

Class-Based Policy Provisioning:

Introducing Class-Based Policy Language (CPL)

August 2008

Class-Based Policy Provisioning

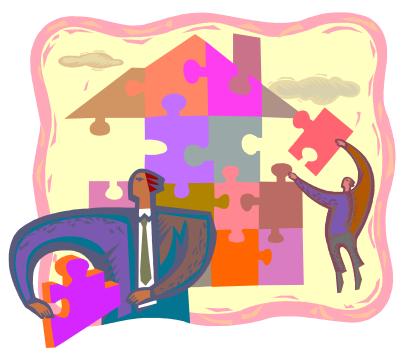
- Introduction
- Class-Based Policy Provisioning
- Class-Based Policy Language (CPL)
- Integrated Traffic Classification
- Configuring with CPL: Examples
- Monitoring and Statistics
- Roadmap
- Q&A

Many Features Act on Traffic

- Many features need to understand network traffic
 - Quality of Service
 - Security
 - Broadband
 - NetFlow
 - Routing
 - ... and many others
- Issue: Each feature might take a unique approach
 - Different configuration command syntax
 - Unnecessary complexity for customers

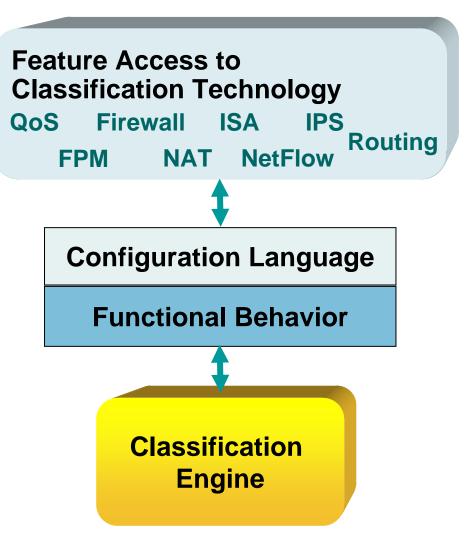
The Opportunity

Simplify


Simplify feature provisioning

Unify

Unify provisioning and behavior across platforms


Integrate

Make it easy to add new function and new platforms

Uniform Provisioning for Traffic Classification and Policy Actions

- Uniform Provisioning Across Features Across Platforms
- Unified Configuration Language
- Integrated Classification Definitions
- Greater Efficiency

·IIIII CISCO

CLASS-BASED POLICY PROVISIONING

Class-Based Policy Provisioning

A uniform, three step approach

Classification

Identify traffic of interest

Specify match criteria that define a traffic class

Policy

Specify <u>actions</u> to take on the traffic class

Target

Apply the policy actions to a target

Typically an interface or subinterface

Class-Based Policy Provisioning

Classification
 Key word: class-map
 Policy

Key word: policy-map

Target
 Key word: service-policy

Class-Based Policy: Terminology

What is a <u>class</u> of traffic?

A class is any traffic stream of interest

Identify traffic streams by matching some criteria, such as

- From a particular interface or port
- Source or destination IP address
- Protocol or application

What is a <u>policy</u>?

A policy is any action applied to a class

Policies for Quality of Service, Security, Routing, Accounting, or Subscriber Service, such as

- Assign higher or lower priority
- Limit or drop traffic
- Route on a different path

Example

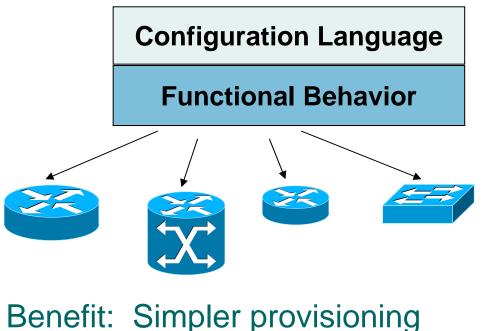
Certain apples (the <u>class</u>) are selected for special handling (the <u>policy</u>)

Class-Based Policy: Terminology

What is a <u>target</u>?

