; valid values for interface type are fastethernet, gigabitethernet, tengigabitethernet, null, and vlan.
host_name	(Optional) Name or IP address as defined in the DNS hosts table.
host_address source	(Optional) IP address or name of a multicast source.
active	(Optional) Displays the rate that active sources are sending to multicast groups.
(Optional) Minimum rate at which active sources are sending to multicast groups; active sources sending at this rate or greater will be displayed. Valid values are from 1 to 4294967295 kbps.	
count	(Optional) Displays the route and packet count information.
pruned	(Optional) Displays the pruned routes.
static	(Optional) Displays the static multicast routes.
summary	(Optional) Displays a one-line, abbreviated summary of each entry in the IP multicast routing table.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

Usage Guidelines
If you omit all the optional arguments and keywords, the show ip mroute command displays all the entries in the IP multicast routing table.
The show ip mroute active $k b p s$ command displays all the sources sending at a rate greater than or equal to kbps.

The multicast routing table is populated by creating source, group (S, G) entries from star, group (*,G) entries. The star refers to all source addresses, the " S " refers to a single source address, and the " G " refers to the destination multicast group address. In creating (S, G) entries, the software uses the best path to that destination group found in the unicast routing table (through Reverse Path Forwarding (RPF).

Examples

This example shows how to display all the entries in the IP multicast routing table:

```
Switch# show ip mroute
IP Multicast Routing Table
Flags:D - Dense, S - Sparse, s - SSM Group, C - Connected, L - Local,
    P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
    J - Join SPT, M - MSDP created entry, X - Proxy Join Timer Running
    A - Advertised via MSDP, U - URD, I - Received Source Specific Host
        Report
Outgoing interface flags:H - Hardware switched
Timers:Uptime/Expires
Interface state:Interface, Next-Hop or VCD, State/Mode
(*, 230.13.13.1), 00:16:41/00:00:00, RP 10.15.1.20, flags:SJC
    Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20
    Outgoing interface list:
    GigabitEthernet4/9, Forward/Sparse-Dense, 00:16:41/00:00:00, H
(*, 230.13.13.2), 00:16:41/00:00:00, RP 10.15.1.20, flags:SJC
    Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20, RPF-MFD
        Outgoing interface list:
        GigabitEthernet4/9, Forward/Sparse-Dense, 00:16:41/00:00:00, H
(10.20.1.15, 230.13.13.1), 00:14:31/00:01:40, flags:CJT
    Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20, RPF-MFD
        Outgoing interface list:
            GigabitEthernet4/9, Forward/Sparse-Dense, 00:14:31/00:00:00, H
(132.206.72.28, 224.2.136.89), 00:14:31/00:01:40, flags:CJT
    Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20, RPF-MFD
    Outgoing interface list:Null
Switch#
```

This example shows how to display the rate that the active sources are sending to the multicast groups and to display only the active sources that are sending at greater than the default rate:

```
Switch# show ip mroute active
Active IP Multicast Sources - sending > = 4 kbps
Group: 224.2.127.254, (sdr.cisco.com)
    Source: 146.137.28.69 (mbone.ipd.anl.gov)
        Rate: 1 pps/4 kbps(1sec), 4 kbps(last 1 secs), 4 kbps(life avg)
Group: 224.2.201.241, ACM 97
    Source: 130.129.52.160 (webcast3-e1.acm97.interop.net)
        Rate: 9 pps/93 kbps(1sec), 145 kbps(last 20 secs), 85 kbps(life avg)
Group: 224.2.207.215, ACM 97
    Source: 130.129.52.160 (webcast3-e1.acm97.interop.net)
        Rate: 3 pps/31 kbps(1sec), 63 kbps(last 19 secs), 65 kbps(life avg)
Switch#
```

This example shows how to display route and packet count information:

```
Switch# show ip mroute count
IP Multicast Statistics
5 6 \text { routes using 28552 bytes of memory}
13 groups, 3.30 average sources per group
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Group:224.2.136.89, Source count:1, Group pkt count:29051
    Source:132.206.72.28/32, Forwarding:29051/-278/1186/0, Other:85724/8/56665
Switch#
```

This example shows how to display summary information:

```
Switch# show ip mroute summary
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, s - SSM Group, C - Connected, L - Local,
    P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
    J - Join SPT, M - MSDP created entry, X - Proxy Join Timer Running
    A - Advertised via MSDP, U - URD, I - Received Source Specific Host
                Report
Outgoing interface flags: H - Hardware switched
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
Switch#
```

Table 2-22 describes the fields shown in the output.
Table 2-22 show ip mroute Field Descriptions

Field	Description
Flags:	Information about the entry.
D - Dense	Entry is operating in dense mode.
S - Sparse	Entry is operating in sparse mode.
s - SSM Group	Entry is a member of an SSM group.
C - Connected	Member of the multicast group is present on the directly connected interface.
L - Local	Switch is a member of the multicast group.
P - Pruned	Route has been pruned. This information is retained in case a downstream member wants to join the source.
R - Rp-bit set	Status of the (S,G) entry; is the (S,G) entry pointing toward the RP. The R - Rp-bit set is typically a prune state along the shared tree for a particular source.
F - Register flag	Status of the software; indicates if the software is registered for a multicast source.
T - SPT-bit set	Status of the packets; indicates if the packets been received on the shortest path source tree.

Table 2-22 show ip mroute Field Descriptions (continued)

Field	Description
J - Join SPT	For $(*, G)$ entries, indicates that the rate of traffic flowing down the shared tree is exceeding the SPT-Threshold set for the group. (The default SPT-Threshold setting is 0 kbps .) When the J - Join SPT flag is set, the next (S, G) packet received down the shared tree triggers an (S, G) join in the direction of the source causing the switch to join the source tree. For (S, G) entries, indicates that the entry was created because the SPT-Threshold for the group was exceeded. When the J - Join SPT flag is set for (S,G) entries, the switch monitors the traffic rate on the source tree and attempts to switch back to the shared tree for this source if the traffic rate on the source tree falls below the group's SPT-Threshold for more than one minute. The switch measures the traffic rate on the shared tree and compares the measured rate to the group's SPT-Threshold once every second. If the traffic rate exceeds the SPT-Threshold, the J- Join SPT flag is set on the $\left(^{*}, \mathrm{G}\right)$ entry until the next measurement of the traffic rate. The flag is cleared when the next packet arrives on the shared tree and a new measurement interval is started. If the default SPT-Threshold value of 0 Kbps is used for the group, the J- Join SPT flag is always set on $(*, G)$ entries and is never cleared. When the default SPT-Threshold value is used, the switch immediately switches to the shortest-path tree when traffic from a new source is received.
Outgoing interface flag:	Information about the outgoing entry.
H - Hardware switched	Entry is hardware switched.
Timer:	Uptime/Expires.
Interface state:	Interface, Next-Hop or VCD, State/Mode.
$\begin{aligned} & (*, 224.0 .255 .1) \\ & (198.92 .37 .100 / 32 \\ & 224.0 .255 .1) \end{aligned}$	Entry in the IP multicast routing table. The entry consists of the IP address of the source switch followed by the IP address of the multicast group. An asterisk (*) in place of the source switch indicates all sources. Entries in the first format are referred to as ($*, G$) or "star comma G" entries. Entries in the second format are referred to as (S, G) or "S comma G" entries. (*,G) entries are used to build (S,G) entries.
uptime	How long (in hours, minutes, and seconds) the entry has been in the IP multicast routing table.
expires	How long (in hours, minutes, and seconds) until the entry is removed from the IP multicast routing table on the outgoing interface.

Table 2-22	
Field	Description ip mroute Field Descriptions (continued)
RP	Address of the RP switch. For switches and access servers operating in sparse mode, this address is always 0.0.0.0.
flags:	Information about the entry.
Incoming interface	Expected interface for a multicast packet from the source. If the packet is not received on this interface, it is discarded.
RPF neighbor	IP address of the upstream switch to the source. "Tunneling" indicates that this switch is sending data to the RP encapsulated in Register packets. The hexadecimal number in parentheses indicates to which RP it is registering. Each bit indicates a different RP if multiple RPs per group are used.
DVMRP or Mroute	Status of whether the RPF information is obtained from the DVMRP routing table or the static mroutes configuration.
Outgoing interface list	Interfaces through which packets are forwarded. When the ip pim nbma-mode command is enabled on the interface, the IP address of the PIM neighbor is also displayed.
Ethernet0	Name and number of the outgoing interface.
Next hop or VCD	Next hop specifies downstream neighbor's IP address. VCD specifies the virtual circuit descriptor number. VCD0 indicates that the group is using the static-map virtual circuit.
Forward/Dense	Status of the packets; indicates if they are they forwarded on the interface if there are no restrictions due to access lists or the TTL threshold. Following the slash (/), mode in which the interface is operating (dense or sparse).
Forward/Sparse	Sparse mode interface is in forward mode.
time/time	
(uptime/expiration time)	Per interface, how long (in hours, minutes, and seconds) the entry has been in the IP multicast routing table. Following the slash (/), how long (in hours, minutes, and seconds) until the entry is removed from the IP multicast routing table.

Related Commands	Command	Description
ip multicast-routing (refer to Cisco IOS documentation)	Enables IP multicast routing.	
	ip pim (refer to Cisco IOS documentation)	Enables Protocol Independent Multicast (PIM) on an interface.

show ip source binding

To display IP source bindings that are configured on the system, use the show ip source binding EXEC command.
show ip source binding [ip-address] [mac-address] [dhcp-snooping I static] [vlan vlan-id]
[interface interface-name]

ip-address	(Optional) Binding IP address.
mac-address	(Optional) Binding MAC address.
dhcp-snooping	(Optional) DHCP-snooping type binding.
static	(Optional) Statically configured binding.
vlan vlan-id	(Optional) VLAN number.
interface interface-name	(Optional) Binding interface.

Defaults

Command Modes

Command History

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Usage Guidelines

The optional parameters filter the display output result.

Examples

This example shows how to display the IP source bindings:

Switch\# show ip source binding					
MacAddress	IpAddress	Lease (sec)	Type	VLAN	Interface
00:00:00:0A:00:0B	11.0 .0 .1	infinite	static	10	FastEthernet6/10

This example shows how to display the static IP binding entry of IP address 11.0.01:

Switch\#

Command	Description
ip source binding	Adds or deletes a static IP source binding entry.

show ip verify source

To display the IP source guard configuration and filters on a particular interface, use the show ip verify source command.
show ip verify source [interface interface_num]

Syntax Description

$\overline{\text { Defaults }}$

Command Modes

Command History
interface interface_num (Optional) Specifies an interface.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Examples

These examples show how to display the IP source guard configuration and filters on a particular interface with the show ip verify source interface command:

- This output appears when DHCP snooping is enabled on VLANs $10-20$, interface fa6/1 has IP source filter mode that is configured as IP, and an existing IP address binding 10.0.0.1 is on VLAN 10 :

Interface	Filter-type	Filter-mode	IP-address	Mac-address	Vlan
fa6/1	ip	active	10.0.0.1		10
fa6/1	ip	active	deny-all		11-20

Note The second entry shows that a default PVACL (deny all IP traffic) is installed on the port for those snooping-enabled VLANs that do not have a valid IP source binding.

- This output appears when you enter the show ip verify source interface fa6/2 command and DHCP snooping is enabled on VLANs $10-20$, interface fa6/1 has IP source filter mode that is configured as IP, and there is an existing IP address binding 10.0.0.1 on VLAN 10:

- This output appears when you enter the show ip verify source interface fa6/3 command and the interface fa6/3 does not have a VLAN enabled for DHCP snooping:

- This output appears when you enter the show ip verify source interface fa6/4 command and the interface fa6/4 has an IP source filter mode that is configured as IP MAC and the existing IP MAC that binds 10.0.0.2/aaaa.bbbb.cccc on VLAN 10 and 11.0.0.1/aaaa.bbbb.cced on VLAN 11:

Interface	Filter-type	Filter-mode	IP-address	Mac-address	Vlan
fa6/4	ip-mac	active	10.0.0.2	aaaa.bbbb.cccc	10
fa6/4	ip-mac	active	11.0.0.1	aaaa.bbbb.cccd	11
fa6/4	ip-mac	active	deny-all	deny-all	12-20

- This output appears when you enter the show ip verify source interface fa6/5 command and the interface fa $6 / 5$ has IP source filter mode that is configured as IP MAC and existing IP MAC binding 10.0.0.3/aaaa.bbbb.ccce on VLAN 10, but port security is not enabled on fa6/5:

Interface	Filter-type	Filter-mode	IP-address	Mac-address	Vlan
fa6/5	ip-mac	active	10.0 .0 .3	permit-all	10
fa6/5	ip-mac	active	deny-all	permit-all	11-20

Note Enable port security first because the DHCP security MAC filter cannot apply to the port or VLAN.

- This output appears when you enter the show ip verify source interface fa6/6 command and the interface fa6/6 does not have IP source filter mode that is configured:

DHCP security is not configured on the interface fa6/6.
This example shows how to display all the interfaces on the switch that have DHCP snooping security and IP Port Security tracking enabled with the show ip verify source command.
The output is an accumulation of per-interface show CLIs:

Interface	Filter-type	Filter-mode	IP-address	Mac-address	Vlan
fa6/1	ip	active	10.0.0.1		10
fa6/1	ip	active	deny-all		11-20
fa6/2	ip	inactive-tru	t-port		
Fa6/3	ip trk	active	40.1.1.24		10
Fa6/3	ip trk	active	40.1.1.20		10
Fa6/3	ip trk	active	40.1.1.21		10
fa6/4	ip-mac	active	10.0.0.2	aaaa.bbbb.cccc	10
fa6/4	ip-mac	active	11.0.0.1	aaaa.bbbb.cccd	11
fa6/4	ip-mac	active	deny-all	deny-all	12-20
fa6/5	ip-mac	active	10.0.0.3	permit-all	10
fa6/5	ip-mac	active	deny-all	permit-all	11-20

Related Commands	Command	Description
ip dhcp snooping information option	Enables DHCP option 82 data insertion.	
ip dhcp snooping limit rate	Configures the number of the DHCP messages that an interface can receive per second.	
	ip dhcp snooping trust	Enables DHCP snooping on a trusted VLAN.
	ip igmp snooping	Enables IGMP snooping.
ip igmp snooping vlan	Enables IGMP snooping for a VLAN.	
ip source binding	Adds or deletes a static IP source binding entry.	
	show ip source binding	Enables IP source guard on untrusted Layer 2 interfaces.

show ipc

To display IPC information, use the show ipc command.
show ipe \{nodes | ports | queue | status\}

Syntax Description

Defaults

Command Modes

Command History

Examples

Switch\# show ipc nodes			
There are 3 nodes in this IPC realm.			
ID	Type	Name	Last

Switch\#

This example shows how to display the local IPC ports:

```
Switch# show ipc ports
There are }11\mathrm{ ports defined.
Port ID Type Name (current/peak/total)
    10000.1 unicast IPC Master:Zone
    10000.2 unicast IPC Master:Echo
    10000.3 unicast IPC Master:Control
    10000.4 unicast Remote TTY Server Port
    10000.5 unicast GALIOS RF :Active
        index = 0 seat_id = 0x2020000 last sent = 0 heard = 1635 0/1/1635
    10000.6 unicast GALIOS RED:Active
        index = 0 seat_id = 0x2020000 last sent = 0 heard = 2 0/1/2
2020000.3 unicast GALIOS IPC:Card 2:Control
2020000.4 unicast GALIOS RFS :Standby
2020000.5 unicast Slave: Remote TTY Client Port
2020000.6 unicast GALIOS RF :Standby
2020000.7 unicast GALIOS RED:Standby
```

```
RPC packets: current/peak/total
0/1/17
Switch\#
```

This example shows how to display the contents of the IPC retransmission queue:

```
Switch# show ipc queue
There are 0 IPC messages waiting for acknowledgement in the transmit queue.
There are 0 IPC messages waiting for a response.
There are 0 IPC messages waiting for additional fragments.
There are 0 IPC messages currently on the IPC inboundQ.
There are 0 messages currently in use by the system.
Switch#
```

This example shows how to display the status of the local IPC server:

```
Switch# show ipc status
IPC System Status:
This processor is the IPC master server.
6 0 0 0 ~ I P C ~ m e s s a g e ~ h e a d e r s ~ i n ~ c a c h e
3 3 6 3 \text { messages in, 1680 out, 1660 delivered to local port,}
1 6 8 6 \text { acknowledgements received, } 1 6 7 5 \text { sent,}
0 NACKS received, 0 sent,
0 \text { messages dropped on input, 0 messages dropped on output}
0 \text { no local port, 0 destination unknown, 0 no transport}
O missing callback or queue, O duplicate ACKs, O retries,
0 message timeouts.
O ipc_output failures, O mtu failures,
0 \mathrm { msg } \text { alloc failed, 0 emer msg alloc failed, 0 no origs for RPC replies}
O pak alloc failed, 0 memd alloc failed
O no hwq, 1 failed opens, 0 hardware errors
No regular dropping of IPC output packets for test purposes
Switch#
```


show ipv6 mld snooping

To display IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping configuration of the switch or the VLAN, use the show ipv6 mld snooping command.
show ipv6 mld snooping [vlan vlan-id]

Syntax Description

Command Modes

Usage Guidelines

Examples

vlan vlan-id (Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.

User EXEC mode

Use this command to display MLD snooping configuration for the switch or for a specific VLAN.
VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

This is an example of output from the show ipv6 mld snooping vlan command. It shows snooping characteristics for a specific VLAN.

```
Switch> show ipv6 mld snooping vlan }10
Global MLD Snooping configuration:
----------------------------------------------
MLD snooping : Enabled
MLDv2 snooping (minimal) : Enabled
Listener message suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000
Vlan 100:
```

MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000

This is an example of output from the show ipv6 mld snooping command. It displays snooping characteristics for all VLANs on the switch.

```
Switch> show ipv6 mld snooping
Global MLD Snooping configuration:
```

MLD snooping	Enabled
MLDv2 snooping (minimal)	Enabled
Listener message suppression	Enabled
TCN solicit query	Disabled
TCN flood query count	2
Robustness variable	3
Last listener query count	2
Last listener query interval	1000
Vlan 1:	
MLD snooping	: Disabled
MLDv1 immediate leave	: Disabled
Explicit host tracking	: Enabled
Multicast router learning mode	: pim-dvmrp
Robustness variable	: 1
Last listener query count	: 2
Last listener query interval	: 1000
<output truncated>	
Vlan 951:	
MLD snooping	: Disabled
MLDv1 immediate leave	: Disabled
Explicit host tracking	: Enabled
Multicast router learning mode	: pim-dvmrp
Robustness variable	: 3
Last listener query count	: 2
Last listener query interval	: 1000

Related Commands	Command	Description
ipv6 mld snooping	Enables IP version 6 (IPv6) Multicast Listener Discovery	
		(MLD) snooping globally or on the specified VLAN.

show ipv6 mld snooping mrouter

To display dynamically learned and manually configured IP version 6 (IPv6) Multicast Listener Discovery (MLD) switch ports for the switch or a VLAN, use the show ipv6 mld snooping mrouter command.
show ipv6 mld snooping mrouter [vlan vlan-id]
vlan vlan-id (Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.

Command Modes

Command History

Usage Guidelines

Examples

Use this command to display MLD snooping switch ports for the switch or for a specific VLAN.
VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

This is an example of output from the show ipv6 mld snooping mrouter command. It displays snooping characteristics for all VLANs on the switch that are participating in MLD snooping.

```
Switch> show ipv6 mld snooping mrouter
Vlan ports
---- -----
    2 Gi1/0/11(dynamic)
    72 Gi1/0/11(dynamic)
    200 Gi1/0/11(dynamic)
```

This is an example of output from the show ipv6 mld snooping mrouter vlan command. It shows multicast switch ports for a specific VLAN.

```
Switch> show ipv6 mld snooping mrouter vlan }10
Vlan ports
---- -----
    2 Gi1/0/11(dynamic)
```

Related Commands

Command	Description
ipv6 mld snooping	Enables IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping globally or on the specified VLAN.
ipv6 mld snooping vlan	Configures IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping parameters on the VLAN interface.

show ipv6 mld snooping querier

To display IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping querier-related information most recently received by the switch or the VLAN, use the show ipv6 mld snooping querier command.
show ipv6 mld snooping querier [vlan vlan-id]

Syntax Description

Command Modes

Command History

Release	Modification
$12.2(40)$ SG	This command was introduced on the Catalyst 4500.

Use the show ipv6 mld snooping querier command to display the MLD version and IPv6 address of a detected device that sends MLD query messages, which is also called a querier. A subnet can have multiple multicast switches but has only one MLD querier. The querier can be a Layer 3 switch.

The show ipv6 mld snooping querier command output also shows the VLAN and interface on which the querier was detected. If the querier is the switch, the output shows the Port field as Router. If the querier is a router, the output shows the port number on which the querier is learned in the Port field.
The output of the show ipv6 mld snoop querier vlan command displays the information received in response to a query message from an external or internal querier. It does not display user-configured VLAN values, such as the snooping robustness variable on the particular VLAN. This querier information is used only on the MASQ message that is sent by the switch. It does not override the user-configured robustness variable that is used for aging out a member that does not respond to query messages.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

This is an example of output from the show ipv6 mld snooping querier command:

```
Switch> show ipv6 mld snooping querier
Vlan IP Address MLD Version Port
------------------------------------------------------------
2 FE80::201:C9FF:FE40:6000 v1 Gi3/0/1
```

This is an example of output from the show ipv6 mld snooping querier vlan command:

```
Switch> show ipv6 mld snooping querier vlan 2
IP address : FE80::201:C9FF:FE40:6000
MLD version : v1
Port : Gi3/0/1
Max response time : 1000s
```

$\overline{\text { Related Commands }}$	Command	Description
	ipv6 mld snooping	Enables IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping globally or on the specified VLAN.
	ipv6 mld snooping	Configures IP version 6 (IPv6) Multicast Listener
	last-listener-query-count	Discovery Mulitcast Address Specific Queries (MASQs) that will be sent before aging out a client.
	ipv6 mld snooping	Configures IP version 6 (IPv6) MLD snooping last-listener
	last-listener-query-interval	query interval on the switch or on a VLAN.
	ipv6 mld snooping robustness-variable	Configures the number of IP version 6 (IPv6) MLD queries that the switch sends before deleting a listener that does not respond.
	ipv6 mld snooping ten	Configures IP version 6 (IPv6) MLD Topology Change Notifications (TCNs).

show issu capability

To display the ISSU capability for a client, use the show issu capability command.
show issu capability $\{$ entries | groups | types \} [client_id]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

entries	Displays a list of Capability Types and Dependent Capability Types that are included in a single Capability Entry. Types within an entry can also be independent.
groups	Displays a list of Capability Entries in priority order (the order that they will be negotiated on a session).
types	Displays an ID that identifies a particular capability.
client_id	(Optional) Identifies the client registered to the ISSU infrastructure.
	To obtain a list of client IDs, use the show issu clients command.

This command has no default settings.

User EXEC mode

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

Capability is a functionality that an ISSU client can support and is required to interoperate with peers.
When an ISSU-aware client establishes its session with the peer, an ISSU negotiation takes place. The ISSU infrastructure uses the registered information to negotiate the capabilities and the message version to be used during the session.

Examples

The following example shows how to display the ISSU capability types for the IP host ISSU client (clientid=2082):

```
Switch#show issu capability types 2082
Client_ID = 2082, Entity_ID = 1 :
    Cap_Type = 0
Switch#
```

The following example shows how to display the ISSU capabilities entries for the IP host ISSU client (clientid=2082):

```
Switch#show issu capability entries }208
Client_ID = 2082, Entity_ID = 1 :
    Cap_Entry = 1 :
        Cap_Type = 0
Switch#
```

The following example shows how to display the ISSU capabilities groups for the IP host ISSU client (clientid=2082):

```
Switch#show issu capability groups 2082
Client_ID = 2082, Entity_ID = 1 :
    Cap_Group = 1 :
        Cap_Entry = 1
        Cap_Type = 0
Switch#
```

Related Commands

Command	Description
show issu clients	Displays the ISSU clients.

show issu clients

To display the ISSU clients, use the show issu clients command.
show issu clients [peer_uid]

Syntax Description

Defaults

Command Modes

Command History

Displays a list of clients registered to the ISSU infrastructure at the supervisor engine where the command is entered.

User EXEC mode

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

To implement ISSU versioning functionality, a client must first register itself, client capability, and client message information with the ISSU infrastructure during the system initialization.

The following example shows how to display the ISSU clients:

```
Switch# show issu clients
    Client_ID = 2, Client_Name = ISSU Proto client, Entity_Count = 1
    Client_ID = 3, Client_Name = ISSU RF, Entity_Count = 1
    Client_ID = 4, Client_Name = ISSU CF client, Entity_Count = 1
    Client_ID = 5, Client_Name = ISSU Network RF client, Entity_Count = 1
    Client_ID = 7, Client_Name = ISSU CONFIG SYNC, Entity_Count = 1
    Client_ID = 8, Client_Name = ISSU ifIndex sync, Entity_Count = 1
    Client_ID = 9, Client_Name = ISSU IPC client, Entity_Count = 1
    Client_ID = 10, Client_Name = ISSU IPC Server client, Entity_Count = 1
    Client_ID = 11, Client_Name = ISSU Red Mode Client, Entity_Count = 1
    Client_ID = 100, Client_Name = ISSU rfs client, Entity_Count = 1
    Client_ID = 110, Client_Name = ISSU ifs client, Entity_Count = 1
    Client_ID = 200, Client_Name = ISSU Event Manager client, Entity_Count = 1
    Client_ID = 2002, Client_Name = CEF Push ISSU client, Entity_Count = 1
    Client_ID = 2003, Client_Name = ISSU XDR client, Entity_Count = 1
    Client_ID = 2004, Client_Name = ISSU SNMP client, Entity_Count = 1
    Client_ID = 2010, Client_Name = ARP HA, Entity_Count = 1
    Client_ID = 2012, Client_Name = ISSU HSRP Client, Entity_Count = 1
    Client_ID = 2021, Client_Name = XDR Int Priority ISSU client, Entity_Count = 1
    Client_ID = 2022, Client_Name = XDR Proc Priority ISSU client, Entity_Count = 1
    Client_ID = 2023, Client_Name = FIB HWIDB ISSU client, Entity_Count = 1
    Client_ID = 2024, Client_Name = FIB IDB ISSU client, Entity_Count = 1
    Client_ID = 2025, Client_Name = FIB HW subblock ISSU client, Entity_Count = 1
    Client_ID = 2026, Client_Name = FIB SW subblock ISSU client, Entity_Count = 1
    Client_ID = 2027, Client_Name = Adjacency ISSU client, Entity_Count = 1
    Client_ID = 2028, Client_Name = FIB IPV4 ISSU client, Entity_Count = 1
```

```
Client_ID = 2054, Client_Name = ISSU process client, Entity_Count = 1
Client_ID = 2058, Client_Name = ISIS ISSU RTR client, Entity_Count = 1
Client_ID = 2059, Client_Name = ISIS ISSU UPD client, Entity_Count = 1
Client_ID = 2067, Client_Name = ISSU PM Client, Entity_Count = 1
Client_ID = 2068, Client_Name = ISSU PAGP_SWITCH Client, Entity_Count = 1
Client_ID = 2070, Client_Name = ISSU Port Security client, Entity_Count = 1
Client_ID = 2071, Client_Name = ISSU Switch VLAN client, Entity_Count = 1
Client_ID = 2072, Client_Name = ISSU dot1x client, Entity_Count = 1
Client_ID = 2073, Client_Name = ISSU STP, Entity_Count = 1
Client_ID = 2077, Client_Name = ISSU STP MSTP, Entity_Count = 1
Client_ID = 2078, Client_Name = ISSU STP IEEE, Entity_Count = 1
Client_ID = 2079, Client_Name = ISSU STP RSTP, Entity_Count = 1
Client_ID = 2081, Client_Name = ISSU DHCP Snooping client, Entity_Count = 1
Client_ID = 2082, Client_Name = ISSU IP Host client, Entity_Count = 1
Client_ID = 2083, Client_Name = ISSU Inline Power client, Entity_Count = 1
Client_ID = 2084, Client_Name = ISSU IGMP Snooping client, Entity_Count = 1
Client_ID = 4001, Client_Name = ISSU C4K Chassis client, Entity_Count = 1
Client_ID = 4002, Client_Name = ISSU C4K Port client, Entity_Count = 1
Client_ID = 4003, Client_Name = ISSU C4K Rkios client, Entity_Count = 1
Client_ID = 4004, Client_Name = ISSU C4K HostMan client, Entity_Count = 1
Client_ID = 4005, Client_Name = ISSU C4k GaliosRedundancy client, Entity_Count = 1
Base Clients:
Client_Name = ISSU Proto client
Client_Name = ISSU RF
Client_Name = ISSU CF client
Client_Name = ISSU Network RF client
Client_Name = ISSU CONFIG SYNC
Client_Name = ISSU ifIndex sync
Client_Name = ISSU IPC client
Client_Name = ISSU IPC Server client
Client_Name = ISSU Red Mode Client
Client_Name = ISSU rfs client
Client_Name = ISSU ifs client
Client_Name = ISSU Event Manager client
Client_Name = CEF Push ISSU client
Client_Name = ISSU XDR client
Client_Name = ARP HA
Client_Name = XDR Int Priority ISSU client
Client_Name = XDR Proc Priority ISSU client
Client_Name = FIB HWIDB ISSU client
Client_Name = FIB IDB ISSU client
Client_Name = FIB HW subblock ISSU client
Client_Name = FIB SW subblock ISSU client
Client_Name = Adjacency ISSU client
Client_Name = FIB IPV4 ISSU client
Client_Name = ISSU process client
Client_Name = ISSU PM Client
Client_Name = ISSU C4K Chassis client
Client_Name = ISSU C4K Port client
Client_Name = ISSU C4K Rkios client
Client_Name = ISSU C4K HostMan client
Client_Name = ISSU C4k GaliosRedundancy client
```

Related Commands	Command	Description
	show issu capability	Displays the ISSU capability for a client.
	show issu entities	Displays the ISSU entity information.

show issu comp-matrix

To display information regarding the In Service Software Upgrade (ISSU) compatibility matrix, use the show issu comp-matrix command.
show issu comp-matrix $\{$ negotiated \mid stored $\mid \mathbf{x m l}\}$

Syntax Description

negotiated	Displays negotiated compatibility matrix information.
stored	Displays stored compatibility matrix information.
$\mathbf{x m l}$	Displays negotiated compatibility matrix information in XML format.

Defaults

Command Modes

Command History

Usage Guidelines

This command has no default settings.

User EXEC mode

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

Before attempting an ISSU, you should know the compatibility level between the old and the new Cisco IOS software versions on the active and the standby-supervisor engines. ISSU will not work if the two versions are incompatible.
The compatibility matrix is available on Cisco.com so that you can also veiw in advance whether an upgrade can be performed with the ISSU process. The compatibility matrix during the ISSU process and later by entering the show issu comp-matrix command. To display information on the negotiation of the compatibility matrix data between two software versions on a given system, use the show issu comp-matrix negotiated command.

Compatibility matrix data is stored with each Cisco IOS software image that supports ISSU capability. To display stored compatibility matrix information, use the show issu comp-matrix stored command.
The compatibility matrix information are built-in any IOS ISSU image. The ISSU infrastructure performs a matrix lookup as soon as the communication with the standby supervisor engine is established. There are three possible results from the lookup operation:

- Compatible-The Base-level system infrastructure and all optional HA-aware subsystems are compatible. In-service upgrade or downgrade between these versions will succeed with minimal service impact.
- Base-Level Compatible-One or more of the optional HA-aware subsystems are not compatible. Although an in-service upgrade or downgrade between these versions will succeed, some subsystems will not be able to maintain their state during the switchover. Prior to attempting an in-service upgrade or downgrade, the impact of this on operation and service of the switch must be considered carefully.
- Incompatible-A set of core system infrastructure must be able to execute in a stateful manner for SSO to function correctly. If any of these "required" features or subsystems is not compatible in two different IOS images, the two versions of the Cisco IOS images are declared "Incompatible". This means that an in-service upgrade or downgrade between these versions is not possible. The systems operates in RPR mode during the period when the versions of IOS at the active and standby supervisor engines differ.

Examples

This example displays negotiated compatibility matrix information:

CardType: WS-C4507R(112), Uid: 2, Image Name: cat4500-ENTSERVICES-M					
Cid	Eid	Sid	pSid	pUid	Compatibility
2	1	262151	3	1	COMPATIBLE
3	1	262160	5	1	COMPATIBLE
4	1	262163	9	1	COMPATIBLE
5	1	262186	25	1	COMPATIBLE
7	1	262156	10	1	COMPATIBLE
8	1	262148	7	1	COMPATIBLE
9	1	262155	1	1	COMPATIBLE
10	1	262158	2	1	COMPATIBLE
11	1	262172	6	1	COMPATIBLE
100	1	262166	13	1	COMPATIBLE
110	113	262159	14	1	COMPATIBLE
200	1	262167	24	1	COMPATIBLE
2002	1	-	-	-	UNAVAILABLE
2003	1	262185	23	1	COMPATIBLE
2004	1	262175	16	1	COMPATIBLE
2008	1	262147	26	1	COMPATIBLE
2008	1	262168	27	1	COMPATIBLE
2010	1	262171	32	1	COMPATIBLE
2012	1	262180	31	1	COMPATIBLE
2021	1	262170	41	1	COMPATIBLE
2022	1	262152	42	1	COMPATIBLE
2023	1	-	-	-	UNAVAILABLE
2024	1	-	-	-	UNAVAILABLE
2025	1	-	-	-	UNAVAILABLE
2026	1	-	-	-	UNAVAILABLE
2027	1	-	-	-	UNAVAILABLE
2028	1	-	-	-	UNAVAILABLE
2054	1	262169	8	1	COMPATIBLE
2058	1	262154	29	1	COMPATIBLE
2059	1	262179	30	1	COMPATIBLE
2067	1	262153	12	1	COMPATIBLE
2068	1	196638	40	1	COMPATIBLE
2070	1	262145	21	1	COMPATIBLE
2071	1	262178	11	1	COMPATIBLE
2072	1	262162	28	1	COMPATIBLE
2073	1	262177	33	1	COMPATIBLE
2077	1	262165	35	1	COMPATIBLE
2078	1	196637	34	1	COMPATIBLE
2079	1	262176	36	1	COMPATIBLE
2081	1	262150	37	1	COMPATIBLE
2082	1	262161	39	1	COMPATIBLE
2083	1	262184	20	1	COMPATIBLE
2084	1	262183	38	1	COMPATIBLE
4001	101	262181	17	1	COMPATIBLE
4002	201	262164	18	1	COMPATIBLE

8	ISSU ifIndex sync	Base
9	ISSU IPC client	Base
10	ISSU IPC Server client	Base
11	ISSU Red Mode Client	Base
100	ISSU rfs client	Base
110	ISSU ifs client	Base
200	ISSU Event Manager clientBase	
2002	CEF Push ISSU client	Base
2003	ISSU XDR client	Base
2004	ISSU SNMP client	Non-Base
2008	ISSU Tableid Client	Base
2010	ARP HA	Base
2012	ISSU HSRP Client	Non-Base
2021	XDR Int Priority ISSU cliBase	
2022	XDR Proc Priority ISSU clBase	
2023	FIB HWIDB ISSU client	Base
2024	FIB IDB ISSU client	Base
2025	FIB HW subblock ISSU clieBase	
2026	FIB SW subblock ISSU clieBase	
2027	Adjacency ISSU client	Base
2028	FIB IPV4 ISSU client	Base
2054	ISSU process client	Base
2058	ISIS ISSU RTR client	Non-Base
2059	ISIS ISSU UPD client	Non-Base
2067	ISSU PM Client	Base
2068	ISSU PAGP_SWITCH Client	Non-Base
2070	ISSU Port Security clien	Non-Base
2071	ISSU Switch VLAN client	Non-Base
2072	ISSU dot1x client	Non-Base
2073	ISSU STP	Non-Base
2077	ISSU STP MSTP	Non-Base
2078	ISSU STP IEEE	Non-Base
2079	ISSU STP RSTP	Non-Base
2081	ISSU DHCP Snooping clientNon-Base	
2082	ISSU IP Host client	Non-Base
2083	ISSU Inline Power client	Non-Base
2084	ISSU IGMP Snooping clientNon-Base	
4001	ISSU C4K Chassis client	Base
4002	ISSU C4K Port client	Base
4003	ISSU C4K Rkios client	Base
4004	ISSU C4K HostMan client	Base
4005	ISSU C4k GaliosRedundan	Base

This example displays stored compatibility matrix information:

```
Switch> show issu comp-matrix stored
Number of Matrices in Table = 1
```

(1) Matrix for cat4500-ENTSERVICES-M(112) - cat4500-ENTSERVICES-M(112) === Start Flag (0xDEADBABE)

My Image ver:	12.2(31) SGA
Peer Version	Compatibility
12.2(31) SGA	Comp (3)

Related Commands	Command	Description
	show issu clients	Displays the ISSU clients.
show issu sessions	Displays ISSU session information for a specified client.	

show issu endpoints

To display the ISSU endpoint information, use the show issu endpoints command.
show issu endpoints

Syntax Description

Defaults

Command Modes

Usage Guidelines

Examples

Related Commands

This command has no arguments or keywords

This command has no default settings.

User EXEC mode

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

Endpoint is an execution unit within a redundancy domain. There are only 2 endpoints on the Catalyst 4500 series switch redundant chassis: 1 and 2 ; they correspond to the slot numbers for the supervisor engine. The ISSU infrastructure communicates between these two endpoints to establish session and to perform session negotiation for ISSU clients.

The following example shows how to display the ISSU endpoints:

```
Switch# show issu endpoints
My_Unique_ID = 1/0x1, Client_Count = 46
    This endpoint communicates with 1 peer endpoints :
Peer_Unique_ID CAP VER XFORM ERP Compatibility
Shared Negotiation Session Info :
    Nego_Session_ID = 15
    Nego_Session_Name = shared nego session
    Transport_Mtu = 4096
    Ses_In_Use = 2
Switch#
```

Command	Description
show issu clients	Displays the ISSU clients.

show issu entities

To display the ISSU entity information, use the show issu entities command.
show issu entities [client_id]
Syntax Description
client_id (Optional) ISSU client ID.

Defaults

$\overline{\text { Command Modes }}$ User EXEC mode

Command History

Usage Guidelines

Examples

The following example shows how to display the entity information for a specified ISSU client:

```
    Switch#show issu entities 2072
    Client_ID = 2072 :
        Entity_ID = 1, Entity_Name = ISSU dot1x entity :
        MsgType MsgGroup CapType CapEntry CapGroup
Count Count Count count Count
```

Switch\#

Related Commands	Command	Description
	show issu clients	Displays the ISSU clients.

show issu fsm

Note This command is not intended for end-users.

To display the ISSU finite state machine (FSM) information corresponding to an ISSU session, use the show issu fsm command.
show issu fsm [session_id]

Syntax Description

Defaults

Command Modes

Command History

Examples

Related Commands

Command	Description
show issu clients	Displays the ISSU clients.
show issu sessions	Displays ISSU session information for a specified client.

show issu message

To display checkpoint messages for a specified ISSU client, use the show issu message command.
show issu message $\{$ groups | types $\}$ [client_id]

groups	Displays information on Message Group supported by the specified client.
types	Displays information on all Message Types supported by the specified client.
client_id	(Optional) Specifies a client ID.

Defaults

Command Modes

Command History

Usage Guidelines

If client ID is not specified, displays message groups or message types information for all clients registered to the ISSU infrastructure.

User EXEC mode

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

Messages are sync-data (also known as checkpoint data) sent between two endpoints
When an ISSU-aware client establishes its session with a peer, an ISSU negotiation takes place. The ISSU infrastructure uses the registered information to negotiate the capabilities and the message version to be used during the session.

The following example shows how to display the message groups for Client_id 2082:

```
Switch#show issu message groups 2082
Client_ID = 2082, Entity_ID = 1 :
    Message_Group = 1 :
                        Message_Type = 1, Version_Range = 1 ~ 2
                        Message_Type = 2, Version_Range = 1 ~ 2
```

Switch\#

The following example shows how to display the message types for Client_id 2082:

```
Switch#show issu message types 2082
Client_ID = 2082, Entity_ID = 1 :
    Message_Type = 1, Version_Range = 1 ~ 2
        Message_Ver = 1, Message_Mtu = 12
        Message_Ver = 2, Message_Mtu = 8
    Message_Type = 2, Version_Range = 1 ~ 2
            Message_Ver = 1, Message_Mtu = 32
            Message_Ver = 2, Message_Mtu = 28
Switch#
```

Related Commands	Command	Description
show issu clients	Displays the ISSU clients.	

show issu negotiated

To display the negotiated capability and message version information of the ISSU clients, use the show issu negotiated command.
show issu negotiated $\{$ capability \mid version \} [session_id]

Syntax Description

Defaults

Command Modes

Command History

capability	Displays all negotiated capabilities.
version	Displays details of all negotiated messages.
session_id	(Optional) Specifies the ISSU session ID for which the capability or version
	information is displayed.

Displays negotiated capability or version information for all ISSU sessions.

User EXEC mode

Examples

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

The following example shows how to display the message types for a specific group:

```
Switch# show issu negotiated capability 26
    Session_ID = 26 :
        Cap_Type = 0, Cap_Result = 1 No cap value assigned
Switch# show issu negotiated version 26
    Session_ID = 26 :
        Message_Type = 1, Negotiated_Version = 1, Message_MTU = 44
    Message_Type = 2, Negotiated_Version = 1, Message_MTU = 4
```

Related Commands

Command	Description
show issu sessions	Displays ISSU session information for a specified client.

show issu rollback-timer

To display ISSU rollback-timer status, use the show issu rollback-timer command.
show issu rollback-timer

Syntax Description

Defaults

Command Modes

Examples

Related Commands

This command has no arguments or keywords.

This command has no default settings.

Priviledged EXEC mode

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

The following example shows how to display the rollback-timer status:

```
Switch#show issu rollback-timer
            Rollback Process State = Not in progress
            Configured Rollback Time = 45:00
Switch#
```

Command	Description		
issu acceptversion	Halts the rollback timer and ensures that the new Cisco IOS software image is not automatically stopped during the		
	ISSU process.		Forces a change from the active supervisor engine to the
:---	:---		
standby supervisor engine and causes the newly active			
supervisor engine to run the new image specified in the issu			
loadversion command.			

show issu sessions

To display ISSU session information for a specified client, use the show issu sessions command.
show issu sessions [client_id]
client_id (Optional) Specifies the ISSU client ID.

Defaults

Displays session information for all clients registered to the ISSU infrastructure.

Command Modes User EXEC mode

Command History

Release	Modification
$12.2(31)$ SGA	This command was introduced on the Catalyst 4500 series switch.

Usage Guidelines

Examples

Session is bidirectional and a reliable connection is established between two endpoints. Sync-data and negotiation messages are sent to the peer endpoint through a session. On a Catalyst 4500 series switch, each ISSU-aware client has a maximum of one session at each endpoint.

When an ISSU-aware client establishes its session with the peer, an ISSU negotiation takes place. The ISSU infrastructure uses the registered information to negotiate the capabilities and the message version to be used during the session.

The following example shows how to display the rollback-timer status:

```
Switch#show issu sessions 2072
Client_ID = 2072, Entity_ID = 1
*** Session_ID = 26, Session_Name = dot1x :
\begin{tabular}{crccccc} 
Peer & Peer & Negotiate & Negotiated & Cap & Msg & Session \\
UniqueID & Sid & Role & Result & GroupID & GroupID & Signature \\
2 & 26 & PRIMARY & COMPATIBLE & 1 & 1 & 0
\end{tabular}
    Negotiation Session Info for This Message Session:
                Nego_Session_ID = 26
                Nego_Session_Name = dot1x
                Transport_Mtu = 17884
Switch#
```

Related Commands

Command	Description
show issu clients	Displays the ISSU clients.

show issu state

To display the ISSU state and current booted image name during the ISSU process, use the show issu state command.
show issu state [slot_number] [detail]
Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

slot_number	(Optional) Specifies the slot number whose ISSU state needs to be displayed (1 or 2).
detail	(Optional) Provides detailed information about the state of the active and standby supervisor engines.

The command displays the ISSU state and current booted image name of both the active and standby supervisor engines.

Privileged EXEC mode

Release	Modification
$12.2(31) \mathrm{SGA}$	This command was introduced on the Catalyst 4500 series switch.

It might take several seconds after the issu loadversion command is entered for Cisco IOS software to load onto the standby supervisor engine and the standby supervisor engine to transition to SSO mode. If you enter the show issu state command too soon, you might not see the information you need.

Examples

The following example displays and verifies the ISSU state after LOADVERSION:

```
Switch# show issu state detail
                                    Slot = 1
                RP State = Active
            ISSU State = Load Version
            Boot Variable = bootflash:old_image,12
            Operating Mode = Stateful Switchover
            Primary Version = bootflash:old_image
                Secondary Version = bootflash:new_image
            Current Version = bootflash:old_image
                    Slot = 2
            RP State = Standby
            ISSU State = Load Version
            Boot Variable = bootflash:new_image,12;bootflash:old_image,12
            Operating Mode = Stateful Switchover
        Primary Version = bootflash:old_image
Secondary Version = bootflash:new_image
    Current Version = bootflash:new_image
Switch#
```

| Related Commands | Command Description
 issu abortversion Cancels the ISSU upgrade or the downgrade process in
 progress and restores the switch to its state before the start
 of the process.
 issu acceptversion Halts the rollback timer and ensures that the new Cisco IOS
 software image is not automatically stopped during the
 ISSU process.
 issu commitversion Loads the new Cisco IOS software image into the new
 standby supervisor engine.
 issu loadversion Starts the ISSU process.
 issu runversion Forces a change from the active supervisor engine to the
 standby supervisor engine and causes the newly active
 supervisor engine to run the new image specified.
 |
| :--- | :--- | :--- |

show I2protocol-tunnel

To display information about the Layer 2 protocol tunnel ports, use the show 12protocol-tunnel command. This command displays information for the interfaces with protocol tunneling enabled.

```
show l2protocol-tunnel [interface interface-id] [[summary] | {begin | exclude | include}
    expression]
```

Syntax Description

Command Modes

Command History

Usage Guidelines

interface interface-id	(Optional) Specifies the interface for which protocol tunneling information appears. Valid interfaces are physical ports and port channels; the port channel range is 1 to 64.
summary	(Optional) Displays only Layer 2 protocol summary information.
begin	(Optional) Displays information beginning with the line that matches the expression.
exclude	(Optional) Displays information that excludes lines that match the expression.
include	(Optional) Displays the lines that match the specified expression.
expression	(Optional) Expression in the output to use as a reference point.

User EXEC mode

Release	Modification
$12.2(18) \mathrm{EW}$	This command was first introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

After enabling Layer 2 protocol tunneling on an access or 802.1Q tunnel port with the 12protocol-tunnel command, you can configure some or all of these parameters:

- Protocol type to be tunneled
- Shutdown threshold
- Drop threshold

If you enter the show l2protocol-tunnel [interface interface-id] command, only information about the active ports on which all the parameters are configured appears.

If you enter the show 12protocol-tunnel summary command, only information about the active ports on which some or all of the parameters are configured appears.

Expressions are case sensitive. For example, if you enter I exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples
This is an example of output from the show 12protocol-tunnel command:

Switch> show 12protocol-tunnel						
COS for	Encapsula	ated Packet	-s: 5			
Port	Protocol	Shutdown Threshold	Drop Threshold	Encapsulation Counter	Decapsulation Counter	Drop Counter
Fa0/10	---	----	--	----	----	
	stp	----	----	9847	1866	0
	vtp	--	----	77	12	0
	pagp	----	----	859	860	0
	lacp	----	----	0	0	0
	udld	----	----	219	211	0
Fa0/11	cdp	1100	----	2356	2350	0
	stp	1100	----	116	13	0
	vtp	1100	----	3	67	0
	pagp	--	900	856	5848	0
	lacp	--	900	0	0	0
	udld	----	900	0	0	0
Fa0/12	cdp	-	----	2356	0	0
	stp	----	----	11787	0	0
	vtp	-	----		0	0
	pagp	---	----	0	0	0
	lacp	---	----	849	0	0
	udid	-	----	0	0	0
Fa0/13	cdp	---	----	2356	0	0
	stp	----	----	11788	0	0
	vtp	----	----		0	0
	pagp	-	----	0	0	0
	lacp	----	----	849	0	0
	udld	----	----	0	0	0
Switch\#						

This is an example of output from the show l2protocol-tunnel summary command:

Related Commands	Command	Description
	12protocol-tunnel	Enables protocol tunneling on an interface.
	12protocol-tunnel cos	Configures the class of service (CoS) value for all tunneled Layer 2 protocol packets.

show lacp

To display LACP information, use the show lacp command.
show lacp [channel-group] \{counters | internal | neighbors | sys-id \}

Syntax Description

Defaults

Command Modes

Command History

channel-group	(Optional) Number of the channel group; valid values are from 1 to 64.
counters	Displays the LACP statistical information.
internal	Displays the internal information.
neighbors	Displays the neighbor information.
sys-id	Displays the LACP system identification.

This command has no default settings.

Privileged EXEC mode

Usage Guidelines This command is not supported on systems that are configured with a Supervisor Engine I.
If you do not specify a channel-group value, all channel groups are displayed.
You can enter the optional channel-group value to specify a channel group for all keywords, except the sys-id keyword.

