# cisco.



# Cisco Catalyst ESS-9300-10X Embedded Switch Hardware Technical Guide

First Published: 2021-04-19 Last Modified: 2022-01-24

#### **Americas Headquarters**

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

 $^{\odot}$  2021–2022 Cisco Systems, Inc. All rights reserved.



CONTENTS

| CHAPTER 1 | Product Overview 1                                                                                                                                                                                                                                                                    |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Cisco Embedded Service 9300 Series Switches Overview 1                                                                                                                                                                                                                                |
|           | Audience 2                                                                                                                                                                                                                                                                            |
|           | General Description 2                                                                                                                                                                                                                                                                 |
|           | Board Layout and Dimensions 3                                                                                                                                                                                                                                                         |
| CHAPTER 2 | - Interface Connectors 7                                                                                                                                                                                                                                                              |
|           | Interface Connectors 7                                                                                                                                                                                                                                                                |
|           | Board to Board Connectors 7                                                                                                                                                                                                                                                           |
|           | Board Interface Connectors (I/O and Network Interface) 8                                                                                                                                                                                                                              |
|           | ESS-9300 I/O Connector (J1) 8                                                                                                                                                                                                                                                         |
|           | ESS-9300 I/O Connector (J2) 9                                                                                                                                                                                                                                                         |
| CHAPTER 3 |                                                                                                                                                                                                                                                                                       |
|           | Module I/O Description 13                                                                                                                                                                                                                                                             |
|           | Block Diagrams 15                                                                                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                                                                                                       |
|           | Power Signals 15                                                                                                                                                                                                                                                                      |
|           | Power Signals 15<br>LED Definitions 15                                                                                                                                                                                                                                                |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17                                                                                                                                                                                                                  |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17<br>Module Voltage Test Points 18                                                                                                                                                                                 |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17<br>Module Voltage Test Points 18<br>Mechanical and Environmental Testing 20                                                                                                                                      |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17<br>Module Voltage Test Points 18<br>Mechanical and Environmental Testing 20<br>Overtemperature Detection 22                                                                                                      |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17<br>Module Voltage Test Points 18<br>Mechanical and Environmental Testing 20<br>Overtemperature Detection 22<br>Thermal Design Considerations 23                                                                  |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17<br>Module Voltage Test Points 18<br>Mechanical and Environmental Testing 20<br>Overtemperature Detection 22<br>Thermal Design Considerations 23<br>Validating a Thermal Solution 25                              |
|           | Power Signals 15<br>LED Definitions 15<br>Board LED Register Bits 17<br>Module Voltage Test Points 18<br>Mechanical and Environmental Testing 20<br>Overtemperature Detection 22<br>Thermal Design Considerations 23<br>Validating a Thermal Solution 25<br>Product Specifications 25 |

Dying Gasp 26 Board Electrical Power Consumption 26 SD Support 26 SFP Support 27 Supported SFP and SFP+ Modules 27

#### CHAPTER 4 Device Zeroization and Recovery

ce Zeroization and Recovery 29 Device Zeroization 29 Push Button 30 Important Notice about Zeroization 30 Zeroization Details 31 Tasks performed by IOS-XE 31 Tasks Performed By Bootloader 31 Command Line Interface 32 Zeroization Trigger 32 To Trigger Zeroization 32 Emergency Recovery Installation 33

#### CHAPTER 5 Appendix

#### Appendix 35

Web User Interface 35
Compliance and Safety Information 36
Restriction of Hazardous Substances (RoHS) 38
Related Documentation 38
Communications, Services, and Additional Information 38
Cisco Bug Search Tool 38
Documentation Feedback 39



# **Product Overview**

This chapter contains the following sections:

- Cisco Embedded Service 9300 Series Switches Overview, on page 1
- Audience, on page 2
- General Description, on page 2
- Board Layout and Dimensions, on page 3

# **Cisco Embedded Service 9300 Series Switches Overview**

This hardware technical guide provides a product description, specifications, and compliance information for the Cisco Embedded Service 9300 Series Switches.

**Note** The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software,

The Cisco ESS 9300 is a Small Form Factor (SFF) embedded Ethernet switch card. The compact design simplifies integration and offers the system integrator the ability to use the Cisco ESS 9300 in a wide variety of applications. The Cisco ESS 9300 consists of one switch card. There are no cooling plates sold with it. It is up to the system integrator to design a thermal solution. The ESS-9300-10X-E board supports up to 10 ports of 10 GE fiber. Thermal power is 35 Watts.

language used based on RFP documentation, or language that is used by a referenced third-party product.