A target defines a traffic stream to which a policy is applied

- Typically identifies the location, source or destination of traffic
 - Physical interfaces
 - Serial, Ethernet, POS
 - Logical interfaces
 - Subinterface, ATM VC, Frame Relay VC, VLAN
 - Logical entities
 - Control Plane Traffic
 - A Routing Protocol


Example

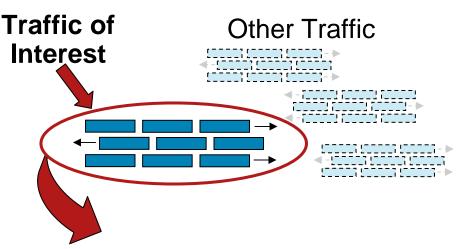
An orchard could be a source (<u>target</u>) to which a harvest policy is applied

Class-Based Policy Language (CPL)

- Unified method to specify classes, policies and targets
- Same framework for provisioning multiple features
 - "Type" attributes for classes & policies

Across features Across platforms

Specify Traffic Once, Take Multiple Actions

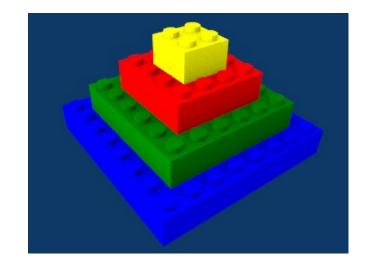

- With CPL features can share a *class-map*
 - Set up the classification criteria once
 - Use the *class-map* in different feature policies

Benefits

Simplified configuration – policies point to same classification

Assured consistency – actions applied to same traffic

Example:



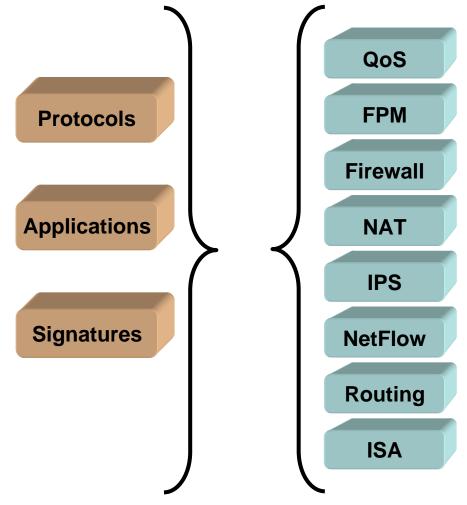
- Firewall policy permits selected traffic
- QoS policy assigns priority

Class-Based Policy Framework: Benefits

- Simpler for customers
 - Unified method for multiple features
- Faster time-to-market for new application recognition modules Leverage by multiple features
- Easier to add new features
 Leverage familiar provisioning method
 Example (future): anomaly detection
- Quicker integration of new classification capabilities

Directly available to existing features Enable new policy actions

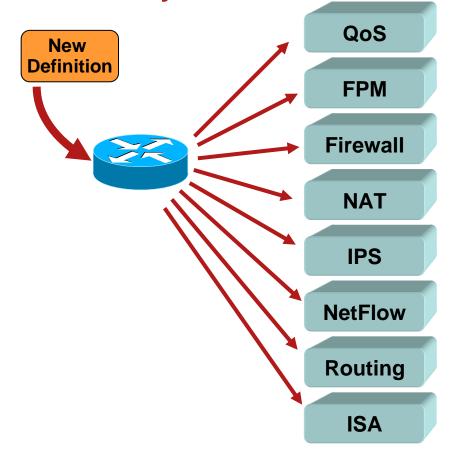
·IIIII CISCO


INTEGRATED TRAFFIC CLASSIFICATION

Benefit: Integrated Classification Definitions

- Common definitions for protocol and application recognition
- Benefits:
 - Consistent classification results
 - New definitions available to all features

Shared definitions for all features



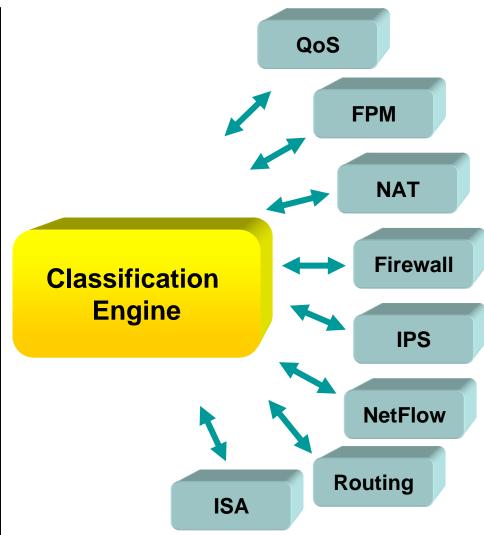
Cisco Public

Benefit: Dynamic Availability of New Definitions

- Dynamic addition of new definitions
 - Immediately available to all features
 - Live updates to in-service routers
 - Incorporate new definitions into live IOS images on the router