Examples

This example shows how to display LACP statistical information for a specific channel group:

Port	LACPDUs		Marker		LACPDUS	
	Sent	Recv	Sent	Recv	Pkt	Err
Channel group: 1						
Fa4/1	8	15	0	0	3	0
Fa4/2	14	18	0	0	3	0
Fa4/3	14	18	0	0	0	
Fa4/4	13	18	0	0	0	
Switch\#						

The output displays the following information:

- The LACPDUs Sent and Recv columns display the LACPDUs sent and received on each specific interface.
- The LACPDUs Pkts and Err columns display the marker protocol packets.

This example shows how to display internal information for the interfaces belonging to a specific channel:

```
Switch# show lacp 1 internal
Flags: S - Device sends PDUs at slow rate. F - Device sends PDUs at fast rate.
    A - Device is in Active mode. P - Device is in Passive mode.
```

Channel group 1

		LACPDUs	LACP Port	Admin	Oper	Port	Port	
Port	Flags	State	Interval	Priority	Key	Key	Number	State
Fa4/1	saC	bndl	30 s	32768	100	100	$0 \times c 1$	0×75
Fa4/2	saC	bndl	30 s	32768	100	100	$0 \times c 2$	0×75
Fa4/3	saC	bndl	30 s	32768	100	100	$0 \times c 3$	0×75
Fa4/4	saC	bndl	30 s	32768	100	100	$0 \times c 4$	0×75

Table 2-23 lists the output field definitions.

Table 2-23 show lacp internal Command Output Fields

Field	Description
State	State of the specific port at the current moment is displayed; allowed values are as follows: \bullet bndl—Port is attached to an aggregator and bundled with other ports.
	- susp—Port is in a suspended state; it is not attached to any aggregator. \bullet indep—Port is in an independent state (not bundled but able to switch data traffic. In this case, LACP is not running on the partner port).
• hot-sby—Port is in a Hot-standby state.	
- down—Port is down.	

This example shows how to display LACP neighbors information for a specific port channel:

In the case where no PDUs have been received, the default administrative information is displayed in braces.

This example shows how to display the LACP system identification:

```
Switch> show lacp sys-id
8000,AC-12-34-56-78-90
Switch>
```

The system identification is made up of the system priority and the system MAC address. The first two bytes are the system priority, and the last six bytes are the globally administered individual MAC address associated to the system.
$\overline{\text { Related Commands }}$

Command	Description
lacp port-priority	Sets the LACP priority for the physical interfaces.
lacp system-priority	Sets the priority of the system for LACP.

show mab

To display MAC authentication bypass (MAB) information, use the show mab command in EXEC mode.
show mab \{interface interface interface-number \mid all \} [detail]

Syntax Description

Command Default

Command Modes

Command History

Usage Guidelines

Table 2-24 show mab Command Output

Field	Description
Mac-Auth-Bypass	MAB state
Inactivity Timeout	Inactivity timeout
Client MAC	Client MAC address
MAB SM state	MAB state machine state
Auth Status	Authorization status

Table 2-25 lists the possible values for the state of the MAB state machine.
Table 2-25 MAB State Machine Values

State	State Level	Description
Initialize	Intermediate	The state of the session when it initializes
Acquiring	Intermediate	The state of the session when it is obtaining the client MAC address

Table 2-25 MAB State Machine Values (continued)

Authorizing	Intermediate	The state of the session during MAC-based authorization
Terminate	Terminal	The state of the session once a result has been obtained. For a session in terminal state, "TERMINATE" displays.

Table 2-26 lists the possible displayed values for the MAB authorization status.
Table 2-26 MAB Authorization Status Values

Status	Description
AUTHORIZED	The session has successfully authorized.
UNAUTHORIZED	The session has failed to be authorized.

Examples

The following example shows how to display MAB information:

```
Switch# show mab all
MAB details for GigaEthernet1/3
Mac-Auth-Bypass = Enabled
Inactivity Timeout = None
Switch#
```

The following example shows how to display detailed MAB information:

```
Switch# show mab all detail
MAB details for GigaEthernet1/3
Mac-Auth-Bypass = Enabled
Inactivity Timeout = None
MAB Client List
C----------
Client MAC = 000f.23c4.a401
MAB SM state = TERMINATE
Auth Status = AUTHORIZED
```

The following example shows how to display MAB information for a specific interface:

```
Switch# show mab interface GigaEthernet1/3
MAB details for GigaEthernet1/3
-------------------------------------
Mac-Auth-Bypass = Enabled
Inactivity Timeout = None
```

```
Switch# show mab interface gigabitethernet1/1 detail
```

Switch\# show mab interface gigabitethernet1/1 detail
MAB details for GigaEthernet1/1
MAB details for GigaEthernet1/1

Mac-Auth-Bypass = Enabled
Mac-Auth-Bypass = Enabled
Inactivity Timeout = None
Inactivity Timeout = None
MAB Client List
MAB Client List

Client MAC = 000f.23c4.a401
Client MAC = 000f.23c4.a401
MAB SM state = TERMINATE
MAB SM state = TERMINATE
Auth Status = AUTHORIZED
Auth Status = AUTHORIZED
Switch\#

```
Switch#
```

The following example shows how to display detailed MAB information for a specific interface:

Related Commands	Command	Description
	mab	Enables and configures MAC authorization bypass (MAB) on a port.

show mac access-group interface

To display the ACL configuration on a Layer 2 interface, use the show mac access-group interface command.
show mac access-group interface [interface interface-number]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

interface	(Optional) Specifies the interface type; valid values are ethernet, fastethernet, gigabitethernet, tengigabitethernet, pos, atm, port-channel, and ge-wan.
interface-number	(Optional) Specifies the port number.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(19) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

The valid values for the port number depend on the chassis used.

This example shows how to display the ACL configuration on interface fast $6 / 1$:
Switch\# show mac access-group interface fast 6/1
Interface FastEthernet6/1:
Inbound access-list is simple-mac-acl
Outbound access-list is not set

Command	Description
access-group mode	Specifies the override modes (for example, VACL
	overrides PACL) and the non-override modes (for example, merge or strict mode).

show mac-address-table address

To display MAC address table information for a specific MAC address, use the show mac-address-table address command.
show mac-address-table address mac_addr [interface type slot/port | protocol protocol | vlan vlan_id]

Syntax Description

Defaults

Command Modes

Command History

mac_addr	48-bit MAC address; the valid format is H.H.H.
interface type slot/port	(Optional) Displays information for a specific interface; valid values for type are fastethernet, gigabitethernet, and tengigabitethernet.
protocol protocol	(Optional) Specifies a protocol. See the "Usage Guidelines" section for more information.
vlan vlan_id	(Optional) Displays entries for the specific VLAN only; valid values are from 1 to 4094.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Added support for extended VLAN addresses.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

Usage Guidelines
For the MAC address table entries that are used by the routed ports, the routed port name is displayed in the "vlan" column not the internal VLAN number.
The keyword definitions for the protocol variable are as follows:

- ip specifies the IP protocol.
- ipx specifies the IPX protocols.
- assigned specifies the assigned protocol entries.
- other specifies the other protocol entries.

show mac-address-table aging-time

To display the MAC address aging time, use the show mac-address-table aging-time command.
show mac-address-table aging-time [vlan vlan_id]

Defaults

Command Modes

Command History

Examples

Related Commands

vlan vlan_id (Optional) Specifies a VLAN; valid values are from 1 to 4094.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Support for extended addressing was added.

This example shows how to display the currently configured aging time for all VLANs:

```
Switch# show mac-address-table aging-time
Vlan Aging Time
---- ----------
100 300
200 1000
Switch\#
```

This example shows how to display the currently configured aging time for a specific VLAN:

```
Switch# show mac-address-table aging-time vlan 100
Vlan Aging Time
---- ----------
    100 300
Switch#
```

Command	Description
show mac-address-table address	Displays the information about the MAC-address table.
show mac-address-table count	Displays the number of entries currently in the MAC address table.
show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
show mac-address-table interface	Displays the MAC address table information for a specific interface.
show mac-address-table multicast	Displays information about the multicast MAC address table.

Command	Description
show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.
show mac-address-table static	Displays the static MAC address table entries only.
show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table count

To display the number of entries currently in the MAC address table, use the show mac-address-table count command.
show mac-address-table count [vlan vlan_id]

$\overline{\text { Defaults }}$

Command Modes

Command History

Examples

Related Commands

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Added support for extended VLAN addresses.

This example shows how to display the entry count for a specific VLAN:

```
Switch# show mac-address-table count vlan 1
MAC Entries for Vlan 1:
Dynamic Unicast Address Count: 0
Static Unicast Address (User-defined) Count: 0
Static Unicast Address (System-defined) Count: 1
Total Unicast MAC Addresses In Use: 1
Total Unicast MAC Addresses Available: 32768
Multicast MAC Address Count: 1
Total Multicast MAC Addresses Available: 16384
Switch#
```

Command	Description
show mac-address-table address	Displays the information about the MAC-address table.
show mac-address-table aging-time	Displays MAC address table aging information.
show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
show mac-address-table interface	Displays the MAC address table information for a specific interface.
show mac-address-table multicast	Displays information about the multicast MAC address table.
show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.

Command	Description
show mac-address-table static	Displays the static MAC address table entries only.
show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table dynamic

To display the dynamic MAC address table entries only, use the show mac-address-table dynamic command.
show mac-address-table dynamic [address mac_addr | interface type slot/port | protocol protocol | vlan vlan_id]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

address mac_addr	(Optional) Specifies a 48-bit MAC address; the valid format is H.H.H.
interface type slot/port	(Optional) Specifies an interface to match; valid values for type are fastethernet, gigabitethernet, and tengigabitethernet.
protocol protocol	(Optional) Specifies a protocol. See the "Usage Guidelines" section for more information.
vlan vlan_id	(Optional) Displays entries for a specific VLAN; valid values are from 1 to 4094.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Added support for extended VLAN addresses.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

The keyword definitions for the protocol argument are as follows:

- assigned specifies assigned protocol entries.
- ip specifies IP protocol.
- ipx specifies IPX protocols.
- other specifies other protocol entries.

The show mac-address-table dynamic command output for an EtherChannel interface changes the port number designation (such as, 5/7) to a port group number (such as, Po80).

For the MAC address table entries that are used by the routed ports, the routed port name is displayed in the "vlan" column not the internal VLAN number.

This example shows how to display the dynamic MAC address entries with a specific protocol type (in this case, assigned):

Switch\# Unicast vlan	show mac-addre Entries mac address	-table dynamic protoc type protocols	port
1	0000.0000 .0203	dynamic ip,assigned	FastEthernet6/15
1	0000.0000 .0204	dynamic ip,assigned	FastEthernet6/15
1	0000.0000 .0205	dynamic ip,assigned	FastEthernet6/15
2	0000.0000 .0103	dynamic ip,assigned	FastEthernet6/16
2	0000.0000 .0104	dynamic ip,assigned	FastEthernet6/16
2	0000.0000 .0105	dynamic ip,assigned	FastEthernet6/16
Switch\#			

$\overline{\text { Related Commands }}$

Command	Description
show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.
show mac-address-table static	Displays the static MAC address table entries only.
show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table interface

To display the MAC address table information for a specific interface, use the show mac-address-table interface command.
show mac-address-table interface type slot/port

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

type	Interface type; valid values are ethernet, fastethernet, gigabitethernet, and tengigabitethernet.

slot/port \quad Number of the slot and port.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

For the MAC address table entries that are used by the routed ports, the routed port name is displayed in the "vlan" column not the internal VLAN number.

This example shows how to display MAC address table information for a specific interface:

Related Commands	Command	Description
	show mac-address-table address	Displays the information about the MAC-address table.
	show mac-address-table aging-time	Displays MAC address table aging information.
	show mac-address-table count	Displays the number of entries currently in the MAC address table.
	show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
	show mac-address-table multicast	Displays information about the multicast MAC address table.
	show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.
	show mac-address-table static	Displays the static MAC address table entries only.
	show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table multicast

To display information about the multicast MAC address table, use the show mac-address-table multicast command.
show mac-address-table multicast [count I \{igmp-snooping [count]\} I \{user [count]\} I
\{vlan vlan_num \}]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

This example shows how to display multicast MAC address table information for a specific VLAN:

```
Switch# show mac-address-table multicast vlan 1
Multicast Entries
    vlan mac address type ports
-------+--------------+-------+-----------------------------------------------
    1 ffff.ffff.ffff system Switch,Fa6/15
Switch#
```

This example shows how to display the number of multicast MAC entries for all VLANs:

```
Switch# show mac-address-table multicast count
MAC Entries for all vlans:
Multicast MAC Address Count: 141
Total Multicast MAC Addresses Available: 16384
Switch#
```

Related Commands	Command	Description
	show mac-address-table address	Displays the information about the MAC-address table.
	show mac-address-table aging-time	Displays MAC address table aging information.
	show mac-address-table count	Displays the number of entries currently in the MAC address table.
	show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
	show mac-address-table interface	Displays the MAC address table information for a specific interface.
	show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.
	show mac-address-table static	Displays the static MAC address table entries only.
	show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table notification

To display the MAC address table notification status and history, use the show mac-address-table notification command.
show mac-address-table notification [change] [interface [interface-id]] | [mac-move] |
[threshold] | [learn-fail]
Syntax Description

Defaults

Command Modes Command History

Usage Guidelines

Examples

change	(Optional) Displays the MAC address change notification status.
interface	(Optional) Displays MAC change information for an interfaces.
interface-id	(Optional) Displays the information for a specific interface. Valid interfaces include physical ports and port channels.
mac-move	(Optional) Displays MAC move notification status.
threshold	(Optional) Displays the MAC threshold notification status.
learn-fail	(Optional) Displays general information of hardware MAC learning failure notifications.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.2(31) \mathrm{SG}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(52) \mathrm{SG}$	Support for learn-fail keyword, Supervisor Engine 6-E, and Catalyst 4900M chassis added.

Use the show mac-address-table notification change command to display the MAC change notification interval, the maximum number of entries allowed in the history table, the history table contents, and whether the MAC change feature is enabled or disabled.

Use the interface keyword to display the flags for all interfaces. If the interface-id is included, only the flags for that interface are displayed.

This example shows how to display all the MAC address notification information:

```
Switch# show mac-address-table notification change
MAC Notification Feature is Enabled on the switch
Interval between Notification Traps : 1 secs
Number of MAC Addresses Added : 5
Number of MAC Addresses Removed : 1
Number of Notifications sent to NMS : 3
Maximum Number of entries configured in History Table : 500
Current History Table Length : 3
MAC Notification Traps are Enabled
```

```
History Table contents
History Index 1, Entry Timestamp 478433, Despatch Timestamp 478433
MAC Changed Message :
Operation: Added Vlan: 1 MAC Addr: 1234.5678.9ab0 Dot1dBasePort: 323
History Index 2, Entry Timestamp 481834, Despatch Timestamp 481834
MAC Changed Message :
Operation: Added Vlan: 1 MAC Addr: 1234.5678.9ab1 Dot1dBasePort: 323
Operation: Added Vlan: 1 MAC Addr: 1234.5678.9ab2 Dot1dBasePort: 323
Operation: Added Vlan: 1 MAC Addr: 1234.5678.9ab3 Dot1dBasePort: 323
Operation: Added Vlan: 1 MAC Addr: 1234.5678.9ab4 Dot1dBasePort: 323
History Index 3, Entry Timestamp 484334, Despatch Timestamp 484334
MAC Changed Message :
Operation: Deleted Vlan: 1 MAC Addr: 1234.5678.9ab0 Dot1dBasePort: 323
Switch#
```

This example shows how to display the MAC address change status on the FastEthernet interface 7/1:

```
Switch# show mac-address-table notification change interface FastEthernet 7/1
MAC Notification Feature is Enabled on the switch
Interface MAC Added Trap MAC Removed Trap
--------- -------------- ------------------
FastEthernet7/1 Enabled Disabled
Switch#
```

This example shows how to display the MAC address move status:

```
Switch# show mac-address-table notification mac-move
MAC Move Notification: Enabled
Switch#
```

This example shows how to display the MAC address table utilization status:

```
Switch# show mac-address-table notification threshold
Status limit Interval
-------------+-----------+----------------
    enabled 50 120
Switch#
```

This example shows how to display general information of MAC learning failure notifications:

```
Switch# show mac address-table notification learn-fail
Status limit Interval
--------------+-----------------------------
    disabled 2000 120
```

Related Commands

Command	Description
clear mac-address-table	Clears the address entries from the Layer 2 MAC address
	table.
mac-address-table notification	Enables MAC address notification on a switch.
snmp-server enable traps	Enables SNMP notifications (traps or informs).
snmp trap mac-notification change	Enables SNMP MAC address notifications.

show mac-address-table protocol

To display the MAC address table information that is based on the protocol, use the show mac-address-table protocol command.
show mac-address-table protocol \{assigned | ip | ipx | other\}

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

assigned	Specifies the assigned protocol entries.
$\mathbf{i p}$	Specifies the IP protocol entries.
$\mathbf{i p x}$	Specifies the IPX protocol entries.
other	Specifies the other protocol entries.

This command has no default settings.

Privileged EXEC mode

Release	Modification
12.1(8a)EW	Support for this command was introduced on the Catalyst 4500 series switch.

For the MAC address table entries that are used by the routed ports, the routed port name is displayed in the "vlan" column not the the internal VLAN number.

This example shows how to display the MAC address table entries that have a specific protocol type (in this case, assigned):

This example shows the other output for the previous example:

Switch\# Unicast vlan	show mac-addre Entries mac address	-table protocol other type protocols	port
1	0000.0000 .0201	dynamic other	FastEthernet6/15
1	0000.0000 .0202	dynamic other	FastEthernet6/15
1	0000.0000 .0203	dynamic other	FastEthernet6/15
1	0000.0000 .0204	dynamic other	FastEthernet6/15
1	0030.94 fc .0 dff	static ip,ipx,assigned,other	Switch
2	0000.0000 .0101	dynamic other	FastEthernet6/16
2	0000.0000 .0102	dynamic other	FastEthernet6/16
2	0000.0000 .0103	dynamic other	FastEthernet6/16
2	0000.0000 .0104	dynamic other	FastEthernet6/16
Fa6/1	0030.94 fc .0 dff	static ip,ipx,assigned,other	Switch
Fa6/2	0030.94fc.0dff	static ip,ipx,assigned,other	Switch
Multicast Entries			
1	ffff.ffff.ffff	system Switch, Fa6/15	
2	ffff.ffff.ffff	system Fa6/16	
1002	ffff.ffff.ffff	system	
1003	ffff.ffff.ffff	system	
1004	ffff.ffff.ffff	system	
1005	ffff.ffff.ffff	system	
Fa6/1	ffff.ffff.ffff	system Switch,Fa6/1	
Fa6/2	ffff.ffff.ffff	system Switch,Fa6/2	
Switch\#			

Command	Description
show mac-address-table address	Displays the information about the MAC-address table.
show mac-address-table aging-time	Displays MAC address table aging information.
show mac-address-table count	Displays the number of entries currently in the MAC address table.
show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
show mac-address-table interface	Displays the MAC address table information for a specific interface.
show mac-address-table multicast	Displays information about the multicast MAC address table.
show mac-address-table static	Displays the static MAC address table entries only.
show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table static

To display the static MAC address table entries only, use the show mac-address-table static command.
show mac-address-table static [address mac_addr | interface type number | protocol protocol | vlan vlan_id]

Syntax Description

Defaults

Command Modes

Command History

address mac_addr	(Optional) Specifies a 48-bit MAC address to match; the valid format is H.H.H.
interface type number	(Optional) Specifies an interface to match; valid values for type are fastethernet, gigabitethernet, and tengigabitethernet.
protocol protocol	(Optional) Specifies a protocol. See the "Usage Guidelines" section for more information.
vlan vlan_id	(Optional) Displays the entries for a specific VLAN; valid values are from 1 to 4094.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Added support for extended VLAN addresses.
$12.2(25) \mathrm{EW}$	Added support for the 10-Gigabit Ethernet interface.

For the MAC address table entries that are used by the routed ports, the routed port name is displayed in the "vlan" column not the internal VLAN number.
The keyword definitions for the protocol argument are as follows:

- assigned specifies the assigned protocol entries.
- ip specifies the IP protocol.
- ipx specifies the IPX protocols.
- other specifies the other protocol entries.

This example shows how to display the static MAC address entries with a specific protocol type (in this case, assigned):

Command	Description
show mac-address-table address	Displays the information about the MAC-address table.
show mac-address-table aging-time	Displays MAC address table aging information.
show mac-address-table count	Displays the number of entries currently in the MAC address table.
show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
show mac-address-table interface	Displays the MAC address table information for a specific interface.

Command	Description
show mac-address-table multicast	Displays information about the multicast MAC address table.
show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.
show mac-address-table vlan	Displays information about the MAC address table for a specific VLAN.

show mac-address-table vlan

To display information about the MAC address table for a specific VLAN, use the show mac-address-table vlan command.
show mac-address-table [vlan vlan_id] [protocol protocol]

Syntax Description

Defaults

Command Modes

Command History

Release	Modification
$12.1(8 a)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c})$ EW	Support for extended addressing was added.

Usage Guidelines For the MAC address table entries used by the routed ports, the routed port name is displayed in the "vlan" column not the the internal VLAN number.

The keyword definitions for the protocol variable are as follows:

- assigned specifies the assigned protocol entries.
- ip specifies the IP protocol.
- ipx specifies the IPX protocols.
- other specifies the other protocol entries.

Examples

This example shows how to display information about the MAC address table for a specific VLAN:

Switch\# Unicast vlan	show mac-addre Entries mac address	-table type	an 1 protocols	port
1	0000.0000 .0201	dynamic	ip	FastEthernet6/15
1	0000.0000 .0202	dynamic		FastEthernet6/15
1	0000.0000 .0203	dynamic	other	FastEthernet6/15
1	0000.0000 .0204	dynamic	other	FastEthernet6/15
1	0030.94fc.0dff	static	ip,ipx,assigned, other	Switch
Multica vlan	Entries mac address	type	ports	
1 Switch\#	ffff.ffff.ffff	system	Switch, Fa6/15	

This example shows how to display MAC address table information for a specific protocol type:
Switch\# show mac-address-table vlan 100 protocol other
Unicast Entries
vlan mac address
$-=$ type

Command	Description
show mac-address-table address	Displays the information about the MAC-address table.
show mac-address-table aging-time	Displays MAC address table aging information.
show mac-address-table count	Displays the number of entries currently in the MAC address table.
show mac-address-table dynamic	Displays the dynamic MAC address table entries only.
show mac-address-table interface	Displays the MAC address table information for a specific interface.
show mac-address-table multicast	Displays information about the multicast MAC address table.
show mac-address-table protocol	Displays the MAC address table information that is based on the protocol.
show mac-address-table static	Displays the static MAC address table entries only.

show module

To display information about the module, use the show module command.
show module $[\bmod \mid$ all]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

mod	(Optional) Number of the module; valid values vary from chassis to chassis.
all	(Optional) Displays information for all modules.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{EW}$	Enhanced the output of the show idprom interface command to include the 10-Gigabit Ethernet interface.

In the Mod Sub-Module fields in the command output, the show module command displays the supervisor engine number but appends the uplink daughter card's module type and information.
If the PoE consumed by the module is more than 50 W above the administratively allocated PoE, the "Status" displays as "PwrOver." If the PoE consumed by the module is more than 50 W above the PoE module limit, the "Status" displays as "PwrFault."

Examples

This example shows how to display information for all the modules.
This example shows the show module command output for a system with inadequate power for all installed modules. The system does not have enough power for Module 5; the "Status" displays it as "PwrDeny."

This example shows how to display information for a specific module:

This example shows how to display information for all the modules on the switch:

show monitor

To display information about the SPAN session, use the show monitor command.
show monitor [session] [range session-range | local| remote | all | session-number] [detail]

Syntax Description

Defaults

Command Modes

Command History

session	(Optional) Displays the SPAN information for a session.
range	(Optional) Displays information for a range of sessions.
session-range	(Optional) Specifies a range of sessions.
local	(Optional) Displays all local SPAN sessions.
remote	(Optional) Displays the RSPAN source and destination sessions.
all	(Optional) Displays the SPAN and RSPAN sessions.
session-number	(Optional) Session number; valid values are from1 to 6.
detail	(Optional) Displays the detailed SPAN information for a session.

The detail keyword only displays lines with a nondefault configuration.

Privileged EXEC mode

Release	Modification
$12.1(8 a) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(13) \mathrm{EW}$	Added support for differing directions within a single user session.
$12.1(19) \mathrm{EW}$	Output enhanced to display configuration status of SPAN enhancements.
$12.1(20) \mathrm{EW}$	Added support to display configuration state for remote SPAN and learning.
$12.2(20) \mathrm{EW}$	Added support to display ACLs that are applied to SPAN sessions.

Examples

This example shows how to display whether ACLs are applied to a given SPAN session on a Catalyst 4500 series switch:

```
Switch# show monitor
Session 1
---------
Type : Local Session
Source Ports :
    Both : Fa6/1
Destination Ports : Fa6/2
    Encapsulation : Native
            Ingress : Disabled
            Learning : Disabled
Filter VLANs : 1
IP Access-group : 10
```

This example shows how to display SPAN information for session 2:

```
Switch# show monitor session 2
Session 2
-----------
Type : Remote Source Session
Source Ports:
    RX Only: Fal/1-3
Dest RSPAN VLAN: }90
Ingress : Enabled, default VLAN=2
Learning : Disabled
Switch#
```

This example shows how to display the detailed SPAN information for session 1:

```
Switch# show monitor session 1 detail
Session 1
-_-------
Type : Local Session
Source Ports :
        RX Only : None
        TX Only : None
        Both : Gi1/1
Source VLANs :
    RX Only : None
    TX Only : None
    Both : None
Source RSPAN VLAN : Fa6/1
Destination Ports : Fa6/1
    Encapsulation : DOT1Q
                Ingress : Enabled, default VLAN = 2
Filter VLANs : None
    Filter Types RX : Good
    Filter Types TX : None
Dest Rspan Vlan : 901
Ingress : Enabled, default VLAN=2
Learning : Disabled
IP Access-group : None
Switch#
```

This example shows how to display SPAN information for session 1 beginning with the line that starts with Destination:

```
Switch# show monitor session 1 | begin Destination
Destination Ports: None
Filter VLANs: None
Switch#
Switch#
```

	Command	Description
monitor session	Enables the SPAN sessions on interfaces or VLANs.	

show pagp

To display information about the port channel, use the show pagp command.
show pagp [group-number] \{counters | dual-active | internal | neighbor \}

Syntax Description

group-number	(Optional) Channel-group number; valid values are from 1 to 64.
counters	Specifies the traffic counter information.
dual-active	Specifies the dual-active information.
internal	Specifies the PAgP internal information.
neighbor	Specifies the PAgP neighbor information.

Defaults

Command Modes

Command History

This command has no default settings.

Privileged EXEC mode

Usage Guidelines You can enter any show pagp command to display the active PAgP port-channel information. To display the nonactive information, enter the show pagp command with a group.

Examples

This example shows how to display information about the PAgP counter:

	Information		Flush	
Port	Sent	Recv	Sent	Recv
Channel group: 1				
Fa5/4	2660	2452	0	0
Fa5/5	2676	2453	0	0
Channel group: 2				
Fa5/6	289	261	0	0
Fa5/7	290	261	0	0
Switch\#				

This example shows how to display PAgP dual-active information:

```
Switch# show pagp dual-active
PAgP dual-active detection enabled: Yes
PAgP dual-active version: 1.1
```

```
Channel group 30
Dual-Active Partner Partner Partner
Port Detect Capable Name Port Version
Te3/1 Yes VS1-Reg2 Te1/1/7 1.1
Te4/1 Yes VS1-Reg2 Te2/2/8 1.1
Channel group 32
Dual-Active Partner Partner Partner
Port Detect Capable Name Port Version
Gi1/43 Yes VS3 Gi1/1/43 1.1
Gi1/44 Yes VS3 Gi1/1/44 1.1
Gi1/45 Yes VS3 Gi1/1/45 1.1
Gi1/46 Yes VS3 Gi2/1/46 1.1
Gi1/47 Yes VS3 Gi2/1/47 1.1
Gi1/48 Yes VS3 Gi2/1/48 1.1
Gi2/3 Yes VS3 Gi1/1/1 1.1
Gi2/4 Yes VS3 Gi2/1/1 1.1
Switch#
```

This example shows how to display internal PAgP information:

This example shows how to display PAgP neighbor information for all neighbors:

```
Switch# show pagp neighbor
Flags: S - Device is sending Slow hello. C - Device is in Consistent state.
    A - Device is in Auto mode. P - Device learns on physical port.
```

Channel group 1 neighbors
Partner \quad Partner \quad Partner \quad Partner Group

	Partner	Partner	Partner		Partner	Group
Port	Name	Device ID	Port	Age	Flags	Cap.
Fa5/6	JAB031301	$0050.0 £ 10.230 \mathrm{c}$	2/47	10s	SAC	2 F
Fa5/7	JAB031301	$0050.0 £ 10.230 \mathrm{c}$	2/48	11s	SAC	2 F

Switch\#

Related Commands	Command	Description
pagp learn-method	Learns the input interface of the incoming packets.	
pagp port-priority	Selects a port in hot standby mode.	

show policy-map

To display information about the policy map, use the show policy-map command.
show policy-map [policy_map_name]

Syntax Description

Defaults

Command Modes

Command History
policy_map_name (Optional) Name of the policy map.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

This example shows how to display information for all the policy maps:

```
Switch# show policy-map
Policy Map ipp5-policy
    class ipp5
    set ip precedence 6
Switch#
```

This example shows how to display information for a specific policy map:

```
Switch# show policy ipp5-policy
Policy Map ipp5-policy
    class ipp5
        set ip precedence 6
Switch#
```


Related Commands

Command	Description
class-map	Creates a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode
policy-map	Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode
show class-map	Displays class map information.
show policy-map interface	Displays the statistics and configurations of the input and output policies that are attached to an interface.

show policy-map control-plane

To display the configuration either of a class or of all classes for the policy map of a control plane, use the show policy-map control-plane command.
show policy-map control-plane [input [class class-name] | [class class-name]]

Syntax Description

Defaults

Command Modes

Usage Guidelines

Examples

input	(Optional) Displays statistics for the attached input policy.
class class-name	(Optional) Displays the name of the class.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.2(31)$ SG	Support for this command was introduced on the Catalyst 4500 series switch.

This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.
The show policy-map control-plane command displays information for aggregate control-plane services that control the number or rate of packets that are going to the process level.

This example shows that the policy map TEST is associated with the control plane. This policy map polices traffic that matches the class-map TEST, while allowing all other traffic (that matches the class-map class-default) to go through as is. Table 2-27 describes the fields shown in the display.

```
Switch# show policy-map control-plane
Control Plane
    Service-policy input: system-cpp-policy
    Class-map: system-cpp-eapol (match-all)
        O packets
        Match: access-group name system-cpp-eapol
    Class-map: system-cpp-bpdu-range (match-all)
        0 packets
        Match: access-group name system-cpp-bpdu-range
    Class-map: system-cpp-cdp (match-all)
        28 packets
        Match: access-group name system-cpp-cdp
        police: Per-interface
            Conform: 530 bytes Exceed: 0 bytes
```

```
    Class-map: system-cpp-garp (match-all)
        0 packets
    Match: access-group name system-cpp-garp
    Class-map: system-cpp-sstp (match-all)
    O packets
    Match: access-group name system-cpp-sstp
    Class-map: system-cpp-cgmp (match-all)
    0 packets
    Match: access-group name system-cpp-cgmp
    Class-map: system-cpp-ospf (match-all)
        O packets
    Match: access-group name system-cpp-ospf
    Class-map: system-cpp-igmp (match-all)
    0 packets
    Match: access-group name system-cpp-igmp
    Class-map: system-cpp-pim (match-all)
        0 packets
    Match: access-group name system-cpp-pim
    Class-map: system-cpp-all-systems-on-subnet (match-all)
    O packets
    Match: access-group name system-cpp-all-systems-on-subnet
    Class-map: system-cpp-all-routers-on-subnet (match-all)
    0 packets
    Match: access-group name system-cpp-all-routers-on-subnet
    Class-map: system-cpp-ripv2 (match-all)
    O packets
    Match: access-group name system-cpp-ripv2
    Class-map: system-cpp-ip-mcast-linklocal (match-all)
    0 packets
    Match: access-group name system-cpp-ip-mcast-linklocal
    Class-map: system-cpp-dhcp-cs (match-all)
    0 packets
    Match: access-group name system-cpp-dhcp-cs
    Class-map: system-cpp-dhcp-sc (match-all)
    O packets
    Match: access-group name system-cpp-dhcp-sc
    Class-map: system-cpp-dhcp-ss (match-all)
    0 packets
    Match: access-group name system-cpp-dhcp-ss
    Class-map: class-default (match-any)
    O packets
    Match: any
        0 packets
Switch#
```

Table 2-27 show policy-map control-plane Field Descriptions

Field	Description
Fields Associated with Classes or Service Policies	
Service-policy input	Name of the input service policy that is applied to the control plane. (If configured, this field will also show the output service policy.)
Class-map	Class of traffic being displayed. Traffic is displayed for each configured class. The choice for implementing class matches (for example, match-all or match-any) can also appear next to the traffic class.
Match	Match criteria for the specified class of traffic.
NoteFor more information about the variety of match criteria options available, refer to the chapter "Configuring the Modular Quality of Service Command-Line Interface" in the Cisco IOS Quality of Service Solutions Configuration Guide.	

Fields Associated with Traffic Policing

police	police command has been configured to enable traffic policing.
conformed	Action to be taken on packets conforming to a specified rate; displays the number of packets and bytes on which the action was taken.
exceeded	Action to be taken on packets exceeding a specified rate; displays the number of packets and bytes on which the action was taken.

Related Commands

Command	Description
control-plane	Enters control-plane configuration mode.
service-policy input (control-plane)	Attaches a policy map to a control plane for aggregate control plane services.

show policy-map interface

To display the statistics and configurations of the input and output policies that are attached to an interface, use the show policy-map interface command.
show policy-map interface [\{fastethernet interface-number\} | \{gigabitethernet interface-number $\}$ | \{port-channel number $\}$ | $\{$ vlan vlan_id $\}$] [input | output]
Syntax Description

$\overline{\text { Defaults }}$

Command Modes

Command History

fastethernet interface-number	(Optional) Specifies the Fast Ethernet 802.3 interface.
gigabitethernet interface-number	(Optional) Specifies the Gigabit Ethernet 802.3 z interface.
port-channel number	(Optional) Specifies the port channel.
vlan vlan_id	(Optional) Specifies the VLAN ID; valid values are from 1
	to 4094.
input	(Optional) Specifies input policies only.
output	(Optional) Specifies output policies only.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.1(12 \mathrm{c}) \mathrm{EW}$	Added support for extended VLAN addresses.
$12.2(25) \mathrm{SG}$	Displays results for full flow policing.

Examples

This example shows how to display the statistics and configurations of all input and output policies attached to an interface:

```
Switch# show policy-map interface
FastEthernet6/1
    service-policy input:ipp5-policy
    class-map:ipp5 (match-all)
        0 packets
        match:ip precedence 5
        set:
            ip precedence 6
        class-map:class-default (match-any)
            0 packets
            match:any
                0 packets
```

```
service-policy output:ipp5-policy
    class-map:ipp5 (match-all)
        0 packets
        match:ip precedence 5
        set:
            ip precedence 6
    class-map:class-default (match-any)
        0 packets
        match:any
            0 packets
Switch#
```

This example shows how to display the input policy statistics and configurations for a specific interface:

```
Switch# show policy-map interface fastethernet 5/36 input
service-policy input:ipp5-policy
    class-map:ipp5 (match-all)
        0 packets
        match:ip precedence 5
        set:
            ip precedence 6
    class-map:class-default (match-any)
        0 packets
        match:any
            0 packets
Switch#
```

With the following configuration, each flow is policed to a 1000000 bps with an allowed 9000 -byte burst value.

Note If you use the match flow ip source-addressldestination-address command, these two flows are consolidated into one flow and they have the same source and destination address.

```
Switch# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# class-map c1
Switch(config-cmap)# match flow ip source-address ip destination-address ip protocol 14
source-port 14 destination-port
Switch(config-cmap)# exit
Switch(config)# policy-map p1
Switch(config-pmap)# class c1
Switch(config-pmap-c)# police 1000000 9000
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface fastEthernet 6/1
Switch(config-if)# service-policy input p1
Switch(config-if)# end
Switch# write memory
Switch# show policy-map interface
FastEthernet6/1
class-map c1
    match flow ip source-address ip destination-address ip protocol l4 source-port l4
destination-port
!
    policy-map p1
    class c1
```

```
    police 1000000 bps 9000 byte conform-action transmit exceed-action drop
!
interface FastEthernet 6/1
    service-policy input p1
Switch# show policy-map p1
    Policy Map p1
            Class c1
                police 1000000 bps 9000 byte conform-action transmit exceed-action drop
Switch# show policy-map interface
    FastEthernet6/1
    Service-policy input: p1
            Class-map: c1 (match-all)
            15432182 packets
            Match: flow ip source-address ip destination-address ip protocol l4 source-port l4
destination-port
            police: Per-interface
                Conform: 64995654 bytes Exceed: 2376965424 bytes
            Class-map: class-default (match-any)
            0 packets
            Match: any
                0 packets
Switch#
```

Related Commands	Command class-map	Description policy-map class whose name you specify and to be used enter class-map configuration mode.
show class-map	Creates a policy map that can be attached to multiple ports to specify a service policy and to enter policy-map configuration mode.	
show qos	Displays class map information.	

show policy-map interface vlan

To show the QoS policy-map information applied to a specific VLAN on an interface, use the show policy-map interface vlan command.
show policy-map interface vlan interface-id vlan vlan-id

Syntax Description

Command Modes

Command History

Examples

interface interface-id	(Optional) Displays QoS policy-map information for a specific interface.
vlan vlan-id	(Optional) Displays QoS policy-map information for a specific VLAN.

Privileged EXEC mode

Release	Modification
$12.1(13) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

Take the following configuration on a non-Supervisor Engine 6-E as an example:

```
interface GigabitEthernet3/1
    vlan-range 20,400
        service-policy input p1
    vlan-range 300-301
        service-policy output p2
```

This example shows how to display policy-map statistics on VLAN 20 on the Gigabit Ethernet $6 / 1$ interface:

```
Switch# show policy-map interface gigabitEthernet 3/1 vlan 20
    GigabitEthernet3/1 vlan 20
        Service-policy input: p1
        Class-map: class-default (match-any)
            0 packets
            Match: any
                0 packets
            police: Per-interface
                Conform: 0 bytes Exceed: 0 bytes
Switch#
```

Take the following configuration on a non-Supervisor Engine 6-E as an example:

```
interface fastethernet6/1
    vlan-range 100
        service-policy in p1
```

This example shows how to display policy-map statistics on VLAN 100 on the FastEthernet interface:

```
Switch#show policy-map interface fastEthernet 6/1 vlan 100
    FastEthernet6/1 vlan 100
    Service-policy input: p1
```

```
    Class-map: c1 (match-all)
    0 packets
    Match: ip dscp af11 (10)
    police: Per-interface
        Conform: 0 bytes Exceed: 0 bytes
    Class-map: class-default (match-any)
    0 packets
    Match: any
        0 packets
Switch#
```

Take the following configuration on a Supervisor Engine 6-E as an example:

```
interface gigabitethernet3/1
    vlan-range 100
    service-policy in p1
```

This example shows how to display policy-map statistics on VLAN 100 on the FastEthernet interface:

```
Switch#show policy-map interface gigabitethernet 3/1 vlan 100
GigabitEthernet3/1 vlan 100
    Service-policy input: p1
        Class-map: c1 (match-all)
            0 packets
            Match: ip dscp af11 (10)
            police:
                rate }128000\mathrm{ bps, burst 4000 bytes
                    conformed 0 packets, 0 bytes; action:
                    transmit
                    exceeded 0 packets, 0 bytes; action:
                    drop
                    conformed 0 bps, exceeded 0 bps
        Class-map: class-default (match-any)
            0 packets
            Match: any
                0 packets
Switch#
```

	Command	Description
	service-policy (interface configuration)	Attaches a policy map to an interface.
	show policy-map interface	Displays the statistics and configurations of the input and output policies that are attached to an interface.

show port-security

To display the port security settings for an interface or for the switch, use the show port-security command.

show port-security [address] [interface interface-id]

[interface port-channel port-channel-number] [vlan vlan-id]

Syntax Description

Command Modes

Command History

address	(Optional) Displays all secure MAC addresses for all ports or for a specific port.
interface interface-id	(Optional) Displays port security settings for a specific interface.
interface port-channel port channel-number	
(Optional) Displays port security for a specific port-channel interface.	

Privileged EXEC mode

Release	Modification
$12.1(13) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(18) \mathrm{EW}$	Support was enhanced to display sticky MAC addresses.
$12.2(25) \mathrm{EWA}$	Support was enhanced to display settings on a per-VLAN basis.
$12.2(31) \mathrm{SGA}$	Support was enhanced to display settings on EtherChannel interfaces.

Usage Guidelines If you enter the command without keywords, the output includes the administrative and operational status of all secure ports on the switch.
If you enter the interface-id value or port-channel-interface value, the show port-security command displays port security settings for the interface.

If you enter the address keyword, the show port-security address command displays the secure MAC addresses for all interfaces and the aging information for each secure address.

If you enter the interface-id value and the address keyword, the show port-security address interface command displays all the MAC addresses for the interface with aging information for each secure address. You can also use this command to display all the MAC addresses for an interface even if you have not enabled port security on it.

Sticky MAC addresses are addresses that persist across switch reboots and link flaps.

Examples
This example shows how to display port security settings for the entire switch:

Switch show port-security Secure Port MaxSecureAddr (Count)	CurrentAddr (Count)	SecurityViolation (Count)	Security Action

This example shows how to display port security settings for interface Fast Ethernet port 1:

Switch\# show port-security	interface fastethernet $\mathbf{5 / 1}$
Port Security	: Enabled
Port Status	: Secure-up
Violation Mode	: Shutdown
Aging Time	$: 0$ mins
Aging Type	: Absolute
SecureStatic Address Aging	$:$ Disabled
Maximum MAC Addresses	$: 1$
Total MAC Addresses	$: 1$
Configured MAC Addresses	$: 0$
Sticky MAC Addresses	$: 1$
Last Source Address	$: 0000.0001 .001 a$
Security Violation Count	$: 0$
Switch\#	

This example shows how to display all secure MAC addresses configured on all switch interfaces:

This example shows how to display the maximum allowed number of secure MAC addresses and the current number of secure MAC addresses on interface Gigabitethernet1/1:
Switch\# show port-security interface gigabitethernet1/1 vlan
Default maximum: 22
VLAN Maximum Current
2

This example shows how to display the port security settings on interface Gigabitethernet $1 / 1$ for VLANs 2 and 3:

```
Switch# show port-security interface gigabitethernet1/1 vlan 2-3
Default maximum: 22
VLAN Maximum Current
\begin{tabular}{lll}
2 & 22 & 3 \\
3 & 22 & 3
\end{tabular}
```

This example shows how to display all secure MAC addresses configured on interface Gigabitethernet $1 / 1$ with aging information for each address.

This example shows how to display all secure MAC addresses configured on VLANs 2 and 3 on interface Gigabitethernet $1 / 1$ with aging information for each address:

This example shows how to display the maximum allowed number of secure MAC addresses and the current number of secure MAC addressees on Fast Ethernet port 1:
Switch\# show port-security interface fastethernet5/1 vlan
Default maximum: 22
VLAN Maximum

| Current |
| :--- | :---: | :---: |

2

This example shows how to display the port security settings on Fast Ethernet port 1 for VLANs 2 and 3:

```
Switch# show port-security interface fastethernet5/1 vlan 2-3
Default maximum: 22
VLAN Maximum Current
    2 22 3
    3 22 3
Switch#
```

This example shows how to display all secure MAC addresses configured on Fast Ethernet port 1 with aging information for each address.

This example shows how to display all secure MAC addresses configured on VLANs 2 and 3 on Fast Ethernet port 1 with aging information for each address:

This example shows how to display all secure MAC addresses configured on all switch interfaces:

Switch\# show port-security address Secure Mac Address Table				
Vlan	Mac Address	Type	Ports	Remaining Age (mins)
1	0000.0001 .0000	SecureConfigured	Fa3/1	15 (I)
1	0000.0001 .0001	SecureConfigured	Fa3/1	14 (I)
1	0000.0001 .0100	SecureConfigured	Fa3/2	-
1	0000.0001 .0101	SecureConfigured	Fa3/2	-
1	0000.0001 .0200	SecureConfigured	Fa3/3	-
1	0000.0001 .0201	SecureConfigured	Fa3/3	-
1	0000.0001 .0300	SecureConfigured	Fa3/4	-
1	0000.0001 .0301	SecureConfigured	Fa3/4	-
1	0000.0001 .1000	SecureDynamic	Fa3/5	-
1	0000.0001 .1001	SecureDynamic	Fa3/5	-
1	0000.0001 .1100	SecureDynamic	Fa3/6	-
1	0000.0001 .1101	SecureDynamic	Fa3/6	-
1	0000.0001 .1200	SecureSticky	Fa3/7	-
1	0000.0001 .1201	SecureSticky	Fa3/7	-
1	0000.0001 .1300	SecureSticky	Fa3/8	-
1	0000.0001 .1301	SecureSticky	Fa3/8	-
Total Addresses in System (excluding one Max Addresses limit in System (excluding Switch\#			per por	: 8
			mac per	$\text { port) : } 3072$

This example shows how to display the maximum allowed number of secure MAC addresses and the current number of secure MAC addresses on interface Gigabitethernet1/1:

```
Switch# show port-security interface gigabitethernet1/1 vlan
Default maximum: 22
VLAN Maximum Current
\begin{tabular}{lll}
2 & 22 & 3 \\
3 & 22 & 3 \\
4 & 22 & 3 \\
5 & 22 & 1 \\
6 & 22 & 2
\end{tabular}
Switch#
```

This example shows how to display the port security settings on interface Gigabitethernet $1 / 1$ for VLANs 2 and 3 :

```
Switch# show port-security interface gigabitethernet1/1 vlan 2-3
Default maximum: 22
VLAN Maximum Current
    2 22 3
    3 22 3
Switch#
```

This example shows how to display all secure MAC addresses configured on interface Gigabitethernet $1 / 1$ with aging information for each address.

This example shows how to display all secure MAC addresses configured on VLANs 2 and 3 on interface Gigabitethernet $1 / 1$ with aging information for each address:
Switch\# show port-security interface gigabitethernet1/1 address vlan 2-3
Secure Mac Address Table

Related Commands	Command	Description
	switchport port-security	Enables port security on an interface.

show power

To display information about the power status, use the show power command.
show power [available | capabilities | detail | inline \{[interface] detail | consumption default | module mod detail\}\} | module | status | supplies]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

available	(Optional) Displays the available system power.
capabilities	(Optional) Displays the individual power supply capabilities.
detail	(Optional) Displays detailed information on power resources.
inline	(Optional) Displays the PoE status.
interface detail	(Optional) Detailed information on the PoE status for the interface
consumption default	(Optional) Displays the PoE consumption.
module mod default	(Optional) Displays the PoE consumption for the specified module.
status	(Optional) Displays the power supply status.
supplies	(Optional) Displays the number of power supplies needed by the system.

This command has no default settings.

Privileged EXEC mode

Release	Modification
$12.1(8 a) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.
$12.2(25) \mathrm{SG}$	Displays inline power handling for the Supervisor Engine II-Plus-TS.
$12.2(52) \mathrm{SG}$	Support to display detailed PoE consumption information on an interface/module.

If a powered device is connected to an interface with external power, the switch does not recognize the powered device. The Device column in the output of the show power inline command displays as unknown.

If your port is not capable of supporting PoE, you will receive this message:
Power over Ethernet not supported on interface Admin
The show power inline interface I module command displays the amount of power that is used to operate a Cisco IP Phone. To view the amount of power requested, use the show cdp neighbors command.
Because FPGAs and other hardware components on the WS-X4548-RJ45V+ and WS-X4648-RJ45V+E modules consume PoE, the operating PoE consumption for an 802.3 af -compliant module can be nonzero when there are no powered devices attached to the module. The operating PoE can vary by as much as 20 W because of fluctuations in the PoE that is consumed by the hardware components.

Examples

This example shows how to display information about the general power supply:

This example shows how to display the amount of available system power:

Switch\# show power available			
Power Summary			
\quad (in Watts)	Available	Used	Remaining
$-------------~$	---------	------	--------
System Power	1360	280	1080
Inline Power	1400	0	1400
Maximum Power	2800	280	2520
Switch\#			

The "Inline Power Oper" column displays the PoE consumed by the powered devices attached to the module in addition to the PoE consumed by the FPGAs and other hardware components on the module. The "Inline Power Admin" column displays only the PoE allocated by the powered devices attached to the module.