Note Refer to the Cisco ESS 9300 data sheet for a complete list of available product IDs.

# Audience

This guide is for the system integrator who is integrating the Cisco ESS 9300 into a custom end product.

# **General Description**

The ESS-9300 is a ruggedized 10GigE Embedded platform for tactical, outdoor, and mobile installations. Some of the key hardware features are:

- Small Form Factor
- 10 Optical 10G
- Software: IOS-XE, Network Essentials and Network Advantage
- Industrial temperature: -40°C to +85°C
- ARM Quad-Core A53
- 4GB DDR4 DRAM memory capacity with ECC
- 2.5GB User Accessible Flash
- 3.3V and 5V power input
- · Anti-counterfeit chip and Secure Boot

I

- RTC with customer provided power backup
- Push Button that supports the Zeroize feature
- Two alarm inputs and One alarm output
- Two USB 2.0 Host interface for USB Flash Memory Device, one can be converted to SDHC
- One USB 2.0 Console Interface.
- One RS-232 Console Interface.

### **Board Layout and Dimensions**

The following pictures show the Board Layout. The dimensions are 4.331 in X 3.346 in (110mm X 85mm).

Figure 1: Top View



Figure 2: Side View



Figure 3: Bottom View





# **Interface Connectors**

This chapter contains the following sections:

- Interface Connectors, on page 7
- Board to Board Connectors, on page 7
- Board Interface Connectors (I/O and Network Interface), on page 8

# **Interface Connectors**

The board has two connectors that provide power and interface connections to external devices. All of the connectors belong to the SEARAY<sup>®</sup> Connector Series from SAMTEC.

# **Board to Board Connectors**

Depending on the mating connector selected by the integrator, a stacking height from 7 mm to 18mm (not all increments are supported). The following table lists the board connectors, and the mating connector options that are available to achieve specific stacking heights below.



Contact your local Samtec sales representatives for specific Samtec part numbers.

Table 1: SEAM Mating Height

| SEAM Lead<br>Style | -05.0 SEAF Lead Style |
|--------------------|-----------------------|
| -02.0              | 7mm                   |
| -03.0              | 8mm                   |
| -03.5              | 8.5mm                 |
| -07.0              | 12mm                  |
| -09.0              | 14mm                  |

| SEAM Lead<br>Style | -05.0 SEAF Lead Style |
|--------------------|-----------------------|
| -11.0              | 16mm                  |

# **Board Interface Connectors (I/O and Network Interface)**

The board I/O connectors are SAMTEC SEAF-20-05.0-S-06-2-A-K 120-pin (J1) and SAMTEC SEAF-40-05.0-S-06-2-A-K 240-pin (J2) connectors respectively.

The following figures show the J1 and J2 connectors as well as the pin 1 designations.

Figure 4: Interface Connectors Bottom Side View



#### ESS-9300 I/O Connector (J1)

Table 2: I/O Connector (J1)

| PIN<br># | Row A      | Row B      | Row C      | Row D      | Row E      | Row F      |
|----------|------------|------------|------------|------------|------------|------------|
| 1        | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE |
| 2        | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE |
| 3        | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE | P5V_MODULE |
| 4        | GND        | GND        | GND        | GND        | GND        | GND        |