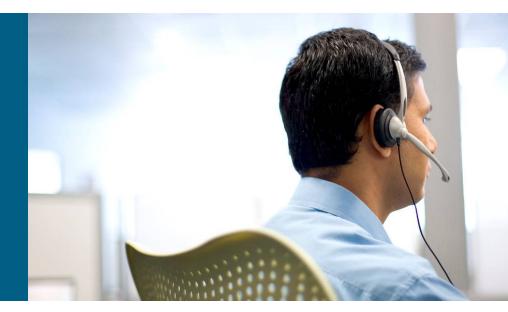
New definitions effective immediately

Benefit: Greater Efficiency


Performance improvement

Consolidated classification for multiple features

Not separate classification actions for each feature


Benefits:

Lower CPU consumption Greater throughput

·IIIII CISCO

CPL CONFIGURATION EXAMPLES

CPL Configuration Examples

- Quality of Service
- Flexible Packet Matching
- IOS Firewall
- Multi-Topology Routing
- IP SLAs
- NetFlow
- Summary Comparison:

QoS, FPM, Firewall, and MTR

CPL Configuration Example QoS Giving Priority to Interactive Traffic

Configure *class-maps* that classify Citrix ICA traffic by ICA tag

Classification

Key word: class-map

class-map match-any Citrix-high-medium-low match protocol citrix ica-tag "0" match protocol citrix ica-tag "1" match protocol citrix ica-tag "2" class-map Citrix-background match protocol citrix ica-tag "3"

Create a *policy-map* that allocates bandwidth for traffic matched by *class-maps*

Policy

Key word: policy-map policy-map Citrix-traffic class Citrix-high-medium-low bandwidth percent 20 class Citrix-background bandwidth percent 5 police cir 128000 conform-action transmit exceed-action drop

Target

Key word: service-policy Assign the policy-map to a router interface with a service-policy

interface serial 0/0 service-policy output Citrix-traffic

CPL Configuration Example FPM Used to Drop Slammer Worm

Configure class-maps that classify Slammer worm

Classification

Key word: class-map

class-map type stack ip-udp match field ip protocol eq 17 next udp class-map access-control slammer match class-map stack ip-udp match field udp dport eq 1434 match start ip version offset 224 size 4 eq 0x04011010

Policy

Key word: policy-map

Target

Key word: service-policy Create a *policy-map* that drops traffic matched by the *class-map*

policy-map type access-control policy-slammer class slammer drop

Assign the *policy-map* to a router interface with a *service-policy*

interface ethernet 1/0 service-policy type access-control input policy-slammer

CPL Configuration Example IOS Firewall Blocks Instant Messaging

Configure class-maps to identify port-misuse and classify HTTP

Classification

Key word: class-map

class-map type inspect http port-misuse-class match port-misuse im class-map type inspect http-traffic-1 match protocol http

Create *policy-maps* to terminate IM connections but permit desired HTTP traffic

policy-map type inspect http myL7policy class port-misuse-class

reset

policy-map type inspect firewall-policy

class http-traffic-1

inspect

Target

Key word: service-policy Assign the policy-map to a router interface with a service-policy

interface pos 0/0 service-policy type http myL7Policy

Policy

Key word: policy-map

CPL Configuration Example Multi-Topology Routing

Classification

Key word: class-map

Policy Key word: policy-map

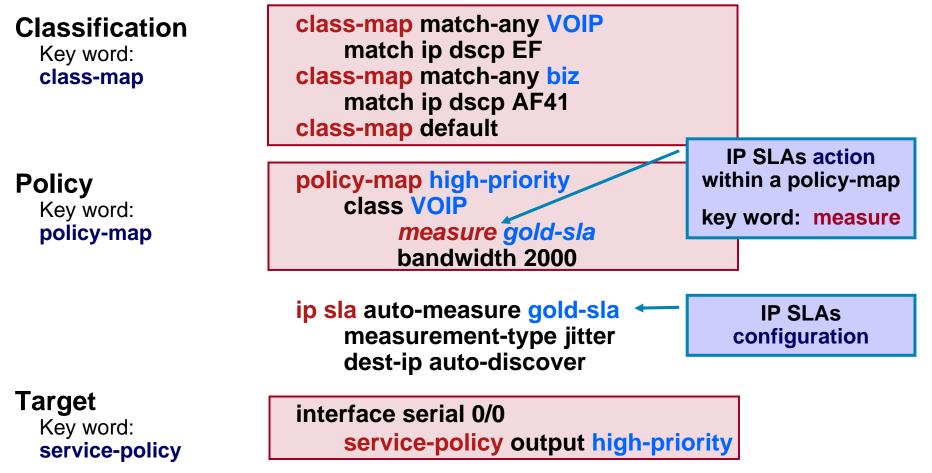
Target Key word: service-policy

Video traffic routed separately from other traffic

class-map match-any STANDARD_CLASS match ip dscp default class-map match-any VIDEO_CLASS match ip dscp af43