This example shows how to display the power status information:

Switch\# show power status						
Power					Fan Sensor	Inline
Supply Model	Model No	Type S		tus		Status
PS1 PWR-C45	PWR-C45-2800AC	AC 2800W g		good	good	good
PS2 PWR-C45	PWR-C45-2800AC	AC 2800W g		good	good	good
Power Supply (Nos in Watts)	Max	Min	Max	Min	Absolute	
	Inline	Inline	System	System	Maximum	
PS1	1400	1400	1360	1360	2800	
PS2	1400	1400	1360	1360	2800	
Switch\#						

This example shows how to verify the PoE consumption for the switch:

```
Switch# show power inline consumption default
Default PD consumption : 5000 mW
Switch#
```

This example shows how to display the status of inline power:

This example shows how to display the number of power supplies needed by the system:

```
Switch# show power supplies
Power supplies needed by system = 2
Switch#
```

This example shows how to display the PoE status for Fast Ethernet interface 3/1:

Switch\# show power inline fastethernet3/1						
Available:677(w)						Class
Interface	Admin	Oper		Watts)	Device	
			From PS To Device			
Fa3/1	auto	on	11.2	10.0	Ieee PD	0
Interface	AdminPowerMax		Admin (tion		
Fa3/1		15		10		
Switch\#						

Note When the Supervisor Engine II+TS is used with the 1400 W DC power supply (PWR-C45-1400DC), and only one 12.5 A input of the DC power supply is used, the supervisor engine's power consumption may vary depending on whether there is any linecard inserted at slot 2 and 3, as well as on the type of linecards inserted. This amount varies between 155 W and 330 W . This variability also affects the
maximum amount of available supervisor engine inline power, which can also vary from 0 W to 175 W . Therefore, it is possible for a supervisor engine to deny inline power to some connected inline power devices when one or more linecards are inserted into the chassis.

The output of the commands show power detail and show power module display the supervisor engine's variable power consumption and its inline power summary.

Switch\#
This example shows how to display detailed information on the PoE status for Gigabit interface 2/1

```
Switch# show power inline g2/1 detail
Available:800(w) Used:71(w) Remaining:729(w)
    Interface: Gi2/1
    Inline Power Mode: auto
    Operational status: on
    Device Detected: yes
    Device Type: Cisco IP Phone 7970
    IEEE Class: 3
    Discovery mechanism used/configured: Ieee and Cisco
    Police: off
    Power Allocated
    Admin Value: 20.0
    Power drawn from the source: 11.0
    Power available to the device: 10.3
Actual consumption
Measured at the port: 5.0
Maximum Power drawn by the device since powered on: 5.2
Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0
Invalid Signature Counter: 0
Power Denied Counter: 0
Switch#
```

This example shows how to display the PoE status for all all ports of the module:


```
Power Denied Counter: 0
Interface: Gi3/3
Inline Power Mode: auto
Operational status: off
Device Detected: no
Device Type: n/a
IEEE Class: n/a
Discovery mechanism used/configured: Ieee and Cisco
Police: off
Power Allocated
Admin Value: 20.0
Power drawn from the source: 0.0
Power available to the device: 0.0
Actual consumption
Measured at the port: 0.0
Maximum Power drawn by the device since powered on: 0.0
Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0
Invalid Signature Counter: 0
Power Denied Counter: 0
Interface: Gi3/4
Inline Power Mode: auto
Operational status: off
Device Detected: no
Device Type: n/a
IEEE Class: n/a
Discovery mechanism used/configured: Ieee and Cisco
Police: off
Power Allocated
Admin Value: 20.0
Power drawn from the source: 0.0
Power available to the device: 0.0
Actual consumption
Measured at the port: 0.0
Maximum Power drawn by the device since powered on: 0.0
Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0
Invalid Signature Counter: 0
Power Denied Counter: 0
Interface: Gi3/5
Inline Power Mode: auto
Operational status: off
Device Detected: no
Device Type: n/a
IEEE Class: n/a
Discovery mechanism used/configured: Ieee and Cisco
Police: off
Power Allocated
Admin Value: 20.0
Power drawn from the source: 0.0
Power available to the device: 0.0
```

```
Actual consumption
Measured at the port: 0.0
Maximum Power drawn by the device since powered on: 0.0
Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0
Invalid Signature Counter: 0
Power Denied Counter: 0
Interface: Gi3/6
Inline Power Mode: auto
Operational status: off
Device Detected: no
Device Type: n/a
IEEE Class: n/a
Discovery mechanism used/configured: Ieee and Cisco
Police: off
Power Allocated
Admin Value: 20.0
Power drawn from the source: 0.0
Power available to the device: 0.0
```

$\overline{\text { Related Commands }}$

Command	Description
power dc input	Configures the power DC input parameters on the switch.
power inline	Sets the inline-power state for the inline-power-capable interfaces.
power inline consumption	Sets the default power that is allocated to an interface for all the inline-power-capable interfaces on the switch.
power redundancy-mode	Configures the power settings for the chassis.

show power inline police

To display PoE policing and monitoring status, use the show power inline police command.
show power inline police [interfacename] [module n]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Related Commands

interfacename	(optional) Displays PoE policing and monitoring status for a particular interface.
n	(optional) Display PoE policing and monitoring status for all interfaces on this module.

None

Privileged EXEC mode

Release	Modification
$12.2(50)$ SG	Support for this command was introduced on the Catalyst 4500 series switch.

The Oper Power field displays the true power consumption of the connected device.
The show power inline police command with no keywords displays PoE policing status for all interfaces in the chassis.

If this command is executed at the global level, the last line of the output under Oper Power field displays the total true inline power consumption of all devices connected to the switch.

This example shows how to display PoE policing status for a interface GigabitEthernet 2/1:

Available:421(w)		Used:44(w)				
Interface	Admin	Oper	Admin	Oper	Cutoff	Oper
	State	State	Police	Police	Power	Power
Gi2/1	auto	on	errdi		22.6	9.6

Command	Description
power inline police	Configures PoE policing on a particular interface.

show q0s

To display QoS information, use the show qos command.
show qos

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

Examples

Release	Modification
$12.1(8 \mathrm{a}) \mathrm{EW}$	Support for this command was introduced on the Catalyst 4500 series switch.

This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.

This example shows the output that might be displayed if you do not enter any keywords:

```
Switch# show qos
    QoS is enabled globally
Switch#
```


show qos aggregate policer

To display QoS aggregate policer information, use the show qos aggregate policer command.
show qos aggregate policer [aggregate_name]

Syntax Description

Defaults

Command Modes Privileged EXEC mode

Command History

Release	Modification
$12.1(8 a)$ EW	Support for this command was introduced on the Catalyst 4500 series switch.

$\overline{\text { Usage Guidelines }}$ This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis. The aggregate policer name is case sensitive.

Related Commands

```
Examples
This example shows the output if you do not enter any keywords:
```

Switch\#

```
```

Switch\# show qos aggregate policer

```
Switch# show qos aggregate policer
Policer aggr-1
Policer aggr-1
Rate(bps):10000000 Normal-Burst(bytes):1000000
Rate(bps):10000000 Normal-Burst(bytes):1000000
conform-action:transmit exceed-action:policed-dscp-transmit
conform-action:transmit exceed-action:policed-dscp-transmit
Policymaps using this policer:
Policymaps using this policer:
    ipp5-policy
```

 ipp5-policy
    ```
\begin{tabular}{ll}
\hline Command & Description \\
\hline qos trust & Defines a named aggregate policer. \\
\hline
\end{tabular}

\section*{show qos dbl}

To display global Dynamic Buffer Limiting (DBL) information, use the show qos dbl command.
show qos dbl

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.

This example shows how to display global DBL information:
```

Switch\# show qos dbl
DBL is enabled globally
DBL flow includes vlan
DBL flow includes l4-ports
DBL does not use ecn to indicate congestion
DBL exceed-action mark probability:15%
DBL max credits:15
DBL aggressive credit limit:10
DBL aggressive buffer limit:2 packets
DBL DSCPs with default drop probability:
1-10
Switch\#

```

\section*{show qos interface}

To display queueing information, use the show qos interface command.
show qos interface \{fastethernet interface-number | gigabitethernet interface-number\} | [vlan vlan_id | port-channel number]
Syntax Description
\begin{tabular}{ll}
\hline fastethernet interface-number & Specifies the Fast Ethernet 802.3 interface. \\
\hline gigabitethernet interface-number & Specifies the Gigabit Ethernet 802.3z interface. \\
\hline vlan vlan_id & (Optional) Specifies the VLAN ID; valid values are from 1 \\
& to 4094. \\
\hline port-channel number & (Optional) Specifies the port channel; valid ranges are from \\
& 1 to 64. \\
\hline
\end{tabular}

\section*{Defaults}

This command has no default settings.

\section*{Command Modes Privileged EXEC mode}
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(13) \mathrm{EW}\) & Added support for extended VLAN addresses. \\
\hline \(12.1(19) \mathrm{EW}\) & Display changed to include the Port Trust Device. \\
\hline
\end{tabular}

\section*{\(\overline{\text { Usage Guidelines }}\) This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.}

\section*{Examples}

This example shows how to display queueing information:
```

Switch\# show qos interface fastethernet 6/1
QoS is enabled globally
Port QoS is enabled
Administrative Port Trust State: 'dscp'
Operational Port Trust State: 'untrusted'
Port Trust Device:'cisco-phone'
Default DSCP:0 Default CoS:0
Tx-Queue Bandwidth ShapeRate Priority
(bps)
disabled N/A 240
31250000 disabled N/A 240
31250000 disabled normal 240
31250000 disabled N/A 240
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } show qos & Displays QoS information. \\
\cline { 2 - 3 } \(\mathbf{t x - q u e u e ~}\) & Configures the transmit queue parameters for an interface. \\
\hline
\end{tabular}

\section*{show qos maps}

To display QoS map information, use the show qos maps command.
show qos maps [cos | dscp [policed | tx-queue]]
Syntax Description
\begin{tabular}{ll}
\hline \(\boldsymbol{c o s}\) & (Optional) Displays CoS map information. \\
\hline dscp & (Optional) Displays DSCP map information. \\
\hline policed & (Optional) Displays policed map information. \\
\hline tx-queue & (Optional) Displays tx-queue map information. \\
\hline
\end{tabular}

Defaults

Command Modes
Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.

\section*{Examples}

This example shows how to display QoS map settings:
```

Switch\# show qos maps
DSCP-TxQueue Mapping Table (dscp = d1d2)
d1 :d2

0 : 01 01 01 01 01 01 01 01 01 01
1 : 01 01 01 01 01 01 02 02 02 02
2 : 02 02 02 02 02 02 02 02 02 02
3:}0202030303 03 03 03 03 03
4 : 03 03 03 03 03 03 03 03 04 04
5:}040404040404040404040
6 : 04 04 04 04
Policed DSCP Mapping Table (dscp = d1d2)
d1 :d2 0 1 1 2 < 3

0 : 00 01 02 03 04 05 06 07 08 09
:
: 20 21 22 23 24 25 26 27 28 29
3 : 30 31 32 33 34 35 36 37 38 39
4 : 40 41 42 43 44 45 46 47 48 49
5 : 50 51 52 53 54 55 56 57 58 59
6 : 60616263

```
```

DSCP-CoS Mapping Table (dscp = d1d2)
d1 :d2 0
--
0:}0000
1 : 01 01 01 01 01 01 02 02 02 02
2:
3:}00303 04 04 04 04 04 04 04 04
4:}050505050505 05 05 06 06
5 : 06 06 06 06 06 06 07 07 07 07
6 : 07 07 07 07
CoS-DSCP Mapping Table
CoS: }\begin{array}{lllllllllll}{0}\&{1}\&{2}\&{3}\&{4}\&{5}\&{6}\&{7}

DSCP: 0 8 16 24 32 40 48 56
Switch\#

```

\section*{show redundancy}

To display redundancy facility information, use the show redundancy command.
show redundancy \{clients | counters | history | states \}

\section*{Syntax Description}

Defaults

Command Modes
Privileged EXEC mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1 .(13) \mathrm{EW}\) & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series switch \\
(Catalyst 4507R only).
\end{tabular} \\
\hline 12.2(31)SGA & Support for ISSU was introduced. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to display information about the redundancy facility:
```

Switch\# show redundancy

```
Switch# show redundancy
Switch# show redundancy
Switch# show redundancy
4507r-demo#show redundancy
4507r-demo#show redundancy
Redundant System Information :
Redundant System Information :
------------------------------
------------------------------
    Available system uptime = 2 days, 2 hours, 39 minutes
    Available system uptime = 2 days, 2 hours, 39 minutes
Switchovers system experienced = 0
Switchovers system experienced = 0
                Standby failures = 0
                Standby failures = 0
            Last switchover reason = none
            Last switchover reason = none
                Hardware Mode = Duplex
                Hardware Mode = Duplex
    Configured Redundancy Mode = Stateful Switchover
    Configured Redundancy Mode = Stateful Switchover
        Operating Redundancy Mode = Stateful Switchover
        Operating Redundancy Mode = Stateful Switchover
            Maintenance Mode = Disabled
            Maintenance Mode = Disabled
                Communications = Up
                Communications = Up
Current Processor Information :
Current Processor Information :
---------------------------------
---------------------------------
                Active Location = slot 1
                Active Location = slot 1
            Current Software state = ACTIVE
            Current Software state = ACTIVE
    Uptime in current state = 2 days, 2 hours, 39 minutes
    Uptime in current state = 2 days, 2 hours, 39 minutes
                            Image Version = Cisco Internetwork Operating System Software
                            Image Version = Cisco Internetwork Operating System Software
IOS (tm) Catalyst 4000 L3 Switch Software (cat4000-I5S-M), Version 12.2(20)EWA(3
IOS (tm) Catalyst 4000 L3 Switch Software (cat4000-I5S-M), Version 12.2(20)EWA(3
.92), CISCO INTERNAL USE ONLY ENHANCED PRODUCTION VERSION
```

.92), CISCO INTERNAL USE ONLY ENHANCED PRODUCTION VERSION

```
```

Copyright (c) 1986-2004 by cisco Systems, Inc.
Compiled Wed 14-Jul-04 04:42 by esi
BOOT = bootflash:cat4000-i5s-mz.122_20_EWA_392,1
Configuration register = 0x2002
Peer Processor Information :

Standby Location = slot 2
Current Software state = STANDBY HOT
Uptime in current state = 2 days, 2 hours, 39 minutes
Image Version = Cisco Internetwork Operating System Software
IOS (tm) Catalyst 4000 L3 Switch Software (cat4000-I5S-M), Version 12.2(20) EWA(3
.92), CISCO INTERNAL USE ONLY ENHANCED PRODUCTION VERSION
Copyright (c) 1986-2004 by cisco Systems, Inc.
Compiled Wed 14-Jul-04 0
BOOT = bootflash:cat4000-i5s-mz.122_20_EWA_392,1
Configuration register = 0x2002

```
Switch\#

This example shows how to display redundancy facility client information:
```

Switch\# show redundancy clients
clientID = 0 clientSeq = 0 RF_INTERNAL_MSG
clientID = 30 clientSeq = 135 Redundancy Mode RF
clientID = 28 clientSeq = 330 GALIOS_CONFIG_SYNC
clientID = 65000 clientSeq = 65000 RF_LAST_CLIENT Switch

```

The output displays the following information:
- clientID displays the client's ID number.
- clientSeq displays the client's notification sequence number.
- Current redundancy facility state.

This example shows how to display the redundancy facility counter information:
```

Switch\# show redundancy counters
Redundancy Facility OMs
comm link up = 1
comm link down down = 0
invalid client tx = 0
null tx by client = 0
tx failures = 0
tx msg length invalid = 0
client not rxing msgs = 0
rx peer msg routing errors = 0
null peer msg rx = 0
errored peer msg rx = 0
buffers tx = 1535
tx buffers unavailable = 0
buffers rx = 1530
buffer release errors = 0
duplicate client registers = 0
failed to register client = 0
Invalid client syncs = 0
Switch\#

```

This example shows how to display redundancy facility history information:
```

Switch\# show redundancy history
00:00:01 client added: RF_INTERNAL_MSG(0) seq=0
00:00:01 client added: RF_LAST_CLIENT(65000) seq=65000
00:00:01 client added: GALIOS_CONFIG_SYNC(28) seq=330
00:00:03 client added: Redundancy Mode RF(30) seq=135
00:00:03 *my state = INITIALIZATION(2) *peer state = DISABLED(1)
00:00:03 RF_PROG_INITIALIZATION(100) RF_INTERNAL_MSG(0) op=0 rc=11
00:00:03 RF_PROG_INITIALIZATION(100) Redundancy Mode RF(30) op=0 rc=11
00:00:03 RF_PROG_INITIALIZATION(100) GALIOS_CONFIG_SYNC(28) op=0 rc=11
00:00:03 RF_PROG_INITIALIZATION(100) RF_LAST_CLIENT(65000) op=0 rc=11
00:00:03 *my state = NEGOTIATION(3) peer state = DISABLED(1)
00:00:25 RF_EVENT_GO_ACTIVE(511) op=0
00:00:25 *my state = ACTIVE-FAST(9) peer state = DISABLED(1)
00:00:25 RF_STATUS_MAINTENANCE_ENABLE(403) RedundanCy Mode RF(30) op=0
00:00:25 RF_STATUS_MAINTENANCE_ENABLE(403) GALIOS_CONFIG_SYNC (28) op=0
00:00:25 RF_PROG_ACTIVE_FAST(200) RF_INTERNAL_MSG(0) op=0 rc=11
00:00:25 RF_PROG_ACTIVE_FAST(200) Redundancy Mode RF(30) op=0 rc=11
00:00:25 RF_PROG_ACTIVE_FAST(200) GALIOS_CONFIG_SYNC(28) op=0 rc=11
00:00:25 RF_PROG_ACTIVE_FAST(200) RF_LAST_CLIENT(65000) op=0 rc=11
00:00:25 *my state = ACTIVE-DRAIN(10) peer state = DISABLED(1)
00:00:25 RF_PROG_ACTIVE_DRAIN(201) RF_INTERNAL_MSG(0) op=0 rc=11
00:00:25 RF_PROG_ACTIVE_DRAIN(201) Redundancy Mode RF(30) op=0 rc=11
00:00:25 RF_PROG_ACTIVE_DRAIN(201) GALIOS_CONFIG_SYNC (28) Op=0 rc=11
00:00:25 RF_PROG_ACTIVE_DRAIN(201) RF_LAST_CLIENT(65000) op=0 rc=11
00:01:34 RF_PROG_PLATFORM_SYNC(300) RF_INTERNAL_MSG(0) op=0 rc=11
00:01:34 RF_PROG_PLATFORM_SYNC(300) Redundancy Mode RF(30) op=0 rc=11
00:01:34 RF_PROG_PLATFORM_SYNC(300) GALIOS_CONFIG_SYNC(28) op=0 rc=0
00:01:34 RF_EVENT_CLIENT_PROGRESSION(503) GALIOS_CONFIG_SYNC(28) op=1 rc=0
00:01:36 RF_EVENT_PEER_PROG_DONE (506) GALIOS_CONFIG_SYNC (28) op=300
00:01:36 RF_PROG_PLATFORM_SYNC(300) RF_LAST_CLIENT (65000) op=0 rc=0
00:01:36 RF_EVENT_CLIENT_PROGRESSION (503) RF_LAST_CLIENT (65000) op=1 rc=0
00:01:36 RF_EVENT_PEER_PROG_DONE (506) RF_LAST_CLIENT (65000) op=300
00:01:38 *my state = ACTIVE(13) *peer state = STANDBY COLD(4)
Switch\#

```

This example shows how to display information about the redundancy facility state:
```

Switch\# show redundancy states
my state = 13 -ACTIVE
peer state = 8 -STANDBY HOT
Mode = Duplex
Unit = Primary
Unit ID = 2
Redundancy Mode (Operational) = Stateful Switchover
Redundancy Mode (Configured) = Stateful Switchover
Split Mode = Disabled
Manual Swact = Enabled
Communications = Up
client count = 21
client_notification_TMR = 240000 milliseconds
keep_alive TMR = 9000 milliseconds
keep_alive count = 0
keep_alive threshold = 18
RF debug mask = 0x0
Switch\#

```
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } redundancy & Enters the redundancy configuration mode. \\
\cline { 2 - 3 } redundancy force-switchover & \begin{tabular}{l} 
Forces a switchover from the active to the standby \\
supervisor engine.
\end{tabular} \\
& &
\end{tabular}

\section*{show redundancy config-sync}

To display an ISSU config-sync failure or the ignored mismatched command list (MCL), if any, use the show redundancy config-sync command.
show redundancy config-sync \{failures | ignored\} \{bem | mcl| pre\}
show redundancy config-sync ignored failures mcl

Syntax Description
\(\overline{\text { Defaults }}\)

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SGA & This command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(44) \mathrm{SG}\) & Updated command syntax from issu config-sync to redundancy config-sync. \\
\hline
\end{tabular}

Usage Guidelines
\begin{tabular}{ll}
\hline failures & Displays MCL entries or BEM/PRC failures. \\
\hline \(\mathbf{\text { ignored }}\) & Displays the ignored MCL entries. \\
\hline \(\mathbf{b e m}\) & (Deprecated) \\
\hline \(\mathbf{m c l}\) & \begin{tabular}{l} 
Displays commands that exist in the active supervisor engine's running configuration, \\
but are not supported by the image on the standby supervisor engine.
\end{tabular} \\
\hline prc & \begin{tabular}{l} 
Displays a Parser Return Code (PRC) failure and forces the system to operate in RPR \\
mode provided there is a mismatch in the return code for a command execution at the \\
active and standby supervisor engine.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

User EXEC mode

When two versions of Cisco IOS images are involved, the command sets supported by two images might differ. If any of those mismatched commands are executed on the active supervisor engine, the standby supervisor engine might not recognize those commands. This causes a config mismatch condition. If the syntax check for the command fails on standby supervisor engine during a bulk sync, the command is moved into the MCL and the standby supervisor engine is reset. To display all the mismatched commands, use the show redundancy config-sync failures mcl command.

To clean the MCL, follow these steps:

Step 1 Remove all mismatched commands from the active supervisor engines' running configuration.
Step 2 Revalidate the MCL with a modified running configuration using the redundancy config-sync validate mismatched-commands command.

Step 3 Reload the standby supervisor engine.

Alternatively, you could ignore the MCL by following these steps:

Step 1 Enter the redundancy config-sync ignore mismatched-commands command.
Step 2 Reload the standby supervisor engine; the system transitions to SSO mode.

\section*{Note}

If you ignore the mismatched commands, the out-of-sync configuration at the active supervisor engine and the standby supervisor engine still exists.

Step 3 You can verify the ignored MCL with the show redundancy config-sync ignored mel command.

Each command sets a return code in the action function that implements the command. This return code indicates whether or not the command successfully executes. The active supervisor engine maintains the PRC after executing a command. The standby supervisor engine executes the command and sends PRC back to the active supervisor engine. PRC failure occurs if these two PRCs do not match. If a PRC error occurs at the standby supervisor engine either during bulk sync or LBL sync, the standby supervisor engine is reset. To display all PRC failures, use the show redundancy config-sync failures pre command.

To display best effort method (BEM) errors, use the show redundancy config-sync failures bem command.

\section*{Examples}

The following example shows how to display the ISSU BEM failures:
```

Switch\# show redundancy config-sync failures bem
BEM Failed Command List

The list is Empty
Switch\#

```

The following example shows how to display the ISSU MCL failures:
```

Switch\#show redundancy config-sync failures mcl
Mismatched Command List
The list is Empty
Switch\#

```

The following example shows how to display the ISSU PRC failures:
```

Switch\#show redundancy config-sync failures prc
PRC Failed Command List

interface FastEthernet3/2
! <submode> "interface"

- channel-protocol pagp
! </submode> "interface"

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline redundancy config-sync & Moves the active supervisor engine into the Mismatched \\
mismatched-commands & Command List (MCL) and resets the standby supervisor \\
& engine. \\
\hline
\end{tabular}

\section*{show running-config}

To display the module status and configuration, use the show running-config command.
show running-config [module slot]

\section*{Syntax Description}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}
module slot
(Optional) Specifies the module slot number; valid values are from 1 to 6 .

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

In some cases, you might see a difference in the duplex mode displayed when you enter the show interfaces command and the show running-config command. If you do see a difference, the duplex mode displayed in the show interfaces command is the actual duplex mode that the interface is running. The show interfaces command shows the operating mode for an interface, while the show running-config command shows the configured mode for an interface.
The show running-config command output for an interface may display a duplex mode configuration but no configuration for the speed. When no speed is displayed in the output, it indicates that the interface speed is configured to be auto and that the duplex mode shown becomes the operational setting once the speed is configured to something other than auto. With this configuration, it is possible that the operating duplex mode for that interface does not match the duplex mode shown with the show running-config command.

This example shows how to display the module and status configuration for all modules:
```

Switch\# show running-config

```
Switch# show running-config
03:23:36:%SYS-5-CONFIG_I:Configured from console by consolesh runn
03:23:36:%SYS-5-CONFIG_I:Configured from console by consolesh runn
Building configuration...
Building configuration...
Current configuration:3268 bytes
Current configuration:3268 bytes
!
!
version 12.1
version 12.1
no service pad
no service pad
service timestamps debug uptime
service timestamps debug uptime
service timestamps log uptime
service timestamps log uptime
no service password-encryption
no service password-encryption
!
!
hostname Switch
hostname Switch
!
!
!
!
power supplies required 1
power supplies required 1
ip subnet-zero
```

ip subnet-zero

```

\section*{Examples}
```

!
!
!
interface FastEthernet1
no ip address
shutdown
duplex auto
speed auto
Switch\#

```

This example shows the output for the show running-config command when you have enabled the switchport voice vlan command:
```

Switch\# show running-config int fastethernet 6/1
Building configuration...
Current configuration:133 bytes
!
interface FastEthernet6/1
switchport voice vlan 2
no snmp trap link-status
spanning-tree portfast
channel-group 1 mode on
end
Switch\#

```

\section*{show slavebootflash:}

To display information about the standby bootflash file system, use the show slavebootflash: command.
show slavebootflash: [all | chips | filesys]

\section*{Syntax Description}

\section*{Defaults}

\section*{\(\overline{\text { Command Modes }}\)}

\section*{Command History}
\begin{tabular}{ll}
\hline all & (Optional) Displays all possible Flash information. \\
\hline chips & (Optional) Displays Flash chip information. \\
\hline filesys & (Optional) Displays file system information. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode

\section*{Examples}

This example shows how to display file system status information:
```

Switch\# show slavebootflash: filesys
-------- F I L E S Y S T E M S T A T U S --------
Device Number = 0
DEVICE INFO BLOCK: bootflash
Magic Number = 6887635 File System Vers = 10000 (1.0)
Length = 1000000 Sector Size = 40000
Programming Algorithm = 39 Erased State = FFFFFFFF
File System Offset = 40000 Length = F40000
MONLIB Offset = 100 Length = C628
Bad Sector Map Offset = 3FFF8 Length = 8
Squeeze Log Offset = F80000 Length = 40000
Squeeze Buffer Offset = FC0000 Length = 40000
Num Spare Sectors= = 0
Spares:
STATUS INFO:
Writable
NO File Open for Write
Complete Stats
No Unrecovered Errors
No Squeeze in progress
USAGE INFO:
Bytes Used = 917CE8 Bytes Available = 628318
Bad Sectors = 0 Spared Sectors = 0
OK Files = 2 Bytes = 917BE8
Deleted Files = 0 Bytes = 0
Files w/Errors = 0 Bytes = 0
Switch>

```

This example shows how to display system image information:
```

Switch\# show slavebootflash:
-\# - ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name
1 .. image 8C5A393A 237E3C 14 2063804 Aug 23 1999 16:18:45 c4-boot-mz
2 .. image D86EE0AD 957CE8 9 7470636 Sep 20 1999 13:48:49 rp.halley
Switch>

```

This example shows how to display all bootflash information:
```

Switch\# show slavebootflash: all
-\# - ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name
1 .. image 8C5A393A 237E3C 14 2063804 Aug 23 1999 16:18:45 c4-boot-
mz
2 .. image D86EE0AD 957CE8 9 7470636 Sep 20 1999 13:48:49 rp.halley
6 4 5 6 0 8 8 ~ b y t e s ~ a v a i l a b l e ~ (9 5 3 4 6 9 6 ~ b y t e s ~ u s e d)
-------- F I L E S Y S T E M S T A T U S ---------
Device Number = 0
DEVICE INFO BLOCK: bootflash
Magic Number =6887635 File System Vers = 10000 (1.0)
Length = 1000000 Sector Size = 40000
Programming Algorithm = 39 Erased State = FFFFFFFF
File System Offset = 40000 Length = F40000
MONLIB Offset = 100 Length = C628
Bad Sector Map Offset = 3FFF8 Length = 8
Squeeze Log Offset = F80000 Length = 40000
Squeeze Buffer Offset = FC0000 Length = 40000
Num Spare Sectors = 0
Spares:
STATUS INFO:
Writable
NO File Open for Write
Complete Stats
No Unrecovered Errors
No Squeeze in progress
USAGE INFO:
Bytes Used = 917CE8 Bytes Available = 628318
Bad Sectors = 0 Spared Sectors = 0
OK Files = 2 Bytes = 917BE8
Deleted Files = 0 Bytes = 0
Files w/Errors = 0 Bytes = 0
Switch>

```

\section*{show slaveslot0:}

To display information about the file system on the standby supervisor engine, use the show slaveslot0: command.
show slot0: [all | chips | filesys]
Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline all & \begin{tabular}{l} 
(Optional) Displays all Flash information including the output from the show slot0: \\
chips and show slot0: filesys commands.
\end{tabular} \\
\hline chips & (Optional) Displays Flash chip register information. \\
\hline filesys & (Optional) Displays file system status information. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode

\section*{Examples}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) E W\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to display a summary of the file system:
```

Switch\# show slaveslot0:
-\# - ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name
1.. image 6375DBB7 A4F144 6 10678468 Nov 09 1999 10:50:42 halley
5 7 0 5 4 0 4 ~ b y t e s ~ a v a i l a b l e ~ (1 0 6 7 8 5 9 6 ~ b y t e s ~ u s e d)
Switch>

```

This example shows how to display Flash chip information:
```

Switch\# show slaveslot0: chips
******** Intel Series 2+ Status/Register Dump ********
ATTRIBUTE MEMORY REGISTERS:
Config Option Reg (4000): 2
Config Status Reg (4002): 0
Card Status Reg (4100): 1
Write Protect Reg (4104): 4
Voltage Cntrl Reg (410C): 0
Rdy/Busy Mode Reg (4140): 2
COMMON MEMORY REGISTERS: Bank 0
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: BOBO
Block Status Regs:

| 0 | $:$ | B0B0 | |
|---|---|---|---|
| 8 | : | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 | BOB0 |

```
```

COMMON MEMORY REGISTERS: Bank 1
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: BOBO
Block Status Regs:

| 0 | $:$ | B0B0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 |

COMMON MEMORY REGISTERS: Bank 2
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: BOBO
Block Status Regs:

| 0 | $:$ | B0B0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 |

COMMON MEMORY REGISTERS: Bank 3
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: B0BO
Block Status Regs:

| 0 | $:$ | B0B0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 |

COMMON MEMORY REGISTERS: Bank 4
Intelligent ID Code : FFFFFFFF
IID Not Intel -- assuming bank not populated

```

This example shows how to display file system information:
```

Switch\# show slaveslot0: filesys
-------- F I L E S Y S T E M S T A T U S ----------
Device Number = 0
DEVICE INFO BLOCK: slot0
Magic Number = 6887635 File System Vers = 10000 (1.0)
Length = 1000000 Sector Size = 20000
Programming Algorithm = 4 Erased State = FFFFFFFF
File System Offset = 20000 Length = FA0000
MONLIB Offset = 100 Length = F568
Bad Sector Map Offset = 1FFF0 Length = 10
Squeeze Log Offset = FC0000 Length = 20000
Squeeze Buffer Offset = FE0000 Length = 20000
Num Spare Sectors = 0
Spares:
STATUS INFO:
Writable
NO File Open for Write
Complete Stats
No Unrecovered Errors
No Squeeze in progress
USAGE INFO:
Bytes Used = 9F365C Bytes Available = 5AC9A4
Bad Sectors = 0 Spared Sectors = 0
OK Files = 1 Bytes = 9F35DC
Deleted Files = 0 Bytes = 0
Files w/Errors = 0 Bytes =
Switch>

```

\section*{show slot0:}

To display information about the slot0: file system, use the show slot0: command.
show slot 0: [all | chips | filesys]

\section*{Syntax Description}

Defaults

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline all & \begin{tabular}{l} 
(Optional) Displays all Flash information including the output from the show slot0: \\
chips and show slot0: filesys commands.
\end{tabular} \\
\hline chips & (Optional) Displays Flash chip register information. \\
\hline filesys & (Optional) Displays file system status information. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to display a summary of the file system:
```

Switch\# show slot0:
-\# - ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name
1 .. image 6375DBB7 A4F144 6 10678468 Nov 09 1999 10:50:42 halley
5705404 bytes available (10678596 bytes used)
Switch>

```

This example shows how to display Flash chip information:
```

Switch\# show slot0: chips
******** Intel Series 2+ Status/Register Dump ********
ATTRIBUTE MEMORY REGISTERS:
Config Option Reg (4000): 2
Config Status Reg (4002): 0
Card Status Reg (4100): 1
Write Protect Reg (4104): 4
Voltage Cntrl Reg (410C): 0
Rdy/Busy Mode Reg (4140): 2
COMMON MEMORY REGISTERS: Bank 0
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: BOB0
Block Status Regs:

| 0 | $:$ | B0B0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 |

```
```

COMMON MEMORY REGISTERS: Bank 1
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: B0BO
Block Status Regs:

| 0 | $:$ | B0B0 | |
|---|---|---|---|
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 | BOB0 |

COMMON MEMORY REGISTERS: Bank 2
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: B0B0
Block Status Regs:

| 0 | $:$ | B0B0 | |
|---|---|---|---|
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 | BOB0 |

COMMON MEMORY REGISTERS: Bank 3
Intelligent ID Code : 8989A0A0
Compatible Status Reg: 8080
Global Status Reg: B0B0
Block Status Regs:

| 0 | $:$ | B0B0 | |
|---|---|---|---|
| 8 | $:$ | B0B0 |
| 16 | $:$ | B0B0 |
| 24 | $:$ | B0B0 | BOB0 |

COMMON MEMORY REGISTERS: Bank 4
Intelligent ID Code : FFFFFFFF
IID Not Intel -- assuming bank not populated
Switch>

```

This example shows how to display file system information:
```

Switch\# show slot0: filesys
-------- F I L E S Y S T E M S T A T U S ---------
Device Number = 0
DEVICE INFO BLOCK: slot0
Magic Number = 6887635 File System Vers = 10000 (1.0)
Length = 1000000 Sector Size = 20000
Programming Algorithm = 4 Erased State = FFFFFFFF
File System Offset = 20000 Length = FA0000
MONLIB Offset = 100 Length = F568
Bad Sector Map Offset = 1FFF0 Length = 10
Squeeze Log Offset = FC0000 Length = 20000
Squeeze Buffer Offset = FE0000 Length = 20000
Num Spare Sectors = 0
Spares:
STATUS INFO:
Writable
NO File Open for Write
Complete Stats
No Unrecovered Errors
No Squeeze in progress
USAGE INFO:
Bytes Used = 9F365C Bytes Available = 5AC9A4
Bad Sectors = 0 Spared Sectors = 0
OK Files = 1 Bytes = 9F35DC
Deleted Files = 0 Bytes = 0
Files w/Errors = 0 Bytes = 0
Switch>

```

\section*{show spanning-tree}

To display spanning-tree state information, use the show spanning-tree command.
show spanning-tree [bridge_group | active | backbonefast | bridge [id] | inconsistentports | interface type | root | summary [total] | uplinkfast | vlan vlan_id | pathcost method | detail]

\section*{Syntax Description}

\section*{Defaults}

Command Modes
Privileged EXEC mode

\section*{Command History}
\begin{tabular}{ll}
\hline bridge_group & (Optional) Specifies the bridge group number; valid values are from 1 to 255. \\
\hline active & (Optional) Displays the spanning-tree information on active interfaces only. \\
\hline backbonefast & (Optional) Displays the spanning-tree BackboneFast status. \\
\hline bridge & (Optional) Displays the bridge status and configuration information. \\
\hline id & (Optional) Name of the bridge. \\
\hline inconsistentports & (Optional) Displays the root inconsistency state. \\
\hline interface type & \begin{tabular}{l} 
(Optional) Specifies the interface type and number; valid values are fastethernet, \\
gigabitethernet, tengigabitethernet, port-channel (1 to 64), and vlan (1 to \\
4094).
\end{tabular} \\
\hline root & (Optional) Displays the root bridge status and configuration. \\
\hline summary & (Optional) Specifies a summary of port states. \\
\hline total & (Optional) Displays the total lines of the spanning-tree state section. \\
\hline uplinkfast & (Optional) Displays the spanning-tree UplinkFast status. \\
\hline vlan vlan_id & (Optional) Specifies the VLAN ID; valid values are from 1 to 4094. \\
\hline pathcost method & (Optional) Displays the default path cost calculation method used. \\
\hline detail & (Optional) Displays a summary of interface information. \\
\hline
\end{tabular}

Interface information summary is displayed.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline \(12.2(25) \mathrm{EW}\) & Added support for the 10-Gigabit Ethernet interface. \\
\hline
\end{tabular}

This example shows how to display spanning-tree information on the active interfaces only:
```

Switch\# show spanning-tree active
UplinkFast is disabled
BackboneFast is disabled
VLAN1 is executing the ieee compatible Spanning Tree protocol
Bridge Identifier has priority 32768, address 0050.3e8d.6401
Configured hello time 2, max age 20, forward delay 15
Current root has priority 16384, address 0060.704c.7000
Root port is 265 (FastEthernet5/9), cost of root path is 38
Topology change flag not set, detected flag not set
Number of topology changes 0 last change occurred 18:13:54 ago
Times: hold 1, topology change 24, notification 2
hello 2, max age 14, forward delay 10
Timers: hello 0, topology change 0, notification 0
Port 265 (FastEthernet5/9) of VLAN1 is forwarding
Port path cost 19, Port priority 128, Port Identifier 129.9.
Designated root has priority 16384, address 0060.704c.7000
Designated bridge has priority 32768, address 00e0.4fac.b000
Designated port id is 128.2, designated path cost 19
Timers: message age 3, forward delay 0, hold 0
Number of transitions to forwarding state: 1
BPDU: sent 3, received 32852
Switch\#

```

This example shows how to display the spanning-tree BackboneFast status:
```

Switch\# show spanning-tree backbonefast
BackboneFast is enabled
BackboneFast statistics
Number of transition via backboneFast (all VLANs) : 0
Number of inferior BPDUs received (all VLANs) : 0
Number of RLQ request PDUs received (all VLANs) : 0
Number of RLQ response PDUs received (all VLANs) : 0
Number of RLQ request PDUs sent (all VLANs) : 0
Number of RLQ response PDUs sent (all VLANs) : 0
Switch\#

```

This example shows how to display spanning-tree information for the bridge:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Switch\# show spanning-tree bridge} \\
\hline \multicolumn{4}{|l|}{VLAN1} \\
\hline Bridge ID & Priority & 32768 & \\
\hline & Address & 0050.3e8d. 6401 & \\
\hline & Hello Time & 2 sec Max Age 20 sec & Forward Delay 15 sec \\
\hline \multicolumn{4}{|l|}{VLAN2} \\
\hline \multirow[t]{3}{*}{Bridge ID} & Priority & 32768 & \\
\hline & Address & 0050.3e8d.6402 & \\
\hline & Hello Time & 2 sec Max Age 20 sec & Forward Delay 15 sec \\
\hline \multicolumn{4}{|l|}{VLAN3} \\
\hline \multirow[t]{3}{*}{Bridge ID} & Priority & 32768 & \\
\hline & Address & 0050.3e8d. 6403 & \\
\hline & Hello Time & 2 sec Max Age 20 sec & Forward Delay 15 sec \\
\hline Switch\# & & & \\
\hline
\end{tabular}

This example shows how to display a summary of interface information:
```

Switch\# show spanning-tree
VLAN1

```


This example shows how to display spanning-tree information for Fast Ethernet interface 5/9:
```

Switch\# show spanning-tree interface fastethernet5/9
Interface Fa0/10 (port 23) in Spanning tree 1 is ROOT-INCONSISTENT
Port path cost 100, Port priority 128
Designated root has priority 8192, address 0090.0c71.a400
Designated bridge has priority 32768, address 00e0.1e9f.8940
Designated port is 23, path cost }11
Timers: message age 0, forward delay 0, hold 0
BPDU: sent 0, received 0
The port is in the portfast mode
Switch\#

```

This example shows how to display spanning-tree information for a specific VLAN:
```

Switch\# show spanning-tree vlan 1
VLAN1 is executing the ieee compatible Spanning Tree protocol
Bridge Identifier has priority 32768, address 0030.94fc.0a00
Configured hello time 2, max age 20, forward delay 15
We are the root of the spanning tree
Topology change flag not set, detected flag not set
Number of topology changes 5 last change occurred 01:50:47 ago
from FastEthernet6/16
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15
Timers:hello 0, topology change 0, notification 0, aging 300
Port 335 (FastEthernet6/15) of VLAN1 is forwarding

```
```

Port path cost 19, Port priority 128, Port Identifier 129.79.
Designated root has priority 32768, address 0030.94fc.0a00
Designated bridge has priority 32768, address 0030.94fc.0a00
Designated port id is 129.79, designated path cost 0
Timers:message age 0, forward delay 0, hold 0
Number of transitions to forwarding state:1
BPDU:sent 6127, received 0
Switch\#

```

This example shows how to display spanning-tree information for a specific bridge group:
```

Switch\# show spanning-tree vlan 1
UplinkFast is disabled
BackboneFast is disabled
Switch\#

```

This example shows how to display a summary of port states:
```

Switch\# show spanning-tree summary
Root bridge for:VLAN1, VLAN2.
PortFast BPDU Guard is disabled
EtherChannel misconfiguration guard is enabled
UplinkFast is disabled
BackboneFast is disabled
Default pathcost method used is short
Name Blocking Listening Learning Forwarding STP Active
------------------- -------- --------- ------------------------------------

```

```

Switch\#

```

This example shows how to display the total lines of the spanning-tree state section:
```

Switch\# show spanning-tree summary totals
Root bridge for:VLAN1, VLAN2.
PortFast BPDU Guard is disabled
EtherChannel misconfiguration guard is enabled
UplinkFast is disabled
BackboneFast is disabled
Default pathcost method used is short
Name Blocking Listening Learning Forwarding STP Active
-------------------- ------------------ ---
2 VLANs 0 0 0
2
2
Switch\#

```

This example shows how to determine whether any ports are in root inconsistent state:

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{10}{*}{Related Commands} & Command & Description \\
\hline & spanning-tree backbonefast & Enables BackboneFast on a spanning-tree VLAN. \\
\hline & spanning-tree cost & Calculates the path cost of STP on an interface. \\
\hline & spanning-tree guard & Enables root guard. \\
\hline & spanning-tree pathcost method & Sets the path cost calculation method. \\
\hline & spanning-tree portfast default & Enables PortFast by default on all access ports. \\
\hline & spanning-tree portfast (interface configuration mode) & Enables PortFast mode. \\
\hline & spanning-tree port-priority & Prioritizes an interface when two bridges compete for position as the root bridge. \\
\hline & spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline & spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline
\end{tabular}

\section*{show spanning-tree mst}

To display MST protocol information, use the show spanning-tree mst command.
show spanning-tree mst [configuration]
show spanning-tree mst [instance-id] [detail]
show spanning-tree mst [instance-id] interface interface [detail]

Syntax Description

Defaults

\section*{Command Modes}

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline configuration & (Optional) Displays region configuration information. \\
\hline instance-id & (Optional) Instance identification number; valid values are from 0 to 15. \\
\hline detail & (Optional) Displays detailed MST protocol information. \\
\hline interface interface & \begin{tabular}{l} 
(Optional) Interface type and number; valid values for type are fastethernet, \\
gigabitethernet, tengigabitethernet, port-channel, and vlan. See the "Usage \\
Guidelines" section for more information.
\end{tabular} \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(25) \mathrm{EW}\) & Added support for the 10-Gigabit Ethernet interface. \\
\hline
\end{tabular}

This command is not supported on systems that are configured with a Supervisor Engine I.
In the output display of the show spanning-tree mst configuration command, a warning message might display. This message appears if you do not map secondary VLANs to the same instance as the associated primary VLAN. The display includes a list of the secondary VLANs that are not mapped to the same instance as the associated primary VLAN. The warning message is as follows:
```

These secondary vlans are not mapped to the same instance as their primary:
-> 3

```

See the show spanning-tree command for output definitions.