| PIN<br># | Row A        | Row B         | Row C           | Row D        | Row E        | Row F        |
|----------|--------------|---------------|-----------------|--------------|--------------|--------------|
| 5        | P3_3V_MODULE | P3_3V_MODULE  | P3_3V_MODULE    | P3_3V_MODULE | P3_3V_MODULE | P3_3V_MODULE |
| 6        | GND          | GND           | GND             | RSVD         | GND          | GND          |
| 7        | GND          | GND           | GND             | RSVD         | RSVD         | RSVD         |
| 8        | CLK_156M25_P | RSVD          | RSVD            | RSVD         | RSVD         | RSVD         |
| 9        | CLK_156M25_N | RSVD          | RSVD            | RSVD         | RSVD         | RSVD         |
| 10       | GND          | GND           | GND             | RSVD         | GND          | GND          |
| 11       | GND          | GPIO_RST_L    | P3_3V_RTC       | RSVD         | GND          | GND          |
| 12       | GND          | IOEXP_INT_L   | GND             | RSVD         | GND          | CLK_125M_P   |
| 13       | RSVD         | GND           | CNS_RJ45_TXD_L  | GND          | GND          | CLK_125M_N   |
| 14       | RSVD         | I2C_GPIO_SCL  | CNS_RJ45_RTS_L  | LED_SH_DIN   | GND          | GND          |
| 15       | GND          | I2C_GPIO_SDA  | CNS_RJ45_RXD_L  | LED_SH_CLK   | RSVD         | GND          |
| 16       | RSVD         | GND           | CNS_RJ45_CTS_L  | LED_SH_EN_L  | RSVD         | RSVD         |
| 17       | RSVD         | I2C_MUX_SCL   | GND             | LED_SH_LATCH | RSVD         | RSVD         |
| 18       | GND          | I2C_MUX_SDA   | USB_CONSOLE_P   | PUSH_BUTTON_ | GND          | GND          |
| 19       | RSVD         | GND           | USB_CONSOLE_N   | GND          | RSVD         | RSVD         |
| 20       | RSVD         | I2C_MUX_RST_L | P5V_USB_CONSOLE | RT_DBG_PPS   | RSVD         | RSVD         |

# ESS-9300 I/O Connector (J2)

Table 3: Board I/O Connector (J2)

| Pin<br># | Row A          | Row B | Row C          | Row D | Row E          | Row F |
|----------|----------------|-------|----------------|-------|----------------|-------|
| 1        | RSVD           | RSVD  | RSVD           | RSVD  | RSVD           | RSVD  |
| 2        | RSVD           | RSVD  | RSVD           | RSVD  | RSVD           | RSVD  |
| 3        | GND            | RSVD  | RSVD           | RSVD  | GND            | RSVD  |
| 4        | GND            | RSVD  | GND            | GND   | GND            | RSVD  |
| 5        | TE1_1_TXDATA_P | GND   | TE1_2_TXDATA_P | GND   | TE1_1_RXDATA_P | GND   |
| 6        | TE1_1_TXDATA_N | GND   | TE1_2_TXDATA_N | GND   | TE1_1_RXDATA_N | GND   |

| Pin<br># | Row A            | Row B            | Row C            | Row D            | Row E              | Row F        |
|----------|------------------|------------------|------------------|------------------|--------------------|--------------|
| 7        | GND              | TE1_3_TXDATA_P   | GND              | TE1_2_RXDATA_P   | GND                | TE1_3_RXDAT  |
| 8        | GND              | TE1_3_TXDATA_N   | GND              | TE1_2_RXDATA_N   | GND                | TE1_3_RXDAT  |
| 9        | TE1_4_TXDATA_P   | GND              | TE1_5_TXDATA_P   | GND              | TE1_4_RXDATA_P     | GND          |
| 10       | TE1_4_TXDATA_N   | GND              | TE1_5_TXDATA_N   | GND              | TE1_4_RXDATA_N     | GND          |
| 11       | GND              | TE1_6_TXDATA_P   | GND              | TE1_5_RXDATA_P   | GND                | TE1_6_RXDAT  |
| 12       | GND              | TE1_6_TXDATA_N   | GND              | TE1_5_RXDATA_N   | GND                | TE1_6_RXDAT  |
| 13       | TE1_7_TXDATA_P   | GND              | TE1_8_TXDATA_P   | GND              | TE1_7_RXDATA_P     | GND          |
| 14       | TE1_7_TXDATA_N   | GND              | TE1_8_TXDATA_N   | GND              | TE1_7_RXDATA_N     | GND          |
| 15       | GND              | TE1_9_TXDATA_P   | GND              | TE1_8_RXDATA_P   | GND                | TE1_9_RXDAT  |
| 16       | GND              | TE1_9_TXDATA_N   | GND              | TE1_8_RXDATA_N   | GND                | TE1_9_RXDAT  |
| 17       | TE1_10_TXDATA_P  | GND              | RSVD             | GND              | TE1_10_RXDATA_P    | GND          |
| 18       | TE1_10_TXDATA_N  | GND              | RSVD             | GND              | TE1_10_RXDATA_N    | GND          |
| 19       | GND              | RSVD             | GND              | RSVD             | GND                | RSVD         |
| 20       | GND              | RSVD             | GND              | RSVD             | GND                | RSVD         |
| 21       | SFP_TE1_1_PRES_L | GND              | SFP_TE1_5_PRES_L | GND              | GND                | GND          |
| 22       | SFP_TE1_2_PRES_L | GND              | SFP_TE1_6_PRES_L | GND              | GND                | GND          |
| 23       | GND              | SFP_TE1_3_PRES_L | GND              | SFP_TE1_7_PRES_L | SFP_TE1_9_PRES_L   | SFP_TE1_10_P |
| 24       | RSVD             | SFP_TE1_4_PRES_L | RSVD             | SFP_TE1_8_PRES_L | GND                | GND          |
| 25       | RSVD             | GND              | RSVD             | GND              | MGMT_PORT_RXDATA_P | MGMT_PORT_   |
| 26       | GND              | RSVD             | GND              | RSVD             | MGMT_PORT_RXDATA_N | MGMT_PORT_   |
| 27       | USB1_A_FAULT_L   | RSVD             | GND              | RSVD             | GND                | GND          |
| 28       | USB1_A_PWR_EN    | GND              | DCA_PWR_GOOD     | GND              | MGMT_PHY_RST_L     | GND          |
| 29       | GND              | USB2_A_FAULT_L   | DCB_PWR_GOOD     | GND              | GND                | GND          |
| 30       | USB1_A_D_P       | USB2_A_PWR_EN    | DYING_GASP_L     | GND              | MDIO_MGMT_PHY      | GND          |
| 31       | USB1_A_D_N       | GND              | RSVD             | GND              | MDC_MGMT_PHY       | GND          |
| 32       | GND              | USB2_A_D_P       | GND              | GND              | GND                | GND          |
| 33       | GND              | USB2_A_D_N       | RSVD             | GND              | GND                | RSVD         |
| L        | 1                | i                | 1                | 1                | 1                  | 1            |