policy-map type class-routing ipv4 unicast MTR_POLICY class STANDARD_CLASS select-topology STANDARD class VIDEO_CLASS select-topology VIDEO

global-address-family ipv4 topology STANDARD


topology VIDEO

service-policy type class-routing MTR_POLICY

Source: Configuration fragment, MTR demo 9/2005

CPL Configuration Example IP SLAs Integrated with a QoS Policy

Using IP SLAs to monitor a traffic class

CPL Configuration Example NetFlow Input Filters

NetFlow sampling actions in CPL

Classification

Key word: class-map class-map high_importance_class match access-group 101

flow-sampler-map high_sampling mode random one-out-of 1 Defines a

NetFlow sampler

Defines traffic

class

Policy Key word: policy-map

Target Key word: service-policy policy-map mypolicy class high_importance_class flow-sampler high_sampling

interface POS1/0 service-policy input mypolicy interface ATM2/0 service-policy input mypolicy Includes NetFlow sampling action in policy

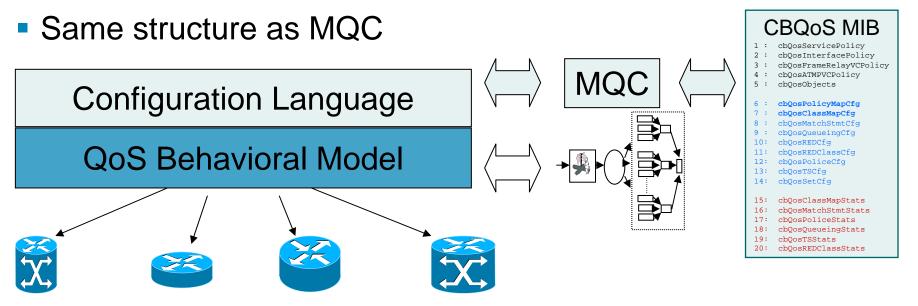

Applies policy with Netflow sampling action to interfaces

CPL Configuration Comparisons: Classification, Policy, Target

CPL Step key word [type [subtype]]	Quality of Service Prioritize Citrix Traffic	Flexible Packet Matching Drop Slammer Worm	IOS Firewall Block Instant Messaging	Multi-Topology Routing Assign Routes by Class
Classification class-map [type [subtype]]	<pre>class-map match-any Citrix- high-medium-low match protocol citrix ica- tag "0" match protocol citrix ica- tag "1" match protocol citrix ica- tag "2" class-map Citrix- background match protocol citrix ica- tag "3"</pre>	class-map type stack ip-udp match field ip protocol eq 17 next udp class-map access-control slammer match class-map stack ip-udp match field udp dport eq 1434 match start ip version offset 224 size 4 eq 0x04011010	class-map type inspect http port-misuse-class match port-misuse im class-map type inspect http-traffic-1 match protocol http	class-map VIDEO_CLASS match {VIDEO DSCP value} class-map VOICE match {VOICE DSCP EF} class-map DATA match {DATA DSCP value}
Policy policy-map [type [subtype]]	policy-map Citrix-traffic class Citrix-high-medium- low bandwidth percent 20 class Citrix-background bandwidth percent 5 police cir 128000 conform-action transmit exceed-action drop	policy-map type access- control policy-slammer class slammer drop	policy-map type inspect http myL7policy class port-misuse-class reset policy-map type inspect firewall-policy class http-traffic-1 inspect	policy-map type class- routing MTR_ROUTE_POLICY class VIDEO select-topology RED class VOICE select-topology YELLOW class DATA select-topology GREEN
Target service-policy [type [subtype]]	interface serial 0/0 service-policy output Citrix-traffic	interface ethernet 1/0 service-policy type access- control input policy- slammer	interface pos 0/0 service-policy type http myL7Policy	global-address-family ipv4 service-policy type MTR_ROUTE_POLICY