\section*{Examples}

This example shows how to display region configuration information:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Switch\# show spanning-tree mst configuration}} \\
\hline & \\
\hline Revision & 2702 \\
\hline Instance & Vlans mapped \\
\hline 0 & 1-9,11-19, 21-29, 31-39, 41-4094 \\
\hline 1 & 10, 20, 30, 40 \\
\hline
\end{tabular}

This example shows how to display additional MST protocol values:
```

Switch\# show spanning-tree mst 3 detail

\# \# \# \# \# MST03 vlans mapped: 3,3000-3999

Bridge address 0002.172c.f400 priority 32771 (32768 sysid 3)
Root this switch for MSTO3
GigabitEthernet1/1 of MST03 is boundary forwarding
Port info port id 128.1 priority }12
cost 20000
Designated root address 0002.172c.f400 priority 32771
cost 0
Designated bridge address 0002.172c.f400 priority 32771 port
id 128.1
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 4, received 0
FastEthernet4/2 of MST03 is backup blocking
Port info port id 128.194 priority 128 cost
200000
Designated root address 0002.172c.f400 priority 32771
cost 0
Designated bridge address 0002.172c.f400 priority 32771 port id
128.193
Timers: message expires in 2 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 3, received 252
Switch\#

```

This example shows how to display MST information for a specific interface:
```

Switch\# show spanning-tree mst 0 interface fastethernet4/1 detail
Edge port: no (trunk) port guard : none
(default)
Link type: point-to-point (point-to-point) bpdu filter: disable
(default)
Boundary : internal bpdu guard : disable
(default)
FastEthernet4/1 of MSTOO is designated forwarding
Vlans mapped to MSTOO 1-2,4-2999,4000-4094
Port info port id 128.193 priority 128 cost
2 0 0 0 0 0
Designated root address 0050.3e66.d000 priority }819
cost 20004
Designated ist master address 0002.172c.f400 priority 49152
cost 0
Designated bridge address 0002.172c.f400 priority 49152 port id
128.193
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus sent 492, received 3
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } spanning-tree mst & \begin{tabular}{l} 
Sets the path cost and port-priority parameters for any MST \\
instance.
\end{tabular} \\
\cline { 3 - 3 } spanning-tree mst forward-time & Sets the forward delay timer for all the instances. \\
\cline { 3 - 3 } spanning-tree mst hello-time & Sets the hello-time delay timer for all the instances. \\
\cline { 3 - 3 } spanning-tree mst max-hops & \begin{tabular}{l} 
Specifies the number of possible hops in the region before a \\
BPDU is discarded.
\end{tabular} \\
\hline spanning-tree mst root & Designates the primary root. \\
\hline
\end{tabular}

\section*{show storm-control}

To display the broadcast storm control settings on the switch or on the specified interface, use the show storm-control command.
show storm-control [interface-id | broadcast]

Supervisor Engine 6-E and Catalyst 4900M chassis
show storm-control [interface-id | broadcast | multicast]

\section*{Syntax Description}

Command Modes

\section*{Command History}

Usage Guidelines
\begin{tabular}{ll}
\hline interface-id & (Optional) Specifies the interface ID for the physical port. \\
\hline broadcast & (Optional) Displays the broadcast storm threshold setting. \\
\hline multicast & (Optional) Displays the multicast storm threshold setting.
\end{tabular}

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(25) \mathrm{EW}\) & Added support for the 10-Gigabit Ethernet interface. \\
\hline \(12.2(40) \mathrm{SG}\) & Added support for the Supervisor Engine 6-E and Catalyst 4900M chassis. \\
\hline
\end{tabular}

When you enter an interface ID, the storm control thresholds are displayed for the specified interface.
If you do not enter an interface ID, the settings are displayed for the broadcast traffic type for all ports on the switch.

\section*{Examples}

This is an example of output from the show storm-control command when no keywords are entered. Because no traffic type keyword was entered, the broadcast storm control settings are displayed.
\begin{tabular}{llllr} 
Switch\# show storm-control & & \\
Interface & Filter State & Upper & Lower & Current \\
-------- & ----------- & ------ & ------ & ------ \\
Gi2/1 & Forwarding & \(30.00 \%\) & \(30.00 \%\) & N/A \\
Gi4/1 & Forwarding & \(30.00 \%\) & \(30.00 \%\) & N/A \\
Gi4/3 & Forwarding & \(30.00 \%\) & \(30.00 \%\) & N/A \\
Switch\# & & & &
\end{tabular}

This is an example of output from the show storm-control multicast command on a Supervisor Engine 6-E.
```

Switch\# show storm-control multicast//Supervisor Engine 6-E
Interface Filter State Broadcast Multicast Level
--------- ------------- --------- -----------------
Fa6/2 Blocking Enabled Enabled 61%
Switch\#

```

This is an example of output from the show storm-control command on a Supervisor Engine 6-E when no keywords are entered.


This is an example of output from the show storm-control command for a specified interface.


This is an example of output from the show storm-control command for a specified interface on a Supervisor Engine 6-E.
```

Switch\# show storm-control interface fastethernet6/1
Interface Filter State Broadcast Multicast Level
--------- ------------- ------- ------- -----
Fa6/1 Blocking Enabled Disabled 81%
Switch\#

```

Table 2-28 describes the fields in the show storm-control display.
Table 2-28 show storm-control Field Descriptions
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Interface & Displays the ID of the interface. \\
\hline Filter State & \begin{tabular}{l} 
Displays the status of the filter: \\
- Blocking-Storm control is enabled, and a storm has occurred. \\
- Forwarding-Storm control is enabled, and no storms have occurred. \\
\\
\\
\hline - Inactive—Storm control is disabled.
\end{tabular} \\
\hline Level & \begin{tabular}{l} 
Displays the threshold level set on the interface for broadcast traffic. \\
total available bandwidth. This field is valid only when storm control is \\
enabled. \\
Note N/A is displayed for interfaces that do storm control in the hardware.
\end{tabular} \\
\hline
\end{tabular}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline storm-control & \begin{tabular}{l} 
Enables broadcast storm control on a port and specifies \\
what to do when a storm occurs on a port.
\end{tabular} \\
\hline show interfaces counters & Displays the traffic on the physical interface. \\
\hline show running-config & Displays the running configuration of a switch. \\
\hline
\end{tabular}

\section*{show system mtu}

To display the global MTU setting, use the show system mtu command.
show system mtu

\section*{Syntax Description}
\(\overline{\text { Defaults }}\)

\section*{Command Modes}


\section*{Examples}

\section*{Related Commands}

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to display the global MTU setting:
Switch\# show system mtu
Global Ethernet MTU is 1550 bytes.
Switch\#
\begin{tabular}{ll}
\hline Command & Description \\
\hline system mtu & Sets the maximum Layer 2 or Layer 3 payload size. \\
\hline
\end{tabular}

\section*{show tech-support}

To display troubleshooting information for TAC, use the show tech-support command.
show tech-support [bridging | cef | ipmulticast | isis | password [page] | page]

\section*{Syntax Description}

Defaults

Command Modes

Command History
\begin{tabular}{ll}
\hline bridging & (Optional) Specifies bridging-related information. \\
\hline cef & (Optional) Specifies CEF-related information. \\
\hline ipmulticast & (Optional) Specifies IP multicast-related information. \\
\hline isis & (Optional) Specifies CLNS and ISIS-related information. \\
\hline password & (Optional) Includes passwords and other security information in the output. \\
\hline page & (Optional) Displays one page of information at a time in the output.
\end{tabular}

The defaults are as follows:
- Outputs are displayed without page breaks.
- Passwords and other security information are removed from the output.

\section*{Usage Guidelines}

Output from the show tech-support command may be terminated in midstream with the key combination Ctrl+Alt +6 . The command output is buffered so that the command terminates when output of the current sub-command running under this command completes.
Press the Return key to display the next line of output, or press the Space bar to display the next page of information. If you do not enter the page keyword, the output scrolls. It does not stop for page breaks.

If you enter the password keyword, password encryption is enabled, but only the encrypted form appears in the output.

If you do not enter the password keyword, the passwords and other security-sensitive information in the output are replaced in the output with the word "removed."

The show tech-support commands are a compilation of several show commands and the output can be quite lengthy. For a sample display of the output of the show tech-support command, see the individual show command listed.

If you enter the show tech-support command without arguments, the output displays the equivalent of these show commands:
- show version
- show running-config
- show stacks
- show interfaces
- show controllers
- show process memory
- show process cpu
- show buffers
- show logging
- show module
- show power
- show environment
- show interfaces switchport
- show interfaces trunk
- show vlan

If you enter the ipmulticast keyword, the output displays the equivalent of these show commands:
- show ip pim interface
- show ip pim interface count
- show ip pim neighbor
- show ip pim rp
- show ip igmp groups
- show ip igmp interface
- show ip mroute count
- show ip mroute
- show ip mcache
- show ip dvmrp route

\section*{Examples}

Related Commands
For a sample display of the show tech-support command output, see the commands listed in the "Usage Guidelines" section for more information.

See the "Usage Guidelines" section.

\section*{show udld}

To display the administrative and operational UDLD status, use the show udld command.
show udld interface-id

\section*{Syntax Description}
interface-id \(\quad\) Name of the interface.

\section*{Defaults}

This command has no default settings.

\section*{Command Modes Privileged EXEC mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) E W\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.2(25)\) EW & Added support for the 10-Gigabit Ethernet interface. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) If you do not enter an interface ID value, the administrative and operational UDLD status for all interfaces is displayed.
```

Examples
This example shows how to display the UDLD state for Gigabit Ethernet interface 2/2:

```
```

Switch\# show udld gigabitethernet2/2

```
Switch# show udld gigabitethernet2/2
Interface Gi2/2
Interface Gi2/2
--
--
Port enable administrative configuration setting: Follows device default
Port enable administrative configuration setting: Follows device default
Port enable operational state: Enabled
Port enable operational state: Enabled
Current bidirectional state: Bidirectional
Current bidirectional state: Bidirectional
Current operational state: Advertisement
Current operational state: Advertisement
Message interval: 60
Message interval: 60
Time out interval: 5
Time out interval: 5
No multiple neighbors detected
No multiple neighbors detected
    Entry 1
    Entry 1
    ---
    ---
    Expiration time: 146
    Expiration time: 146
    Device ID: 1
    Device ID: 1
    Current neighbor state: Bidirectional
    Current neighbor state: Bidirectional
    Device name: 0050e2826000
    Device name: 0050e2826000
    Port ID: 2/1
    Port ID: 2/1
    Neighbor echo 1 device: SAD03160954
    Neighbor echo 1 device: SAD03160954
    Neighbor echo 1 port: Gil/1
    Neighbor echo 1 port: Gil/1
    Message interval: 5
    Message interval: 5
    CDP Device name: 066527791
    CDP Device name: 066527791
Switch#
```

Switch\#

```
\begin{tabular}{lll}
\cline { 3 - 4 } Related Commands & Command & Description \\
\cline { 2 - 4 } & udld (global configuration mode) & \begin{tabular}{l} 
Enables aggressive or normal mode in the UDLD protocol and \\
sets the configurable message timer time.
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Enables UDLD on an individual interface or prevents a \\
fiber interface from being enabled by the udld (global \\
configuration mode) command.
\end{tabular} \\
& &
\end{tabular}

\section*{show vlan}

To display VLAN information, use the show vlan command.
show vlan [brief | id vlan_id | name name]
show vlan private-vlan [type]

Syntax Description
\begin{tabular}{ll}
\hline brief & \begin{tabular}{l} 
(Optional) Displays only a single line for each VLAN, naming the VLAN, status, and \\
ports.
\end{tabular} \\
\hline id vlan_id & \begin{tabular}{l} 
(Optional) Displays information about a single VLAN identified by VLAN ID \\
number; valid values are from 1 to 4094.
\end{tabular} \\
\hline name name & \begin{tabular}{l} 
(Optional) Displays information about a single VLAN identified by VLAN name; \\
valid values are an ASCII string from 1 to 32 characters.
\end{tabular} \\
\hline private-vlan & Displays private VLAN information. \\
\hline type & (Optional) Private VLAN type. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes Privileged EXEC mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Added support for extended VLAN addresses. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to display the VLAN parameters for all VLANs within the administrative domain:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Switch\# show vlan
VLAN Name}} & & \\
\hline & & Status & Ports \\
\hline 1 & default & active & Fa5/9 \\
\hline 2 & VLAN0002 & active & Fa5/9 \\
\hline 3 & VLAN0003 & active & Fa5/9 \\
\hline 4 & VLAN0004 & active & Fa5/9 \\
\hline 5 & VLAN0005 & active & Fa5/9 \\
\hline 6 & VLAN0006 & active & Fa5/9 \\
\hline 10 & VLAN0010 & active & Fa5/9 \\
\hline 20 & VLAN0020 & active & Fa5/9 \\
\hline
\end{tabular}

\footnotetext{
<...Output truncated...>
}


This example shows how to display the VLAN name, status, and associated ports only:
\begin{tabular}{|c|c|c|}
\hline VLAN Name & Status & Ports \\
\hline 1 default & active & Fa5/9 \\
\hline 2 VLANO002 & active & Fa5/9 \\
\hline 3 VLANOO03 & active & Fa5/9 \\
\hline 4 VLANOO04 & active & Fa5/9 \\
\hline 5 VLANO005 & active & Fa5/9 \\
\hline 10 VLAN0010 & active & Fa5/9 \\
\hline - & & \\
\hline - & & \\
\hline - & & \\
\hline 999 VLAN0999 & active & Fa5/9 \\
\hline 1002 fddi-default & active & Fa5/9 \\
\hline 1003 trcrf-default & active & Fa5/9 \\
\hline 1004 fddinet-default & active & Fa5/9 \\
\hline 1005 trbrf-default & active & Fa5/9 \\
\hline \multicolumn{3}{|l|}{Switch\#} \\
\hline
\end{tabular}

This example shows how to display the VLAN parameters for VLAN 3 only:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline VLAN & \multicolumn{4}{|l|}{Name} & \multicolumn{2}{|l|}{Status} & \multicolumn{5}{|l|}{Ports} \\
\hline 3 & \multicolumn{3}{|l|}{VLAN0003} & \multicolumn{3}{|r|}{active} & \multicolumn{2}{|l|}{Fa5/9} & \multirow[b]{2}{*}{BrdgMode} & \multirow[b]{2}{*}{Trans1} & \multirow[b]{2}{*}{Trans2} \\
\hline VLAN & Type & SAID & MTU & Parent & RingNo & Bri & No & Stp & & & \\
\hline 3 & enet & 100003 & 1500 & - & - & - & & - & - & 303 & 0 \\
\hline Switc & & & & & & & & & & & \\
\hline
\end{tabular}

Table 2-29 describes the fields in the show vlan command output.
Table 2-29 show vlan Command Output Fields
\begin{tabular}{l|l}
\hline Field & Description \\
\hline VLAN & VLAN number. \\
\hline Name & Name, if configured, of the VLAN. \\
\hline Status & Status of the VLAN (active or suspend). \\
\hline Ports & Ports that belong to the VLAN. \\
\hline Type & Media type of the VLAN. \\
\hline SAID & Security Association Identifier value for the VLAN. \\
\hline MTU & Maximum transmission unit size for the VLAN. \\
\hline Parent & Parent VLAN, if one exists. \\
\hline RingNo & Ring number for the VLAN, if applicable. \\
\hline BrdgNo & Bridge number for the VLAN, if applicable. \\
\hline Stp & Spanning Tree Protocol type used on the VLAN. \\
\hline
\end{tabular}

The following example shows how to verify that the primary vlan and secondary vlans are correctly associated with each other and the same association also exists on the PVLAN port:


Now, let's say that you remove the VLAN association, as follows:
```

Switch(config)\# vlan 10
Switch(config-vlan)\# private-vlan association remove 100
Switch(config-vlan)\# end
Switch\# show vlan private
Primary Secondary Type Ports
------- --------- ----------------- ---
10 primary
100 community

```

You can use the following command to verify PVLAN configuration on the interface:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Switch\# show interface f3/2 status} \\
\hline Port & Name & Status & Vlan & Duplex & Speed & Type \\
\hline Fa3/2 & & connected & pvlan seco & a-full & a-100 & 10/100BasetX \\
\hline \multicolumn{7}{|l|}{Switch\# show interface f3/1 status} \\
\hline Port & Name & Status & Vlan & Duplex & Speed & Type \\
\hline Fa3/1 & & connected & pvian prom & a-full & a-100 & 10/100BasetX \\
\hline Switch\# & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\cline { 3 - 3 } Related Commands & Command & Description \\
\cline { 2 - 3 } & vlan (VLAN Database mode) & Configures a specific VLAN. \\
\cline { 2 - 3 } & vlan database & Enters VLAN configuration mode. \\
\cline { 2 - 3 } vtp (global configuration mode) & Modifies the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{show vlan access-map}

To display the contents of a VLAN access map, use the show vlan access-map command.
show vlan access-map [map-name]
\begin{tabular}{|c|c|}
\hline Syntax Description & map-name (Optional) Name of the VLAN access map. \\
\hline Defaults & This command has no default settings. \\
\hline Command Modes & Privileged EXEC mode \\
\hline Command History & Release Modification \\
\hline & 12.1(12c)EW Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline Examples & This command shows how to display the contents of a VLAN access map:
```

Switch\# show vlan access-map mordred
vlan access-map "mordred" 1
match: ip address 13
action: forward capture

```
Switch\# \\
\hline Related Commands & Command Description \\
\hline & \begin{tabular}{ll} 
vlan access-map & Enters VLAN access-map command mode to create a \\
& VLAN access map.
\end{tabular} \\
\hline
\end{tabular}

\section*{show vlan counters}

To display the software-cached counter values, use the show vlan counters command.
show vlan [id vlanid] counters

\section*{Syntax Description}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

If you enter the show vlan counters command without specifying the VLAN ID, the software-cached counter values for all VLANs are displayed.

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline clear vlan counters & \begin{tabular}{l} 
Clears the software-cached counter values to start from \\
zero again for a specified VLAN or all existing VLANs.
\end{tabular} \\
\hline
\end{tabular}

\section*{show vlan dot1q tag native}

To display all the ports on the switch that are eligible for native VLAN tagging as well as their current native VLAN tagging status, use the show vlan dot1q tag native command.
show vlan dot \(1 q\) tag native

Syntax Description This command has no arguments or keywords.
\(\overline{\text { Command Modes }}\) Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(18)\) EW & This command was introduced on the Catalyst 4500 series switc
\end{tabular}

This is an example of output from the show vlan dot1q tag native command:
```

Switch\# show vlan dot1q tag native
dot1q native vlan tagging is disabled globally
Per Port Native Vlan Tagging State
Mar Port Native Vlan Taging
Port Operational Native VLAN
Mode Tagging State

| f3/2 | trunk | enabled |
| :--- | :--- | :--- |
| f3/16 | PVLAN trunk | disabled |

f3/16 trunk enabled

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline switchport mode & Sets the interface type. \\
\hline vlan (global configuration) (refer to & Enters global VLAN configuration mode. \\
Cisco IOS documentation) & \\
\hline vlan (VLAN configuration) (refer to & Enters VLAN configuration mode. \\
Cisco IOS documentation) & \\
\hline
\end{tabular}

\section*{show vlan internal usage}

To display information about the internal VLAN allocation, use the show vlan internal usage command.
show vlan [id vlan-id] internal usage

\section*{Syntax Description}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Examples}

Related Commands
id vlan-id
(Optional) Displays internal VLAN allocation information for the specified VLAN; valid values are from 1 to 4094.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to display information about the current internal VLAN allocation:
```

Switch\# show vlan internal usage

```
VLAN Usage
---- -----------------------
1025 -
1026 -
1027 -
1028 -
1029 Port-channel6
1030 GigabitEthernet1/2
1032 FastEthernet3/20
1033 FastEthernet3/21
1129 -

This example shows how to display information about the internal VLAN allocation for a specific VLAN:
```

Switch\# show vlan id 1030 internal usage
VLAN Usage
---- ---------------------
1030 GigabitEthernet1/2

```

\section*{Description}

Configures the internal VLAN allocation scheme.

\section*{show vlan mtu}

To display the minimum and maximum transmission unit (MTU) sizes of each VLAN, use the show vlan mtu command.
show vlan mtu

Syntax Description

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13)\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The MTU_Mismatch column in the command output indicates whether all the ports in the VLAN have the same MTU. When "yes" is displayed in the MTU_Mismatch column, it means that the VLAN has a port with different MTUs, and packets might be dropped that are switched from a port with a larger MTU to a port with a smaller MTU. If the VLAN does not have an SVI, the hyphen (-) symbol is displayed in the SVI_MTU column.

For a VLAN, if the MTU-Mismatch column displays yes, the names of the port with the MinMTU and the port with the MaxMTU are displayed. For a VLAN, if the SVI_MTU is bigger than the MinMTU, "TooBig" is displayed after the SVI_MTU.

This is an example of output from the show vlan mtu command:

\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline \(\mathbf{m t u}\) & Enables jumbo frames on an interface by adjusting the \\
& maximum size of a packet or maximum transmission unit \\
& (MTU).
\end{tabular}

\section*{show vlan private-vlan}

To display private VLAN information, use the show vlan private-vlan command.
show vlan private-vlan [type]

\section*{Syntax Description}

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

When the show vlan private-vlan type command displays a VLAN type as normal, it indicates that a regular VLAN has been used in the private VLAN configuration. When normal is displayed, this indicates that two VLANs have been associated before the type was set, and the private VLAN is not operational. This information is useful for debugging purposes.

\section*{Examples}

This example shows how to display information about all currently configured private VLANs:
\begin{tabular}{|c|c|c|c|}
\hline Primary & Secondary & Type & Ports \\
\hline 2 & 301 & community & Fa5/3, Fa5/25 \\
\hline 2 & 302 & community & \\
\hline 2 & 303 & community & Fa5/3, Po63 \\
\hline & 10 & community & \\
\hline 100 & 101 & isolated & \\
\hline 150 & 151 & non-operational & \\
\hline & 202 & community & \\
\hline & 303 & twoway-community & \\
\hline 401 & 402 & non-operational & \\
\hline Switch\# & & & \\
\hline
\end{tabular}

\footnotetext{
A blank Primary value indicates that no association exists.
}

This example shows how to display information about all currently configured private VLAN types:
```

Switch\# show vlan private-vlan type
Vlan Type

202 primary
3 0 3 ~ c o m m u n i t y ~
3 0 4 ~ c o m m u n i t y ~
3 0 5 ~ c o m m u n i t y ~
3 0 6 ~ c o m m u n i t y ~
3 0 7 ~ c o m m u n i t y
308 normal
309 community
440 isolated
Switch\#

```

Table 2-30 describes the fields in the show vlan private-vlan command output.
Table 2-30 show vlan private-vlan Command Output Fields
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Primary & Number of the primary VLAN. \\
\hline Secondary & Number of the secondary VLAN. \\
\hline Secondary-Type & Secondary VLAN type is isolated or community. \\
\hline Ports & Indicates the ports within a VLAN. \\
\hline Type & \begin{tabular}{l} 
Type of VLAN; possible values are primary, isolated, community, \\
nonoperational, or normal.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } & private-vlan & \begin{tabular}{l} 
Configures private VLANs and the association between a \\
private VLAN and a secondary VLAN.
\end{tabular} \\
\cline { 2 - 4 } & private-vlan mapping & \begin{tabular}{l} 
Creates a mapping between the primary and the secondary \\
\end{tabular} \\
& VLANs so that both share the same primary VLAN SVI. \\
\hline
\end{tabular}

\section*{show vlan remote-span}

To display a list of Remote SPAN (RSPAN) VLANs, use the show vlan remote-span command.
show vlan remote-span

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline remote-span & Converts a VLAN into an RSPAN VLAN. \\
\hline vlan (VLAN Database mode) & Configures a specific VLAN. \\
\hline
\end{tabular}

\section*{show vmps}

To display the VLAN Query Protocol (VQP) version, reconfirmation interval, retry count, VLAN Membership Policy Server (VMPS) IP addresses, current servers, and primary servers, use the show vmps command.
```

show vmps [statistics]

```

\section*{Defaults}

Command Modes

Command History

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This is an example of output from the show vmps command:
```

Switch\# show vmps
VQP Client Status:

VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.50.120 (primary, current)
Reconfirmation status

VMPS Action: No Dynamic Port
Switch\#

```

This is an example of output from the show vmps statistics command:
```

Switch\# show vmps statistics
VMPS Client Statistics
VQP Queries: 0
VQP Responses: 0
VMPS Changes: 0
VQP Shutdowns: 0
VQP Denied: 0
VQP Wrong Domain: 0
VQP Wrong Version: 0
VQP Insufficient Resource: 0
Switch\#

```
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } Rmps reconfirm (privileged EXEC) & \begin{tabular}{l} 
Sends VLAN Query Protocol (VQP) queries to reconfirm \\
all the dynamic VLAN assignments with the VLAN
\end{tabular} \\
& Membership Policy Server (VMPS).
\end{tabular}

To display VTP statistics and domain information, use the show vtp command.
```

show vtp {counters | status}

```

Syntax Description

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline counters & Specifies the VTP statistics. \\
\hline status & Specifies the VTP domain status.
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This example shows how to display the VTP statistics:
```

Switch\# show vtp counters
VTP statistics:
Summary advertisements received : 1
Subset advertisements received : 1
Request advertisements received : 0
Summary advertisements transmitted : 31
Subset advertisements transmitted : 1
Request advertisements transmitted : 0
Number of config revision errors : 0
Number of config digest errors : 0
Number of V1 summary errors : 0
VTP pruning statistics:

| Trunk | Join Tr | $n \mathrm{Re}$ | Sum non | $\begin{aligned} & \text { ma } \\ & 1-p \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Fa5/9 | 155 | 1564 | | 0 |
| Switch\# | | | | |

```

This example shows how to display the VTP domain status:
```

Switch\# show vtp status
VTP Version : 2
Configuration Revision : 250
Maximum VLANs supported locally : 1005
Number of existing VLANs : 33
VTP Operating Mode : Server
VTP Domain Name : Lab_Network
VTP Pruning Mode : Enabled
VTP V2 Mode : Enabled
VTP Traps Generation : Disabled

```
```

MD5 digest : 0xE6 0xF8 0x3E 0xDD 0xA4 0xF5 0xC2 0x0E
Configuration last modified by 172.20.52.18 at 9-22-99 11:18:20
Local updater ID is 172.20.52.18 on interface Vl1 (lowest numbered VLAN interfac
e found)
Switch\#

```

This example shows how to display only those lines in the show vtp output that contain the word Summary:
```

Switch\# show vtp counters | include Summary
Summary advertisements received : 1
Summary advertisements transmitted : 32
Trunk Join Transmitted Join Received Summary advts received from
Switch\#

```

Table 2-31 describes the fields in the show vtp command output.
Table 2-31 show vtp Command Output Fields
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Summary advertisements received & Total number of summary advertisements received. \\
\hline Subset advertisements received & Total number of subset advertisements received. \\
\hline Request advertisements received & Total number of request advertisements received. \\
\hline Summary advertisements transmitted & Total number of summary advertisements transmitted. \\
\hline Subset advertisements transmitted & Total number of subset advertisements transmitted. \\
\hline Request advertisements transmitted & Total number of request advertisements transmitted. \\
\hline Number of config revision errors & Number of config revision errors. \\
\hline Number of config digest errors & Number of config revision digest errors. \\
\hline Number of V1 summary errors & Number of V1 summary errors. \\
\hline Trunk & Trunk port participating in VTP pruning. \\
\hline Join Transmitted & Number of VTP-Pruning Joins transmitted. \\
\hline Join Received & Number of VTP-Pruning Joins received. \\
\hline Summary advts received from & \begin{tabular}{l} 
Number of Summary advertisements received from \\
nonpruning-capable devices. \\
\hline non-pruning-capable device
\end{tabular} \\
\hline Number of existing VLANs & Total number of VLANs in the domain. \\
\hline Configuration Revision & VTP revision number used to exchange VLAN information. \\
\hline Maximum VLANs supported locally & Maximum number of VLANs allowed on the device. \\
\hline Number of existing VLANs & Number of existing VLANs. \\
\hline VTP Operating Mode & Indicates whether VTP is enabled or disabled. \\
\hline VTP Domain Name & Name of the VTP domain. \\
\hline VTP Pruning Mode & Indicates whether VTP pruning is enabled or disabled. \\
\hline VTP V2 Mode & \begin{tabular}{l} 
Indicates the VTP V2 mode as server, client, or transparent. \\
disabled.
\end{tabular} \\
\hline VTP Traps Generation & Checksum values. \\
\hline MD5 digest & VTP trap generation mode is enabled or \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } vtp (global configuration mode) & Modifies the name of a VTP configuration storage file. \\
\cline { 2 - 3 } vtp client & Places a device in VTP client mode. \\
\cline { 2 - 3 } vtp domain & Configures the administrative domain name for a device. \\
\cline { 2 - 3 } vtp password & Creates a VTP domain password. \\
\hline vtp pruning & Enables pruning in the VLAN database. \\
\hline vtp server & Places the device in VTP server mode. \\
\hline vtp transparent & Places device in VTP transparent mode. \\
\hline vtp v2-mode & Enables version 2 mode. \\
\hline
\end{tabular}

\section*{snmp ifindex clear}

To clear any previously configured snmp ifindex commands that were entered for a specific interface, use the snmp ifindex clear command.

\section*{snmp ifindex clear}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

This command has no arguments or keywords.

This command has no default settings.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19)\) EW & Support for this command was introduced on the Catalyst 4500 series switches.
\end{tabular}

Interface index persistence occurs when ifIndex values in the interface MIB (IF-MIB) persist across reboots and allow for consistent identification of specific interfaces using SNMP.

Use the snmp ifindex clear command on a specific interface when you want that interface to use the global configuration setting for ifIndex persistence. This command clears any ifIndex configuration commands previously entered for that specific interface.

This example shows how to enable ifIndex persistence for all interfaces:
Router(config) \# snmp-server ifindex persist
This example shows how to disable IfIndex persistence for FastEthernet \(1 / 1\) only:
```

Router(config)\# interface fastethernet 1/1
Router(config-if)\# no snmp ifindex persist
Router(config-if) \# exit

```

This example shows how to clear the ifIndex configuration from the FastEthernet \(1 / 1\) configuration:
```

Router(config)\# interface fastethernet 1/1
Router(config-if)\# snmp ifindex clear
Router(config-if) \# exit

```

As a result of this sequence of commands, ifIndex persistence is enabled for all interfaces that are specified by the snmp-server ifindex persist global configuration command.
\begin{tabular}{lll}
\({ } }\) & Command & Description \\
\cline { 2 - 4 } snmp ifindex persist & \begin{tabular}{l} 
Enables ifIndex values in the Interfaces MIB (IF-MIB) that \\
persist across reboots (ifIndex persistence) on a specific \\
interface.
\end{tabular} \\
& snmp-server ifindex persist & \begin{tabular}{l} 
Enables ifIndex values that will remain constant across \\
reboots for use by SNMP.
\end{tabular} \\
&
\end{tabular}

\section*{snmp ifindex persist}

To enable ifIndex values in the Interfaces MIB (IF-MIB) that persist across reboots (ifIndex persistence) on a specific interface, use the snmp ifindex persist command. To disable ifIndex persistence only on a specific interface, use the no form of this command.

\section*{snmp ifindex persist}
no snmp ifindex persist

\section*{\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.}

\section*{Defaults}
\(\overline{\text { Command Modes }}\) Interface configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19)\) EW & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

\section*{Usage Guidelines \\ Interface index persistence occurs when ifIndex values in the IF-MIB persist across reboots and allow} for consistent identification of specific interfaces using SNMP.
The snmp ifindex persist interface configuration command enables and disables ifIndex persistence for individual entries (that correspond to individual interfaces) in the ifIndex table of the IF-MIB.
The snmp-server ifindex persist global configuration command enables and disables ifIndex persistence for all interfaces on the routing device. This action applies only to interfaces that have ifDescr and ifIndex entries in the ifIndex table of the IF-MIB.

\section*{Examples}

This example shows how to enable ifIndex persistence for interface FastEthernet \(1 / 1\) only:
```

Router(config)\# interface fastethernet 1/1
Router(config-if)\# snmp ifindex persist
Router(config-if)\# exit

```

This example shows how to enable ifIndex persistence for all interfaces, and then disable ifIndex persistence for interface FastEthernet 1/1 only:
```

Router(config)\# snmp-server ifindex persist
Router(config)\# interface fastethernet 1/1
Router(config-if)\# no snmp ifindex persist
Router(config-if) \# exit

```
\begin{tabular}{lll}
\cline { 3 - 4 } Related Commands & Command & Description \\
\cline { 2 - 4 } & snmp ifindex clear & \begin{tabular}{l} 
Clears any previously configured snmp ifindex commands \\
that were entered for a specific interface.
\end{tabular} \\
\cline { 2 - 2 } & \begin{tabular}{l} 
Enables ifIndex values in the Interfaces MIB (IF-MIB) that \\
snarsist across reboots (ifIndex persistence) on a specific \\
interface.
\end{tabular} \\
& &
\end{tabular}

\section*{snmp-server enable traps}

To enable SNMP notifications (traps or informs), use the snmp-server enable traps command. To disable all SNMP notifications, use the no form of this command.
> snmp-server enable traps [snmp [authentication | linkdown | linkup | coldstart | warmstart] | call-home [message-send-fail | server-fail] | memory | cpu_threshold | rf | fru-ctrl| entity | ether-oam | flash [insertion | removal] | vtp | vlancreate | vlandelete | auth-framework [sec-violation] | dot1x [auth-fail-vlan | guest-vlan | no-auth-fail-vlan | no-guest-vlan] | envmon [fan | shutdown | supply | temperature | status] | entity-diag | port-security [trap-rate] | ethernet [cfm alarm] | energywise | bgp | config | hsrp | bridge [newroot | topologychange] | stpx [inconsistency | root-inconsistency | loop-inconsistency] | syslog | vlan-membership | mac-notification [change | move | threshold] | license ]

no snmp-server enable traps [snmp | call-home | memory | cpu_threshold | rf | fru-ctrl| entity | ether-oam | flash [insertion | removal] | vtp | vlancreate | vlandelete | auth-framework | dot1x | envmon | entity-diag | port-security [trap-rate] | ethernet [cfm alarm] | energywise | bgp | config | hsrp | bridge | stpx | syslog | vlan-membership | mac-notification | license ]
\begin{tabular}{ll}
\hline auth-fail-vlan & \begin{tabular}{l} 
(Optional) Controls the SNMP dot1x cpaeAuthFailVlanNotif trap \\
notifications.
\end{tabular} \\
\hline auth-framework & \begin{tabular}{l} 
(Optional) Controls the SNMP CISCO-AUTH-FRAMEWORK-MIB trap \\
notifications.
\end{tabular} \\
\hline authentication & (Optional) Controls the SNMP authentication trap notifications. \\
\hline bgp & (Optional) Controls the SNMP BGP trap notifications. \\
\hline bridge & (Optional) Controls the STP Bridge MIB trap notifications. \\
\hline call-home & (Optional) Controls the SNMP CISCO-CALLHOME-MIB trap notifications \\
\hline cfm alarm & (Optional) Controls the SNMP Ethernet cfm fault alarm trap notifications. \\
\hline change & (Optional) Controls the SNMP MA.C change trap notifications. \\
\hline coldstart & (Optional) Controls the SNMP config trap notifications. \\
\hline config & (Optional) Controls the SNMP CPU_THRESHOLD trap notifications. \\
\hline cpu_threshold & (Optional) Controls the SNMP dot1x trap notifications. \\
\hline dotx & (Optional) Controls the SNMP ENERGYWISE trap notifications. \\
\hline energywise & (Optional) Controls the SNMP entity trap notifications. \\
\hline entity & (Optional) Controls the SNMP CISCO-ENTITY-DIAG-MIB trap \\
\hline gentity-diag & (Optional) Controls the SNMP environmental monitor trap notifications. \\
\hline envmon & (Optional) Controls the SNMP ethernet oam trap notifications. \\
\hline ether-oam & (Optional) Controls the SNMP Ethernet trap notifications. \\
\hline ethernet & (Optional) Controls the SNMP environmental monitor fan trap notifications. \\
\hline fan & (Optional) Controls the SNMP FLASH trap notifications. \\
\hline flash & (Optional) Controls the SNMP entity FRU control trap notifications. \\
\hline (Optional) Controls the SNMP dot1x cpaeGuestVlanNotif trap notifications. \\
\hline guest-vlan & (Optional) Controls the SNMP HSRP trap notifications. \\
\hline hsrp &
\end{tabular}
\begin{tabular}{|c|c|}
\hline license & (Optional) Controls the SNMP license trap notifications. \\
\hline inconsistency & (Optional) Controls the STPX MIB Inconsistency Update trap notifications. \\
\hline insertion & (Optional) Controls the SNMP Flash insertion trap notifications. \\
\hline linkdown & (Optional) Contro.ls the SNMP linkdown trap notifications. \\
\hline linkup & (Optional) Controls the SNMP linkup trap notifications. \\
\hline loop-consistency & (Optional) Controls the STPX MIB LoopInconsistencyUpdate trap notifications. \\
\hline mac-notification & (Optional) Controls the SNMP MAC trap notifications. \\
\hline memory & (Optional) Controls the SNMP MEMORY trap notifications \\
\hline message-srfend-fail & (Optional) Controls the SNMP call-home ccmSmtpMsgSendFailNotif trap notifications. \\
\hline move & (Optional) Controls the SNMP MAC move trap notifications \\
\hline newroot & (Optional) Controls the STP Bridge MIB newroot trap notifications. \\
\hline no-auth-fail-vlan & (Optional) Controls the SNMP dot1x cpaeNoAuthFailVlanNotif trap notifications. \\
\hline no-guest-vlan & (Optional) Controls the SNMP dot1x cpaeNoGuestVlanNotif trap notifications. \\
\hline port-security & (Optional) Controls the SNMP port-security trap notifications. \\
\hline removal & (Optional) Controls the SNMP Flash removal trap notifications. \\
\hline rf & (Optional) Controls the SNMP HA trap notifications \\
\hline root-inconsistency & Optional) Controls the STPX MIB RootInconsistencyUpdate trap notifications. \\
\hline sec-violation & (Optional) Controls the SNMP auth-framework camSecurityViolationNotif trap notifications. \\
\hline server-fail & (Optional) Controls the SNMP call-home ccmSmtpServerFailNotif trap notifications. \\
\hline shutdown & (Optional) Controls the SNMP environmental monitor shutdown trap notifications. \\
\hline snmp & (Optional) Controls the SNMP trap notifications. \\
\hline status & (Optional) Controls the SNMP environmental monitor status trap notifications. \\
\hline stpx & (Optional) Controls all the traps defined in CISCO-STP-EXTENSIONS-MIB \\
\hline supply & (Optional) Controls the SNMP environmental monitor supply trap notifications. \\
\hline syslog & (Optional) Controls the SNMP syslog trap notifications. \\
\hline temperature & (Optional) Controls the SNMP environmental monitor temperature trap notifications. \\
\hline threshold & (Optional) Controls the SNMP MAC threshold trap notifications \\
\hline topologychange & (Optional) Controls the STP Bridge MIB topologychange trap notifications. \\
\hline trap-rate & (Optional) Sets the number of traps per second. \\
\hline vlan-membership & (Optional) Controls the SNMP VLAN membership trap notifications. \\
\hline vlancreate & (Optional) Controls the SNMP VLAN created trap notifications. \\
\hline vlandelete & (Optional) Controls the SNMP VLAN deleted trap notifications. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline vtp & (Optional) Controls the SNMP VTP trap notifications. \\
\hline warmstart & (Optional) Controls the SNMP warmstart trap notifications \\
\hline
\end{tabular}

\section*{\(\overline{\text { Defaults }}\) SNMP notifications are disabled.}

Command Modes
Global configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.1(13)EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline 12.2(31)SG & Support for MAC notification was added. \\
\hline IOS XE 3.1.0 SG & Support for license traps was added. \\
\hline IOS XE 3.1.0 SG & Support for License notification was added. \\
\hline IOS XE 3.1.0 SG & Support for Memory notification was added. \\
\hline IOS XE 3.1.0 SG & Support for cpu_threshold notification was added. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

If you enter this command without an option, all notification types controlled by this command are enabled.

SNMP notifications can be sent as traps or inform requests. This command enables both traps and inform requests for the specified notification types. To specify whether the notifications should be sent as traps or informs, use the snmp-server host [traps I informs] command.

The snmp-server enable traps command is used in conjunction with the snmp-server host command. Use the snmp-server host command to specify which host or hosts receive SNMP notifications. To send notifications, you must configure at least one snmp-server host command.
This list of the MIBs is used for the traps:
- flash-Controls SNMP FLASH traps from the CISCO-FLASH-MIB.
- insertion-Controls the SNMP Flash insertion trap notifications.
- removal-Controls the SNMP Flash removal trap notifications.
- fru-ctrl-Controls the FRU control traps from the CISCO-ENTITY-FRU-CONTROL-MIB.
- port-security-Controls the port-security traps from the CISCO-PORT-SECURITY-MIB.
- stpx-Controls all the traps from the CISCO-STP-EXTENSIONS-MIB.
- vlancreate-Controls SNMP VLAN created trap notifications.
- vlandelete-Controls SNMP VLAN deleted trap notifications.
- vtp-Controls the VTP traps from the CISCO-VTP-MIB.

Examples This example shows how to send all traps to the host is specified by the name myhost.cisco.com using the community string defined as public:
```

Switch(config)\# snmp-server enable traps
Switch(config)\# snmp-server host myhost.cisco.com public
Switch(config)\#

```

This example shows how to enable the MAC address change MIB notification:
```

Switch(config)\# snmp-server enable traps mac-notification change
Switch(config)\#

```

SNMP traps can be enabled with a rate-limit to detect port-security violations due to restrict mode. The following example shows how to enable traps for port-security with a rate of 5 traps per second:
```

Switch(config)\# snmp-server enable traps port-security trap-rate 5
Switch(config)\#

```
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline clear mac-address-table dynamic & \begin{tabular}{l} 
Clears the dynamic address entries from the Layer 2 MAC \\
address table.
\end{tabular} \\
\hline mac-address-table notification & Enables MAC address notification on a switch. \\
\hline show mac-address-table notification & \begin{tabular}{l} 
Displays the MAC address table notification status and \\
history.
\end{tabular} \\
\hline snmp trap mac-notification change & Enables SNMP MAC address notifications. \\
\hline
\end{tabular}

\section*{snmp-server ifindex persist}

To globally enable ifIndex values that will remain constant across reboots for use by SNMP, use the snmp-server ifindex persist command. To globally disable inIndex persistence, use the no form of this command.
snmp-server ifindex persist
no snmp-server ifindex persist
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}
\(\overline{\text { Command Modes Global configuration mode }}\)

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

Usage Guidelines

\section*{Examples}

Interface index persistence occurs when ifIndex values in the IF-MIB persist across reboots and allow for consistent identification of specific interfaces using SNMP.

The snmp-server ifindex persist global configuration command does not override the interface-specific configuration. To override the interface-specific configuration of ifIndex persistence, enter the no snmp ifindex persist and snmp ifindex clear interface configuration commands.

Entering the no snmp-server ifindex persist global configuration command enables and disables ifIndex persistence for all interfaces on the routing device using ifDescr and ifIndex entries in the ifIndex table of the IF-MIB.

This example shows how to enable ifIndex persistence for all interfaces:
Router(config) \# snmp-server ifindex persist

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline snmp ifindex clear & \begin{tabular}{l} 
Clears any previously configured snmp ifindex commands \\
that were entered for a specific interface.
\end{tabular} \\
\hline snmp ifindex persist & \begin{tabular}{l} 
Enables ifIndex values in the Interfaces MIB (IF-MIB) that \\
persist across reboots (ifIndex persistence) on a specific \\
interface.
\end{tabular} \\
\hline
\end{tabular}

\section*{snmp-server ifindex persist compress}

To configure the format of the ifIndex table in a compressed format, use the snmp-server ifindex persist compress command. To place the table in a decompressed format, use the no form of this command.
snmp-server ifindex persist compress
no snmp-server ifindex persist compress
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

This command is hidden on Supervisor Engine V and later supervisor engines because the ifIndex table is always in a compressed format on those supervisor engines.

At bootup, if the nvram:ifIndex-table.gz file (the ifIndex table ina compressed format) is present on a Supervisor Engine II+, Supervisor Engine III, or Supervisor Engine IV, the snmp-server ifindex persist compress command is automatically run even if the startup-config file does not have this configuration.

This example shows how to enable compression of the ifIndex table:
```

Router(config)\# snmp-server ifindex persist compress

```

This example shows how to disable compression of the ifIndex table:
```

Router(config)\# no snmp-server ifindex persist compress

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline snmp ifindex clear & \begin{tabular}{l} 
Clears any previously configured snmp ifindex commands \\
that were entered for a specific interface.
\end{tabular} \\
\hline snmp ifindex persist & \begin{tabular}{l} 
Enables ifIndex values in the Interfaces MIB (IF-MIB) that \\
persist across reboots (ifIndex persistence) on a specific \\
interface.
\end{tabular} \\
\hline snmp-server ifindex persist & \begin{tabular}{l} 
Enables ifIndex values that will remain constant across \\
reboots for use by SNMP.
\end{tabular} \\
\hline
\end{tabular}

\section*{snmp trap mac-notification change}

To enable SNMP MAC address notifications, use the snmp trap mac-notification command. To return to the default setting, use the no form of this command.
snmp trap mac-notification change \{added | removed \}
no snmp trap mac-notification change \{added | removed\}
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{l} 
Specifies enabling the MAC address notification trap whenever a MAC \\
address is added to an interface.
\end{tabular} \\
\cline { 2 - 4 } removed & \begin{tabular}{l} 
Specifies enabling the MAC address notification trap whenever a MAC \\
address is removed from an interface.
\end{tabular}
\end{tabular}

Defaults

Command Modes
Interface configuration mode
Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(31)\) SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Even though you enable the change notification trap for a specific interface by using the snmp trap mac-notification change command, the trap is generated only when you enable the snmp-server enable traps mac-notification change and the mac address-table notification change global configuration commands.

This example shows how to enable the MAC notification trap when a MAC address is added to a port:
Switch(config) \# interface gigabitethernet1/1
Switch(config-if) \# snmp trap mac-notification change added
You can verify your settings by entering the show mac address-table notification change interface privileged EXEC command.

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline clear mac-address-table & \begin{tabular}{l} 
Clears the address entries from the Layer 2 MAC address \\
table.
\end{tabular} \\
\hline mac-address-table notification & Enables MAC address notification on a switch. \\
\hline show mac-address-table notification & \begin{tabular}{l} 
Displays the MAC address table notification status and \\
history.
\end{tabular} \\
\hline snmp-server enable traps & Enables SNMP notifications. \\
\hline
\end{tabular}

\section*{source-interface}

To send out call home email messages with specific source interface, use the source-interface command.
source-interface interface name

\section*{Syntax Description}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

You should configure no shut on an interface and provide a valid IP address before specifying it as a source interface for Call Home. Doing this avoids a connection failure when sending Call Home email messages. You should only specify a source interface name under Call Home if source-ip-address is not specified. You can only specify either a source interface or source-ip-address in call-home mode, not simultaneously.

This example shows how to configure source interface for Call Home. Generally, the interface should already be configured with a valid IP address as usually configured for an interface.
```

Switch\# config terminal
Switch(config)\# call-home
Switch(cfg-call-home)\# source-interface fastEthernet 1/1
Switch(cfg-call-home)\# source-ip
Switch(cfg-call-home)\# source-ip-address 10.2.4.1
Error:a source-interface has already been configured,please remove source-interface config
first if you want to configure source-ip-address
Switch(cfg-call-home)\# no source-interface
Switch(cfg-call-home)\# source-ip-address 10.2.4.1

```

If Call Home is configured to use http or https as the transport method, you must use ip http client source-interface to configure the source interface for all http clients. You cannot specify a source interface for Call Home http messages only.

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline source-ip-address & \\
\hline
\end{tabular}

\section*{source-ip-address}

To send out Call Home email messages with specific source IP address, use the source-ip-address command.
source-ip-address ip address
Syntax Description

\section*{ip address}

Source IP address for Call Home messages.
\(\overline{\text { Defaults }}\) None
\(\overline{\text { Command Modes }}\) cfg-call-home

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 3.1.1 SG & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) It is best to configure no shut an interface with this valid IP address before specifying it as source-ip-address for Call Home. Doing this avoids a connection failure when sending Call Home email messages. You should only specify source-ip-address under Call Home if source-interface is not specified. You can only specify either source interface or source-ip-address in Call Home mode, not both simultaneously.

Examples
This example shows how to configure source-ip-address for Call Home:
```

Switch\# config terminal
Switch(config)\# call-home
Switch(cfg-call-home)\# source-interface fastEthernet 1/1
Switch(cfg-call-home)\# source-ip
Switch(cfg-call-home)\# source-ip-address 10.2.4.1
Error:a source-interface has already been configured,please remove source-interface config
first if you want to configure source-ip-address
Switch(cfg-call-home)\# no source-interface
Switch(cfg-call-home)\# source-ip-address 10.2.4.1

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline source-interface & \\
\hline
\end{tabular}

\section*{spanning-tree backbonefast}

To enable BackboneFast on a spanning-tree VLAN, use the spanning-tree backbonefast command. To disable BackboneFast, use the no form of this command.

\section*{spanning-tree backbonefast}
no spanning-tree backbonefast

\section*{\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.}

\section*{Defaults}

Command Modes

\section*{Usage Guidelines}

BackboneFast should be enabled on all Catalyst 4506 series switches to allow the detection of indirect link failures. Enabling BackboneFast starts the spanning-tree reconfiguration more quickly.

\section*{Examples}

This example shows how to enable BackboneFast on all VLANs:
Switch(config) \# spanning-tree backbonefast
Switch(config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline spanning-tree cost & Calculates the path cost of STP on an interface. \\
\hline spanning-tree portfast default & Enables PortFast by default on all access ports. \\
\hline \begin{tabular}{l} 
spanning-tree portfast (interface \\
configuration mode)
\end{tabular} & Enables PortFast mode. \\
\hline spanning-tree port-priority & \begin{tabular}{l} 
Prioritizes an interface when two bridges compete for \\
position as the root bridge.
\end{tabular} \\
\hline spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline show spanning-tree & Displays spanning-tree information. \\
\hline
\end{tabular}

\section*{spanning-tree bpdufilter}

To enable BPDU filtering on an interface, use the spanning-tree bpdufilter command. To return to the default settings, use the no form of this command.
```

spanning-tree bpdufilter { enable | disable }

```
no spanning-tree bpdufilter
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline enable & Enables BPDU filtering on this interface. \\
\hline disable & Disables BPDU filtering on this interface. \\
\hline
\end{tabular}

\section*{Defaults}

Disabled

Command Modes
Interface configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Caution
Use care when entering the spanning-tree bpdufilter enable command. Enabling BPDU filtering on an interface is approximately equivalent to disabling the spanning tree for this interface. It is possible to create bridging loops if this command is not correctly used.

When configuring Layer 2 protocol tunneling on all the service provider edge switches, you must enable spanning-tree BPDU filtering on the 802.1 Q tunnel ports by entering the spanning-tree bpdufilter enable command.

BPDU filtering allows you to prevent a port from sending and receiving BPDUs. The configuration is applicable to the whole interface, whether it is trunking or not. This command has three states:
- spanning-tree bpdufilter enable-This state unconditionally enables the BPDU filter feature on the interface.
- spanning-tree bpdufilter disable-This state unconditionally disables the BPDU filter feature on the interface.
- no spanning-tree bpdufilter-This state enables the BPDU filter feature on the interface if the interface is in operational PortFast state and if the spanning-tree portfast bpdufilter default command is configured.
\begin{tabular}{ll} 
Examples & This example shows how to enable the BPDU filter feature on this interface: \\
& \begin{tabular}{l} 
Switch (config-if) \# spanning-tree bpdufilter enable \\
Switch (config-if) \#
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } show spanning-tree & Displays spanning-tree information. \\
\hline \begin{tabular}{l} 
spanning-tree portfast bpdufilter \\
default
\end{tabular} & Enables the BPDU filtering by default on all PortFast ports. \\
\hline
\end{tabular}

\section*{spanning-tree bpduguard}

To enable BPDU guard on an interface, use the spanning-tree bpduguard command. To return to the default settings, use the no form of this command.
spanning-tree bpduguard \{enable | disable\}
no spanning-tree bpduguard
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline enable & Enables BPDU guard on this interface. \\
\hline disable & Disables BPDU guard on this interface. \\
\hline
\end{tabular}

Defaults
BPDU guard is disabled.

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch.
\end{tabular}

This example shows how to enable BPDU guard on this interface:
Switch(config-if)\# spanning-tree bpduguard enable
Switch(config-if)\#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree & Displays spanning-tree information. \\
\hline \begin{tabular}{l} 
spanning-tree portfast bpdufilter \\
default
\end{tabular} & Enables the BPDU filtering by default on all PortFast ports. \\
\hline
\end{tabular}

\section*{spanning-tree cost}

To calculate the path cost of STP on an interface, use the spanning-tree cost command. To revert to the default, use the no form of this command.
spanning-tree cost cost
no spanning-tree cost cost

Syntax Description

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

The default settings are as follows:
- FastEthernet-19
- GigabitEthernet-1

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

When you configure the cost, the higher values indicate higher costs. The range applies regardless of the protocol type that is specified. The path cost is calculated, based on the interface bandwidth.

This example shows how to access an interface and set a path cost value of 250 for the spanning-tree VLAN that is associated with that interface:

Switch(config) \# interface fastethernet 2/1
Switch(config-if) \# spanning-tree cost 250
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline spanning-tree portfast default & Enables PortFast by default on all access ports. \\
\hline \begin{tabular}{l} 
spanning-tree portfast (interface \\
configuration mode)
\end{tabular} & Enables PortFast mode. \\
\hline spanning-tree port-priority & \begin{tabular}{l} 
Prioritizes an interface when two bridges compete for \\
position as the root bridge.
\end{tabular} \\
\hline spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline show spanning-tree & Displays spanning-tree information. \\
\hline
\end{tabular}

\section*{spanning-tree etherchannel guard misconfig}

To display an error message when a loop due to a channel misconfiguration is detected, use the spanning-tree etherchannel guard misconfig command. To disable the feature, use the no form of this command.