| Pin<br># | Row A            | Row B | Row C | Row D         | Row E | Row F |
|----------|------------------|-------|-------|---------------|-------|-------|
| π        |                  |       |       |               |       |       |
| 34       | GND              | GND   | RSVD  | GND           | GND   | GND   |
| 35       | GND              | GND   | RSVD  | GND           | RSVD  | RSVD  |
| 36       | RSVD             | GND   | GND   | TEMP_SENSOR_N | RSVD  | RSVD  |
| 37       | RSVD             | GND   | RSVD  | TEMP_SENSOR_P | GND   | RSVD  |
| 38       | GND              | RSVD  | RSVD  | GND           | RSVD  | GND   |
| 39       | GND              | RSVD  | RSVD  | RSVD          | RSVD  | RSVD  |
| 40       | RESET_HOLD_OFF_L | GND   | RSVD  | RSVD          | RSVD  | RSVD  |



# **Implementation Options**

This chapter contains the following sections:

- Module I/O Description, on page 13
- Block Diagrams, on page 15
- Power Signals, on page 15
- LED Definitions, on page 15
- Mechanical and Environmental Testing, on page 20
- Overtemperature Detection, on page 22
- Thermal Design Considerations, on page 23
- Product Specifications, on page 25
- Power Requirements, on page 26
- SD Support, on page 26
- SFP Support, on page 27

# **Module I/O Description**

The following table provides details on the I/O signals.

#### Table 4: I/O Signals

| IO Name        | Description                      | Direction | I/O Standard     | Notes                                     |
|----------------|----------------------------------|-----------|------------------|-------------------------------------------|
| CLK_156M25_*   | 156.25MHz reference clock        | Out       | LDVS             | If unused terminate with 100 ohm resistor |
| I2C_*_SDA      | I2C data                         | In/Out    | 3.3V Open-drain  | Pullup on Cisco card                      |
| I2C_*_SCL      | I2C clock                        | In/Out    | 3.3V Open-drain  | Pullup on Cisco card                      |
| I2C_MUX_RST_L  | I2C mux reset                    | Out       | 3.3V             | Resets the I2C mux                        |
| P3_3V_RTC      | Backup power for real time clock | In        | 3.3V             | —                                         |
| CNS_RJ45_TXD_L | RS-232 console                   | Out       | RS-232 Compliant | RS-232 console port                       |
| CNS_RJ45_RTS_L | RS-232 console                   | Out       | RS-232 Compliant | RS-232 console port                       |