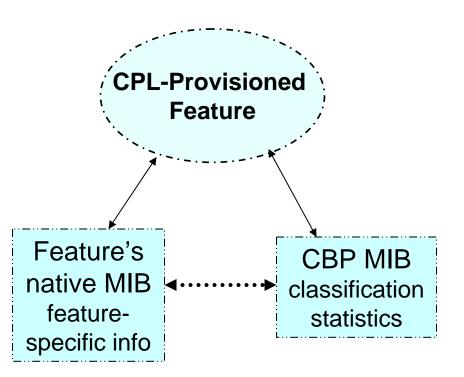
·IIIII CISCO

MONITORING AND STATISICS: CLASS-BASED POLICY (CBP) MIB



CBQoS MIB Shadows QoS Configuration

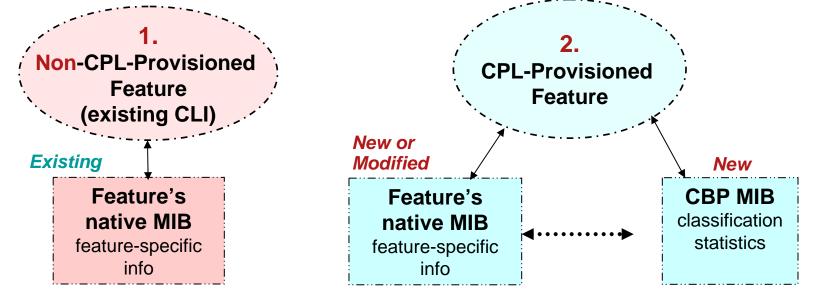
 Modular QoS Command Line Interface (MQC) is Cisco's configuration language for Quality of Service
 Uniform interface for common QoS model across bardware


Uniform interface for common QoS model across hardware platforms

 CBQoS MIB provides read access to configuration and statistical information for MQC

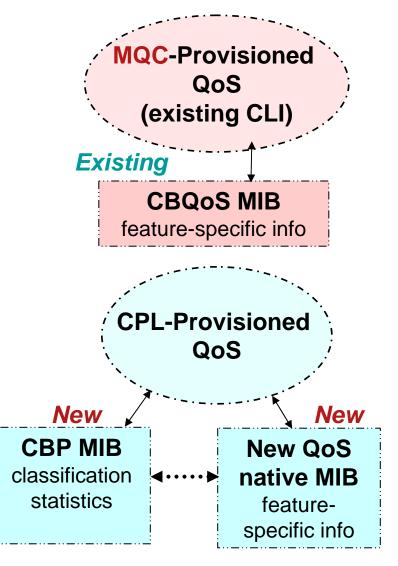
Feature MIBs and CBP MIB

- CPL-provisioned features will link to two MIBs
 - Their own featurespecific MIB
 - The CBP MIB



Mirrors Feature Adoption of CPL

- A MIB often reflects a feature's provisioning syntax
 - The CBP MIB reflects the class-based provisioning model of CPL
 - Information that is common to multiple features must be accessible through a common MIB


Provisioning method and feature MIBs

- 1. Non-CPL Provisioned: Use existing feature MIB
- 2. CPL-Provisioned: Use CBP MIB with feature-specific MIB

Quality of Service: Evolution to CPL from MQC

- MQC is a proper subset of CPL
- Existing MQC configurations are forward-compatible to CPL
- Router does not distinguish between CPL and MQC
 - Common statistics are counted in <u>both</u> CBQoS MIB and new CBP MIB
 - Use one (CBQoS) <u>or</u> the other (CBP & new QoS)
 - CBQoS MIB will be supported indefinitely

ROADMAP CLASS-BASED POLICY PROVISIONING

Class-Based Policy Provisioning Roadmap – IOS Release 12.4T

Features Using CPL

Release 12.4T		Description
	Pre-12.4T	Quality of Service (QoS)Control Plane Protection (CPPr)
2nd	12.4(4)T 11/14/2005	Flexible Packet Matching (FPM)
3rd	02/2006	IOS Firewall
4th	05/2006	FPM with CPL-XMLIP SLAs
6th	2H 2006	 NetFlow Intrusion Prevention System (IPS)

Platform Support

800 Series, 1700 Series, 1800 Series, 2691, 2600XM Series, 2800 Series, 3700 Series, 3800 Series, 7200
Series, 7301

QUESTIONS AND ANSWERS

Q&A – 1

Will existing MQC configurations still work?

Yes. MQC syntax is a proper subset of CPL. Existing MQC configurations are forward-compatible with CPL.

 Will there be a "type" keyword for QoS? Will existing MQC configurations convert to it?

Not at this time. Future evolution will determine the need. For the foreseeable future, QoS (MQC) configurations remain untyped.

Will there be a tool to convert old style CLI to CPL syntax?

There are no plans for a syntax conversion tool. Future evolution will determine the need. It is possible that some features may have a higher need than others and featurespecific converters may emerge.

Q&A – 2

What is the order of operations when multiple CPLconfigured polices are on an interface?

CPL provisioning does not affect order of operations in the feature path.

#