\section*{spanning-tree etherchannel guard misconfig}
no spanning-tree etherchannel guard misconfig
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

\section*{Examples}

\section*{Related Commands}

Port-Channel1 etherchannel summary command on the remote device. associated port-channel interface.

Switch(config) \# spanning-tree etherchannel guard misconfig
Switch(config) \#

When an EtherChannel guard misconfiguration is detected, this message is displayed:
\%SPANTREE-2-CHNL_MISCFG: Detected loop due to etherchannel misconfig of interface

To determine which local ports are involved in the misconfiguration, enter the show interfaces status err-disabled command. To verify the EtherChannel configuration on the remote device, enter the show

After you correct the configuration, enter the shutdown and the no shutdown commands on the

This example shows how to enable the EtherChannel guard misconfiguration feature:
\begin{tabular}{ll}
\hline Command & Description \\
\hline show etherchannel & Displays EtherChannel information for a channel. \\
\hline show interfaces status & \begin{tabular}{l} 
Displays the interface status or a list of interfaces in \\
error-disabled state.
\end{tabular} \\
\hline \begin{tabular}{l} 
shutdown (refer to Cisco IOS \\
documentation)
\end{tabular} & Disables a port.
\end{tabular}

\section*{spanning-tree extend system-id}

To enable the extended system ID feature on a chassis that supports 1024 MAC addresses, use the spanning-tree extend system-id command. To disable the feature, use the no form of this command.
spanning-tree extend system-id
no spanning-tree extend system-id
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

Releases \(12.1(13) \mathrm{E}\) and later support chassis with 64 or 1024 MAC addresses. For chassis with 64 MAC addresses, STP uses the extended system ID plus a MAC address to make the bridge ID unique for each VLAN.

You cannot disable the extended system ID on chassis that support 64 MAC addresses.
Enabling or disabling the extended system ID updates the bridge IDs of all active STP instances, which might change the spanning-tree topology.

This example shows how to enable the extended system ID:
Switch(config) \# spanning-tree extend system-id
Switch (config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree & Displays spanning-tree information. \\
\hline
\end{tabular}

\section*{spanning-tree guard}

To enable root guard, use the spanning-tree guard command. To disable root guard, use the no form of this command.
```

spanning-tree guard {loop | root | none}
no spanning-tree guard

```
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline loop & Enables the loop guard mode on the interface \\
\hline root & Enables root guard mode on the interface. \\
\hline none & Sets the guard mode to none.
\end{tabular}

\section*{Defaults}

Root guard is disabled.

\section*{Command Modes}

Interface configuration mode
\begin{tabular}{llll}
\hline Command History & & Modification \\
\(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Loop guard support was added. \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to enable root guard:
Switch(config-if) \# spanning-tree guard root
Switch(config-if) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree & Displays spanning-tree information.
\end{tabular}

\section*{spanning-tree link-type}

To configure a link type for a port, use the spanning-tree link-type command. To return to the default settings, use the no form of this command.
```

spanning-tree link-type {point-to-point | shared}
no spanning-tree link-type

```

\section*{Syntax Description}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline point-to-point & Specifies that the interface is a point-to-point link. \\
\hline shared & Specifies that the interface is a shared medium. \\
\hline
\end{tabular}

Link type is derived from the duplex mode.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

RSTP+ fast transition works only on point-to-point links between two bridges.
By default, the switch derives the link type of a port from the duplex mode. A full-duplex port is considered as a point-to-point link while a half-duplex configuration is assumed to be on a shared link. If you designate a port as a shared link, RSTP+ fast transition is forbidden, regardless of the duplex setting.

This example shows how to configure the port as a shared link:
Switch(config-if) \# spanning-tree link-type shared
Switch(config-if) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 3 - 4 } & show spanning-tree & Displays spanning-tree information. \\
\hline
\end{tabular}

\section*{spanning-tree loopguard default}

To enable loop guard as the default on all ports of a specific bridge, use the spanning-tree loopguard default command. To disable loop guard, use the no form of this command.
spanning-tree loopguard default
no spanning-tree loopguard default
\(\overline{\text { Syntax Description }}\) This command has no keywords or arguments.

\section*{Defaults \\ Loop guard is disabled.}

Command Modes Global configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

Usage Guidelines

\section*{Examples}

Loop guard provides an additional security in the bridge network. Loop guard prevents alternate or root ports from becoming the designated port because of a failure leading to a unidirectional link.

Loop guard operates only on ports that are considered point-to-point by the spanning tree.
Individual loop-guard port configuration overrides this global default.

This example shows how to enable loop guard:
Switch(config) \# spanning-tree loopguard default
Switch(config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline spanning-tree guard & Enables root guard. \\
\hline show spanning-tree & Displays spanning-tree information. \\
\hline
\end{tabular}

\section*{spanning-tree mode}

To switch between PVST+ and MST modes, use the spanning-tree mode command. To return to the default settings, use the no form of this command.
spanning-tree mode \(\{\) pvst | mst | rapid-pvst \(\}\)
no spanning-tree mode \(\{\mathbf{p v s t} \mid\) mst | rapid-pvst \(\}\)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Syntax Description} & pvst & Specifies PVST+ mode. \\
\hline & mst & Specifies MST mode. \\
\hline & rapid-pvst & Specifies Rapid PVST mode. \\
\hline
\end{tabular}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

Global configuration mode
\begin{tabular}{lll}
\(\overline{\text { Command History }}\) & & Modification \\
& \begin{tabular}{l} 
Release \\
\hline \(12.1(8 a) \mathrm{EW}\) \\
\hline \(12.1(19) \mathrm{EW}\)
\end{tabular} & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Caution
Be careful when using the spanning-tree mode command to switch between PVST+ and MST modes. When you enter the command, all spanning-tree instances are stopped for the previous mode and restarted in the new mode. Using this command may cause disruption of user traffic.

\section*{Examples}

This example shows how to switch to MST mode:
```

Switch(config)\# spanning-tree mode mst
Switch(config)\#

```

This example shows how to return to the default mode (PVST):
Switch(config)\# no spanning-tree mode
Switch(config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree mst}

To set the path cost and port-priority parameters for any MST instance (including the CIST with instance ID 0 ), use the spanning-tree mst command. To return to the default settings, use the no form of this command.
```

spanning-tree mst instance-id [cost cost] | [port-priority prio]

```
no spanning-tree mst instance-id \(\{\) cost | port-priority \}
Syntax Description
\begin{tabular}{ll}
\hline instance-id & Instance ID number; valid values are from 0 to 15. \\
\hline cost cost & (Optional) Specifies the path cost for an instance; valid values are from \\
& 1 to 200000000. \\
\hline port-priority prio & \begin{tabular}{l} 
(Optional) Specifies the port priority for an instance; valid values are from 0 \\
\\
to 240 in increments of 16.
\end{tabular} \\
\hline
\end{tabular}

\section*{Defaults}

Port priority is \(\mathbf{1 2 8}\).

\section*{Command Modes}

Interface configuration mode

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

The higher cost cost values indicate higher costs. When entering the cost value, do not include a comma in the entry; for example, enter \(\mathbf{1 0 0 0}\), not \(\mathbf{1 , 0 0 0}\).

The higher port-priority prio values indicate smaller priorities.
By default, the cost depends on the port speed; faster interface speeds indicate smaller costs. MST always uses long path costs.

\section*{Examples}

This example shows how to set the interface path cost:
```

Switch(config-if)\# spanning-tree mst 0 cost 17031970
Switch(config-if)\#

```

This example shows how to set the interface priority:
```

Switch(config-if)\# spanning-tree mst 0 port-priority 64
Switch(config-if)\#

```
\begin{tabular}{lll}
\cline { 3 - 3 } Related Commands & Command & Description \\
\cline { 2 - 3 } & show spanning-tree mst & Displays MST protocol information. \\
\cline { 2 - 3 } spanning-tree port-priority & \begin{tabular}{l} 
Enables an interface when two bridges compete for position \\
as the root bridge.
\end{tabular} \\
& &
\end{tabular}

\section*{spanning-tree mst configuration}

To enter the MST configuration submode, use the spanning-tree mst configuration command. To return to the default MST configuration, use the no form of this command.

\section*{spanning-tree mst configuration}

\section*{no spanning-tree mst configuration}
\(\overline{\text { Syntax Description }}\)

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

The default settings are as follows:
- No VLANs are mapped to any MST instance.
- All VLANs are mapped to the CIST instance.
- The region name is an empty string.
- The revision number is 0 .

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The MST configuration consists of three main parameters:
- Instance VLAN mapping (see the instance command)
- Region name (see the name command)
- Configuration revision number (see the revision command)

By default, the value for the MST configuration is the default value for all its parameters.
The abort and exit commands allow you to exit the MST configuration submode. The difference between the two commands depends on whether you want to save your changes or not.

The exit command commits all the changes before leaving MST configuration submode. If you do not map the secondary VLANs to the same instance as the associated primary VLAN, when you exit the MST configuration submode, a message displays and lists the secondary VLANs that are not mapped to the same instance as the associated primary VLAN. The message is as follows:

These secondary vlans are not mapped to the same instance as their primary:
->3
The abort command leaves the MST configuration submode without committing any changes.

Whenever you change an MST configuration submode parameter, it can cause a loss of connectivity. To reduce the number of service disruptions, when you enter the MST configuration submode, you are changing a copy of the current MST configuration. When you are done editing the configuration, you can apply all the changes at once by using the exit keyword, or you can exit the submode without committing any change to the configuration by using the abort keyword.

In the unlikely event that two users enter a new configuration at exactly at the same time, this message is displayed:
```

Switch(config-mst)\# exit
% MST CFG:Configuration change lost because of concurrent access
Switch(config-mst)\#

```

\section*{Examples}

This example shows how to enter the MST configuration submode:
```

Switch(config)\# spanning-tree mst configuration
Switch(config-mst)\#

```

This example shows how to reset the MST configuration to the default settings:
```

Switch(config)\# no spanning-tree mst configuration

```
Switch(config) \#
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } & instance & Maps a VLAN or a set of VLANs to an MST instance. \\
\cline { 2 - 4 } & name & Sets the MST region name. \\
\hline & revision & Sets the MST configuration revision number. \\
& show spanning-tree mst & Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree mst forward-time}

To set the forward delay timer for all the instances, use the spanning-tree mst forward-time command. To return to the default settings, use the no form of this command.
spanning-tree mst forward-time seconds
no spanning-tree mst forward-time
\begin{tabular}{|c|c|}
\hline Syntax Description & \begin{tabular}{ll} 
seconds & \begin{tabular}{l} 
Number of seconds to set the forward delay timer for all the instances on the \\
Catalyst 4500 series switch; valid values are from 4 to 30 seconds.
\end{tabular}
\end{tabular} \\
\hline \(\overline{\text { Defaults }}\) & The forward delay timer is set for 15 seconds. \\
\hline Command Modes & Global configuration mode \\
\hline Command History & Release Modification \\
\hline & 12.1(12c)EW Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline Examples & \begin{tabular}{l}
This example shows how to set the forward-delay timer: \\
Switch(config) \# spanning-tree mst forward-time 20 Switch(config) \#
\end{tabular} \\
\hline \multirow[t]{2}{*}{Related Commands} & Command Description \\
\hline & show spanning-tree mst Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree mst hello-time}

To set the hello-time delay timer for all the instances, use the spanning-tree mst hello-time command. To return to the default settings, use the no form of this command.
spanning-tree mst hello-time seconds
no spanning-tree mst hello-time
Syntax Description

\section*{Defaults}

\section*{Command Modes}
Command History

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to set the hello-time delay timer:
Switch(config) \# spanning-tree mst hello-time 3
Switch(config) \#
Related Commands

The hello-time delay timer is set for 2 seconds.

Global configuration mode

If you do not specify the hello-time value, the value is calculated from the network diameter.
seconds \(\quad\) Number of seconds to set the hello-time delay timer for all the instances on the Catalyst 4500 series switch; valid values are from 1 to 10 seconds.
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree mst max-age}

To set the max-age timer for all the instances, use the spanning-tree mst max-age command. To return to the default settings, use the no form of this command.
spanning-tree mst max-age seconds
no spanning-tree mst max-age
\(\overline{\text { Syntax Description }}\)\begin{tabular}{l} 
seconds \\
\begin{tabular}{l} 
Number of seconds to set the max-age timer for all the instances on the Catalyst 4500 \\
series switch; valid values are from 6 to 40 seconds.
\end{tabular}
\end{tabular}
\(\overline{\text { Defaults }}\) The max-age timer is set for 20 seconds.
\(\overline{\text { Command Modes }}\) Global configuration mode
\begin{tabular}{lll}
\(\overline{\text { Command History }}\) & & \\
& Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

\section*{Examples}

This example shows how to set the max-age timer:
Switch(config)\# spanning-tree mst max-age 40 Switch(config) \#
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree mst max-hops}

To specify the number of possible hops in the region before a BPDU is discarded, use the spanning-tree mst max-hops command. To return to the default settings, use the no form of this command.
spanning-tree mst max-hops hopnumber
no spanning-tree mst max-hops

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}
Command History

\section*{Examples}

\section*{Related Commands}
hopnumber Number of possible hops in the region before a BPDU is discarded; valid values are from 1 to 40 hops.

Number of hops is 20 .

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

This example shows how to set the number of possible hops in the region before a BPDU is discarded to 25 :
Switch(config) \# spanning-tree mst max-hops 25
Switch (config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree mst root}

To designate the primary root, secondary root, bridge priority, and timer value for an instance, use the spanning-tree mst root command. To return to the default settings, use the no form of this command.
spanning-tree mst instance-id root \(\{\) primary | secondary \(\}\) | \{priority prio\} [diameter dia [hello-time hello]]
no spanning-tree mst root

Syntax Description
\begin{tabular}{ll}
\hline instance-id & Instance identification number; valid values are from 1 to 15. \\
\hline root & Configures switch as the root switch. \\
\hline primary & \begin{tabular}{l} 
Sets a high enough priority (low value) to make the bridge root of the spanning-tree \\
instance.
\end{tabular} \\
\hline secondary & Designates this switch as a secondary root if the primary root fails. \\
\hline priority prio & \begin{tabular}{l} 
Sets the bridge priority; see the "Usage Guidelines" section for valid values and \\
additional information.
\end{tabular} \\
\hline diameter dia & \begin{tabular}{l} 
(Optional) Sets the timer values for the bridge based on the network diameter; valid \\
values are from 2 to 7.
\end{tabular} \\
\hline hello-time hello & \begin{tabular}{l} 
(Optional) Specifies the duration between the generation of configuration messages \\
by the root switch.
\end{tabular} \\
\hline
\end{tabular}

Defaults

Command Modes
Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

\section*{Usage Guidelines}

The bridge priority can be set in increments of 4096 only. When you set the priority, valid values are 0 , 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440 .

You can set the priority to 0 to make the switch root.
The spanning-tree root secondary bridge priority value is 16384 .
The diameter dia and hello-time hello options are available for instance 0 only.
If you do not specify the hello_time value, the value is calculated from the network diameter.
\begin{tabular}{|c|c|}
\hline Examples & This example shows how to set the priority and timer values for the bridge:
```

Switch(config)\# spanning-tree mst 0 root primary diameter 7 hello-time 2
Switch(config)\# spanning-tree mst 5 root primary
Switch(config)\#

``` \\
\hline \multirow[t]{2}{*}{Related Commands} & Command Description \\
\hline & show spanning-tree mst Displays MST protocol information. \\
\hline
\end{tabular}

\section*{spanning-tree pathcost method}

To set the path cost calculation method, use the spanning-tree pathcost method command. To revert to the default setting, use the no form of this command.
spanning-tree pathcost method \{long | short \}
no spanning-tree pathcost method

Syntax Description
\begin{tabular}{ll}
\hline long & Specifies 32 -bit-based values for port path costs. \\
\hline short & Specifies 16-bit-based values for port path costs.
\end{tabular}

\section*{\(\overline{\text { Defaults }}\) Port path cost has 16-bit-based values.}
\(\overline{\text { Command Modes }}\) Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

Usage Guidelines This command applies to all the spanning-tree instances on the switch.
The long path cost calculation method uses all the 32 bits for path cost calculation and yields values in the range of 1 through \(200,000,000\).
The short path cost calculation method ( 16 bits) yields values in the range of 1 through 65,535 .

\section*{Examples}

This example shows how to set the path cost calculation method to long:
```

Switch(config) spanning-tree pathcost method long
Switch(config)

```

This example shows how to set the path cost calculation method to short:
```

Switch(config) spanning-tree pathcost method short
Switch(config)

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree & Displays spanning-tree state information. \\
\hline
\end{tabular}

\section*{spanning-tree portfast (interface configuration mode)}

To enable PortFast mode, where the interface is immediately put into the forwarding state upon linkup without waiting for the timer to expire, use the spanning-tree portfast command. To return to the default setting, use the no form of this command.
```

spanning-tree portfast {disable | trunk}
no spanning-tree portfast

```

Syntax Description

Defaults

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline disable & Disables PortFast on the interface. \\
\hline trunk & Enables PortFast on the interface even while in the trunk mode. \\
\hline
\end{tabular}

PortFast mode is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & The disable and trunk options were added. \\
\hline
\end{tabular}

You should use this feature only with interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt the Catalyst 4500 series switch and network operation.

An interface with PortFast mode enabled is moved directly to the spanning-tree forwarding state when linkup occurs without waiting for the standard forward-time delay.
Be careful when using the no spanning-tree portfast command. This command does not disable PortFast if the spanning-tree portfast default command is enabled.

This command has four states:
- spanning-tree portfast-This command enables PortFast unconditionally on the given port.
- spanning-tree portfast disable-This command explicitly disables PortFast for the given port. The configuration line shows up in the running-configuration as it is not the default.
- spanning-tree portfast trunk-This command allows you to configure PortFast on trunk ports.

If you enter the spanning-tree portfast trunk command, the port is configured for PortFast even when in the access mode.
- no spanning-tree portfast-This command implicitly enables PortFast if the spanning-tree portfast default command is defined in global configuration and if the port is not a trunk port. If you do not configure PortFast globally, the no spanning-tree portfast command is equivalent to the spanning-tree portfast disable command.
\begin{tabular}{|c|c|c|}
\hline Examples & \begin{tabular}{l}
This example shows how to enab \\
Switch(config-if)\# spanning- \\
Switch(config-if)
\end{tabular} & \begin{tabular}{l}
st mode: \\
fast
\end{tabular} \\
\hline Related Commands & Command & Description \\
\hline & spanning-tree cost & Calculates the path cost of STP on an interface. \\
\hline & spanning-tree portfast default & Enables PortFast by default on all access ports. \\
\hline & spanning-tree port-priority & Prioritizes an interface when two bridges compete for position as the root bridge. \\
\hline & spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline & spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline & show spanning-tree & Displays spanning-tree state information. \\
\hline
\end{tabular}

\section*{spanning-tree portfast bpdufilter default}

To enable the BPDU filtering by default on all PortFast ports, use the spanning-tree portfast bpdufilter default command. To return to the default settings, use the no form of this command.

\section*{spanning-tree portfast bpdufilter default \\ no spanning-tree portfast bpdufilter default}
\(\overline{\text { Syntax Description }}\) This command has no keywords or arguments.

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

The spanning-tree portfast bpdufilter default command enables BPDU filtering globally on the Catalyst 4500 series switch. BPDU filtering prevents a port from sending or receiving any BPDUs.

You can override the effects of the spanning-tree portfast bpdufilter default command by configuring BPDU filtering at the interface level.

Be careful when enabling BPDU filtering. Functionality is different when enabling on a per-port basis or globally. When enabled globally, BPDU filtering is applied only on ports that are in an operational PortFast state. Ports still send a few BPDUs at linkup before they effectively filter outbound BPDUs. If a BPDU is received on an edge port, it immediately loses its operational PortFast status and BPDU filtering is disabled.

When enabled locally on a port, BPDU filtering prevents the Catalyst 4500 series switch from receiving or sending BPDUs on this port.

Be careful when using this command. This command can cause bridging loops if not used correctly.

\section*{Examples}

This example shows how to enable BPDU filtering by default:
```

Switch(config)\# spanning-tree portfast bpdufilter default

```

Switch(config) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show spanning-tree mst & Displays MST protocol information. \\
\cline { 2 - 3 } spanning-tree bpdufilter & Enables BPDU filtering on an interface. \\
\cline { 2 - 3 } &
\end{tabular}

\section*{spanning-tree portfast bpduguard default}

To enable BPDU guard by default on all the PortFast ports, use the spanning-tree portfast bpduguard default command. To return to the default settings, use the no form of this command.

\section*{spanning-tree portfast bpduguard default \\ no spanning-tree portfast bpduguard default}
\(\overline{\text { Syntax Description }}\) This command has no keywords or arguments.

\section*{Defaults}

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

Caution
Be careful when using this command. You should use this command only with the interfaces that connect to the end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt the Catalyst 4500 series switch and network operation.

BPDU guard disables a port if it receives a BPDU. BPDU guard is applied only on ports that are PortFast enabled and are in an operational PortFast state.

\section*{Examples}

This example shows how to enable BPDU guard by default:
Switch(config) \# spanning-tree portfast bpduguard default
Switch(config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree mst & Displays MST protocol information. \\
\hline spanning-tree bpduguard & Enables BPDU guard on an interface. \\
\hline
\end{tabular}

\section*{spanning-tree portfast default}

To globally enable PortFast by default on all access ports, use the spanning-tree portfast default command. To disable PortFast as default on all access ports, use the no form of this command.

\section*{spanning-tree portfast default}
no spanning-tree portfast default
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

PortFast is disabled.

Command Modes Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Usage Guidelines \\ Caution}

Be careful when using this command. You should use this command only with the interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt the Catalyst 4500 series switch and network operation.

An interface with PortFast mode enabled is moved directly to the spanning-tree forwarding state when linkup occurs without waiting for the standard forward-time delay.
You can enable PortFast mode on individual interfaces using the spanning-tree portfast (interface configuration mode) command.

\section*{Examples}

This example shows how to globally enable PortFast by default on all access ports:
Switch(config) \# spanning-tree portfast default
Switch(config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show spanning-tree & Displays spanning-tree state information. \\
\hline \begin{tabular}{l} 
spanning-tree portfast (interface \\
configuration mode)
\end{tabular} & Enables PortFast mode. \\
\hline
\end{tabular}

\section*{spanning-tree port-priority}

To prioritize an interface when two bridges compete for position as the root bridge, use the spanning-tree port-priority command. The priority you set breaks the tie. To revert to the default setting, use the no form of this command.
```

spanning-tree port-priority port_priority
no spanning-tree port-priority

```

Syntax Description

\section*{Defaults}

\section*{Command Modes}
Command History

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline spanning-tree cost & Calculates the path cost of STP on an interface. \\
\hline spanning-tree portfast default & Enables PortFast by default on all access ports. \\
\hline \begin{tabular}{l} 
spanning-tree portfast (interface \\
configuration mode)
\end{tabular} & Enables PortFast mode. \\
\hline spanning-tree uplinkfast & Enables the UplinkFast feature. \\
\hline spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline show spanning-tree & Displays spanning-tree state information. \\
\hline
\end{tabular}

\section*{spanning-tree uplinkfast}

To enable the UplinkFast feature, use the spanning-tree uplinkfast command. To disable UplinkFast, use the no form of this command.
```

spanning-tree uplinkfast [max-update-rate packets-per-second]
no spanning-tree uplinkfast [max-update-rate]

```
\(\overline{\text { Syntax Description }}\)

\section*{Defaults}

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

\section*{Usage Guidelines This command should be used only on access switches.}

When UplinkFast is configured, the bridge priority is changed to 49,152 so that this switch will not be selected as root. All interface path costs of all spanning-tree interfaces belonging to the specified spanning-tree instances are also increased by 3000.

When spanning tree detects that the root interface has failed, the UplinkFast feature causes an immediate switchover to an alternate root interface, transitioning the new root interface directly to the forwarding state. During this time, a topology change notification is sent. To minimize the disruption caused by the topology change, a multicast packet is sent to \(01-00-0 \mathrm{C}-\mathrm{CD}-\mathrm{CD}-\mathrm{CD}\) for each station address in the forwarding bridge except for those associated with the old root interface.

Use the spanning-tree uplinkfast max-update-rate command to enable UplinkFast (if not already enabled) and change the rate at which the update packets are sent. Use the no form of this command to return the default rate of 150 packets per second.

\section*{Examples}

This example shows how to enable UplinkFast and set the maximum rate to 200 packets per second:
Switch(config) \# spanning-tree uplinkfast
Switch(config) \# spanning-tree uplinkfast max-update-rate 200
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & \begin{tabular}{ll} 
spanning-tree cost & Calculates the path cost of STP on an interface. \\
\hline spanning-tree port-priority & \begin{tabular}{l} 
Prioritizes an interface when two bridges compete for \\
position as the root bridge.
\end{tabular} \\
& \begin{tabular}{ll} 
spanning-tree portfast default
\end{tabular} \\
\hline \begin{tabular}{l} 
spanning-tree portfast (interface \\
configuration mode)
\end{tabular} & Enables PortFast by default on all access ports. \\
\hline
\end{tabular} & Enables PortFast mode. \\
\hline spanning-tree vlan & Configures STP on a per-VLAN basis. \\
\hline
\end{tabular}

\section*{spanning-tree vlan}

To configure STP on a per-VLAN basis, use the spanning-tree vlan command. To return to the default value, use the no form of this command.
```

spanning-tree vlan vlan_id [forward-time seconds | hello-time seconds | max-age seconds | priority priority | protocol protocol \mid root $\{$ primary | secondary \} [diameter net-diameter [hello-time seconds]]]
no spanning-tree vlan vlan_id [forward-time | hello-time | max-age | priority | root]

```

Syntax Description

\section*{Defaults}

\section*{Command Modes Global configuration mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline
\end{tabular}

Usage Guidelines When you are setting the max-age seconds value, if a bridge does not hear BPDUs from the root bridge within the specified interval, it assumes that the network has changed and recomputes the spanning-tree topology.

The spanning-tree root primary command alters the switch bridge priority to 8192 . If you enter the spanning-tree root primary command and the switch does not become root, then the bridge priority is changed to 100 less than the bridge priority of the current bridge. If the switch does not become root, an error will result.
The spanning-tree root secondary command alters the switch bridge priority to 16384 . If the root switch fails, this switch becomes the next root switch.

Use the spanning-tree root commands on backbone switches only.

\section*{Examples}

This example shows how to enable spanning tree on VLAN 200:
```

Switch(config)\# spanning-tree vlan 200
Switch(config)\#

```

This example shows how to configure the switch as the root switch for VLAN 10 with a network diameter of 4:
```

Switch(config)\# spanning-tree vlan 10 root primary diameter 4
Switch(config)\#

```

This example shows how to configure the switch as the secondary root switch for VLAN 10 with a network diameter of 4:
```

Switch(config)\# spanning-tree vlan 10 root secondary diameter 4

```
Switch(config) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } spanning-tree cost & Calculates the path cost of STP on an interface. \\
\cline { 2 - 3 } spanning-tree port-priority & \begin{tabular}{l} 
Prioritizes an interface when two bridges compete for \\
position as the root bridge.
\end{tabular} \\
& \begin{tabular}{l} 
spanning-tree portfast default
\end{tabular} & Enables PortFast by default on all access ports. \\
\hline \begin{tabular}{l} 
spanning-tree portfast (interface \\
configuration mode)
\end{tabular} & Enables PortFast mode. \\
\hline \begin{tabular}{ll} 
spanning-tree vlan & Show spanning-tree
\end{tabular} & Configures STP on a per-VLAN basis. \\
\hline
\end{tabular}

\section*{speed}

To configure the interface speed, use the speed command. To disable a speed setting, use the no form of this command.
speed \(\{10|100| 1000 \mid\) auto \([10|100| 1000] \mid\) nonegotiate \(\}\)
no speed
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline \(\mathbf{1 0}\) & (Optional) Configures the interface to transmit at 10 Mbps. \\
\hline \(\mathbf{1 0 0}\) & (Optional) Configures the interface to transmit at 100 Mbps. \\
\hline \(\mathbf{1 0 0 0}\) & (Optional) Configures the interface to transmit at 1000 Mbps. \\
\hline \(\mathbf{a u t o}[\mathbf{1 0 | 1 0 0} \mid\) & (Optional) Enables the interface to autonegotiate the speed and specify the exact \\
\(\mathbf{1 0 0 0}]\) & values to advertise when autonegotiating. \\
\hline nonegotiate & (Optional) Enables the interface to not negotiate the speed. \\
\hline
\end{tabular}

Defaults
The default values are shown in the following table:
\begin{tabular}{l|l|l}
\hline Interface Type & Supported Syntax & Default Setting \\
\hline \(10 / 100-\mathrm{Mbps}\) module & speed \([\mathbf{1 0}|\mathbf{1 0 0}|\) auto \([\mathbf{1 0} \mid \mathbf{1 0 0}]]\) & Auto \\
\hline \(100-\mathrm{Mbps}\) fiber modules & Not applicable & Not applicable \\
\hline Gigabit Ethernet Interface & speed nonegotiate & Nonegotiate \\
\hline \(10 / 100 / 1000\) & \begin{tabular}{l} 
speed \([\mathbf{1 0}|\mathbf{1 0 0}| \mathbf{1 0 0 0} \mid\) auto \([\mathbf{1 0} \mid \mathbf{1 0 0}\) \\
\(\mid \mathbf{1 0 0 0}]]\)
\end{tabular} & Auto \\
\hline 1000 & Not applicable & Not applicable \\
\hline
\end{tabular}

\section*{Command Modes Interface configuration mode}
\begin{tabular}{llll}
\(\overline{\text { Command History }}\) & & Modification \\
\cline { 3 - 3 } & \begin{tabular}{ll} 
Release & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.2(20)\) EWA & Support for auto negotiating specific speeds added. \\
\hline
\end{tabular}
\end{tabular}

Table 2-32 lists the supported command options by interface.
Table 2-32 Supported speed Command Options
\begin{tabular}{|c|c|c|c|}
\hline Interface Type & Supported Syntax & Default Setting & Guidelines \\
\hline 10/100-Mbps module & \[
\begin{aligned}
& \text { speed }[10|100| \\
& \text { auto] }
\end{aligned}
\] & auto & If the speed is set to 10 or 100 and you do not configure the duplex setting, the duplex is set to half. \\
\hline 100-Mbps fiber modules & Not applicable. & Not applicable. & Not applicable. \\
\hline Gigabit Ethernet Interface & speed nonegotiate & nonegotiate is enabled. & This is only applicable to Gigabit Ethernet ports. \\
\hline 10/100/1000 & speed [10|100| 1000 | auto] & auto & \begin{tabular}{l}
If the speed is set to 10 or 100 and you do not configure the duplex setting, the duplex is set to half. \\
If the speed is set to 1000 or auto with any subset containing 1000 (e.g. speed auto 101000 or speed auto on a 10/100/1000 port), you will not able to set half duplex.
\end{tabular} \\
\hline 1000 & Not applicable. & Not applicable. & \begin{tabular}{l}
The speed is always 1000 . \\
The duplex is half.
\end{tabular} \\
\hline
\end{tabular}

If you configure the interface speed and duplex commands manually and enter a value other than speed auto (for example, 10 or 100 Mbps ), make sure that you configure the connecting interface speed command to a matching speed but do not use the auto parameter.

When manually configuring the interface speed to either 10 or 100 Mbps , the switch prompts you to also configure duplex mode on the interface.

Catalyst 45006 switches cannot automatically negotiate the interface speed and the duplex mode if either connecting interface is configured to a value other than auto.

Caution
Changing the interface speed and the duplex mode configuration might shut down and reenable the interface during the reconfiguration.

Table 2-33 describes the system's performance for different combinations of the duplex and speed modes. The specified duplex command that is configured with the specified speed command produces the resulting system action.

\section*{Table 2-33 System Action Using duplex and speed Commands}
\begin{tabular}{l|l|l}
\hline duplex Command & speed Command & Resulting System Action \\
\hline duplex auto & speed auto & \begin{tabular}{l} 
Autonegotiates both speed and duplex \\
modes
\end{tabular} \\
\hline duplex half & speed 10 & Forces 10 Mbps and half duplex \\
\hline duplex full & speed 10 & Forces 10 Mbps and full duplex \\
\hline duplex half & speed 100 & Forces 100 Mbps and half duplex \\
\hline duplex full & speed 100 & Forces 100 Mbps and full duplex \\
\hline duplex full & speed \(\mathbf{1 0 0 0}\) & Forces 1000 Mbps and full duplex \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to set the interface speed to 100 Mbps on the Fast Ethernet interface 5/4:
```

Switch(config)\# interface fastethernet 5/4
Switch(config-if)\# speed 100

```

This example shows how to allow Fast Ethernet interface \(5 / 4\) to autonegotiate the speed and duplex mode:
```

Switch(config)\# interface fastethernet 5/4
Switch(config-if)\# speed auto

```

The speed auto 10100 command is similar to the speed auto command on a Fast Ethernet interface.

This example shows how to limit the interface speed to 10 and 100 Mbps on the Gigabit Ethernet interface \(1 / 1\) in auto-negotiation mode:
```

Switch(config)\# interface gigabitethernet 1/1
Switch(config-if)\# speed auto 10 100

```

This example shows how to limit the speed negotiation to 100 Mbps on the Gigabit Ethernet interface \(1 / 1\) :

Switch(config)\# interface gigabitethernet 1/1
Switch(config-if) \# speed auto 100

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline duplex & Configures the duplex operation on an interface. \\
\hline \begin{tabular}{l} 
interface (refer to Cisco IOS \\
documentation)
\end{tabular} & \begin{tabular}{l} 
Configures an interface type and enter interface \\
configuration mode.
\end{tabular} \\
\hline \begin{tabular}{l} 
show controllers (refer to Cisco IOS \\
documentation)
\end{tabular} & Displays controller information. \\
\hline show interfaces & Displays traffice on a specific interface. \\
\hline
\end{tabular}

\section*{storm-control}

To enable broadcast storm control on a port and to specify what to do when a storm occurs on a port, use the storm-control interface configuration command. To disable storm control for the broadcast traffic and to disable a specified storm-control action, use the no form of this command.
storm-control \{broadcast level high level [lower level]\} | action \{shutdown | trap\}\}
no storm-control \{broadcast level level [lower level]\}|action \{shutdown | trap\}\}

Syntax Description

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

Broadcast storm control is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.2(40) \mathrm{SG}\) & Support for the Supervisor Engine 6-E and Catalyst 4900M chassis is introduced. \\
\hline
\end{tabular}

Enter the storm-control broadcast level command to enable traffic storm control on the interface, configure the traffic storm control level, and apply the traffic storm control level to the broadcast traffic on the interface.

The Catalyst 4500 series switch supports broadcast traffic storm control on all LAN ports.
The period is required when you enter the fractional suppression level.
The suppression level is entered as a percentage of the total bandwidth. A threshold value of 100 percent indicates that no limit is placed on traffic. A value of 0.0 means that all specified traffic on that port is blocked.

Enter the show interfaces counters storm-control command to display the discard count.
Enter the show running-config command to display the enabled suppression mode and level setting.
To turn off suppression for the specified traffic type, you can do one of the following:
- Set the high-level value to 100 percent for the specified traffic type.
- Use the no form of this command.

The lower level is ignored for the interfaces that perform storm control in the hardware.

The lower level keyword does not apply to the Supervisor Engine 6-E and Catalyst 4900M chassis implementations.

\section*{Examples}

This example shows how to enable broadcast storm control on a port with a 75.67 percent rising suppression level:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface fastethernet 3/1
Switch(config-if) \# storm-control broadcast level 75.67
Switch(config-if)\# end

```

This example shows how to disable the port during a storm:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface fastethernet 3/1
Switch(config-if)\# storm-control action shutdown
Switch(config-if) \# end

```

This example shows how to disable storm control on a port:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface fastethernet 3/1
Switch(config-if)\# no storm-control broadcast level
Switch(config-if)\# end

```

This example shows how to disable storm control by setting the high level to 100 percent:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) \# interface fastethernet 3/1
Switch(config-if)\# storm-control broadcast level 100
Switch(config-if)\# end

```

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces counters & Displays the traffic on the physical interface. \\
\hline show running-config & Displays the running configuration of a switch. \\
\hline
\end{tabular}

\section*{storm-control broadcast include multicast}

To enable multicast storm control on a port, use the storm-control broadcast include multicast command. To disable multicast storm control, use the no form of this command.
storm-control broadcast include multicast
no storm-control broadcast include multicast
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Command History}

Usage Guidelines

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline storm-control & \begin{tabular}{l} 
Enables broadcast storm control on a port and and specifies \\
what to do when a storm occurs on a port.
\end{tabular} \\
\hline
\end{tabular}

\section*{subscribe-to-alert-group all}

To subscribe to all available alert groups, use the subscribe-to-alert-group all command.
subscribe-to-alert-group all

Syntax Description

Defaults

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

Related Commands

This command has no arguments or keywords.

This command has no default settings.
cfg-call-home-profile
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52) \mathrm{SG}\) & Support was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

This example shows how to subscribe to all available alert groups:
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# subscribe-to-alert-group all
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline profile & Enters profile call-home configuration submode \\
\hline subscribe-to-alert-group configuration & \begin{tabular}{l} 
Subscribes this destination profile to the Configuration \\
alert group.
\end{tabular} \\
\hline subscribe-to-alert-group diagnostic & \begin{tabular}{l} 
Subscribes this destination profile to the Diagnostic alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group environment & \begin{tabular}{l} 
Subscribes this destination profile to the Environment alert \\
group.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline subscribe-to-alert-group inventory & \begin{tabular}{l} 
Subscribes this destination profile to the Inventory alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group syslog & Subscribes this destination profile to the Syslog alert group. \\
\hline
\end{tabular}

\section*{subscribe-to-alert-group configuration}

To subscribe a destination profile to the Configuration alert group, use the subscribe-to-alert-group configuration command.
subscribe-to-alert-group configuration [periodic \{daily hh:mm | monthly date hh:mm | weekly day hh:mm\}]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands
\begin{tabular}{ll}
\hline periodic & (Optional) Specifies a periodic call-home message. \\
\hline daily hh:mm & Sets a daily alert in hours and minutes. \\
\hline monthly date \(h \mathrm{~h}: \mathrm{mm}\) & Sets a monthly alert in day, hour, and minute. \\
\hline weekly day \(h \mathrm{~h}: \mathrm{mm}\) & Sets a weekly alert in day, hour, and minutes. \\
\hline
\end{tabular}

This command has no default settings.
cfg-call-home-profile
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52)\) SG & Support was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

The Configuration alert group can be configured for periodic notification.

This example shows how to configure periodic "configuration" alert-group:
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# subscribe-to-alert-group configuration periodic weekly
Tuesday 21:16
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline profile & Enters profile call-home configuration submode \\
\hline subscribe-to-alert-group all & Subscribes to all available alert groups. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline subscribe-to-alert-group diagnostic & \begin{tabular}{l} 
Subscribes this destination profile to the Diagnostic alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group environment & \begin{tabular}{l} 
Subscribes this destination profile to the Environment alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group inventory & \begin{tabular}{l} 
Subscribes this destination profile to the Inventory alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group syslog & Subscribes this destination profile to the Syslog alert group. \\
\hline
\end{tabular}

\section*{subscribe-to-alert-group diagnostic}

To subscribe a destination profile to the Diagnostic alert group, use the subscribe-to-alert-group diagnostic command.
subscribe-to-alert-group diagnostic [severity catastrophic | disaster | fatal| critical| major | minor | warning | notification | normal | debugging]
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52)\) SG & Support was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

Usage Guidelines To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

\section*{Examples}

This example shows how to configure the "diagnostic" alert-group with "normal" severity:
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# subscribe-to-alert-group diagnostic severity normal

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline profile & Enters profile call-home configuration submode \\
\hline subscribe-to-alert-group all & Subscribes to all available alert groups. \\
\hline subscribe-to-alert-group configuration & \begin{tabular}{l} 
Subscribes this destination profile to the Configuration \\
alert group.
\end{tabular} \\
\hline subscribe-to-alert-group environment & \begin{tabular}{l} 
Subscribes this destination profile to the Environment alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group inventory & \begin{tabular}{l} 
Subscribes this destination profile to the Inventory alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group syslog & Subscribes this destination profile to the Syslog alert group. \\
\hline
\end{tabular}

\section*{subscribe-to-alert-group environment}

To subscribe a destination profile to the Environment alert group, use the subscribe-to-alert-group environment command.
subscribe-to-alert-group environment [severity catastrophic | disaster | fatal| critical | major | minor | warning | notification | normal | debugging]

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands
normal

\section*{cfg-call-home-profile}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52) \mathrm{SG}\) & Support was introduced on the Catalyst 4500 series switches. \\
\hline
\end{tabular}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

The Environment alert group can be configured to filter messages based on severity.

This example shows how to configure the "environmental" alert-group with "severity notification":
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# subscribe-to-alert-group environment severity notification
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline profile & Enters profile call-home configuration submode \\
\hline subscribe-to-alert-group all & Subscribes to all available alert groups. \\
\hline subscribe-to-alert-group configuration & \begin{tabular}{l} 
Subscribes this destination profile to the Configuration \\
alert group.
\end{tabular} \\
\hline subscribe-to-alert-group diagnostic & \begin{tabular}{l} 
Subscribes this destination profile to the Diagnostic alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group inventory & \begin{tabular}{l} 
Subscribes this destination profile to the Inventory alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group syslog & Subscribes this destination profile to the Syslog alert group. \\
\hline
\end{tabular}

\section*{subscribe-to-alert-group inventory}

To subscribe a destination profile to the Inventory alert group, use the subscribe-to-alert-group inventory command.
subscribe-to-alert-group inventory [periodic \{daily hh:mm | monthly date hh:mm | weekly day hh:mm \}]

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline periodic & (Optional) Specifies a periodic call-home message. \\
\hline daily hh:mm & Sets a daily alert in hours and minutes. \\
\hline monthly date \(h h: m m\) & Sets a monthly alert in day, hour, and minute. \\
\hline weekly day \(h h: m m\) & Sets a weekly alert in day, hour, and minutes. \\
\hline
\end{tabular}

This command has no default settings.
cfg-call-home-profile
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(52)\) SG & Support was introduced on the Catalyst 4500 series switches.
\end{tabular}

To enter profile call-home configuration submode, use the profile command in call-home configuration mode.

The Inventory alert group can be configured for periodic notification.

This example shows how to configure the Inventory alert group with periodic daily alert at 21:12":
Switch(config) \# call-home
Switch(cfg-call-home) \# profile cisco
Switch(cfg-call-home-profile) \# subscribe-to-alert-group inventory periodic daily \(21: 12\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline destination address & \begin{tabular}{l} 
Configures the destination e-mail address or URL to which \\
Call Home messages will be sent.
\end{tabular} \\
\hline destination message-size-limit bytes & \begin{tabular}{l} 
Configures a maximum destination message size for the \\
destination profile.
\end{tabular} \\
\hline destination preferred-msg-format & Configures a preferred message format. \\
\hline destination transport-method & Enables the message transport method. \\
\hline profile & Enters profile call-home configuration submode \\
\hline subscribe-to-alert-group all & Subscribes to all available alert groups. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline subscribe-to-alert-group configuration & \begin{tabular}{l} 
Subscribes this destination profile to the Configuration \\
alert group.
\end{tabular} \\
\hline subscribe-to-alert-group diagnostic & \begin{tabular}{l} 
Subscribes this destination profile to the Diagnostic alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group environment & \begin{tabular}{l} 
Subscribes this destination profile to the Environment alert \\
group.
\end{tabular} \\
\hline subscribe-to-alert-group syslog & Subscribes this destination profile to the Syslog alert group. \\
\hline
\end{tabular}

\section*{subscribe-to-alert-group syslog}

To subscribe this destination profile to the Syslog alert group, use the subscribe-to-alert-group syslog command.
subscribe-to-alert-group syslog [severity catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging | pattern string]

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

\section*{Examples}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{11}{*}{\(\overline{\text { Related Commands }}\)} & Command & Description \\
\hline & destination address & Configures the destination e-mail address or URL to which Call Home messages will be sent. \\
\hline & destination message-size-limit bytes & Configures a maximum destination message size for the destination profile. \\
\hline & destination preferred-msg-format & Configures a preferred message format. \\
\hline & destination transport-method & Enables the message transport method. \\
\hline & profile & Enters profile call-home configuration submode \\
\hline & subscribe-to-alert-group all & Subscribes to all available alert groups. \\
\hline & subscribe-to-alert-group configuration & Subscribes this destination profile to the Configuration alert group. \\
\hline & subscribe-to-alert-group diagnostic & Subscribes this destination profile to the Diagnostic alert group. \\
\hline & subscribe-to-alert-group environment & Subscribes this destination profile to the Environment alert group. \\
\hline & subscribe-to-alert-group inventory & Subscribes this destination profile to the Inventory alert group. \\
\hline
\end{tabular}

\section*{switchport}

To modify the switching characteristics of a Layer 2 switch interface, use the switchport command. To return the interface to the routed-interface status and cause all further Layer 2 configuration to be erased, use the no form of this command without parameters.
```

switchport [access vlan vlan_num] | [nonegotiate] | [voice vlan {vlan_id | dot1p | none |
untagged }]

```
no switchport [access | nonegotiate | voice vlan]

Syntax Description

Defaults

Command Modes

Command History
\begin{tabular}{ll}
\hline access vlan vlan_num & \begin{tabular}{l} 
(Optional) Sets the VLAN when the interface is in access mode; valid values \\
are from 1 to 1005.
\end{tabular} \\
\hline nonegotiate & \begin{tabular}{l} 
(Optional) Specifies that the DISL/DTP negotiation packets will not be sent \\
on the interface.
\end{tabular} \\
\hline voice vlan vlan_id & \begin{tabular}{l} 
(Optional) Specifies the number of the VLAN; valid values are from 1 to \\
\\
1005.
\end{tabular} \\
\hline dot1p & (Optional) Specifies that the PVID packets are tagged as priority. \\
\hline none & \begin{tabular}{l} 
(Optional) Specifies that the telephone and voice VLAN do not \\
communicate.
\end{tabular} \\
\hline untagged & (Optional) Specifies the untagged PVID packets.
\end{tabular}

The default settings are as follows:
- Switchport trunking mode is enabled.
- Dynamic negotiation parameter is set to auto.
- Access VLANs and trunk interface native VLANs are a default VLAN corresponding to the platform or interface hardware.
- All VLAN lists include all VLANs.
- No voice VLAN is enabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) E W\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(11)\) EW & Support for voice VLAN was added. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines }}\) The no switchport command shuts the port down and then reenables it, which may generate messages on the device to which the port is connected.

The no form of the switchport access command resets the access mode VLAN to the appropriate default VLAN for the device. The no form of the switchport nonegotiate command removes the nonegotiate status.

When you are using the nonegotiate keyword, DISL/DTP negotiation packets will not be sent on the interface. The device will trunk or not trunk according to the mode parameter given: access or trunk. This command will return an error if you attempt to execute it in dynamic (auto or desirable) mode.

The voice VLAN is automatically set to VLAN 1 unless you use one of the optional keywords.
If you use the switch port voice vlan command for an interface, the interface cannot join a port channel.
When you use the switchport voice vlan command, the output for the show running-config command changes to show the voice VLAN set.

\section*{Examples}

This example shows how to cause the port interface to stop operating as a Cisco-routed port and convert to a Layer 2-switched interface:
```

Switch(config-if)\# switchport
Switch(config-if)\#

```

This example shows how to cause a port interface in access mode, which is configured as a switched interface, to operate in VLAN 2:
```

Switch(config-if)\# switchport access vlan 2
Switch(config-if)\#

```

This example shows how to cause a port interface, which is configured as a switched interface, to refrain from negotiating in trunking mode and act as a trunk or access port (depending on the mode set):
```

Switch(config-if)\# switchport nonegotiate
Switch(config-if)\#

```

This example shows how to set the voice VLAN for the interface to VLAN 2:
```

Switch(config-if)\# switchport voice vlan 2
switchport voice vlan 2
Switch(config-if)\#

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline
\end{tabular}

\section*{switchport access vlan}

To set the VLAN when an interface is in access mode, use the switchport access vlan command. To reset the access mode VLAN to the appropriate default VLAN for the device, use the no form of this command.
switchport access [vlan \{vlan-id | dynamic \(\}\) ]
no switchport access vlan

Syntax Description
\begin{tabular}{ll}
\hline vlan-id & \begin{tabular}{l} 
(Optional) Number of the VLAN on the interface in access mode; valid values are from \\
1 to 4094.
\end{tabular} \\
\hline dynamic & (Optional) Enables VMPS control of the VLAN.
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c})\) EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(13) \mathrm{EW}\) & Support for VPMS was added.
\end{tabular}

You must enter the switchport command without any keywords to configure the LAN interface as a Layer 2 interface before you can enter the switchport access vlan command. This action is required only if you have not already entered the switchport command for the interface.
Entering the no switchport command shuts the port down and then reenables it, which could generate messages on the device to which the port is connected.

The no form of the switchport access vlan command resets the access mode VLAN to the appropriate default VLAN for the device.
Valid values for vlan-id are from 1 to 4094.

\section*{Examples}

This example shows how to cause the port interface to stop operating as a Cisco-routed port and convert to a Layer 2-switched interface:

Switch(config-if) \# switchport
Switch(config-if) \#

Note
This command is not used on platforms that do not support Cisco-routed ports. All physical ports on such platforms are assumed to be Layer 2-switched interfaces.

This example shows how to cause a port interface that has already been configured as a switched interface to operate in VLAN 2 instead of the platform's default VLAN when in access mode:
```

Switch(config-if)\# switchport access vlan 2
Switch(config-if)\#

```
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 4 } show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
& &
\end{tabular}

\section*{switchport autostate exclude}

To exclude a port from the VLAN interface link-up calculation, use the switchport autostate exclude command. To return to the default settings, use the no form of this command.

\section*{switchport autostate exclude \\ no switchport autostate exclude}
\(\overline{\text { Syntax Description }}\) This command has no keywords or arguments.

\section*{Defaults}

Command Modes

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(37)\) SG & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

You must enter the switchport command without any keywords to configure the LAN interface as a Layer 2 interface before you can enter the switchport autostate exclude command. This action is required only if you have not entered the switchport command for the interface.

The switchport command is not used on platforms that do not support Cisco-routed ports. All physical ports on such platforms are assumed to be Layer 2 -switched interfaces.

The switchport autostate exclude command marks the port to be excluded from the interface VLAN up calculation when there are multiple ports in the VLAN.

The show interface interface switchport command displays the autostate mode if the mode has been set. If the mode has not been set, the autostate mode is not displayed.

\section*{Examples}

This example shows how to exclude a port from the VLAN interface link-up calculation:
```

Switch(config-if)\# switchport autostate exclude
Switch(config-if)\#

```

This example shows how to include a port in the VLAN interface link-up calculation:
```

Switch(config-if)\# no switchport autostate exclude
Switch(config-if)\#

```

You can verify your settings by entering the show interfaces switchport privileged EXEC command.
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } Rhow interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
& &
\end{tabular}

\section*{switchport block}

To prevent the unknown multicast or unicast packets from being forwarded, use the switchport block interface configuration command. To allow the unknown multicast or unicast packets to be forwarded, use the no form of this command.

\section*{switchport block \{multicast | unicast \}}
no switchport block \{multicast | unicast \}

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

Usage Guidelines

\section*{Examples}

Related Commands

Unknown multicast and unicast traffic are not blocked.
All traffic with unknown MAC addresses is sent to all ports.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19) \mathrm{EW}\) & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series \\
switch..
\end{tabular} \\
\hline
\end{tabular}

You can block the unknown multicast or unicast traffic on the switch ports.
Blocking the unknown multicast or unicast traffic is not automatically enabled on the switch ports; you must explicitly configure it.

For more information about blocking the packets, refer to the software configuration guide for this release.

This example shows how to block the unknown multicast traffic on an interface:
Switch(config-if) \# switchport block multicast
You can verify your setting by entering the show interfaces interface-id switchport privileged EXEC command.
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline
\end{tabular}

\section*{switchport mode}

To set the interface type, use the switchport mode command. To reset the mode to the appropriate default mode for the device, use the no form of this command.
```

switchport mode {access | dot1q-tunnel | trunk | dynamic {auto | desirable}}
switchport mode private-vlan {host | promiscuous | trunk promiscuous | trunk [secondary]}
no switchport mode dot1q-tunnel
no switchport mode private-vlan

```

\section*{Syntax Description}

\section*{Defaults}

Command Modes
\begin{tabular}{ll}
\hline access & Specifies a nontrunking, nontagged single VLAN Layer 2 interface. \\
\hline dot1q-tunnel & Specifies an 802.1Q tunnel port. \\
\hline trunk & Specifies a trunking VLAN Layer 2 interface. \\
\hline dynamic auto & Specifies that the interface convert the link to a trunk link. \\
\hline dynamic desirable & Specifies that the interface actively attempt to convert the link to a trunk link. \\
\hline private-vlan host & \begin{tabular}{l} 
Specifies that the ports with a valid PVLAN trunk association become active host \\
private VLAN trunk ports.
\end{tabular} \\
\hline private-vlan & \begin{tabular}{l} 
Specifies that the ports with a valid PVLAN mapping become active promiscuous \\
promiscuous
\end{tabular} \\
\hline private-vlan trunk
\end{tabular} \begin{tabular}{l} 
Specifies that the ports with valid PVLAN trunk mapping become active \\
promiscuous
\end{tabular} promiscuous trunk ports..\(~\)\begin{tabular}{l} 
Specifies that the ports with a valid PVLAN trunk association become active host \\
\hline private-vlan trunk \\
secondary
\end{tabular}

Link converts to a trunk link.
dot1q tunnel ports are disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.2(18) \mathrm{EW}\) & Support was added for configuring dot 1q tunnel ports. \\
\hline \(12.2(31) \mathrm{SG}\) & Support was added for trunk promiscuous ports. \\
\hline
\end{tabular}
\(\overline{\text { Usage Guidelines If you enter access mode, the interface goes into permanent nontrunking mode and negotiates to convert }}\) the link into a nontrunk link even if the neighboring interface does not approve the change.

If you enter trunk mode, the interface goes into permanent trunking mode and negotiates to convert the link into a trunk link even if the neighboring interface does not approve the change.

If you enter dynamic auto mode, the interface converts the link to a trunk link if the neighboring interface is set to trunk or desirable mode.

If you enter dynamic desirable mode, the interface becomes a trunk interface if the neighboring interface is set to trunk, desirable, or auto mode.

If you specify the dot1q-tunnel keyword, the port is set unconditionally as an 802.1Q tunnel port.
The port becomes inactive if you configure it as a private VLAN trunk port and one of the following applies:
- The port does not have a valid PVLAN association.
- The port does not have valid allowed normal VLANs.

If a private port PVLAN association or mapping is deleted, or if a private port is configured as a SPAN destination, it becomes inactive.

\section*{Examples}

This example shows how to set the interface to dynamic desirable mode:
```

Switch(config-if)\# switchport mode dynamic desirable
Switch(config-if)\#

```

This example shows how to set a port to PVLAN host mode:
```

Switch(config-if)\# switchport mode private-vlan host
Switch(config-if)\#

```

This example shows how to set a port to private VLAN trunk:
```

Switch(config-if)\# switchport mode private-vlan trunk
Switch(config-if)\#

```

This example shows how to configure a port for an 802.1Q tunnel port:
```

Switch(config-if)\# switchport mode dot1q-tunnel
Switch(config-if)\#

```

This example shows how to configure a promiscuous trunk port:
```

Switch(config-if)\# switchport mode private-vlan trunk promiscuous
Switch(config-if)\#

```

This example shows how to configure an isolated trunk port:
```

Switch(config-if)\# switchport mode private-vlan trunk
OR
Switch(config-if)\# switchport mode private-vlan trunk secondary
Switch(config-if)\#

```

You can verify your settings by entering the show interfaces switchport command and examining information in the Administrative Mode and Operational Mode rows.

This example shows how to configure interface FastEthernet \(5 / 2\) as a PVLAN promiscuous port, map it to a PVLAN, and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan promiscuous
Switch(config-if)\# switchport private-vlan mapping 200 2
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name:Fa5/2
Switchport:Enabled
Administrative Mode:private-vlan promiscuous
Operational Mode:private-vlan promiscuous
Administrative Trunking Encapsulation:negotiate
Operational Trunking Encapsulation:native
Negotiation of Trunking:Off
Access Mode VLAN:1 (default)
Trunking Native Mode VLAN:1 (default)
Voice VLAN:none
Administrative Private VLAN Host Association:none
Administrative Private VLAN Promiscuous Mapping:200 (VLAN0200) 2 (VLAN0002)
Private VLAN Trunk Native VLAN:none
Administrative Private VLAN Trunk Encapsulation:dot1q
Administrative Private VLAN Trunk Normal VLANs:none
Administrative Private VLAN Trunk Private VLANs:none
Operational Private VLANs:
200 (VLANO200) 2 (VLANO002)
Trunking VLANs Enabled:ALL
Pruning VLANs Enabled:2-1001
Capture Mode Disabled
Capture VLANs Allowed:ALL

```

This example shows how to configure interface FastEthernet \(5 / 1\) as a PVLAN host port and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/1
Switch(config-if)\# switchport mode private-vlan host
Switch(config-if)\# switchport private-vlan host-association 202 440
Switch(config-if)\# end

```
Switch\# show interfaces fastethernet \(5 / 1\) switchport
Name: Fa5/1
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: private-vlan host
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Voice VLAN: none
Appliance trust: none
Administrative Private Vlan
    Host Association: 202 (VLAN0202) 440 (VLAN0440)
    Promiscuous Mapping: none
    Trunk encapsulation : dot1q
    Trunk vlans:
Operational private-vlan(s):
    202 (VLANO202) 440 (VLANO440)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL

This example shows how to configure interface FastEthernet \(5 / 2\) as a secondary trunk port, and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan trunk secondary
Switch(config-if)\# switchport private-vlan trunk native vlan 10
Switch(config-if)\# switchport private-vlan trunk allowed vlan 10. 3-4
Switch(config-if)\# switchport private-vlan association trunk 3 301
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name: Fa5/2
Switchport: Enabled
Administrative Mode: private-vlan trunk secondary
Operational Mode: private-vlan trunk secondary
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none A
dministrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: 10
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations:
3 (VLANO003) 301 (VLAN0301)
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Operational Normal VLANs: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
Switch(config-if)\#

```

This example shows how to configure interface FastEthernet \(5 / 2\) as a promiscuous trunk port and to verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan trunk promiscuous
Switch(config-if)\# switchport private-vlan trunk native vlan }1
Switch(config-if)\# switchport private-vlan trunk allowed vlan 10, 3-4
Switch(config-if)\# switchport private-vlan mapping trunk 3 301, }30
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name: Fa5/2
Switchport: Enabled
Administrative Mode: private-vlan trunk promiscuous
Operational Mode: private-vlan trunk promiscuous
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none

```
```

Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: 10
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: 3-4,10
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings:
3 (VLANO003) 301 (VLAN0301) 302 (VLANO302)
Operational private-vlan:
3 (VLANOO03) 301 (VLAN0301) 302 (VLAN0302)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
Switch(config-if)\#

```
\begin{tabular}{lll}
\cline { 3 - 3 } Related Commands & Command & Description \\
\cline { 2 - 3 } & show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\cline { 2 - 3 } & switchport & Enables port security on an interface. \\
\cline { 2 - 3 } \begin{tabular}{l} 
switchport private-vlan \\
host-association
\end{tabular} & \begin{tabular}{l} 
Defines a PVLAN association for an isolated or community \\
port.
\end{tabular} \\
\hline & switchport private-vlan mapping & Defines private VLAN mapping for a promiscuous port. \\
\hline
\end{tabular}

\section*{switchport port-security}

To enable port security on an interface, use the switchport port-security command. To disable port security and set parameters to their default states, use the no form of this command.
```

switchport port-security [aging {static | time time | type {absolute | inactivity}} |
limit rate invalid-source-mac [N | none] | mac-address mac-address [vlan {access | voice} |
mac-address sticky [mac-address] [vlan access | voice] | maximum value [vlan {access |
voice} | violation {restrict | shutdown | shutdown vlan}]
no switchport port-security [aging {static | time time | type {absolute | inactivity}} |
limit rate invalid-source-mac [N | none] | mac-address mac-address [vlan {access | voice} |
mac-address sticky [mac-address] [vlan access | voice] | maximum value [vlan {access |
voice} | violation {restrict | shutdown | shutdown vlan}]

```
Syntax Description
\begin{tabular}{|c|c|}
\hline aging & (Optional) Specifies aging for port security. \\
\hline static & (Optional) Enables aging for statically configured secure addresses on this port. \\
\hline time time & (Optional) Specifies the aging time for this port. The valid values are from 0 to 1440 minutes. If the time is 0 , aging is disabled for this port. \\
\hline type absolute & (Optional) Sets the aging type as absolute aging. All the secure addresses on this port age out exactly after the time (minutes) specified and are removed from the secure address list. \\
\hline type inactivity & (Optional) Sets the aging type as inactivity aging. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period. \\
\hline limit rate invalid-source-mac & (Optional) Sets the rate limit for bad packets. This rate limit also applies to the port where DHCP snooping security mode is enabled as filtering the IP and MAC address. \\
\hline N none & (Optional) Supplies a rate limit (N) or indicates none (none). \\
\hline mac-address mac-address & (Optional) Specifies a secure MAC address for the interface; a 48 -bit MAC address. You can add additional secure MAC addresses up to the maximum value that is configured. \\
\hline sticky & (Optional) Configures the dynamic addresses as sticky on the interface. \\
\hline vlan access & (Optional) Deletes the secure MAC addresses from access VLANs. \\
\hline vlan voice & (Optional) Deletes the secure MAC addresses from voice VLANs. \\
\hline maximum value & (Optional) Sets the maximum number of secure MAC addresses for the interface. Valid values are from 1 to 3072 . The default setting is 1 . \\
\hline violation & (Optional) Sets the security violation mode and action to be taken if port security is violated. \\
\hline restrict & (Optional) Sets the security violation restrict mode. In this mode, a port security violation restricts data and causes the security violation counter to increment. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline shutdown & \begin{tabular}{l} 
(Optional) Sets the security violation shutdown mode. In this mode, a \\
port security violation causes the interface to immediately become error \\
disabled.
\end{tabular} \\
\hline shutdown vlan & \begin{tabular}{l} 
(Optional) Set the security violation mode to per-VLAN shutdown. In \\
this mode, only the VLAN on which the violation occurred is \\
error-disabled.
\end{tabular} \\
\hline
\end{tabular}

\section*{\(\overline{\text { Defaults }}\)}

The default settings are as follows:
- Port security is disabled.
- When port security is enabled and no keywords are entered, the default maximum number of secure MAC addresses is 1 .
- Aging is disabled.
- Aging time is 0 minutes.
- All secure addresses on this port age out immediately after they are removed from the secure address list.

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

After you set the maximum number of secure MAC addresses that are allowed on a port, you can add secure addresses to the address table by manually configuring them, by allowing the port to dynamically configure them, or by configuring some MAC addresses and allowing the rest to be dynamically configured.

The packets are dropped into the hardware when the maximum number of secure MAC addresses are in the address table and a station that does not have a MAC address in the address table attempts to access the interface.

If you enable port security on a voice VLAN port and if there is a PC connected to the IP phone, you set the maximum allowed secure addresses on the port to more than 1.
You cannot configure static secure MAC addresses in the voice VLAN.
A secure port has the following limitations:
- A secure port cannot be a dynamic access port or a trunk port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel port group.
- A secure port cannot be an 802.1X port.
- If you try to enable 802.1 X on a secure port, an error message appears, and 802.1 X is not enabled. If you try to change an 802.1 X -enabled port to a secure port, an error message appears, and the security settings are not changed.
When a secure port is in the error-disabled state, you can remove it from this state by entering the errdisable recovery cause psecure-violation global configuration command, or you can manually re-enable it by entering the shutdown and no shut down interface configuration commands. If a port is is disabled, you can also use the clear errdisable command to re-enable the offending VLAN on the port.

To enable secure address aging for a particular port, set the aging time to a value other than 0 for that port.
To allow limited time access to particular secure addresses, set the aging type as absolute. When the aging time lapses, the secure addresses are deleted.

To allow continuous access to a limited number of secure addresses, set the aging type as inactivity. This action removes the secure address when it becomes inactive, and other addresses can become secure.

To allow unlimited access to a secure address, configure it as a secure address, and disable aging for the statically configured secure address by using the no switchport port-security aging static interface configuration command.
If the sticky command is executed without a MAC address specified, all MAC addresses that are learned on that port will be made sticky. You can also specify a specific MAC address to be a sticky address by entering the sticky keyword next to it.

You can configure the sticky feature even when port security is not enabled on the interface. The feature becomes operational when you enable port security on the interface.

You can use the no form of the sticky command only if the sticky feature is already enabled on the interface.

\section*{Examples}

This example shows how to set the aging time to 2 hours ( 120 minutes) for the secure addresses on the Fast Ethernet port 12:
```

Switch(config)\# interface fastethernet 0/12
Switch(config-if)\# switchport port-security aging time 120
Switch(config-if)\#

```

This example shows how to set the aging timer type to Inactivity for the secure addresses on the Fast Ethernet port 12:
```

Switch(config) \# interface fastethernet 0/12
Switch(config-if)\# switch port-security aging type inactivity
Switch(config-if)\#

```

The following example shows how to configure rate limit for invalid source packets on Fast Ethernet port 12 :
```

Switch(config)\# interface fastethernet 0/12
Switch(config-if)\# switchport port-security limit rate invalid-source-mac 100
Switch(config-if)\#

```

The following example shows how to configure rate limit for invalid source packets on Fast Ethernet port 12 :
```

Switch(config)\# interface fastethernet 0/12
Switch(config-if)\# switchport port-security limit rate invalid-source-mac none
Switch(config-if)\#

```

You can verify the settings for all secure ports or the specified port by using the show port-security privileged EXEC command.

This example shows how to remove all sticky and static addresses that are configured on the interface:
```

Switch(config)\# interface fastethernet 2/12
Switch(config-if)\# no switchport port-security mac-address
Switch(config-if)

```

This example shows how to configure a secure MAC address on Fast Ethernet port 12:
```

Switch(config)\# interface fastethernet 0/12
Switch(config-if)\# switchport mode access
Switch(config-if)\# switchport port-security
Switch(config-if)\# switchport port-security mac-address 1000.2000.3000
Switch(config-if)

```

This example shows how to make all MAC addresses learned on Fast Ethernet port 12 sticky:
```

Switch(config)\# interface fastethernet 2/12
SSwitch(config-if)\# switchport port-security mac-address sticky
Switch(config-if)

```

This example shows how to make MAC address 1000.2000 .3000 sticky on Fast Ethernet port 12 :
```

Switch(config)\# interface fastethernet 2/12
Switch(config-if)\# switchport port-security mac-address sticky 1000.2000.3000
Switch(config-if)

```

This example shows how to disable the sticky feature on Fast Ethernet port 12:
```

Switch(config)\# interface fastethernet 2/12
Switch(config-if)\# no switchport port-security mac-address sticky
Switch(config-if)

```

This command makes all sticky addresses on this interface normal learned entries. It does not delete the entries from the secure MAC address table.

The following examples show how to configure sticky secure MAC addresses in access and voice VLANs on interfaces with voice VLAN configured. If you do not have voice VLAN configured the vlan [access | voice] keywords are not supported.

This example shows how to configure sticky MAC addresses for voice and data VLANs on Fast Ethernet interface \(5 / 1\) and to verify the configuration:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fa5/1
Switch(config-if)\# switchport mode access
Switch(config-if)\# switchport port-security
Switch(config-if)\# switchport port-security mac-address sticky 0000.0000.0bob vlan voice
Switch(config-if)\# switchport port-security mac-address sticky 0000.0000.0005 vlan access
Switch(config-if)\# end

```

This example shows how to designate a maximum of one MAC address for a voice VLAN (for a Cisco IP Phone, let's say) and one MAC address for the data VLAN (for a PC, let's say) on Fast Ethernet interface \(5 / 1\) and to verify the configuration:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# interface fastethernet 5/1
Switch(config-if)\# switchport mode access
Switch(config-if)\# switchport port-security
Switch(config-if)\# switchport port-security mac-address sticky
Switch(config-if)\# switchport port-security maximum 1 vlan voice
Switch(config-if)\# switchport port-security maximum 1 vlan access
Switch(config-if)\# end

```

This example shows how to configure a port to shut down only the VLAN if a violation occurs:
```

Switch(config)\# interface gigabitethernet 5/1
Switch(config)\# switchport port-security violation shutdown vlan

```

Note Sending traffic to the ports causes the system to configure the port with sticky secure addresses.

You can verify your settings by using the show port-security address privileged EXEC command.

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline show port-security & \begin{tabular}{l} 
Displays the port security settings for an interface or for the \\
switch.
\end{tabular} \\
\hline switchport block & \begin{tabular}{l} 
Prevents the unknown multicast or unicast packets from \\
being forwarded.
\end{tabular} \\
\hline
\end{tabular}

\section*{switchport private-vlan association trunk}

To configure the association between a secondary VLAN and a VLAN on a private VLAN trunk port, use the switchport private-vlan association trunk command. To remove the private VLAN mapping from the port, use the no form of this command.
switchport private-vlan association trunk \(\{\) primary-vlan-id \(\}\{\) secondary-vlan-id \(\}\)
no switchport private-vlan association trunk \(\{\) primary-vlan-id \(\}\)

\section*{Syntax Description}

Defaults

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

Sage Guidelines

\section*{Examples}

Multiple private VLAN pairs can be specified so that a private VLAN trunk port can carry multiple secondary VLANs. If an association is specified for the existing primary VLAN, the existing association is replaced.

Only isolated secondary VLANs can be carried over a private VLAN trunk.

Note Community secondary VLANs on a private VLAN trunk are not supported in this release.
If there is no trunk association, any packets received on the secondary VLANs are dropped.
primary-vlan-id Number of the primary VLAN of the private VLAN relationship. secondary-vlan-id Number of the secondary VLAN of the private VLAN relationship.

Private VLAN mapping is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.2(20) \mathrm{EW}\) & Support for community VLAN was added. \\
\hline
\end{tabular}

This example shows how to configure a port with a primary VLAN (VLAN 18) and secondary VLAN (VLAN 20):
```

Switch(config-if)\# switchport private-vlan association trunk 18 20
Switch(config-if)\#

```

This example shows how to remove the private VLAN association from the port:
```

Switch(config-if)\# no switchport private-vlan association trunk 18
Switch(config-if)\#

```

This example shows how to configure interface FastEthernet \(5 / 2\) as a secondary trunk port, and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan trunk secondary
Switch(config-if)\# switchport private-vlan trunk native vlan }1
Switch(config-if)\# switchport private-vlan trunk allowed vlan 10. 3-4
Switch(config-if)\# switchport private-vlan association trunk 3 301
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name: Fa5/2
Switchport: Enabled
Administrative Mode: private-vlan trunk secondary
Operational Mode: private-vlan trunk secondary
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none A
dministrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: 10
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations:
3 (VLANO003) 301 (VLAN0301)
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Operational Normal VLANs: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
Switch(config-if)\#

```
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline switchport mode & Enables the interface type. \\
\hline
\end{tabular}

\section*{switchport private-vlan host-association}

To define a PVLAN association for an isolated or community port, use the switchport private-vlan host-association command. To remove the PVLAN mapping from the port, use the no form of this command.
```

switchport private-vlan host-association {primary-vlan-id} {secondary-vlan-id}
no switchport private-vlan host-association

```

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
primary-vlan-id
Number of the primary VLAN of the PVLAN relationship; valid values are from 1 to 4094.
secondary-vlan-list Number of the secondary VLAN of the private VLAN relationship; valid values are from 1 to 4094.

Private VLAN mapping is disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline
\end{tabular}

There is no runtime effect on the port unless it is in PVLAN host mode. If the port is in PVLAN host mode but all VLANs do not exist, the command is allowed, but the port is made inactive.

The secondary VLAN may be an isolated or community VLAN.

This example shows how to configure a port with a primary VLAN (VLAN 18) and secondary VLAN (VLAN 20):

Switch(config-if) \# switchport private-vlan host-association 1820
Switch(config-if)\#
This example shows how to remove the PVLAN association from the port:
```

Switch(config-if)\# no switchport private-vlan host-association
Switch(config-if) \#

```

This example shows how to configure interface FastEthernet \(5 / 1\) as a PVLAN host port and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/1
Switch(config-if)\# switchport mode private-vlan host
Switch(config-if)\# switchport private-vlan host-association 202 440
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/1 switchport
Name: Fa5/1
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: private-vlan host
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Voice VLAN: none
Appliance trust: none
Administrative Private Vlan
Host Association: 202 (VLAN0202) 440 (VLANO440)
Promiscuous Mapping: none
Trunk encapsulation : dot1q
Trunk vlans:
Operational private-vlan(s):
202 (VLANO2O2) 440 (VLANO440)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL

```
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline switchport mode & Enables the interface type. \\
\hline
\end{tabular}

\section*{switchport private-vlan mapping}

To define private VLAN mapping for a promiscuous port, use the switchport private-vlan mapping command. To clear all mapping from the primary VLAN, use the no form of this command.
```

switchport private-vlan mapping {primary-vlan-id} {secondary-vlan-list} |
{add secondary-vlan-list}|{remove secondary-vlan-list}

```
switchport private-vlan mapping trunk \{primary-vlan-id\} [add | remove] secondary-vlan-list no switchport private-vlan mapping [trunk]

Syntax Description

Defaults

Command Modes

Command History

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline \(12.2(20) \mathrm{EW}\) & Support for community VLAN was added. \\
\hline \(12.2(31) \mathrm{SG}\) & Support for trunk VLAN was added. \\
\hline
\end{tabular}

There is no run-time effect on the port unless it is in private VLAN promiscuous mode. If the port is in private VLAN promiscuous mode but the VLANs do not exist, the command is allowed, but the port is made inactive.

The secondary VLAN may be an isolated or community VLAN.
\begin{tabular}{ll}
\hline primary-vlan-id & \begin{tabular}{l} 
Number of the primary VLAN of the private VLAN relationship; valid values \\
are from 2 to 4094 (excluding 1002 to 1005).
\end{tabular} \\
\hline secondary-vlan-list & \begin{tabular}{l} 
Number of the secondary VLANs to map to the primary VLAN; valid values \\
are from 2 to 4094.
\end{tabular} \\
\hline add & Maps the secondary VLANs to the primary VLAN. \\
\hline remove & Clears mapping between the secondary VLANs and the primary VLAN. \\
\hline trunk & Maps the trunks secondary VLANs to the primary VLAN. \\
\hline
\end{tabular}

Private VLAN mapping is disabled.

Interface configuration mode

The maximum number of unique private VLAN pairs supported by the switchport private-vlan mapping trunk command above is 500 . For example, one thousand secondary VLANs could map to one primary VLAN, or one thousand secondary VLANs could map one to one to one thousand primary VLANs.

\title{
Examples This example shows how to configure the mapping of primary VLAN 18 to the secondary isolated VLAN 20 on a port:
}
```

Switch(config-if)\# switchport private-vlan mapping 18 20
Switch(config-if)\#

```

This example shows how to add a VLAN to the mapping:
```

Switch(config-if)\# switchport private-vlan mapping 18 add 21
Switch(config-if)\#

```

This example shows how to add a range of secondary VLANs to the mapping:
```

Switch(config-if)\# switchport private-vlan mapping 18 add 22-24
Switch(config-if)\#

```

This example shows how to add a range of secondary VLANs to the trunk mapping:
```

Switch(config-if)\# switchport private-vlan mapping trunk 18 add 22-24
Switch(config-if)\#

```

This example shows how to configure interface FastEthernet \(5 / 2\) as a PVLAN promiscuous port, map it to a PVLAN, and verify the configuration:
```

Switch\# configure terminal
Switch(config) \# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan promiscuous
Switch(config-if)\# switchport private-vlan mapping 200 2
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name:Fa5/2
Switchport:Enabled
Administrative Mode:private-vlan promiscuous
Operational Mode:private-vlan promiscuous
Administrative Trunking Encapsulation:negotiate
Operational Trunking Encapsulation:native
Negotiation of Trunking:Off
Access Mode VLAN:1 (default)
Trunking Native Mode VLAN:1 (default)
Voice VLAN:none
Administrative Private VLAN Host Association:none
Administrative Private VLAN Promiscuous Mapping:200 (VLAN0200) 2 (VLAN0002)
Private VLAN Trunk Native VLAN:none
Administrative Private VLAN Trunk Encapsulation:dot1q
Administrative Private VLAN Trunk Normal VLANs:none
Administrative Private VLAN Trunk Private VLANs:none
Operational Private VLANs:
200 (VLANO200) 2 (VLANO002)
Trunking VLANs Enabled:ALL
Pruning VLANs Enabled:2-1001
Capture Mode Disabled
Capture VLANs Allowed:ALL

```

This example shows how to configure interface FastEthernet \(5 / 2\) as a promiscuous trunk port and to verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan trunk promiscuous
Switch(config-if)\# switchport private-vlan trunk native vlan 10
Switch(config-if)\# switchport private-vlan trunk allowed vlan 10, 3-4
Switch(config-if)\# switchport private-vlan mapping trunk 3 301, 302
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport

```
```

 Name: Fa5/2
 Switchport: Enabled
 Administrative Mode: private-vlan trunk promiscuous
 Operational Mode: private-vlan trunk promiscuous
 Administrative Trunking Encapsulation: negotiate
 Operational Trunking Encapsulation: dot1q
 Negotiation of Trunking: On
 Access Mode VLAN: 1 (default)
 Trunking Native Mode VLAN: 1 (default)
 Administrative Native VLAN tagging: enabled
 Voice VLAN: none
 Administrative private-vlan host-association: none
 Administrative private-vlan mapping: none
 Administrative private-vlan trunk native VLAN: 10
 Administrative private-vlan trunk Native VLAN tagging: enabled
 Administrative private-vlan trunk encapsulation: dot1q
 Administrative private-vlan trunk normal VLANs: 3-4,10
 Administrative private-vlan trunk associations: none
 Administrative private-vlan trunk mappings:
 3 (VLANO003) 301 (VLAN0301) 302 (VLAN0302)
 Operational private-vlan:
 3 (VLAN0003) 301 (VLAN0301) 302 (VLAN0302)
 Trunking VLANs Enabled: ALL
 Pruning VLANs Enabled: 2-1001
 Capture Mode Disabled
 Capture VLANs Allowed: ALL
 Unknown unicast blocked: disabled
 Unknown multicast blocked: disabled
 Appliance trust: none
 Switch(config-if)#
    ```
\begin{tabular}{lll}
\cline { 3 - 3 } Related Commands & Command & Description \\
\cline { 2 - 4 } & show interfaces private-vlan mapping & Displays PVLAN mapping information for VLAN SVIs. \\
\hline
\end{tabular}

\section*{switchport private-vlan trunk allowed vlan}

To configure a list of the allowed normal VLANs on a private VLAN trunk port, use the switchport private-vlan trunk allowed vlan command. To remove all the allowed normal VLANs from a private VLAN trunk port, use the no form of this command.
switchport private-vlan trunk allowed vlan \(\{\) vlan-list \(\}\) all I none | [add | remove | except] vlan_atom [,vlan_atom...]
no switchport private-vlan trunk allowed vlan

Syntax Description

Defaults

Command Modes

Command History
\begin{tabular}{ll}
\hline vlan_list & \begin{tabular}{l} 
Sets the list of allowed VLANs; see the "Usage Guidelines" section for formatting \\
guidelines for vlan_list.
\end{tabular} \\
\hline all & \begin{tabular}{l} 
Specifies all VLANs from 1 to 4094. This keyword is not supported on commands \\
that do not permit all VLANs in the list to be set at the same time.
\end{tabular} \\
\hline none & \begin{tabular}{l} 
Indicates an empty list. This keyword is not supported on commands that require \\
certain VLANs to be set or at least one VLAN to be set.
\end{tabular} \\
\hline add & \begin{tabular}{l} 
(Optional) Adds the defined list of VLANs to those currently set instead of \\
replacing the list.
\end{tabular} \\
\hline remove & \begin{tabular}{l} 
(Optional) Removes the defined list of VLANs from those currently set instead of \\
replacing the list.
\end{tabular} \\
\hline except & \begin{tabular}{l} 
(Optional) Lists the VLANs that should be calculated by inverting the defined list \\
of VLANs.
\end{tabular} \\
\hline vlan_atom & \begin{tabular}{l} 
Either a single VLAN number from 1 to 4094 or a continuous range of VLANs \\
described by two VLAN numbers, the lesser one first, separated by a hyphen.
\end{tabular} \\
\hline
\end{tabular}

All allowed normal VLANs are removed from a private VLAN trunk port.

Interface configuration mode

Usage Guidelines
By default, no normal VLANs are allowed unless you explicitly configure the VLANs to be allowed.
Use this command only for normal VLANs on a private VLAN trunk port.
Use the switchport private-vlan association trunk command to configure a port that can carry private VLANs on a private VLAN trunk port.

\section*{Examples}

This example shows how to configure the private VLAN trunk port that carries normal VLANs 1 to10:
```

Switch(config-if)\# switchport private-vlan trunk allowed vlan 1-10
Switch(config-if)\#

```

This example shows how to remove all the allowed normal VLANs from a private VLAN trunk port:
```

Switch(config-if)\# no switchport private-vlan trunk allowed vlan
Switch(config-if)\#

```

This example shows how to configure interface FastEthernet \(5 / 2\) as a secondary trunk port, and verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan trunk secondary
Switch(config-if)\# switchport private-vlan trunk native vlan }1
Switch(config-if)\# switchport private-vlan trunk allowed vlan 10. 3-4
Switch(config-if)\# switchport private-vlan association trunk 3 301
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name: Fa5/2
Switchport: Enabled
Administrative Mode: private-vlan trunk secondary
Operational Mode: private-vlan trunk secondary
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none A
dministrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: 10
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations:
3 (VLANO003) 301 (VLAN0301)
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Operational Normal VLANs: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
Switch(config-if)\#

```

This example shows how to configure interface FastEthernet \(5 / 2\) as a promiscuous trunk port and to verify the configuration:
```

Switch\# configure terminal
Switch(config)\# interface fastethernet 5/2
Switch(config-if)\# switchport mode private-vlan trunk promiscuous
Switch(config-if)\# switchport private-vlan trunk native vlan 10
Switch(config-if)\# switchport private-vlan trunk allowed vlan 10, 3-4
Switch(config-if)\# switchport private-vlan mapping trunk 3 301, }30
Switch(config-if)\# end
Switch\# show interfaces fastethernet 5/2 switchport
Name: Fa5/2

```
```

Switchport: Enabled
Administrative Mode: private-vlan trunk promiscuous
Operational Mode: private-vlan trunk promiscuous
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: 10
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: 3-4,10
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings:
3 (VLANO003) 301 (VLAN0301) 302 (VLAN0302)
Operational private-vlan:
3 (VLANO003) 301 (VLAN0301) 302 (VLAN0302)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Appliance trust: none
Switch(config-if)\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
& switchport mode & Enables the interface type. \\
\hline
\end{tabular}

\section*{switchport private-vlan trunk native vlan tag}

To control the tagging of the native VLAN traffic on 802.1Q private VLAN trunks, use the switchport private-vlan trunk native vlan tag command. To remove the control of tagging (and default to the global setting), use the no form of this command.

\section*{switchport private-vlan trunk native vlan tag \\ no switchport private-vlan trunk native vlan tag}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

\section*{Examples}

Related Commands

This example shows how to enable 802.1Q native VLAN tagging on a PVLAN trunk:
Switch(config-if)\# switchport private-vlan trunk native vlan tag
Switch(config-if) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline switchport mode & Enables the interface type. \\
\hline
\end{tabular}

\section*{switchport trunk}

To set the trunk characteristics when an interface is in trunking mode, use the switchport trunk command. To reset all of the trunking characteristics back to the original defaults, use the no form of this command.
switchport trunk native vlan \(\{\mathbf{t a g} \mid\) vlan_id \(\}\)
no switchport trunk native vlan \(\{\mathbf{t a g} \mid\) vlan_id \(\}\)
switchport trunk allowed vlan vlan_list
no switchport trunk allowed vlan vlan_list
switchport trunk pruning vlan vlan_list
no switchport trunk pruning vlan vlan_list

Syntax Description

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

Command History
\begin{tabular}{ll}
\hline native vlan tag & Specifies the tagging of native VLAN traffic on 802.1Q trunks. \\
\hline native vlan vlan_id & Sets the native VLAN for the trunk in 802.1Q trunking mode. \\
\hline allowed vlan vlan_list & \begin{tabular}{l} 
Sets the list of allowed VLANs that transmit this interface in tagged \\
format when in trunking mode. See the "Usage Guidelines" section for \\
formatting guidelines for vlan_list.
\end{tabular} \\
\hline pruning vlan vlan_list & \begin{tabular}{l} 
Sets the list of VLANs that are enabled for VTP pruning when the switch \\
is in trunking mode. See the "Usage Guidelines" section for formatting \\
guidelines for vlan_list.
\end{tabular} \\
\hline
\end{tabular}

The default settings are as follows:
- IOS-XE only supports dot1Q.
- The access VLANs and trunk interface native VLANs are a default VLAN that corresponds to the platform or the interface hardware.
- All VLAN lists include all VLANs.
- Native VLAN tagging is enabled on the port if enabled globally.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for extended addressing was added. \\
\hline \(12.2(18) \mathrm{EW}\) & Support for native VLAN tagging was added. \\
\hline
\end{tabular}

\section*{\(\overline{\text { Usage Guidelines }}\) The vlan_list format is all | none | [add | remove | except] vlan_atom[,vlan_atom...], where:}
- all specifies all VLANs from 1 to 4094. This keyword is not supported on commands that do not permit all VLANs in the list to be set at the same time.
- none indicates an empty list. This keyword is not supported on commands that require certain VLANs to be set or at least one VLAN to be set.
- add adds the defined list of VLANs to those currently set, instead of replacing the list.
- remove removes the defined list of VLANs from those currently set, instead of replacing the list.
- except lists the VLANs that should be calculated by inverting the defined list of VLANs.
- vlan_atom is either a single VLAN number from 1 to 4094 or a continuous range of VLANs described by two VLAN numbers (the lesser one first, separated by a hyphen).

The no form of the native vlan command resets the native mode VLAN to the appropriate default VLAN for the device.

The no form of the allowed vlan command resets the list to the default list, which allows all VLANs.
The no form of the pruning vlan command resets the list to the default list, which enables all VLANs for VTP pruning.

These configuration guidelines and restrictions apply when using 802.1Q trunks and impose some limitations on the trunking strategy for a network:
- When connecting Cisco switches through an 802.1Q trunk, make sure that the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.
- Disabling spanning tree on the native VLAN of an 802.1Q trunk without disabling spanning tree on every VLAN in the network can cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an 802.1 Q trunk. If this is not possible, disable spanning tree on every VLAN in the network. Make sure that your network is free of physical loops before disabling spanning tree.
- When you connect two Cisco switches through 802.1Q trunks, the switches exchange spanning-tree BPDUs on each VLAN that is allowed on the trunks. The BPDUs on the native VLAN of the trunk are sent untagged to the reserved 802.1 d spanning-tree multicast MAC address
(01-80-C2-00-00-00). The BPDUs on all other VLANs on the trunk are sent tagged to the reserved SSTP multicast MAC address ( \(01-00-0 \mathrm{c}-\mathrm{cc}-\mathrm{cc}-\mathrm{cd}\) ).
- Non-Cisco 802.1 Q switches maintain only a single instance of spanning tree (MST) that defines the spanning-tree topology for all VLANs. When you connect a Cisco switch to a non-Cisco switch through an 802.1Q trunk, the MST of the non-Cisco switch and the native VLAN spanning tree of the Cisco switch combine to form a single spanning-tree topology known as the CST.
- Because Cisco switches transmit BPDUs to the SSTP multicast MAC address on the VLANs other than the native VLAN of the trunk, non-Cisco switches do not recognize these frames as BPDUs and flood them on all ports in the corresponding VLAN. Cisco switches connected to the non-Cisco 802.1Q network receive these flooded BPDUs. Because Cisco switches receive the flooded BPDUs, the switches can maintain a per-VLAN spanning-tree topology across a network of non-Cisco 802.1Q switches. The non-Cisco 802.1 Q network separating the Cisco switches is treated as a single broadcast segment between all switches that are connected to the non-Cisco 802.1Q network through the 802.1Q trunks.
- Ensure that the native VLAN is the same on all of the 802.1 Q trunks connecting the Cisco switches to the non-Cisco 802.1Q network.
- If you are connecting multiple Cisco switches to a non-Cisco 802.1Q network, all of the connections must be through the 802.1Q trunks. You cannot connect Cisco switches to a non-Cisco 802.1Q network through the ISL trunks or through the access ports. This action causes the switch to place the ISL trunk port or access port into the spanning-tree "port inconsistent" state and no traffic will pass through the port.

Follow these guidelines for native VLAN tagging:
- The no switchport trunk native vlan tag command disables the native VLAN tagging operation on a port. This overrides the global tagging configuration.
- The switchport trunk native vlan tag command can be used to reenable tagging on a disabled port.
- The no option is saved to NVRAM so that the user does not have to manually select the ports to disable the tagging operation each time that the switch reboots.
- When the switchport trunk native vlan tag command is enabled and active, all packets on the native VLAN are tagged, and incoming untagged data packets are dropped. Untagged control packets are accepted.

\section*{Examples}

This example shows how to enable 802.1Q tagging on a port:
```

Switch(config-if)\# switchport trunk native vlan tag

```
Switch(config-if) \#

This example shows how to configure a secure MAC-address and a maximum limit of secure MAC addresses on Gigabit Ethernet port 1 for all VLANs:
```

Switch(config)\# interface gigabitethernet1/1
Switch(config-if)\# switchport mode trunk
Switch(config-if)\# switchport port-security
Switch(config-if)\# switchport port-security maximum 3

```

This example shows how to configure a secure MAC-address on Gigabit Ethernet port 1 in a specific VLAN or range of VLANs:
```

Switch(config)\# interface gigabitethernet1/1
Switch(config-if)\# switchport mode trunk
Switch(config-if)\# switchport port-security
Switch(config-if) \# vlan-range 2-6
Switch(config-if-vlan-range) \# port-security maximum 3

```

This example shows how to configure a secure MAC-address in a VLAN on Gigabit Ethernet port 1:
```

Switch(config)\# interface gigabitethernet1/1
Switch(config-if) \# switchport mode trunk
Switch(config-if)\# switchport port-security
Switch(config-if)\# switchport port-security mac-address sticky
Switch(config-if) \# vlan-range 2-6
Switch(config-if-vlan-range)\# port-security mac-address 1.1.1
Switch(config-if-vlan-range)\# port-security mac-address sticky 1.1.2
Switch(config-if-vlan-range)\# port-security mac-address sticky 1.1.3

```

You can verify your settings by using the show port-security interface vlan privileged EXEC command.
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline show interfaces switchport & \begin{tabular}{l} 
Displays the administrative and operational status of a \\
switching (nonrouting) port.
\end{tabular} \\
\hline
\end{tabular}

\section*{system mtu}

To set the maximum Layer 2 or Layer 3 payload size, use the system mtu command. To revert to the default MTU setting, use the no form of this command.
system mtu datagram-size
no system mtu

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}
datagram-size Layer 2 payload size; valid values from 1500 to 1552 bytes.

The default MTU setting is 1500 bytes.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(12 \mathrm{c}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

The datagram-size parameter specifies the Ethernet payload size, not the total Ethernet frame size, and the Layer 3 MTU is changed as a result of changing the system mtu command.

For ports from 3 to 18 on model WS-X4418-GB and ports from 1 to 12 on model WS-X4412-2GB-TX, only the standard IEEE Ethernet payload size of 1500 bytes is supported.

For other modules, an Ethernet payload size of up to 1552 bytes is supported with a total Ethernet frame size of up to 1600 bytes.

This example shows how to set the MTU size to 1550 bytes:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# system mtu 1550
Switch(config)\# end
Switch\#

```

This example shows how to revert to the default MTU setting:
```

Switch\# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)\# no system mtu
Switch(config)\# end
Switch\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } show interfaces & Displays traffic on a specific interface. \\
\cline { 2 - 3 } show system mtu & Displays the global MTU setting. \\
\hline
\end{tabular}

\section*{test cable-diagnostics tdr}

To test the condition of copper cables on 48-port 10/100/1000 BASE-T modules, use the test cable-diagnostics tdr command.
test cable-diagnostics tdr \{interface \{interface interface-number\}

Note This command will be deprecated in future Cisco IOS releases. Please use the diagnostic start command.

Syntax Description

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}
interface interface Interface type; valid values are fastethernet and gigabitethernet. interface-number Module and port number.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(25) \mathrm{SG}\) & Support for this command on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

The TDR test is supported on Catalyst 4500 series switches running Cisco IOS Release 12.2(25)SG for the following line cards only:
- WS-X4548-GB-RJ45
- WS-X4548-GB-RJ45V
- WS-X4524-GB-RJ45V
- WS-X4013+TS
- WS-C4948
- WS-C4948-10GE

The valid values for interface interface are fastethernet and gigabitethernet.
Do not start the test at the same time on both ends of the cable. Starting the test at both ends of the cable at the same time can lead to false test results.
Do not change the port configuration during any cable diagnostics test. This action may result in incorrect test results.

The interface must be operating before starting the TDR test. If the port is down, the results of the test will be invalid. Issue the no shutdown command on the port.
\begin{tabular}{|c|c|}
\hline Examples & \begin{tabular}{l}
This example shows how to start the TDR test on port 1 on module 2: \\
Switch\# test cable-diagnostics tdr int gi2/1 \\
Switch\# \\
This example shows the message that displays when the TDR test is not supported on a module: \\
Switch\# test cable-diagnostics tdr int gi2/1 \\
00:03:15:\%C4K_IOSDIAGMAN-4-TESTNOTSUPPORTEDONMODULE: Online cable \\
diag tdr test is not supported on this module \\
Switch\# \\
The show cable-diagnostic tdr command is used to display the results of a TDR test. The test results will not be available until approximately 1 minute after the test starts. If you enter the show cable-diagnostic tdr command within 1 minute of the test starting, you may see a "TDR test is in progress on interface..." message.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Related Commands} & Command Description \\
\hline & show cable-diagnostics tdr \(\quad\) Displays the test results for the TDR cable diagnostics. \\
\hline
\end{tabular}

\section*{traceroute mac}

To display the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address, use the traceroute mac command.
traceroute mac [interface interface-id] \{source-mac-address\} [interface interface-id]
\{destination-mac-address\} [vlan vlan-id] [detail]

Syntax Description

\section*{\(\overline{\text { Defaults }}\)}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}
\begin{tabular}{ll}
\hline interface interface-id & (Optional) Specifies the source or destination switch interface. \\
\hline source-mac-address & MAC address of the source switch in hexadecimal format. \\
\hline destination-mac-address & MAC address of the destination switch in hexadecimal format. \\
\hline vlan vlan-id & \begin{tabular}{l} 
(Optional) Specifies the VLAN on which to trace the Layer 2 path that the \\
\\
\\
\\
packets take from the source switch to the destination switch; valid VLAN \\
IDs are from 1 to 4094. Do not enter leading zeros.
\end{tabular} \\
\hline (Optional) Displays detail information. \\
\hline
\end{tabular}

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(15) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

Do not use leading zeros when entering a VLAN ID.
The Layer 2 traceroute feature is available on these switches:
- Catalyst 2950 switches running Release 12.1(12c)EA1 or later
- Catalyst 3550 switches running Release 12.1(12c)EA1 or later
- Catalyst 4500 series switches running Catalyst operating system Release 6.2 or later for the supervisor engine
- Catalyst 4500 series switches running Release 12.1 (15)EW or later
- Catalyst 5000 family switches running Catalyst operating system Release 6.1 or later for the supervisor engine
- Catalyst 6500 series switches running Catalyst operating system Release 6.1 or later for the supervisor engine

For Layer 2 traceroute to functional properly, Cisco Discovery Protocol (CDP) must be enabled on all of the switches in the network. Do not disable CDP.

When the switch detects a device in the Layer 2 path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.
The maximum number of hops identified in the path is ten.

Layer 2 traceroute supports only unicast traffic. If you specify a multicast source or destination MAC address, the physical path is not identified, and a message appears.
The traceroute mac command output shows the Layer 2 path when the specified source and destination addresses belong to the same VLAN. If you specify source and destination addresses that belong to different VLANs, the Layer 2 path is not identified, and a message appears.

If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and a message appears.
Layer 2 traceroute is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port). When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and a message appears.

This feature is not supported in Token Ring VLANs.

\section*{Examples}

This example shows how to display the Layer 2 path by specifying the source and destination MAC addresses:
```

Switch\# traceroute mac 0000.0201.0601 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 (2.2.6.6) :Fa0/1 =>Fa0/3
con5 (2.2.5.5) : FaO/3 =>Gi0/1
con1 (2.2.1.1) : Gi0/1 =>Gi0/2
con2 (2.2.2.2) : Gi0/2 =>Fa0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
Switch\#

```

This example shows how to display the detailed Layer 2 path:
```

Switch\# traceroute mac 0000.0201.0601 0000.0201.0201 detail
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 / WS-C2950G-24-EI / 2.2.6.6 :
Fa0/1 [auto, auto] =>Fa0/3 [auto, auto]
con5 / WS-C2950G-24-EI / 2.2.5.5 :
Fa0/3 [auto, auto] =>Gi0/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
Gi0/1 [auto, auto] =>Gi0/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
Gi0/2 [auto, auto] =>Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
Switch\#

```

This example shows the Layer 2 path when the switch is not connected to the source switch:
```

Switch\# traceroute mac 0000.0201.0501 0000.0201.0201 detail
Source not directly connected, tracing source
Source 0000.0201.0501 found on con5[WS-C2950G-24-EI] (2.2.5.5)
con5 / WS-C2950G-24-EI / 2.2.5.5 :
Fa0/1 [auto, auto] =>Gi0/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
Gi0/1 [auto, auto] =>GiO/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
Gi0/2 [auto, auto] =>Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
Switch\#

```

This example shows the Layer 2 path when the switch cannot find the destination port for the source MAC address:
```

Switch\# traceroute mac 0000.0011.1111 0000.0201.0201
Error:Source Mac address not found.
Layer2 trace aborted.
Switch\#

```

This example shows the Layer 2 path when the source and destination devices are in different VLANs:
```

Switch\# traceroute mac 0000.0201.0601 0000.0301.0201
Error:Source and destination macs are on different vlans.
Layer2 trace aborted.
Switch\#

```

This example shows the Layer 2 path when the destination MAC address is a multicast address:
```

Switch\# traceroute mac 0000.0201.0601 0100.0201.0201
Invalid destination mac address
Switch\#

```

This example shows the Layer 2 path when the source and destination switches belong to multiple VLANs:
```

Switch\# traceroute mac 0000.0201.0601 0000.0201.0201
Error:Mac found on multiple vlans.
Layer2 trace aborted.
Switch\#

```

This example shows how to display the Layer 2 path by specifying the interfaces on the source and destination switches:
```

Switch\# traceroute mac interface fastethernet0/1 0000.0201.0601 interface fastethernet0/3 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 (2.2.6.6) :Fa0/1 =>Fa0/3
con5 (2.2.5.5) : Fa0/3 =>Gi0/1
con1 (2.2.1.1) : Gi0/1 =>Gi0/2
con2 (2.2.2.2) : Gi0/2 =>Fa0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
Switch\#

```
\begin{tabular}{|c|c|c|}
\hline Related Commands & Command & Description \\
\hline & traceroute mac ip & Displays the Layer 2 path that is taken by the packets from the specified source IP address or hostname to the specified destination IP address or hostname. \\
\hline
\end{tabular}

\section*{traceroute mac ip}

To display the Layer 2 path that is taken by the packets from the specified source IP address or hostname to the specified destination IP address or hostname, use the traceroute mac command.
traceroute mac ip \{source-ip-address \(\mid\) source-hostname \(\}\) \{destination-ip-address \(\mid\) destination-hostname\} [detail]

Syntax Description

Defaults

Command Modes
Privileged EXEC mode

\section*{Command History}

Usage Guidelines
The Layer 2 traceroute feature is available on these switches:
- Catalyst 2950 switches running Release 12.1(12c)EA1 or later
- Catalyst 3550 switches running Release \(12.1(12 \mathrm{c}) \mathrm{EA} 1\) or later
- Catalyst 4500 series switches running Catalyst operating system Release 6.2 or later for the supervisor engine
- Catalyst 4500 series switches running Release \(12.1(15) \mathrm{EW}\) or later
- Catalyst 5000 family switches running Catalyst operating system Release 6.1 or later for the supervisor engine
- Catalyst 6500 series switches running Catalyst operating system Release 6.1 or later for the supervisor engine
For Layer 2 traceroute to functional properly, Cisco Discovery Protocol (CDP) must be enabled on all the switches in the network. Do not disable CDP.

When the switch detects a device in the Layer 2 path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.
The maximum number of hops identified in the path is ten.

The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses are in the same subnet. When you specify the IP addresses, the switch uses Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.
- If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
- If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. The IP addresses must be in the same subnet. If the IP address is not resolved, the path is not identified, and a message appears.
Layer 2 traceroute is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port). When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

\section*{Examples}

This example shows how to display the Layer 2 path by specifying the source and destination IP addresses and by using the detail keyword:
```

Switch\# traceroute mac ip 2.2.66.66 2.2.22.22 detail
Translating IP to mac.....
2.2.66.66 =>0000.0201.0601
2.2.22.22 =>0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 / WS-C2950G-24-EI / 2.2.6.6 :
Fa0/1 [auto, auto] =>Fa0/3 [auto, auto]
con5 / WS-C2950G-24-EI / 2.2.5.5 :
Fa0/3 [auto, auto] =>Gi0/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
Gi0/1 [auto, auto] =>Gi0/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
Gi0/2 [auto, auto] =>Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
Switch\#

```

This example shows how to display the Layer 2 path by specifying the source and destination hostnames:
```

Switch\# traceroute mac ip con6 con2
Translating IP to mac
2.2.66.66 =>0000.0201.0601
2.2.22.22 =>0000.0201.0201
Source 0000.0201.0601 found on con6
con6 (2.2.6.6):FaO/1 =>Fa0/3
con5 (2.2.5.5) : Fa0/3 =>Gi0/1
con1 (2.2.1.1) : Gi0/1 =>Gi0/2
con2 (2.2.2.2) : GiO/2 =>Fa0/1
Destination 0000.0201.0201 found on con2
Layer 2 trace completed
Switch\#

```

This example shows the Layer 2 path when Address Resolution Protocol (ARP) cannot associate the source IP address with the corresponding MAC address:
```

Switch\# traceroute mac ip 2.2.66.66 2.2.77.77
Arp failed for destination 2.2.77.77.
Layer2 trace aborted.
Switch\#

```
\begin{tabular}{lll} 
& Command & Description \\
& \begin{tabular}{l} 
Displays the Layer 2 path taken by the packets from the \\
specified source MAC address to the specified destination \\
MAC address.
\end{tabular} \\
& & \\
&
\end{tabular}

\section*{trust}

\section*{Syntax Description}

\section*{Defaults}

Command Modes

\section*{Command History}

Usage Guidelines

\section*{Examples}

To define a trust state for traffic classified through the class policy-map configuration command, use the trust policy-map class configuration command. To return to the default setting, use the no form of this command.
```

trust [cos | dscp]

```
no trust [cos | dscp]
\begin{tabular}{ll}
\hline cos & \begin{tabular}{l} 
(Optional) Classify an ingress packet by using the packet class of service (CoS) \\
value. For an untagged packet, the port default CoS value is used.
\end{tabular} \\
\hline dscp & \begin{tabular}{l} 
(Optional) Classify an ingress packet by using the packet Differentiated Services \\
Code Point (DSCP) values (most significant 6 bits of 8-bit service-type field). For \\
a non-IP packet, the packet \(\operatorname{CoS}\) value is used if the packet is tagged. If the packet \\
is untagged, the default port \(\operatorname{CoS}\) value is used to map CoS to DSCP.
\end{tabular} \\
&
\end{tabular}

The action is not trusted.

Policy-map class configuration
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.
Use this command to distinguish the quality of service (QoS) trust behavior for certain traffic from other traffic. For example, inbound traffic with certain DSCP values can be trusted. You can configure a class map to match and trust the DSCP values in the inbound traffic.

Trust values set with this command supersede trust values set with the qos trust interface configuration command.

If you specify trust cos, QoS uses the received or default port CoS value and the CoS-to-DSCP map to generate a DSCP value for the packet.

If you specify trust dscp, QoS uses the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS uses the received CoS value; for non-IP packets that are untagged, QoS uses the default port CoS value. In either case, the DSCP value for the packet is derived from the CoS-to-DSCP map.
To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

This example shows how to define a port trust state to trust inbound DSCP values for traffic classified with "class1":
```

Switch\# configure terminal
Switch(config)\# policy-map policy1
Switch(config-pmap)\# class class1
Switch(config-pmap-c) \# trust dscp
Switch(config-pmap-c)\# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)\# exit
Switch\#

```

You can verify your settings by entering the show policy-map privileged EXEC command.
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command \\
class
\end{tabular} & \begin{tabular}{l} 
Description \\
Specifies the name of the class whose traffic policy you want to \\
create or change.
\end{tabular} \\
\cline { 2 - 3 } police & \begin{tabular}{l} 
Configures the Traffic Policing feature. \\
\hline policy-map \\
\\
\\
set \\
Sreates a policy map that can be attached to multiple ports to \\
specify a service policy and to enter policy-map configuration \\
mode.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Marks IP traffic by setting a class of service (CoS), a \\
Differentiated Services Code Point (DSCP), or IP-precedence in \\
the packet.
\end{tabular} \\
\hline
\end{tabular}

\section*{tx-queue}

To configure the transmit queue parameters for an interface, use the tx-queue command. To return to the default value, use the no form of this command.
tx-queue [queue-id] \{bandwidth bandwidth-rate | priority high | shape shape-rate \}
no tx-queue

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}
\begin{tabular}{ll}
\hline queue-id & (Optional) Number of the queue; valid values are from 1 to 4. \\
\hline bandwidth bandwidth-rate & \begin{tabular}{l} 
Specifies traffic bandwidth; valid values are from 16000 to \\
1000000000 bits per second.
\end{tabular} \\
\hline priority high & Specifies high priority. \\
\hline shape shape-rate & \begin{tabular}{l} 
Specifies the maximum rate that packets are passed through a \\
transmit queue; valid values are from 16000 to 1000000000 bits per \\
second.
\end{tabular}
\end{tabular}

The default settings are as follows:
- Encapsulation type is dependent on the platform or interface hardware.
- QoS enabled bandwidth rate is 4:255.
- QoS disabled bandwidth rate is 255:1.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Usage Guidelines}

This command is not supported on the Supervisor Engine 6-E and Catalyst 4900M chassis.
The bandwidth and shape rates cannot exceed the maximum speed of the interface.
The bandwidth can be configured only on the following:
- Uplink ports on Supervisor Engine III (WS-X4014)
- Ports on the WS-X4306-GB module
- The two 1000BASE-X ports on the WS-X4232-GB-RJ module
- The first two ports on the WS-X4418-GB module
- The two 1000BASE-X ports on the WS-X4412-2GB-TX module

Only transmit queue 3 can be configured to be a high-priority transmit queue.
\begin{tabular}{|c|c|}
\hline Examples & \begin{tabular}{l}
This example shows how to allocate bandwidth on queue 1 to 100 Mbps : \\
Switch(config-if) \# tx-queue 1 \\
Switch(config-if-tx-queue) \# bandwidth 1000000000 \\
Switch(config-if-tx-queue) \# \\
This example shows how to configure transmit queue 3 to the high priority: \\
Switch(config-if) \# tx-queue 3 \\
Switch(config-if-tx-queue) \# priority high \\
Switch(config-if-tx-queue) \# \\
This example shows how to configure the traffic shaping rate of 64 kbps to transmit queue 1 :
```

Switch(config-if)\# tx-queue 1
Switch(config-if-tx-queue)\# shape 64000
Switch(config-if-tx-queue)\#

```
\end{tabular} \\
\hline \multirow[t]{2}{*}{Related Commands} & Command Description \\
\hline & show qos interface Displays queueing information. \\
\hline
\end{tabular}

\section*{udld (global configuration mode)}

To enable aggressive or normal mode in the UDLD protocol and to set the configurable message timer time, use the udld command. Use the no form of this command to do the following:
- Disable normal mode UDLD on all the fiber ports by default
- Disable aggressive mode UDLD on all the fiber ports by default
- Disable the message timer
udid enable | aggressive
no udld enable | aggressive
udld message time message-timer-time
no udld message time

Syntax Description

\section*{Defaults}

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}
\begin{tabular}{ll}
\hline enable & \begin{tabular}{l} 
Enables UDLD in normal mode by default on all the fiber \\
interfaces.
\end{tabular} \\
\hline aggressive & \begin{tabular}{l} 
Enables UDLD in aggressive mode by default on all the fiber \\
interfaces.
\end{tabular} \\
\hline message time message-timer-time & \begin{tabular}{l} 
Sets the period of time between the UDLD probe messages on \\
the ports that are in advertisement mode and are currently \\
determined to be bidirectional; valid values are from 1 to \\
90 seconds.
\end{tabular}
\end{tabular}

All fiber interfaces are disabled and the message timer time equals 15 seconds.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

If you enable aggressive mode, once all the neighbors of a port have aged out either in the advertisement or in the detection phase, UDLD restarts the linkup sequence to try to resynchronize with any potentially out-of-sync neighbor and shuts down the port if the message train from the link is still undetermined.

This command affects the fiber interfaces only. Use the udld (interface configuration mode) command to enable UDLD on the other interface types.

This example shows how to enable UDLD on all the fiber interfaces:
```

Switch (config)\# udld enable

```
Switch (config) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } show udld & Displays the administrative and operational UDLD status. \\
\begin{tabular}{ll} 
udld (interface configuration \\
mode)
\end{tabular} & \begin{tabular}{l} 
Enables UDLD on an individual interface or prevents a fiber \\
interface from being enabled by the udld (global configuration \\
mode) command.
\end{tabular} \\
& &
\end{tabular}

\section*{udld (interface configuration mode)}

To enable UDLD on an individual interface or to prevent a fiber interface from being enabled by the udld (global configuration mode) command, use the udld command. To return to the udld (global configuration mode) command setting, or if the port is a nonfiber port to disable UDLD, use the no form of this command.
udld \{enable | aggressive | disable \}
no udld \{enable | aggressive | disable\}

\section*{Syntax Description}

Defaults

Command Modes

\section*{Command History}
\begin{tabular}{ll}
\hline enable & Enables UDLD on this interface. \\
\hline aggressive & Enables UDLD in aggressive mode on this interface. \\
\hline disable & Disables UDLD on this interface.
\end{tabular}

The fiber interfaces are enabled per the state of the global udld (enable or aggressive) command, and the nonfiber interfaces are enabled with UDLD disabled.

Interface configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

If you enable aggressive mode, once all the neighbors of a port have aged out either in the advertisement or in the detection phase, UDLD restarts the linkup sequence to try to resynchronize with any potentially out-of-sync neighbor and shuts down the port if the message train from the link is still undetermined.

Use the no udld enable command on the fiber ports to return control of UDLD to the global udld enable command or to disable UDLD on the nonfiber ports.
Use the udld aggressive command on the fiber ports to override the setting of the global udld (enable or aggressive) command. Use the no form on the fiber ports to remove this setting, return control of UDLD enabling back to the global udld command or to disable UDLD on the nonfiber ports.

The disable keyword is supported on the fiber ports only. Use the no form of this command to remove this setting and return control of UDLD to the udld (global configuration mode) command.
If the port changes from fiber to nonfiber or vice versa, all configurations will be maintained because of a change of module or a GBIC change detected by the platform software.

This example shows how to cause any port interface to enable UDLD, despite the current global udid (global configuration mode) setting:
```

Switch (config-if)\# udld enable
Switch (config-if)\#

```

This example shows how to cause any port interface to enable UDLD in aggressive mode, despite the current global udld (enable or aggressive) setting:
```

Switch (config-if)\# udld aggressive
Switch (config-if)\#

```

This example shows how to cause a fiber port interface to disable UDLD, despite the current global udld (global configuration mode) setting:
```

Switch (config-if)\# udld disable
Switch (config-if)\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\cline { 2 - 3 } & show udld & Displays the administrative and operational UDLD status. \\
\hline \begin{tabular}{l} 
udld (global configuration \\
mode \()\)
\end{tabular} & \begin{tabular}{l} 
Enables aggressive or normal mode in the UDLD protocol and sets \\
the configurable message timer time.
\end{tabular} \\
\hline
\end{tabular}

\section*{udld reset}

To reset all the UDLD ports in the shutdown state (that is, errdisabled by UDLD), use the udld reset command.
udld reset

\section*{Syntax Description This command has no keywords or variables.}

\section*{Defaults}

\section*{Usage Guidelines}

If the interface configuration is still enabled for UDLD, these ports will begin to run UDLD again and may shut down if the reason for the shutdown has not been corrected.
The udld reset command permits the traffic to flow on the ports again; other features, such as spanning tree, PAgP, and DTP, operate normally if enabled.

\section*{Examples}

This example shows how to reset all the ports that are shut down by UDLD:
```

Switch\# udld reset

```

Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show udld & Displays the administrative and operational UDLD status. \\
\hline
\end{tabular}

\section*{username}

To establish a username-based authentication system, use the username command.
username name secret \(\{0 \mid 5\}\) password
\begin{tabular}{lll}
\hline Syntax Description & \begin{tabular}{l} 
name \\
\cline { 2 - 3 } \(\mathbf{s e c r e t ~} \mathbf{0} \mid \mathbf{5}\) \\
password
\end{tabular} \begin{tabular}{l} 
Specifies the authentication system for the user; valid values are \(\mathbf{0}\) (text \\
immediately following is not encrypted) and \(\mathbf{5}\) (text immediately following is \\
encrypted using an MD5-type encryption method).
\end{tabular} \\
& Password of the user. \\
\hline
\end{tabular}

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

No username-based authentication system is established.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) E W\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

Use this command to enable enhanced password security for the specified username. This command enables MD5 encryption on the password. MD5 encryption is a strong encryption method that is not retrievable. You cannot use MD5 encryption with protocols that require clear-text passwords, such as CHAP.

You can use this command for defining usernames that get special treatment. For example, you can define an "info" username that does not require a password but that connects the user to a general-purpose information service.

The username command provides both username and secret authentication for login purposes only.
The name argument can be only one word. White spaces and quotation marks are not allowed.
You can use multiple username commands to specify options for a single user.
For information about additional username commands, refer to the Cisco IOS Command Reference.

\section*{Examples}

This example shows how to specify an MD5 encryption on a password (warrior) for a username (xena):
```

Switch(config)\# username xena secret 5 warrior

```

Switch(config) \#
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
& \begin{tabular}{l} 
enable password (refer to \\
Cisco IOS documentation)
\end{tabular} & Sets a local password to control access to various privilege levels. \\
& \begin{tabular}{l} 
enable secret (refer to Cisco \\
IOS documentation)
\end{tabular} & \begin{tabular}{l} 
Specifies an additional layer of security over the enable password \\
command.
\end{tabular} \\
& \begin{tabular}{l} 
username (refer to Cisco IOS \\
documentation)
\end{tabular} & \begin{tabular}{l} 
Establishes a username-based authentication system.
\end{tabular} \\
\hline
\end{tabular}

\section*{verify}

To verify the checksum of a file on a Flash memory file system, use the verify command.
verify [/md5] [flash-filesystem:] [filename] [expected-md5-signature]

\section*{Syntax Description}
\begin{tabular}{ll}
\hline /md5 & (Optional) Verifies the MD5 signatures. \\
\hline flash-filesystem: & \begin{tabular}{l} 
(Optional) Device where the Flash resides; valid values are bootflash:, \\
slot0:, flash:, or sup-bootflash:.
\end{tabular} \\
\hline filename & (Optional) Name of the Cisco IOS image. \\
\hline expected-md5-signature & (Optional) MD5 signature. \\
\hline
\end{tabular}

Defaults
The current working device is specified.

Command Modes

Command History

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

Usage Guidelines
Each software image that is distributed on the disk uses a single checksum for the entire image. This checksum is displayed only when the image is copied into the Flash memory.

The Readme file, which is included with the image on the disk, lists the name, file size, and checksum of the image. Review the contents of the Readme file before loading or duplicating the new image so that you can verify the checksum when you copy it into the Flash memory or on to a server.
Use the verify /md5 command to verify the MD5 signature of a file before using it. This command validates the integrity of a copied file by comparing a precomputed MD5 signature with the signature that is computed by this command. If the two MD5 signatures match, the copied file is identical to the original file.

You can find the MD5 signature posted on the Cisco.com page with the image.
You can use the verify / \(\mathbf{m d 5}\) command in one of the following ways:
- Verify the MD5 signatures manually by entering the verify /md5 filename command.

Check the displayed signature against the MD5 signature posted on the Cisco.com page.
- Allow the system to compare the MD5 signatures by entering the verify /md5 \{flash-filesystem:filename \(\}\) \{expected-md5-signature \(\}\) command.

After completing the comparison, the system returns with a verified message. If an error is detected, the output is similar to the following:
```

Switch\# verify /md5 slot0:c4-jsv-mz Of
. .
....................................
.....................................

```


```

 %Error verifying slot0:c4-jsv-mz
 Computed signature = 0f369ed9e98756f179d4f29d6e7755d3
 Submitted signature = 0f
    ```

To display the contents of the Flash memory, enter the show flash command. The Flash contents listing does not include the checksum of the individual files. To recompute and verify the image checksum after the image has been copied into the Flash memory, enter the verify command.
A colon (:) is required after the specified device.
```

Examples
This example shows how to use the verify command:

```
```

Switch\# verify cat6k_r47_1.cbi

```
Switch# verify cat6k_r47_1.cbi
File cat6k_r47_1.cbi verified OK.
File cat6k_r47_1.cbi verified OK.
Switch#
Switch#
This example shows how to manually verify the MD5 signature:
```

```
Switch# verify /md5 c4-jsv-mz
```

Switch\# verify /md5 c4-jsv-mz
..
..
...
...
. .

```
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
```



```
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Done!
```

 .Done!
 verify /md5 (slot0:c4-jsv-mz) = 0f369ed9e98756f179d4f29d6e7755d3
 verify /md5 (slot0:c4-jsv-mz) = 0f369ed9e98756f179d4f29d6e7755d3
 Switch\#
Switch\#
This example shows how to allow the system to compare the MD5 signatures:

```
```

Switch\# verify /md5 slot0:c4-jsv-mz 0f369ed9e98756f179d4f29d6e7755d3

```
Switch# verify /md5 slot0:c4-jsv-mz 0f369ed9e98756f179d4f29d6e7755d3
    ...........................................................
```

 ...
    ```


```

 ...
    ```
    .........................................................
    ........................................................
```

 ..
    ```


```

 ..Done!
    ```
    ..............................................Done!
    verified /md5 (slot0:c6sup12-jsv-mz) = 0f369ed9e98756f179d4f29d6e7755d3
    verified /md5 (slot0:c6sup12-jsv-mz) = 0f369ed9e98756f179d4f29d6e7755d3
Switch#
```

Switch\#

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
show file system (Flash file \\
system) (refer to Cisco IOS \\
documentation)
\end{tabular} & Displays available file systems. \\
\hline \begin{tabular}{l} 
show flash (refer to Cisco IOS \\
documentation)
\end{tabular} & Displays the contents of flash memory. \\
\hline
\end{tabular}

\section*{vlan (VLAN Database mode)}

To configure a specific VLAN, use the vlan command. To delete a VLAN, use the no form of this command.

> vlan vlan_id \([\) are hops \(][\) backupcrf mode \(][\) bridge type I bridge-num \(][\) media type \(][\mathbf{m t u}\) mtu-size \(]\) \([\) name vlan-name \(][\) parent parent-vlan-id \(][\mathbf{r i n g}\) ring-number \(][\mathbf{s a i d}\) said-value \(][\) state \(\{\) suspend I active \(\}][\) stp type type \(][\) tb-vlan1 tb-vlan1-id \(][\) tb-vlan2 tb-vlan2-id \(]\)
no vlan vlan
\begin{tabular}{|c|c|}
\hline vlan_id & Number of the VLAN; valid values are from 1 to 4094. \\
\hline are hops & (Optional) Specifies the maximum number of All Route Explorer hops for this VLAN; valid values are from 0 to 13 . Zero is assumed if no value is specified. \\
\hline backupcrf mode & (Optional) Enables or disables the backup CRF mode of the VLAN; valid values are enable and disable. \\
\hline bridge type & (Optional) Specifies the bridging characteristics of the VLAN or identification number of the bridge; valid type values are srb and srt. \\
\hline bridge_num & (Optional) Valid bridge_num values are from 0 to 15. \\
\hline media type & (Optional) Specifies the media type of the VLAN; valid values are fast ethernet, fd-net, fddi, trerf, and trbrf. \\
\hline mtu mtu-size & (Optional) Specifies the maximum transmission unit (packet size, in bytes) that the VLAN can use; valid values are from 576 to 18190. \\
\hline name vlan-name & (Optional) Defines a text string used as the name of the VLAN (1 to 32 characters). \\
\hline parent parent-vlan-id & (Optional) Specifies the ID number of the parent VLAN of FDDI or Token Ring-type VLANs; valid values are from 2 to 1001. \\
\hline ring ring-number & (Optional) Specifies the ring number of FDDI or Token Ring-type VLANs; valid values are from 2 to 1001. \\
\hline said said-value & (Optional) Specifies the security association identifier; valid values are from 1 to 4294967294. \\
\hline state & (Optional) Specifies the state of the VLAN. \\
\hline suspend & Specifies that the state of the VLAN is suspended. VLANs in the suspended state do not pass packets. \\
\hline active & Specifies that the state of the VLAN is active. \\
\hline stp type type & (Optional) Specifies the STP type; valid values are ieee, ibm, and auto. \\
\hline tb-vlan 1 tb-vlan1-id & (Optional) Specifies the ID number of the first translational VLAN for this VLAN; valid values are from 2 to 1001 . Zero is assumed if no value is specified. \\
\hline tb-vlan2 tb-vlan2-id & (Optional) Specifies the ID number of the second translational VLAN for this VLAN; valid values are from 2 to 1001 . Zero is assumed if no value is specified. \\
\hline
\end{tabular}

\section*{Defaults}

The defaults are as follows:
- The vlan-name is "VLANxxxx" where "xxxx" represents four numeric digits (including leading zeroes) equal to the VLAN ID number.
- The media type is Fast Ethernet.
- The state is active.
- The said-value is 100,000 plus the VLAN ID number.
- The mtu-size default is dependent upon the VLAN type:
- fddi-1500
- \(\operatorname{trcrf}-1500\) if V2 is not enabled; 4472 if it is enabled
- fd-net-1500
- trbrf-1500 if V2 is not enabled; 4472 if it is enabled
- No ring number is specified.
- No bridge number is specified.
- No parent VLAN is specified.
- No STP type is specified.
- No translational bridge VLAN is specified.

\section*{Command Modes}

Command History

\section*{Usage Guidelines}

VLAN configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a)\) EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

VLAN 1 parameters are factory configured and cannot be changed.
When you define vlan-name, the name must be unique within the administrative domain.
The SAID is documented in 802.10 . When the no form is used, the VLANs SAID is returned to the default.

When you define the said-value, the name must be unique within the administrative domain.
The bridge bridge-number argument is used only for Token Ring-net and FDDI-net VLANs and is ignored in other types of VLANs. When the no form is used, the VLANs source-route bridging number returns to the default.

The parent VLAN resets to the default if the parent VLAN is deleted or the media keyword changes the VLAN type or the VLAN type of the parent VLAN.
The \(t b\)-vlanl and tb-vlan2 are used to configure translational bridge VLANs of a specified type of VLAN and are not allowed in other types of VLANs. The translational bridge VLANs must be a different VLAN type than the affected VLAN; if two VLANs are specified, the two must be different VLAN types.

A translational bridge VLAN will reset to the default if the translational bridge VLAN is deleted or the media keyword changes the VLAN type or the VLAN type of the corresponding translational bridge VLAN.

This example shows how to add a new VLAN with all the default parameters to the new VLAN database:
```

Switch(vlan)\# vlan 2

```

If the VLAN already exists, no action occurs.

This example shows how to cause the device to add a new VLAN, specify the media type and parent VLAN ID number 3, and set all the other parameters to the defaults:
```

Switch(vlan)\# vlan 2 media fastethernet parent 3
VLAN 2 modified:
Media type FASTETHERNET
Parent VLAN 3

```

This example shows how to delete VLAN 2:
```

Switch(vlan)\# no vlan 2
Switch(vlan)\#

```

This example shows how to return the MTU to the default for its type and the translational bridging VLANs to the default:
```

Switch(vlan)\# no vlan 2 mtu tb-vlan1 tb-vlan2
Switch(vlan)\#

```
Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vlan & Displays VLAN information. \\
\hline
\end{tabular}

\section*{vlan access-map}

To enter VLAN access-map command mode to create a VLAN access map, use the vlan access-map command. To remove a mapping sequence or the entire map, use the no form of this command.
vlan access-map name [seq\#]
no vlan access-map name [seq\#]
\(\overline{\text { Syntax Description }}\)
\begin{tabular}{ll}
\hline name & VLAN access-map tag. \\
\hline seq\# & (Optional) Map sequence number; valid values are from 0 to 65535. \\
\hline
\end{tabular}

\section*{Defaults}

Command Modes

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

If you enter the sequence number of an existing map sequence, you enter VLAN access-map mode. If you do not specify a sequence number, a number is automatically assigned. You can enter one match clause and one action clause per map sequence. If you enter the no vlan access-map name [seq\# ] command without entering a sequence number, the whole map is removed. Once you enter VLAN access-map mode, the following commands are available:
- action-Sets the action to be taken (forward or drop).
- default-Returns a command to its default settings.
- end-Exits from configuration mode.
- exit—Exits from VLAN access-map configuration mode.
- match—Sets the values to match (IP address or MAC address).
- no-Negates a command or reset its defaults.

This example shows how to enter VLAN access-map mode:
```

Switch(config)\# vlan access-map cisco
Switch(config-access-map) \#

```
\begin{tabular}{lll} 
& Command & Description \\
\cline { 2 - 3 } & match & \begin{tabular}{l} 
Specifies a match clause by selecting one or more ACLs for a \\
VLAN access-map sequence.
\end{tabular} \\
& show vlan access-map & Displays the contents of a VLAN access map. \\
\hline
\end{tabular}

\section*{vlan configuration}

To configure a service-policy on a VLAN, use the vlan configuration command to enter the VLAN feature configuration mode.
vlan configuration \(\{\) vlan \(\}\)
Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This command has no default settings.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(40)\) SG & This command was introduced on Catalyst 4900M and Supervisor Engine 6E. \\
\hline
\end{tabular}

Even though an SVI is not needed in all cases, such as when you use your Catalyst 4500 series switch as a pure Layer 2 switch, you are required to create an SVI.
VLAN configuration mode has been inroduced to remove the requirement of creating an SVI. With this command you can specify lists of VLANs and the input and output policies that are applied. To configure your system in this mode there is no requirement for you to create SVIs, or create VLAN or VTP mode interactions. Once the VLAN becomes active the configuration becomes active on that VLAN. You can use "-" or "," extensions to specifying VLAN list.

This example shows how to configure a service policy while in VLAN configuration mode and display the new service policy:
```

Switch\# configure terminal
Switch(config)\# vlan configuration 30-40
Switch(config-vlan-config)\# service-policy input p1
Switch(config-vlan-config)\# end
Switch\# show running configuration | begin vlan configuration
!
vlan configuration 30-40
service-policy input p1
!
vlan internal allocation policy ascending !
vlan 2-1000
!
Switch\#

```

This example shows how to display the new service policy:
```

Switch\# show policy-map vlan 30
vlan 30
Service-policy input: p1
Class-map: class-default (match-any)
0 packets
Match: any
0 packets
police:
rate 128000 bps, burst 4000 bytes
conformed 0 packets, 0 bytes; action:
transmit
exceeded 0 packets, 0 bytes; action:
drop
conformed 0 bps, exceeded 0 bps

```
Switch\#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline vlan (VLAN Database mode) & Configures a specific VLAN. \\
\hline policy-map & \begin{tabular}{l} 
Creates a policy map that can be attached to multiple ports to \\
specify a service policy and to enter policy-map configuration \\
mode.
\end{tabular} \\
\hline
\end{tabular}

\section*{vlan database}

To enter VLAN configuration mode, use the vlan database command.
vlan database

Syntax Description

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

This command has no arguments or keywords.

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

From VLAN configuration mode, you can access the VLAN database editing buffer manipulation commands, including:
- abort-Exits mode without applying the changes.
- apply-Applies the current changes and bumps the revision number.
- exit-Applies the changes, bumps the revision number, and exits VLAN configuration mode.
- no-Negates a command or sets its defaults; valid values are vlan and vtp.
- reset-Abandons the current changes and rereads the current database.
- show-Displays the database information.
- vlan-Accesses the subcommands to add, delete, or modify values that are associated with a single VLAN. For information about the vlan subcommands, see the vlan (VLAN Database mode) command.
- vtp-Accesses the subcommands to perform VTP administrative functions. For information about the vtp subcommands, see the vtp client command.

\section*{Examples}

This example shows how to enter VLAN configuration mode:
```

Switch\# vlan database
Switch(vlan)\#

```

This example shows how to exit VLAN configuration mode without applying changes after you are in VLAN configuration mode:
```

Switch(vlan)\# abort
Aborting....
Switch\#

```

This example shows how to delete a VLAN after you are in VLAN configuration mode:
```

Switch(vlan)\# no vlan 100
Deleting VLAN 100...
Switch(vlan)\#

```

This example shows how to turn off pruning after you are in VLAN configuration mode:
```

Switch(vlan)\# no vtp pruning
Pruning switched OFF
Switch(vlan)\#

```
\begin{tabular}{lll}
\hline Related Commands & Command & Description \\
\hline show vlan & Displays VLAN information. \\
\hline
\end{tabular}

\section*{vlan dot1q tag native}

To enable tagging of the native VLAN frames on all 802.1 Q trunk ports, use the vlan dot1q tag native command. To disable tagging of native VLAN frames, use the no form of this command.
vlan dot1q tag native
no vlan dot1q tag native

\section*{\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.}

\section*{Defaults}
802.1Q native VLAN tagging is disabled.

Command Modes

Command History

\section*{Usage Guidelines}

\section*{Examples}

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.2(18) \mathrm{EW}\) & This command was first introduced on the Catalyst 4500 series switch. \\
\hline
\end{tabular}

When enabled, the native VLAN packets exiting all 802.1Q trunk ports are tagged unless the port is explicitly configured to disable native VLAN tagging.

When disabled, the native VLAN packets exiting all 802.1Q trunk ports are not tagged.
You can use this command with 802.1Q tunneling. This feature operates on an edge switch of a service-provider network and expands VLAN space by using a VLAN-in-VLAN hierarchy and by tagging the tagged packets. You must use the 802.1 Q trunk ports for sending out the packets to the service-provider network. However, the packets going through the core of the service-provider network might also be carried on the 802.1Q trunks. If the native VLANs of an 802.1Q trunk match the native VLAN of a tunneling port on the same switch, the traffic on the native VLAN is not tagged on the sending trunk port. This command ensures that the native VLAN packets on all 802.1Q trunk ports are tagged.

This example shows how to enable 802.1Q tagging on the native VLAN frames and verify the configuration:
```

Switch\# config terminal
Switch (config)\# vlan dot1q tag native
Switch (config)\# end
Switch\# show vlan dot1q tag native
dot1q native vlan tagging is enabled

```
\begin{tabular}{lll}
\hline Related Commands & \begin{tabular}{l} 
Command
\end{tabular} & Description \\
\cline { 3 - 3 } \begin{tabular}{l} 
switchport private-vlan trunk \\
native vlan tag
\end{tabular} & \begin{tabular}{l} 
Configures the tagging of the native VLAN traffic on 802.1Q \\
private VLAN trunks.
\end{tabular} \\
\begin{tabular}{ll} 
switchport trunk & \begin{tabular}{l} 
Sets the trunk characteristics when an interface is in trunking \\
mode.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

To apply a VLAN access map, use the vlan filter command. To clear the VLAN access maps from VLANs or interfaces, use the no form of this command.
vlan filter map-name \(\{\) vlan-list vlan-list \(\}\)
no vlan filter map-name \(\{\) vlan-list \([\) vlan-list \(]\}\)
\(\overline{\text { Syntax Description }} \quad\)\begin{tabular}{ll} 
map-name & VLAN access-map tag. \\
\cline { 2 - 3 } vlan-list vlan-list & Specifies the VLAN list; see the "Usage Guidelines" section for valid values. \\
\hline
\end{tabular}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

This example shows how to apply a VLAN access map on VLANs 7 through 9:
```

Switch(config)\# vlan filter ganymede vlan-list 7-9
Switch(config)\#

```

\section*{vlan internal allocation policy}

To configure the internal VLAN allocation scheme, use the vlan internal allocation policy command. To return to the default setting, use the no form of this command.

\section*{vlan internal allocation policy \{ascending I descending\}}
no vlan internal allocation policy
\(\overline{\text { Syntax Description }}\)

Defaults

Command Modes

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline ascending & Specifies to allocate internal VLANs from 1006 to 4094. \\
\hline descending & Specifies to allocate internal VLANs from 4094 to 1006.
\end{tabular}

The default is the ascending allocation scheme.

\section*{Global configuration mode}
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(19)\) EW & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

You can configure internal VLAN allocation to be from 1006 and up or from 4094 and down.
The internal VLANs and user-configured VLANs share the 1006 to 4094 VLAN spaces. A "first come, first served" policy is used in allocating these spaces.
The vlan internal allocation policy command allows you to configure the allocation direction of the internal VLAN.

During system bootup, the internal VLANs that are required for features in the startup-config file are allocated first. The user-configured VLANs in the startup-config file are configured next. If you configure a VLAN that conflicts with an existing internal VLAN, the VLAN that you configured is put into a nonoperational status until the internal VLAN is freed and becomes available.

After you enter the write mem command and the system reloads, the reconfigured allocation scheme is used by the port manager.

\section*{Examples}

Related Commands
This example shows how to configure the VLANs in a descending order as the internal VLAN allocation policy:

Switch(config) \# vlan internal allocation policy descending
Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vlan internal usage & Displays information about the internal VLAN allocation. \\
\hline
\end{tabular}

\section*{vmps reconfirm (global configuration)}

To change the reconfirmation interval for the VLAN Query Protocol (VQP) client, use the vmps reconfirm command. To return to the default setting, use the no form of this command.
vmps reconfirm interval
no vmps reconfirm

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

Command History

\section*{Examples}
\(\overline{\text { Related Commands }}\)
interval Queries to the VLAN Membership Policy Server (VMPS) to reconfirm dynamic VLAN assignments; valid values are from 1 to 120 minutes.

The reconfirmation interval is 60 minutes.

Global configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

This example shows how to set the VQP client to reconfirm dynamic VLAN entries every 20 minutes:
Switch(config) \# vmps reconfirm 20
Switch(config) \#
You can verify your setting by entering the show vmps command and examining information in the Reconfirm Interval row.
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vmps & \begin{tabular}{l} 
Displays the VLAN Query Protocol (VQP) version, \\
reconfirmation interval, retry count, VLAN Membership Policy
\end{tabular} \\
& \begin{tabular}{l} 
Server (VMPS) IP addresses, current servers, and primary \\
servers.
\end{tabular} \\
\hline vmps reconfirm (privileged & \begin{tabular}{l} 
Sends VLAN Query Protocol (VQP) queries to reconfirm all the \\
dynamic VLAN assignments with the VLAN Membership Policy \\
Server (VMPS).
\end{tabular} \\
\hline
\end{tabular}

\section*{vmps reconfirm (privileged EXEC)}

To immediately send VLAN Query Protocol (VQP) queries to reconfirm all the dynamic VLAN assignments with the VLAN Membership Policy Server (VMPS), use the vmps reconfirm command.

\section*{vmps reconfirm}
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

Command History

Usage Guidelines

This command has no default settings.

Privileged EXEC mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(13) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch..
\end{tabular}

You can verify your setting by entering the show vmps command and examining the VMPS Action row of the Reconfirmation Status section. The show vmps command shows the result of the last time that the assignments were reconfirmed either because the reconfirmation timer expired or because the vmps reconfirm command was entered.

This example shows how to immediately send VQP queries to the VMPS:
Switch\# vmps reconfirm
Switch\#
\(\overline{\text { Related Commands }}\)
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vmps & Displays the VLAN Query Protocol (VQP) version, \\
& reconfirmation interval, retry count, VLAN Membership Policy \\
& Server (VMPS) IP addresses, current servers, and primary \\
servers.
\end{tabular}

\section*{vmps retry}

To configure the per-server retry count for the VLAN Query Protocol (VQP) client, use the vmps retry command. To return to the default setting, use the no form of this command.
vmps retry count
no vmps retry
Syntax Description

\section*{Defaults}

\section*{Command Modes}
Command History

Usage Guidelines

\section*{Examples}

This example shows how to set the retry count to 7 :
Switch(config)\# vmps retry 7

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vmps & Displays the VLAN Query Protocol (VQP) version, \\
& reconfirmation interval, retry count, VLAN Membership Policy \\
& Server (VMPS) IP addresses, current servers, and primary \\
servers.
\end{tabular}

\section*{vmps server}

To configure the primary VLAN Membership Policy Server (VMPS) and up to three secondary servers, use the vmps server command. To remove a VMPS server, use the no form of this command.
vmps server ipaddress [primary]
no vmps server ipaddress

Syntax Description
\begin{tabular}{ll}
\hline ipaddress & \begin{tabular}{l} 
IP address or host name of the primary or secondary VMPS servers. If you specify \\
a hostname, the Domain Name System (DNS) server must be configured.
\end{tabular} \\
\hline primary & \begin{tabular}{l} 
(Optional) Determines whether primary or secondary VMPS servers are being \\
configured.
\end{tabular}
\end{tabular}

No primary or secondary VMPS servers are defined.

Global configuration mode

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(4) E A 1\) & \begin{tabular}{l} 
Support for this command was introduced on the Catalyst 4500 series \\
switch..
\end{tabular}
\end{tabular}

Usage Guidelines The first server that you entered is automatically selected as the primary server whether or not primary is entered. You can override the first server address by using primary in a subsequent command.
If a member switch in a cluster configuration does not have an IP address, the cluster does not use the VMPS server that is configured for that member switch. Instead, the cluster uses the VMPS server on the command switch, and the command switch proxies the VMPS requests. The VMPS server treats the cluster as a single switch and uses the IP address of the command switch to respond to requests.

When using the no form without specifying the ipaddress, all configured servers are deleted. If you delete all servers when dynamic-access ports are present, the switch cannot forward the packets from the new sources on these ports because it cannot query the VMPS.
You can verify your setting by entering the show vmps command and examining information in the VMPS Domain Server row.
\(\overline{\text { Examples }}\) This example shows how to configure the server with IP address 191.10.49.20 as the primary VMPS server. The servers with IP addresses 191.10.49.21 and 191.10.49.22 are configured as secondary servers:
```

Switch(config)\# vmps server 191.10.49.20 primary
Switch(config)\# vmps server 191.10.49.21
Switch(config)\# vmps server 191.10.49.22
Switch(config)\#

```

This example shows how to delete the server with IP address 191.10.49.21:
```

Switch(config)\# no vmps server 191.10.49.21
Switch(config)\#

```
\begin{tabular}{lll} 
Related Commands & Command & Description \\
\cline { 3 - 3 } show vmps & \begin{tabular}{l} 
Displays the VLAN Query Protocol (VQP) version, \\
reconfirmation interval, retry count, VLAN Membership Policy
\end{tabular} \\
& \begin{tabular}{l} 
Server (VMPS) IP addresses, current servers, and primary \\
servers.
\end{tabular} \\
\hline
\end{tabular}

\section*{vtp (global configuration mode)}

To modify the name of a VTP configuration storage file, use the vtp command. To clear a filename, use the no form of this command.
vtp \(\{\{\) file filename \(\}\) | if-id name \(\}\}\)
no \(\operatorname{vtp}\{\{\) file filename \(\} \mid\{\) if-id name \(\}\}\)

Syntax Description

Defaults

Command Modes

Command History

Usage Guidelines

\section*{Examples}

\section*{Related Commands}

You cannot use the vtp file command to load a new database. You can use it only to rename the file in which the existing database is stored.
You can use the vtp if-id command to specify the name of the interface providing the VTP updater ID for this device. The VTP updater is the device that adds, deletes, or modifies VLANs to a network, and triggers a VTP updater to inform the rest of the system of the changes.

This example shows how to specify the IFS file system file where VTP configuration is stored:
```

Switch(config) \# vtp file vtpconfig
Setting device to store VLAN database at filename vtpconfig.
Switch(config) \#

```

This example shows how to specify the name of the interface providing the VTP updater ID:
```

Switch(config)\# vtp if-id fastethernet

```

Switch(config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline
\end{tabular}

To place a device in VTP client mode, use the vtp client command. To return to VTP server mode, use the no form of this command.
vtp client
no vtp client
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\(\overline{\text { Defaults }}\) Disabled
\(\overline{\text { Command Modes }}\) VLAN configuration mode

\section*{Examples}

If the receiving switch is in client mode, the client switch changes its configuration to duplicate the configuration of the server. If you have switches in client mode, make sure to make all VTP or VLAN configuration changes on a switch in server mode.
The vtp server command is the functional equivalent of no vtp client except that it does not return an error if the device is not in client mode.

This example shows how to place the device in VTP client mode:
Switch(vlan-config)\# vtp client
Switch(vlan-config) \#

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{vtp domain}

To configure the administrative domain name for a device, use the vtp domain command.
vtp domain domain-name
\begin{tabular}{|c|c|}
\hline Syntax Description & domain-name \(\quad\) Name of the domain. \\
\hline Defaults & This command has no default settings. \\
\hline Command Modes & VLAN configuration mode \\
\hline Command History & Release Modification \\
\hline & 12.1(8a)EW Support for this comm \\
\hline
\end{tabular}

Usage Guidelines When you define the domain-name, the domain name is case sensitive and can be from 1 to 32 characters. You must set a domain name before you can transmit any VTP advertisements.
Even if you do not set a domain name, the device will leave the no-management-domain state upon receiving the first VTP summary packet on any port that is currently trunking.

If the device receives its domain from a summary packet, it resets its configuration revision number to zero. Once the device leaves the no-management-domain state, it can never be configured to reenter the number except by cleaning NVRAM and reloading.

\section*{Examples}

This example shows how to set the devices administrative domain:
Switch(vlan-config)\# vtp domain Domainchandon
Switch(vlan-config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{vtp password}

To create a VTP domain password, use the vtp password command. To delete the password, use the no form of this command.
vtp password password-value
no vtp password

\section*{Syntax Description}

\section*{\(\overline{\text { Defaults }}\)}

\section*{Command Modes}

\section*{Command History}

\section*{Examples}

\section*{Related Commands}
password-value An ASCII string, from 1 to 32 characters, identifying the administrative domain for the device.

\section*{Disabled}

VLAN configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) E W\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

This example shows how to create a VTP domain password:
```

Switch(vlan-config) \# vtp password DomainChandon

```
Switch(vlan-config) \#

This example shows how to delete the VTP domain password:
```

Switch(vlan-config)\# no vtp password

```

Clearing device VLAN database password.
Switch(vlan-config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{vtp pruning}

To enable pruning in the VLAN database, use the vtp pruning command. To disable pruning in the VLAN database, use the no form of this command.
vtp pruning
no vtp pruning
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.
\begin{tabular}{ll}
\(\overline{\text { Defaults }}\) & Disabled \\
\(\overline{\text { Command Modes }}\) & VLAN configuration mode
\end{tabular}

Command History

Usage Guidelines
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 \mathrm{a}) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

\section*{Examples}

VTP pruning causes information about each pruning-eligible VLAN to be removed from VTP updates if there are no stations belonging to that VLAN.

Switch(vlan-config) \# vtp pruning
Pruning switched ON
Switch(vlan-config) \#
This example shows how to disable pruning in the VLAN database:
Switch(vlan-config) \# no vtp pruning
Pruning switched OFF
Switch(vlan-config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{vtp server}

To place the device in VTP server mode, use the vtp server command.
vtp server

\section*{Syntax Description}

\section*{Defaults}

\section*{Command Modes}

\section*{Command History}

\section*{Usage Guidelines}

\section*{Examples}

\section*{Related Commands}

This command has no arguments or keywords.

Enabled

VLAN configuration mode
\begin{tabular}{ll}
\hline Release & Modification \\
\hline \(12.1(8 a) \mathrm{EW}\) & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

If you make a change to the VTP or VLAN configuration on a switch in server mode, that change is propagated to all the switches in the same VTP domain.
You can set VTP to either server or client mode only when you disable dynamic VLAN creation.
If the receiving switch is in server mode, the configuration is not changed.
The vtp server command is the functional equivalent of no vtp client, except that it does not return an error if the device is not in client mode.

This example shows how to place the device in VTP server mode:
Switch(vlan-config) \# vtp server
Switch(vlan-config) \#
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{vtp transparent}

To place a device in VTP transparent mode, use the vtp transparent command. To return to VTP server mode, use the no form of this command.
vtp transparent
no vtp transparent
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{\(\overline{\text { Defaults Disabled }}\) \\ Command Modes VLAN configuration mode}

Command History
\begin{tabular}{ll}
\hline Release & Modification \\
\hline 12.1(8a)EW & Support for this command was introduced on the Catalyst 4500 series switch.. \\
\hline
\end{tabular}

Usage Guidelines
The vtp transparent command disables VTP from the domain but does not remove the domain from the switch.

If the receiving switch is in transparent mode, the configuration is not changed. The switches in transparent mode do not participate in VTP. If you make VTP or VLAN configuration changes on a switch in transparent mode, the changes are not propagated to the other switches in the network.
The vtp server command is similar to the no vtp transparent command, except that it does not return an error if the device is not in transparent mode.

\section*{Examples}

This example shows how to place the device in VTP transparent mode:
```

Switch(vlan-config) \# vtp transparent

```

Switch(vlan-config) \#
This example shows how to return the device to VTP server mode:
Switch(vlan-config) \# no vtp transparent
Switch(vlan-config) \#

Related Commands
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}

\section*{vtp v2-mode}

To enable version 2 mode, use the vtp v2-mode command. To disable version 2 mode, use the no form of this command.
vtp v2-mode
no vtp v2-mode
\(\overline{\text { Syntax Description }}\) This command has no arguments or keywords.

\section*{Defaults}

Command Modes

\section*{Usage Guidelines}

\section*{Examples}

\section*{Related Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline show vtp & Displays VTP statistics and domain information. \\
\hline \begin{tabular}{l} 
vtp (global configuration \\
mode)
\end{tabular} & Configures the name of a VTP configuration storage file. \\
\hline
\end{tabular}


\section*{APPENDIX}

\section*{Abbreviations}
\begin{tabular}{|c|c|}
\hline A & \\
\hline ACE & access control entry \\
\hline ACL & access control list \\
\hline AFI & authority and format identifier \\
\hline Agport & aggregation port \\
\hline AMP & Active Monitor Present \\
\hline APaRT & Automated Packet Recognition \\
\hline ARP & Address Resolution Protocol \\
\hline B & \\
\hline BEM & best effort method \\
\hline BGP & Border Gateway Protocol \\
\hline BPDU & bridge protocol data unit \\
\hline BRF & bridge relay function \\
\hline BSC & Bisync \\
\hline BSTUN & Block Serial Tunnel \\
\hline BUS & broadcast and unknown server \\
\hline BVI & bridge-group virtual interface \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline CAM & content-addressable memory \\
\hline CAR & committed access rate \\
\hline CCA & circuit card assembly \\
\hline CDP & Cisco Discovery Protocol \\
\hline CEF & Cisco Express Forwarding \\
\hline CHAP & Challenge Handshake Authentication Protocol \\
\hline CIR & committed information rate \\
\hline CLI & command-line interface \\
\hline CLNS & Connection-Less Network Service \\
\hline CMNS & Connection-Mode Network Service \\
\hline COPS & Common Open Policy Server \\
\hline COPS-DS & Common Open Policy Server Differentiated Services \\
\hline CoS & class of service \\
\hline CPLD & Complex Programmable Logic Device \\
\hline CRC & cyclic redundancy check \\
\hline CRF & concentrator relay function \\
\hline CST & Common Spanning Tree \\
\hline D & \\
\hline DAI & Dynamic ARP Inspection \\
\hline DBL & Dynamic Buffer Limiting \\
\hline DCC & Data Country Code \\
\hline dCEF & distributed Cisco Express Forwarding \\
\hline DDR & dial-on-demand routing \\
\hline DE & discard eligibility \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DEC & Digital Equipment Corporation \\
\hline DFI & Domain-Specific Part Format Identifier \\
\hline DFP & Dynamic Feedback Protocol \\
\hline DISL & Dynamic Inter-Switch Link \\
\hline DLC & Data Link Control \\
\hline DLSw & Data Link Switching \\
\hline DMP & data movement processor \\
\hline DNS & Domain Name System \\
\hline DoD & Department of Defense \\
\hline DOS & denial of service \\
\hline DRAM & dynamic RAM \\
\hline DRiP & Dual Ring Protocol \\
\hline DSAP & destination service access point \\
\hline DSCP & differentiated services code point \\
\hline DSPU & downstream SNA Physical Units \\
\hline DTP & Dynamic Trunking Protocol \\
\hline DTR & data terminal ready \\
\hline DVMRP & Distance Vector Multicast Rotuing Protocol \\
\hline DXI & data exchange interface \\
\hline E & \\
\hline EAP & Extensible Authentication Protocol \\
\hline EARL & Enhanced Address Recognition Logic \\
\hline EEPROM & electrically erasable programmable read-only memory \\
\hline EHSA & enhanced high system availability \\
\hline
\end{tabular}
\begin{tabular}{ll} 
EIA & Electronic Industries Association \\
ELAN & Emulated Local Area Network \\
EOBC & Ethernet out-of-band channel \\
ESI & \\
\hline F & \\
FECN & forward explicit congestion notification \\
FM & feature manager \\
FRU & field replaceable unit \\
FSM & feasible successor metrics
\end{tabular}

\section*{G}

GARP

GMRP

GVRP

I

ICC Inter-card Communication

ICD International Code Designator

ICMP Internet Control Message Protocol
IDB interface descriptor block
IDP initial domain part or Internet Datagram Protocol

IDPROM

IFS
IOS File System

IGMP Internet Group Management Protocol

IGRP

General Attribute Registration Protocol

GARP Multicast Registration Protocol

GARP VLAN Registration Protocol

ID Programmable Read-Only Memory

Interior Gateway Routing Protocol
\begin{tabular}{ll} 
ILMI & Integrated Local Management Interface \\
IP & Internet Protocol \\
IPC & interprocessor communication \\
IPX & Internetwork Packet Exchange \\
IS-IS & Intermediate System-to-Intermediate System Intradomain Routing Protocol \\
ISL & Inter-Switch Link \\
ISO & International Organization of Standardization \\
ISR & Integrated SONET router \\
ISSU & In Service Software Upgrade
\end{tabular}

L

L2

L3

L4
LAN
LANE
LAPB

LDA

LCP

LEC
LECS
LEM

LER

LES

LLC

LTL

Layer 2

Layer 3

Layer 4
local area network

LAN Emulation
Link Access Procedure, Balanced

Local Director Acceleration
Link Control Protocol

LAN Emulation Client

LAN Emulation Configuration Server
link error monitor
link error rate

LAN Emulation Server

Logical Link Control
Local Target Logic

\section*{M}
\begin{tabular}{ll} 
MAC & Media Access Control \\
MCL & Mismatched Command List \\
MD5 & Message Digest 5 \\
MET & Multicast Expansion Table \\
MFIB & Multicast Forwarding Information Base \\
MIB & Management Information Base \\
MII & Multilayer Switching \\
MLS & maintenance loop signaling entity \\
MLSE & message-of-the-day \\
MOP & multicast routing monitor \\
MOTD & Multicast Replication Queue \\
MRM & Multicast Source Discovery Protocol \\
MRQ & Multiple Spanning Tree \\
MSDP & maximum transmission unit \\
MST & MTU
\end{tabular}

\section*{N}
NBP Name Binding Protocol

NCIA Native Client Interface Architecture

NDE
NetFlow Data Export

NET
network entity title

NetBIOS

NFFC

\section*{Network Basic Input/Output System}

NetFlow Feature Card
\begin{tabular}{|c|c|}
\hline NMP & Network Management Processor \\
\hline NSAP & network service access point \\
\hline NTP & Network Time Protocol \\
\hline NVRAM & nonvolatile RAM \\
\hline \multicolumn{2}{|l|}{0} \\
\hline OAM & Operation, Administration, and Maintenance \\
\hline OSI & Open System Interconnection \\
\hline OSPF & open shortest path first \\
\hline \multicolumn{2}{|l|}{\(\mathbf{P}\)} \\
\hline PAE & port access entity \\
\hline PAgP & Port Aggregation Protocol \\
\hline PBD & packet buffer daughterboard \\
\hline PC & Personal Computer (formerly PCMCIA) \\
\hline PCM & pulse code modulation \\
\hline PCR & peak cell rate \\
\hline PDP & policy decision point \\
\hline PDU & protocol data unit \\
\hline PEM & Power Entry Module \\
\hline PEP & policy enforcement point \\
\hline PGM & Pragmatic General Multicast \\
\hline PHY & physical sublayer \\
\hline PIB & policy information base \\
\hline PIM & Protocol Independent Multicast \\
\hline PM & Port manager \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline PPP & Point-to-Point Protocol \\
\hline PRC & Parser Return Code \\
\hline PRID & Policy Rule Identifiers \\
\hline PVLAN & Private VLAN \\
\hline PVST+ & Per VLAN Spanning Tree+ \\
\hline 0 & \\
\hline QM & QoS manager \\
\hline QoS & quality of service \\
\hline \(\mathbf{R}\) & \\
\hline RACL & router interface access control list \\
\hline RADIUS & Remote Access Dial-In User Service \\
\hline RAM & random-access memory \\
\hline RCP & Remote Copy Protocol \\
\hline RGMP & Router Group Management Protocol \\
\hline RIF & Routing Information Field \\
\hline RMON & remote network monitor \\
\hline ROM & read-only memory \\
\hline RP & route processor or rendezvous point \\
\hline RPC & remote procedure call \\
\hline RPF & reverse path forwarding \\
\hline RPR & Router Processor Redundancy \\
\hline RSPAN & remote SPAN \\
\hline RST & reset \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline RSVP & ReSerVation Protocol \\
\hline Rx & Receive \\
\hline S & \\
\hline SAID & Security Association Identifier \\
\hline SAP & service access point \\
\hline SCM & service connection manager \\
\hline SCP & Switch-Module Configuration Protocol \\
\hline SDLC & Synchronous Data Link Control \\
\hline SGBP & Stack Group Bidding Protocol \\
\hline SIMM & single in-line memory module \\
\hline SLB & server load balancing \\
\hline SLCP & Supervisor Line-Card Processor \\
\hline SLIP & Serial Line Internet Protocol \\
\hline SMDS & Software Management and Delivery Systems \\
\hline SMF & software MAC filter \\
\hline SMP & Standby Monitor Present \\
\hline SMRP & Simple Multicast Routing Protocol \\
\hline SMT & Station Management \\
\hline SNAP & Subnetwork Access Protocol \\
\hline SNMP & Simple Network Management Protocol \\
\hline SPAN & Switched Port Analyzer \\
\hline SRB & source-route bridging \\
\hline SRT & source-route transparent bridging \\
\hline SSTP & Cisco Shared Spanning Tree \\
\hline STP & Spanning Tree Protocol \\
\hline
\end{tabular}

SVC

SVI
switched virtual circuit
switched virtual interface

\section*{T}

TACACS +

TARP Target Identifier Address Resolution Protocol
TCAM Ternary Content Addressable Memory
TCL
TCP/IP
TFTP
TIA
TLV
TopN

TOS
TrBRF
TrCRF
TTL
TVX

Tx
Transmit

U
UDLD UniDirectional Link Detection Protocol
UDP User Datagram Protocol
UNI
User-Network Interface
UTC
Coordinated Universal Time

V
VACL VLAN access control list
VCC virtual channel circuit
VCD virtual circuit descriptor
VCI virtual circuit identifier
VCR Virtual Configuration Register
VINES Virtual Network System
VLAN virtual LAN
VMPS VLAN Membership Policy Server
VTP VLAN Trunking Protocol
VVID voice VLAN ID

\section*{W}
WFQ weighted fair queueing
WRED weighted random early detection
WRR weighted round-robin

\section*{x}
XNS
Xerox Network System


\section*{INDEX}

\section*{Symbols}
\$ matches the end of a string 1-7
() in commands 1-11
* matches 0 or more sequences of a pattern 1-7
+ matches 1 or more sequences of a pattern 1-7
. matches any single character 1-7
? command 1-1
? matches 0 or 1 occurrence of a pattern 1-7
\({ }^{\wedge}\) matches the beginning of a string 1-7
_ matches a comma (,), left brace (\{), left parenthesis 1-7
" 1-10

\section*{Numerics}

10-Gigabit Ethernet uplink selecting 2-198
showing the mode 2-512, 2-513
802.1Q trunk ports and native VLANs 2-854
802.1Q tunnel ports
configuring 2-798
802.1S Multiple Spanning Tree see MST
802.1X
configuring for multiple hosts 2-154
configuring for single host 2-154
configuring multiple domains 2-154
disabling port control 2-147
enabling port control 2-147
802.1X Critical Authentication
disabling on a port 2-148
disabling on a VLAN 2-151
EAPOL
\[
\begin{array}{lc}
\text { disabling send success packets } & 2-149 \\
\text { enabling send success packets } & 2-149
\end{array}
\]
enabling on a port 2-148
enabling on a VLAN 2-151
returning delay time to default setting \(\quad \mathbf{2 - 1 5 0}\)
setting delay time on a port 2-150
802.1X critical authentication
configure parameters 2-21
802.1X critical recovery delay, configuring 2-21
802.1X Port Based Authentication
debugging 802.1X Port Based Authentication 2-105
displaying port based authentication 2-492
enabling accounting for authentication sessions 2-4
enabling authentication on the system 2-165 enabling guest VLAN 2-152
enabling guest VLAN supplicant 2-145, 2-153 enabling manual control of auth state 2-161 enabling periodic re-authentication of the client 2-164 initializing re-authentication of dot1x ports 2-163 initializing state machines 2-156 receive session termination message upon reboot 2-5 setting maximum number for EAP requests 2-159 setting the reauthentication timer 2-166

\section*{A}
abbreviating commands context-sensitive help 1-1

Access Gateway Module
connecting to a module 2-18
connecting to a remote module 2-423
connecting to a specific remote module 2-435
access-group
displaying mac interface 2-619
show mode interface 2-455, 2-672
access groups
IP 2-6
access lists
clearing an access template 2-70
defining ARP 2-17
displaying ARP information 2-458
See also ACLs, MAC ACLs, and VACLs
access maps
applying with VLAN filter 2-856
access-policies, applying using host-mode 2-26
ACLs
access-group mode 2-6
balancing hardware regions 2-12
capturing control packets 2-8
determining ACL hardware programming 2-10
disabling hardware statistics 2-192
displaying mac access-group interface 2-619
enabling hardware statisctics 2-192
using ACL naming conventions for MAC
ACLs 2-313
action clause
specifying drop or forward action in a VACL 2-13
addresses, configuring a maximum 2-386
adjacency
debugging the adjacency table 2-98
disabling the debug facility 2-98
displaying information about the adjacency
table 2-456
displaying IPC table entries 2-98
aggregate policer
displaying information 2-673
aging time
displaying MAC address aging time 2-622
alarms
displaying operational status 2-500
alternation
description 1-10
anchoring
description \(\quad \mathbf{1 - 1 0}\)
ARP
access list, displaying detailed information 2-458 defining access-lists 2-17
ARP inspection
enforce certain types of checking \(\quad \mathbf{2 - 2 1 9}\)
ARP packet
deny based on DHCP bindings 2-137
permit based on DHCP bindings 2-364
authentication 2-21, 2-28
changing the control-direction 2-19
configure actions for events
configuring the actions 2-22
configuring port-control 2-32
enabling reauthentication 2-31
enabling Webauth fallback 2-25
host-mode configuration 2-26
setting priority of methods 2-34
setting the timer 2-36
setting username 2-841
specifying the order of methods 2-29
using an MD5-type encryption method 2-841
verifying MD5 signature 2-843
verifying the checksum for Flash memory 2-843
authentication control-direction command 2-19
authentication critical recovery delay command 2-21
authentication event command 2-22
authentication fallback command 2-25
authentication host-mode 2-26
authentication methods, setting priority 2-34
authentication methods, specifying the order of
attempts 2-29
authentication open command 2-28
authentication order command 2-29
authentication periodic command 2-31
authentication port-control command 2-32
authentication priority command 2-34
authentication timer, setting 2-36
authentication timer command 2-36
auth fail VLAN
enable on a port 2-146
set max number of attempts 2-145
Auth Manager
configuring
authentication timer 2-36
authorization state
enabling manual control 2-161
authorization state of a controlled port 2-161
automatic installation
displaying status 2-463
automatic medium-dependent interface crossover
See Auto-MDIX
Auto-MDIX
disabling 2-346
enabling 2-346
auto-negotiate interface speed
example 2-775
auto-QoS
configuring for VoIP 2-38
displaying configuration 2-464

\section*{B}
baby giants
displaying the system MTU setting 2-704
setting the maximum Layer 2 payload size \(\quad\) 2-822
BackboneFast
displaying debugging messages 2-124
displaying spanning tree status \(\quad\) 2-694
enabling debugging 2-124
bandwidth command 2-42
bindings
store for DHCP snooping \(\quad \mathbf{2 - 2 3 0}\)
BOOT environment variable
displaying information 2-467
bootflash
displaying information 2-465

BPDUs
debugging spanning tree activities \(\mathbf{2 - 1 2 2}\)
bridge protocol data units
See BPDUs
broadcast
counters 2-95
broadcast suppression level
configuring 2-776, 2-778
enabling 2-776, 2-778

\section*{C}
cable diagnostics
TDR
displaying test results 2-468
testing conditions of copper cables \(\quad \mathbf{2 - 8 2 4}\)
call home
displaying information 2-470
e-mailing output 2-50
entering configuration submode 2-45
executing 2-50
manually send test message 2-53
receiving information 2-48
sending alert group message 2-51
submitting information 2-48
call home destination profiles
displaying 2-472
Catalyst 4507R 2-384
CDP
configuring tunneling encapsulation rate 2-301
displaying
neighbor information 2-475
enabling protocol tunneling for 2-296
set drop threshold for 2-299
CEF
displaying next-hop information 2-549
displaying VLAN configuration information 2-549
cisco-desktop
macro apply 2-325

\section*{Cisco Express Forwarding}

See CEF
cisco-phone
macro apply 2-327
cisco-router
macro apply 2-329
cisco-switch
macro apply 2-331
class maps
creating 2-61
defining the match criteria \(\quad\) 2-339
clear commands
clearing Gigabit Ethernet interfaces 2-68
clearing IGMP group cache entries 2-77
clearing interface counters 2-63
clearing IP access lists 2-70, 2-71
clearing IP ARP inspection statistics VLAN 2-72
clearing IP DHCP snooping database statistics 2-76
clearing MFIB counters and routes 2-80
clearing MFIB fastdrop entries \(\quad \mathbf{2 - 8 1}\)
clearing PAgP channel information 2-86
clearing QoS aggregate counters 2-89
clearing VLAN interfaces 2-69
clear energywise neighbors command 2-65
CLI string search
anchoring 1-10
expressions 1-7
filtering 1-6
multiple-character patterns 1-8
multipliers 1-9
parentheses for recall 1-11
searching outputs 1-6
single-character patterns 1-7
using 1-6
command modes
accessing privileged EXEC mode \(\quad 1-5\)
exiting 1-5
understanding user EXEC and configuration modes 1-5
condition interface
debugging interface-related activities \(\quad\) 2-100
condition vlan
debugging VLAN output 2-103
configuration, saving \(\mathbf{1 - 1 1}\)
configuring
root as secondary 2-759
configuring a SPAN session to monitor
limit SPAN source traffic \(\quad \mathbf{2 - 3 5 1}\)
configuring critical recovery 2-21
configuring forward delay 2-755
configuring root as primary 2-759
CoPP
attaching
policy map to control plane 2-433
displaying
policy-map class information 2-648
entering configuration mode 2-93
removing
service policy from control plane \(\quad\) 2-433
CoS
assigning to Layer 2 protocol packets 2-298
counters
clearing interface counters 2-63
critical authentication, configure 802.1 X parameters \(\quad \mathbf{2 - 2 1}\)
critical recovery, configuring 802.1X parameter 2-21

\section*{D}

DAI
clear statistics 2-72
DBL
displaying qos dbl 2-674
debug commands
debugging backup events 2-99
debugging DHCP snooping events 2-110
debugging DHCP snooping messages 2-111
debugging EtherChannel/PAgP/shim 2-106
debugging IPC activity \(\quad \mathbf{2 - 1 0 9}\)
debugging IP DHCP snooping security
messages 2-112
debugging NVRAM activities 2-115
debugging PAgP activities 2-116
debugging port manager activities 2-119
debugging spanning tree activities 2-122
debugging spanning tree backbonefast 2-124
debugging spanning tree UplinkFast 2-127
debugging supervisor redundancy 2-121
debugging VLAN manager activities 2-128
displaying monitor activity 2-114
displaying the adjacency table 2-98
enabling debug dot \(1 \mathrm{x} \quad\) 2-105
enabling debugging messages for ISL VLAN IDs 2-131
enabling debugging messages for VTP 2-132
enabling debugging of UDLD activity 2-133
enabling switch shim debugging 2-125
enabling VLAN manager file system error tests 2-129
limiting debugging output for VLANs 2-103
limiting interface debugging output 2-100
limiting output for debugging standby state changes 2-101
shortcut to the debug condition interface \(\quad \mathbf{2 - 1 0 8}\)
debugging
activity monitoring 2-114
DHCP snooping events 2-110
DHCP snooping packets 2-111
IPC activities 2-109
IP DHCP snooping security packets 2-112
NVRAM activities 2-115
PAgP activities 2-116
PAgP shim 2-106
PM activities 2-119
spanning tree BackboneFast events 2-124
spanning tree switch shim 2-125
spanning tree UplinkFast events 2-127
VLAN manager activities 2-128
VLAN manager IOS file system error tests 2-129
VTP protocol debug messages 2-132
debug spanning tree switch 2-125
debug sw-vlan vtp 2-132
default form of a command, using 1-6
DHCP
clearing database statistics 2-76
DHCP bindings
configuring bindings 2-228
deny ARP packet based on matches 2-137
permit ARP packet based on matches 2-364
DHCP snooping
clearing binding entries 2-73
clearing database 2-75
displaying binding table 2-552
displaying configuration information 2-550
displaying status of DHCP database 2-555
displaying status of error detection 2-503
enabling DHCP globally 2-227
enabling IP source guard 2-267
enabling on a VLAN 2-237
enabling option 82 2-232, 2-234
enabling option-82 2-239
enabling rate limiting on an interface 2-235
enabling trust on an interface 2-236
establishing binding configuration 2-228
renew binding database 2-425
store generated bindings \(\quad \mathbf{2 - 2 3 0}\)
diagnostic test
bootup packet memory 2-486
displaying attributes \(\quad \mathbf{2 - 4 8 0}\)
display module-based results 2-482
running 2-144
show results for TDR 2-468
testing conditions of copper cables 2-824
displaying error disable recovery 2-504
displaying inline power status 2-663
displaying monitoring activity 2-114
displaying PoE policing and monitoring status 2-671
displaying SEEPROM information
GBIC 2-514
displaying SPAN session information 2-703, 2-778
DoS
CoPP
attaching policy map to control plane 2-433
displaying policy-map class information 2-648 entering configuration mode 2-93 removing service policy from control plane 2-433 entering

CoPP configuration mode 2-93
DOS attack
protecting system's resources \(\quad \mathbf{2 - 2 1 4}\)
drop threshold, Layer 2 protocol tunneling 2-299
dual-capable port
selecting a connector 2-348
duplex mode
configuring autonegotiation on an interface 2-168
configuring full duplex on an interface 2-168
configuring half duplex on an interface 2-168
dynamic ARP inspection
preventing 2-214
Dynamic Host Configuration Protocol
See DHCP

\section*{\(E\)}

EAP
restarting authentication process 2-159
EDCS-587028 2-459, 2-616
EIGRP (Enhanced IGRP)
filters
routing updates, preventing 2-361
enabling
debugging for UDLD 2-133
voice VLANs 2-791
enabling open access 2-28
EnergyWise
display power information through queries 2-177
display setting, status of entity and PoE ports 2-496
on an entity
enable, assign to domain, and set password 2-175
on an entity, enable and configure 2-170
on a PoE port
configuring on PoE port 2-172
energywise (global configuration) command 2-170, 2-172
energywise domain command 2-175
EnergyWise neighbor table, deleting 2-65
energywise query command 2-177
environmental
alarms 2-500
displaying information 2-500
status 2-500
temperature 2-500
erase a file 2-181
error disable detection
clearing error disable on an interface 2-66
enabling error disable detection 2-66, 2-184
enabling per-VLAN on BPDU guard 2-184
error-disabled state
displaying 2-533
error disable recovery
configuring recovery mechanism variables 2-186
displaying recovery timer information 2-504
enabling ARP inspection timeout 2-186
specifying recovery cause \(\quad \mathbf{2 - 1 8 6}\)
EtherChannel
assigning interfaces to EtherChannel groups 2-54
debugging EtherChannel 2-106
debugging PAgP shim 2-106
debugging spanning tree activities 2-122
displaying information for a channel 2-506
removing interfaces from EtherChannel groups 2-54
EtherChannel guard
detecting STP misconfiguration 2-745
Explicit Host Tracking
clearing the database 2-79
enabling per-VLAN 2-251
expressions
matching multiple expression occurrences 1-9
multiple-character patterns 1-8
multiplying pattern occurrence 1-11
single-character patterns 1-7
Extensible Authentication Protocol
See EAP

\section*{F}
fallback profile, specifying 2-25
field replaceable unit (FRU)
displaying status information 2-500
filters
EIGRP
routing updates, preventing 2-361
Flash memory file system
displaying file system information 2-465
verifying checksum 2-843
flow control
configuring a gigabit interface for pause frames 2-189
displaying per-interface statistics for flow control 2-510

\section*{G}

GBIC
displaying SEEPROM information 2-514
Gigabit Ethernet interface
clearing the hardware logic 2-68
Gigabit Ethernet uplink
selecting 2-198
showing the mode 2-512, 2-513
global configuration mode
using 1-5

\section*{H}
hardware module
resetting a module by toggling the power 2-194
hardware statistics
disabling 2-192
enabling 2-192
hardware uplink
selecting the mode 2-198
showing the mode 2-512, 2-513
helper addresses, IP 2-570
hot standby protocol
debugging 2-101
disabling debugging 2-101
limiting output 2-101
hw-module uplink mode shared-backplane command 2-196

I

IDPROMs
displaying SEEPROM information
chassis 2-514
clock module 2-514
fan trays 2-514
module 2-514
mux buffer 2-514
power supplies 2-514
supervisor engine 2-514
ifIndex persistence
clearing SNMP ifIndex commands 2-727
compress SNMP ifIndex table format 2-736
disabling globally 2-735
disabling on an interface 2-729
enabling globally 2-735
enabling on an interface 2-729

\section*{IGMP}
applying filters for host joining on Layer 2 interfaces 2-241
clearing IGMP group cache entries 2-77
configuring frequency for IGMP host-query
messages 2-244
creating an IGMP profile 2-243
displaying IGMP interface configuration information 2-557
displaying profiles 2-559
setting maximum group numbers 2-242
IGMP profiles
displaying 2-559
IGMP snooping
clearing the EHT database 2-79
configuring a Layer 2 interface as a group
member 2-257
configuring a Layer 2 interface as a multicast
router 2-255
configuring a static VLAN interface 2-257
displaying multicast information 2-566
displaying VLAN information 2-560, 2-564, 2-567
enabling 2-246
enabling immediate-leave processing 2-253
enabling on a VLAN 2-250
enabling per-VLAN Explicit Host Tracking 2-251
inline power
displaying inline power status 2-663
In Service Software Upgrade
See ISSU
inspection log
clearing log buffer 2-71
interface
displaying suppressed multicast bytes 2-527
interface capabilities
displaying 2-523
interface configuration mode
summary 1-5
interface link
display cable disconnect time \(\quad \mathbf{2 - 5 3 0}\)
interfaces
configuring dot1q tunnel ports 2-798
creating an interface-range macro 2-136
debugging output of interface related activities \(\quad \mathbf{2 - 1 0 0}\)
displaying description 2-529
displaying error-disabled state 2-533
displaying information when tunneling is enabled 2-610
displaying status 2-529
displaying traffic for a specific interface 2-520
entering interface configuration mode 2-205
executing a command on multiple ports in a range 2-208
selecting an interface to configure 2-205
setting a CoS value for Layer 2 packets 2-298
setting drop threshold for Layer 2 packets 2-299
setting the interface type 2-798
interface speed
configuring interface speed 2-773
interface transceiver
displaying diagnostic data 2-537
internal VLAN allocation
configuring 2-857
default setting 2-857
displaying allocation information 2-716
Internet Group Management Protocol
See IGMP
IP ARP
applying ARP ACL to VLAN 2-212
clearing inspection statistics 2-72
clearing status of log buffer 2-71
controlling packet logging 2-223
enabling dynamic inspection 2-221
limit rate of incoming requests \(\quad \mathbf{2 - 2 1 4}\)
set per-port config trust state 2-218
showing status of dynamic ARP inspection 2-544
showing status of log buffer 2-547
IPC
debugging IPC activities 2-109
IP DHCP Snooping
See DHCP snooping
IP header validation
disabling 2-266
enabling 2-266
IP interfaces
displaying usability status 2-569
IP multicast
displaying multicast routing table information 2-575


IP phone and standard desktop enabling Cisco-recommended features 2-327
IP Port Security
enabling 2-267
IP source binding
adding or deleting 2-263
displaying bindingstagging 2-580
IP source guard
debugging messages 2-112
displaying configuration and filters 2-581
enabling on DHCP snooping \(\quad \mathbf{2 - 2 6 7}\)
IPv6 MLD
configuring queries 2-273, 2-275
configuring snooping
last-listener-query-intervals 2-275
configuring snooping
listener-message-suppression 2-277
configuring snooping robustness-variables 2-278
configuring ten topology change notifications \(\quad \mathbf{2 - 2 8 0}\)
counting snooping last-listener-queries 2-273
displaying information 2-586
displaying ports for a switch or VLAN 2-588
displaying querier information 2-589
enabling snooping \(\quad \mathbf{2 - 2 7 1}\)
enabling snooping on a VLAN \(\quad \mathbf{2 - 2 8 1}\)
ISSU
canceling process 2-283
configuring rollback timer 2-295
displaying capability 2-591
displaying client information 2-593
displaying compatibility matrix 2-595
displaying endpoint information 2-600
displaying entities 2-601
displaying FSM session 2-602
displaying messages 2-603
displaying negotiated 2-605
displaying rollback-timer 2-606
displaying session information 2-607
displaying software version 2-608
displaying state \(\quad \mathbf{2 - 6 0 8}\)
forcing switchover to standby supervisor engine 2-293
initiating an automatic ISSU upgrade procedure 2-287
loading new image 2-289
starting process 2-291
stopping rollback timer 2-285

\section*{J}

Jumbo frames
enabling jumbo frames 2-357

\section*{L}

\section*{LACP}
deselecting channeling protocol 2-56
enabling LACP on an interface 2-56
setting channeling protocol 2-56
lacp port-priority command 2-303
lacp system-priority command 2-304
Layer 2
displaying ACL configuration 2-619
Layer 2 interface type
specifying a nontrunking, nontagged single VLAN
interface 2-798
specifying a trunking VLAN interface 2-798
Layer 2 protocol ports
displaying 2-610
Layer 2 protocol tunneling error recovery 2-301
Layer 2 switching
enabling voice VLANs 2-791
modifying switching characteristics 2-791
Layer 2 traceroute
IP addresses 2-829
Layer 3 switching
displaying information about an adjacency table 2-456
displaying port status 2-535
displaying status of native VLAN tagging 2-535
link-status event messages
disabling
globally 2-305, 2-308
on an interface 2-306, 2-309
enabling
globally 2-305, 2-308
on an interface 2-306, 2-309
log buffer
show status 2-547
logging
controlling IP ARP packets 2-223

\section*{M}

MAB, display information 2-616
MAB, enable and configure 2-311
mab command 2-311
MAC Access Control Lists
See MAC ACLs
MAC ACLs
defining extended MAC access list 2-313
displaying MAC ACL information 2-713
naming an ACL 2-313
MAC addresses
disabling MAC address learning per VLAN 2-320
MAC address filtering
configuring 2-324
disabling 2-324
enabling 2-324
MAC address learning on a VLAN, enabling \(\quad \mathbf{2 - 3 2 0}\)
MAC address table
adding static entries 2-336
clearing dynamic entries 2-83, 2-85
displaying dynamic table entry information 2-626
displaying entry count 2-624
displaying information 2-620
displaying interface-based information 2-628
displaying multicast information 2-630
displaying notification information 2-632
displaying protocol-based information 2-634
displaying static table entry information 2-636
displaying the MAC address aging time 2-622
displaying VLAN-based information 2-639
enabling authentication bypass 2-157
enabling notifications 2-322
learning in the protocol buckets 2-317
removing static entries 2-336
mac-address-table aging-time command 2-316
mac address-table learning vlan command \(\quad\) 2-320
MAC address tables
adding static entries 2-324
deleting secure or specific addresses \(\quad \mathbf{2 - 8 7}\)
disabling IGMP snooping on static MAC
addresses 2-324
removing static entries 2-324
mac-address-table static 2-324
MAC address unicast filtering
dropping unicast traffic 2-324
MAC authentication bypass (MAB), display information 2-616

MAC authorization bypass(MAB), enable and configure 2-311
macro
displaying descriptions \(\quad \mathbf{2 - 3 3 5}\)
macro keywords
help strings 2-2
macros
adding a global description 2-335
cisco global 2-333
system-cpp 2-334
mapping secondary VLANs to MST instance 2-409
mapping VLAN(s) to an MST instance 2-202
match (class-map configuration) command 2-14, 2-139,
2-140, 2-141, 2-142, 2-339, 2-779, 2-781, 2-783, 2-785, 2-789
maximum transmission unit (MTU)
displaying the system MTU setting 2-704
setting the maximum Layer 2 payload size \(\quad\) 2-822
MD5
verifying MD5 signature 2-843
message digest 5
See MD5
MFIB
clearing ip mfib counters \(\quad 2-80\)
clearing ip mfib fastdrop 2-81
displaying all active MFIB routes 2-572
displaying MFIB fastdrop table entries 2-574
enabling IP MFIB fastdrops \(\mathbf{2 - 2 6 0}\)
MLD
configuring snooping
last-listener-query-intervals 2-275
configuring snooping
listener-message-suppression 2-277
configuring snooping robustness-variables 2-278
configuring topology change notifications 2-280
counting snooping last-listener-queries 2-273
enabling snooping 2-271
enabling snooping on a VLAN 2-281
MLD snooping
displaying 2-589
modes
access-group 2-6
show access-group interface 2-455, 2-672
switching between PVST + , MST, and Rapid

\section*{PVST 2-750}

See also command modes
module password clearing 2-67
module reset
resetting a module by toggling the power 2-194
--More-- prompt
filter 1-6
search 1-7
MST
designating the primary and secondary root 2-759
displaying MST protocol information 2-699
displaying region configuration information 2-699
displaying spanning tree information 2-699
entering MST configuration submode 2-753
setting configuration revision number 2-427
setting path cost and port priority for instances 2-751
setting the forward delay timer for all instances 2-755
setting the hello-time delay timer for all
instances 2-756
setting the max-age timer for all instances 2-757
setting the MST region name 2-358
specifying the maximum number of hops 2-758
switching between PVST+ and Rapid PVST 2-750
using the MST configuration submode revision command 2-427
using the submode name command \(\quad\) 2-358
MTU
displaying global MTU settings 2-704
multi-auth, setting 2-26
Multicase Listener Discovery
See MLD
multicast
counters 2-95
enabling storm control 2-778
multicast/unicast packets
prevent forwarding 2-797
Multicast Forwarding Information Base
See MFIB
multi-domain, setting 2-26
multiple-character patterns 1-8
Multiple Spanning Tree
See MST

\section*{N}
native VLAN
controlling tagging of traffic 2-818
displaying ports eligible for native tagging 2-715
displaying ports eligible for tagging 2-715
enabling tagging on 802.1Q trunk ports 2-854
specifing the tagging of traffic \(\quad 2-819\)
NetFlow
enabling NetFlow statistics 2-261
including infer fields in routing statistics 2-261
next-hop
displaying CEF VLAN information 2-549
no form of a command, using 1-6
NVRAM
debugging NVRAM activities 2-115

\section*{0}
open access on a port, enabling 2-28
output
pattern searches 1-7

\section*{P}
packet forwarding
prevent unknown packets 2-797
packet memory failure
direct switch action upon detection 2-143
packet memory test
bootup, displaying results 2-486, 2-488
ongoing, displaying results \(\quad 2-490\)
PACL
access-group mode 2-6
paging prompt
see --More-- prompt
PAgP
clearing port channel information
2-86
debugging PAgP activity 2-116
deselecting channeling protocol 2-56
displaying port channel information 2-645
hot standby mode
returning to defaults \(\quad \mathbf{2 - 3 6 0}\)
selecting ports \(\quad \mathbf{2 - 3 6 0}\)
input interface of incoming packets
learning 2-359
returning to defaults 2-359
setting channeling protocol 2-56
parentheses 1-11
password
clearing on an intelligent line module 2-67
establishing enhanced password security 2-841
setting username 2-841
PM activities
debugging 2-119
disabling debugging 2-119
PoE policing
configure on an interface 2-396
PoE policing and monitoring
displaying status 2-671
police (percent) command 2-371
police (two rates) command 2-373, 2-375
police command 2-366
policing, configure PoE 2-396
policing and monitoring status
displaying PoE 2-671
policy maps
creating 2-379
marking 2-437
See also QoS, hierarchical policies
traffic classification
defining the class
defining trust states \(\quad \mathbf{2 - 8 3 2}\)
port, dual-capable
selecting the connector 2-348
Port Aggregation Protocol
See PAgP
port-based authentication
displaying debug messages 2-105
displaying statistics and status 2-492
enabling 802.1X 2-161
host modes 2-154
manual control of authorization state 2-161
periodic re-authentication enabling 2-164
re-authenticating 802.1X-enabled ports 2-163
switch-to-client frame-retransmission number 2-159
port channel
accessing 2-207
creating \(\quad \mathbf{2 - 2 0 7}\)
displaying information 2-645
load distribution method
resetting to defaults \(\quad \mathbf{2 - 3 8 1}\)
setting 2-381
port-channel standalone-disable command \(\mathbf{2 - 3 8 3}\)
port control, changing from unidirectional or bidirectional 2-19
port-control value, configuring 2-32
port range
executing 2-208
port security
debugging ports security \(\quad \mathbf{2 - 1 2 0}\)
deleting secure or specific addresses 2-87
displaying settings for an interface or switch 2-656
enabling 2-803
filter source IP and MAC addresses 2-267
setting action upon security violation 2-803
setting the rate limit for bad packets \(\quad \mathbf{2 - 8 0 3}\)
sticky port 2-803
Port Trust Device
displaying 2-675
power efficient-ethernet auto command 2-389
power inline four-pair forced command 2-393
power inline logging global command 2-395
power status
\(\begin{array}{ll}\text { displaying inline power } & \text { 2-663 } \\ \text { displaying power status } & \mathbf{2 - 6 6 3}\end{array}\)
power supply
configuring combined and redundant power on the Catalyst 4507R 2-384
configuring inline power \(\quad \mathbf{2 - 3 9 0}\)
configuring power consumption 2-384
displaying the SEEPROM 2-514
setting inline power state \(\quad \mathbf{2 - 3 8 8}\)
priority command \(\quad \mathbf{2 - 4 0 0}\)
priority-queue command 2-96
Private VLAN

See PVLANs
privileged EXEC mode, summary \(\mathbf{1 - 5}\)
prompts
system 1-5
protocol tunneling
configuring encapsulation rate 2-301
disabling 2-296
displaying port information 2-610
enabling 2-296
setting a CoS value for Layer 2 packets 2-298
setting a drop threshold for Layer 2 packets \(\mathbf{2 - 2 9 9}\)
PVLANs
configuring isolated, primary, and community

\section*{PVLANs 2-402}
controlling tagging of native VLAN traffic 2-818
disabling sticky-ARP 2-264
displaying map information for VLAN SVIs 2-532
displaying PVLAN information 2-718
enabling interface configuration mode 2-798
enabling sticky-ARP 2-264
mapping VLANs to the same SVI 2-406
specifying host ports \(\quad \mathbf{2 - 7 9 8}\)
specifying promiscuous ports 2-798
PVST+
switching between PVST and MST 2-750

\section*{0}

QoS
attaching a policy-map to an interface \(\mathbf{2 - 4 2 8}\)
automatic configuration \(\quad \mathbf{2 - 3 8}\)
class maps
creating 2-61
defining the match criteria \(\quad \mathbf{2 - 3 3 9}\)
clearing aggregate counters 2-89
configuring auto 2-38
defining a named aggregate policer 2-413
displaying aggregate policer information 2-673
displaying auto configuration 2-464
displaying class maps information 2-478
displaying configuration information 2-464
displaying configurations of policies 2-651
displaying policy map information 2-647, 2-654
displaying QoS information 2-672
displaying QoS map information 2-677
egress queue-sets
enabling the priority queue \(\quad \mathbf{2 - 9 6}\)
hierarchical policies
average-rate traffic shaping on a class 2-450
bandwidth allocation for a class 2-42, 2-60
creating a service policy 2-431
marking 2-437
strict priority queueing (LLQ) 2-400
policy maps
creating 2-379
marking 2-437
traffic classifications
trust states 2-832
setting the trust state 2-413
specifying flow-based match criteria 2-342
Supervisor Engine 6-E
setting CoS 2-439
setting DSCP 2-442
setting precedence values 2-445
setting QoS group identifiers 2-448
QoS CoS
configuring for tunneled Layer 2 protocol
packets 2-298
quality of service
See QoS
question command 1-1
queueing information
displaying 2-675
queue limiting
configuring packet limits 2-415

\section*{R}

Rapid PVST
switching between PVST and MST 2-750
re-authenticating 802.1X-enabled ports 2-163
re-authentication
periodic 2-164
set the time 2-166
reauthentication, enabling 2-31
reboots
restoring bindings across 2-228
redundancy
accessing the main CPU 2-417
changing from active to standby supervisor engine 2-421
displaying information 2-679
displaying ISSU config-sync failure
information 2-683
displaying redundancy facility information 2-679
displaying RF client list 2-679
displaying RF operational counters 2-679
displaying RF states 2-679
enabling automatic synchronization 2-41
forcing switchover to standby supervisor
engine 2-421
mismatched command listing 2-419
set the mode 2-349
synchronizing the route processor configurations 2-336
remote SPAN
See RSPAN
renew commands
ip dhep snooping database 2-425
resetting PVLAN trunk
setting switchport to trunk 2-798
retry failed authentiation, configuring 2-22
rj45 connector, selecting the connector 2-348
ROM monitor mode
summary 1-6
Route Processor Redundancy
\begin{tabular}{|c|c|}
\hline See redundancy
RPF & displaying information on the standby supervisor 2-690 \\
\hline disabling IPv4 exists-only checks 2-269 & slot0 \\
\hline enabling IPv4 exists-only checks 2-269 & displaying information about the system 2-692 \\
\hline RPR & SNMP \\
\hline set the redundancy mode 2-349 & debugging spanning tree activities \(\mathbf{2 - 1 2 2}\) \\
\hline RSPAN & ifIndex persistence \\
\hline converting VLAN to RSPAN VLAN 2-424 & clearing SNMP ifIndex commands 2-727 \\
\hline displaying list 2-720 & compress SNMP ifIndex table format 2-736 disabling globally 2-735 \\
\hline & disabling on an interface 2-729 \\
\hline S & enabling globally 2-735 \\
\hline saving configuration changes 1-11 & enabling on an interface 2-729 \\
\hline secure address, configuring 2-384 & traps \\
\hline secure ports, limitations 2-804 & configuring to send when storm occurs 2-776 \\
\hline server (AAA) alive actions, configuring 2-22 & mac-notification 2-737 \\
\hline & adding 2-737 \\
\hline server (AAA) dead actions, configuring 2-22 & snmp-server enable traps command 2-731 \\
\hline service-policy command (policy-map class) 2-431 & SPAN commands \\
\hline session classification, defining 2-26 & configuring a SPAN session to monitor 2-351 \\
\hline set the redundancy mode - 2-349 & displaying SPAN session information 2-703, 2-778 \\
\hline sfp connector, selecting the connector 2-348 & SPAN enhancements \\
\hline shape command 2-450 & displaying status 2-643 \\
\hline show authentication interface command 2-459 & Spanning Tree Protocol \\
\hline show authentication registration command 2-459 & See STP \\
\hline show authentication sessions command 2-459 & SPAN session \\
\hline show commands & displaying session information 2-643 \\
\hline filtering parameters 1-7 & filter ACLs 2-351 \\
\hline searching and filtering 1-6 & specify encap type 2-351 \\
\hline show platform commands 1-11 & turn off host learning based on ingress packets 2-351 \\
\hline show energywise command 2-496 & special characters \\
\hline show lacp command 2-613 & anchoring, table 1-10 \\
\hline show mab command 2-616 & SSO 2-349 \\
\hline Simple Network Management Protocol & standard desktop \\
\hline See SNMP & enabling Cisco-recommended features 2-325 \\
\hline single-character patterns & standard desktop and Cisco IP phone \\
\hline special characters 1-7 & enabling Cisco-recommended features 2-327 \\
\hline single-host, setting 2-26 & sticky address, configuring 2-385 \\
\hline slaveslot0 & sticky-ARP \\
\hline
\end{tabular}
disabling on PVLANs 2-264
enabling on PVLANs 2-264
sticky port
deleting 2-87
enabling security \(\quad \mathbf{2 - 8 0 3}\)
storm control
configuring for action when storm occurs 2-776
disabling suppression mode 2-503
displaying settings 2-702
enabling 2-776
enabling broadcast 2-776, 2-778
enabling multicast 2-776, 2-778
enabling suppression mode 2-503
enabling timer to recover from error disable 2-186
enabling unicast 2-776, 2-778
multicast, enabling 2-778
setting high and low levels 2-776
setting suppression level 2-503
STP
configuring link type for a port 2-748
configuring tunneling encapsulation rate 2-301
debugging all activities 2-122
debugging spanning tree activities 2-122
debugging spanning tree BackboneFast events 2-124
debugging spanning tree UplinkFast 2-127
detecting misconfiguration 2-745
displaying active interfaces only 2-694
displaying BackboneFast status 2-694
displaying bridge status and configuration 2-694
displaying spanning tree debug messages 2-122
displaying summary of interface information 2-694
enabling BPDU filtering by default on all PortFast
ports 2-764
enabling BPDU filtering on an interface 2-741
enabling BPDU guard by default on all PortFast
ports 2-766
enabling BPDU guard on an interface 2-743
enabling extended system ID 2-746
enabling loop guard as a default on all ports 2-749
enabling PortFast by default on all access ports 2-767
enabling PortFast mode 2-762
enabling protocol tunneling for 2-296
enabling root guard 2-747
enabling spanning tree BackboneFast 2-740
enabling spanning tree on a per VLAN basis 2-771
enabling spanning tree UplinkFast 2-769
setting an interface priority 2-768
setting drop threshold for 2-299
setting pathcost 2-744
setting the default pathcost calculation method 2-761
subinterface configuration mode, summary 1-6
SVI
creating a Layer 3 interface on a VLAN 2-210
switching characteristics
excluding from link-up calculation 2-795
modifying 2-795
returning to interfaces
capture function 2-795
switchport 2-819
switchport interfaces
displaying status of Layer 3 port 2-535
displaying status of native VLAN tagging 2-535
switch shim
debugging 2-125
disabling debugging 2-125
switch to router connection
enabling Cisco-recommended features 2-329
switch to switch connection
enabling Cisco-recommended features 2-331
switch virtual interface
See SVI
sw-vlan 2-128
system prompts 1-5

\section*{T}

Tab key
command completion \(\quad \mathbf{1 - 1}\)
tables
characters with special meaning 1-7
mac access-list extended subcommands 2-313
multipliers 1-9
relationship between duplex and speed
commands 2-774
show cable-diagnostics tdr command output fields 2-469
show cdp neighbors detail field descriptions 2-477
show cdp neighbors field descriptions 2-476
show ip dhcp snooping command output 2-460, 2-616
show ip interface field descriptions 2-570
show policy-map control-plane field
descriptions 2-650
show vlan command output fields 2-719
show vtp command output fields 2-724
special characters 1-9
special characters used for anchoring \(\quad \mathbf{1 - 1 0}\)
speed command options 2-342, 2-774
valid interface types 2-205
TAC
displaying information useful to TAC 2-705
TCAM
debugging spanning tree activities \(\quad \mathbf{2 - 1 2 2}\)
TDR
displaying cable diagnostic test results 2-468
test condition of copper cables \(\quad \mathbf{2 - 8 2 4}\)
temperature readings
displaying information 2-500
timer information 2-504
traffic shaping
enable on an interface 2-452
trunk encapsulation
setting format \(\quad \mathbf{2 - 8 1 9}\)
trunk interfaces
displaying trunk interfaces information 2-542
trust state
setting 2-218
tunnel ports
displaying information about Layer 2 protocol 2-610

TX queues
allocating bandwidth 2-834
returning to default values \(\quad \mathbf{2 - 8 3 4}\)
setting priority to high \(\quad \mathbf{2 - 8 3 4}\)
specifying burst size \(\quad \mathbf{2 - 8 3 4}\)
specifying traffic rate \(\quad \mathbf{2 - 8 3 4}\)

\section*{U}

UDLD
displaying administrative and operational status 2-707
enabling by default on all fiber interfaces 2-836
enabling on an individual interface 2-838
preventing a fiber interface from being enabled \(\quad\) 2-838
resetting all shutdown ports \(\quad\) 2-840
setting the message timer \(\quad 2-836\)
unicast
counters 2-95
Unidirectional Link Detection
See UDLD
unidirection port control, changing from
bidirectional 2-19
unknown multicast traffic, preventing 2-797
unknown unicast traffic, preventing 2-797
user EXEC mode, summary 1-5
username
setting password and privilege level 2-841

\section*{v}

\section*{VACLs}
access-group mode 2-6
applying VLAN access maps 2-856
displaying VLAN access map information 2-713
specifying an action in a VLAN access map 2-13
specifying the match clause for a VLAN access-map sequence 2-337
using a VLAN filter 2-856
disabling debugging 2-128
IOS file system error tests
debugging 2-129
disabling debugging 2-129
VLAN Query Protocol
See VQP
VLAN query protocol (VQPC) debugging 2-135
VLANs
clearing
counters 2-91
clearing hardware logic 2-69
configuring
internal allocation scheme 2-857
displaying
internal VLAN allocation information 2-716
RSPAN VLANs 2-720
entering VLAN configuration mode 2-852
VMPS
configuring servers 2-861
reconfirming dynamic VLAN assignments 2-135, 2-859
voice VLANs
enabling 2-791
VoIP
configuring auto-QoS 2-38
VQP
per-server retry count 2-860
reconfirming dynamic VLAN assignments 2-135, 2-859

VTP
configuring the administrative domain name
2-865
configuring the device in VTP client mode 2-864
configuring the device in VTP server mode 2-868
configuring the device in VTP transparent mode 2-869
configuring tunnel encapsulation rate 2-301
creating a VTP domain password 2-866
displaying domain information 2-723
displaying statistics information 2-723
enabling protocol tunneling for 2-296
enabling pruning in the VLAN database 2-867
enabling VTP version 2 mode 2-870
modifying the VTP configuration storage file
name 2-863
set drop threshold for 2-299
VTP protocol code
activating debug messages 2-132
deactivating debug messages 2-132

\section*{W}

Webauth fallback, enabling 2-25```