| IO Name                 | Description                                        | Direction | I/O Standard      | Notes                                                                                      |
|-------------------------|----------------------------------------------------|-----------|-------------------|--------------------------------------------------------------------------------------------|
| CNS_RJ45_RXD_L          | RS-232 console                                     | In        | RS-232 Compliant  | RS-232 console port                                                                        |
| CNS_RJ45_CTS_L          | RS-232 console                                     | In        | RS-232 Compliant  | RS-232 console port                                                                        |
| USB_CONSOLE_[P/N]       | USB console                                        | Bi        | USB 2.0 Compliant | USB 2.0 console port                                                                       |
| LED_SH_DIN              | Shift chain data                                   | Out       | 3.3V              |                                                                                            |
| LED_SH_CLK              | Shift chain clock                                  | Out       | 3.3V              |                                                                                            |
| LED_SH_EN_L             | Shift chain enable low                             | Out       | 3.3V              | Pullup on Cisco card                                                                       |
| LED_SH_LATCH            | Shift chain latch                                  | Out       | 3.3V              |                                                                                            |
| PUSH_BUTTON_L           | Push button                                        | In        | 3.3V              | Pullup on Cisco card                                                                       |
| TE1_[1-10]_TXDATA_[P/N] | XFI 10G tx data                                    | Out       | LVDS              | —                                                                                          |
| TE1_[1-10]_RXDATA_[P/N] | XFI 10G rx data                                    | In        | LVDS              | _                                                                                          |
| SFP_TE1_[1-10]_PRES_L   | SFP present low                                    | In        | 3.3V              | Signal indicating the presence of the SFP                                                  |
| USB1_[1-2]_FAULT_L      | USB power fault detected                           | In        | 3.3V              | Pullup on Cisco card                                                                       |
| USB1_[1-2]_PWR_EN       | Turn on the USB 5V power                           | Out       | 3.3V              | Pullup on Cisco card                                                                       |
| USB1_[1-2]_D_[P/N]      | USB for SD or USB Type A                           | Bi        | USB 2.0 Compliant | _                                                                                          |
| RESET_HOLD_OFF_L        | Keeps the Cisco card in reset                      | In        | 3.3V              | This signal holds the Cisco card in reset until the integrator card is ready.              |
| DC[A-B]_PWR_GOOD        | DC power is good or either A or<br>B supply        | In        | 3.3V              | High indicates the DC input is good. Pullup on Cisco card.                                 |
| DYING_GASP_L            | Indicates the power supplies are starting to fail  | In        | 3.3V              | The supplies must hold up the<br>power until the dying gasp<br>messages can be sent out.   |
| TEMP_SENSOR_[P/N]       | Transistor temperature sensor on<br>the Cisco card | Out       | N/A               | These signals can be used for the integrator to monitor the temperature of the Cisco card. |
| MGMT_PHY_RXDATA         | SGMII signal for management<br>PHY                 | Out       | LVDS              | —                                                                                          |
| MGMT_PHY_TXDATA         | SGMII signal for management<br>PHY                 | In        | LVDS              |                                                                                            |
| MGMT_PHY_RST_L          | Management phy reset                               | Out       | 3.3V              | Pull low if no management phy is populated                                                 |

| IO Name       | Description                | Direction | I/O Standard | Notes                                  |
|---------------|----------------------------|-----------|--------------|----------------------------------------|
| MDIO_MGMT_PHY | Management phy MDIO signal | Bi        | 3.3V         | MDIO bus, MDIO_MGMT_PHY needs a pullup |
| MDC_MGMT_PHY  | Management phy MDC signal  | Out       | 3.3V         | _                                      |

Note

In the above table, LVDS stands for Low-Voltage Differential Signaling. For further information see the TIA/EIA-644 technical standard.

# **Block Diagrams**

The system integrator can find block diagrams that represents how the ESS board connects into their system located here:

ESS9300 Block Diagram

# **Power Signals**

**Table 5: Power Signals** 

| Signal Name  | Description                       | Direction | l/O<br>Standard | Notes                                              |
|--------------|-----------------------------------|-----------|-----------------|----------------------------------------------------|
| P5V_MODULE   | +5V power for Cisco card          | In        | PWR             | See Board Electrical Power Consumption, on page 26 |
| P3_3V_MODULE | +3.3V power for Cisco card        | In        | PWR             | See Board Electrical Power Consumption, on page 26 |
| P3_3V RTC    | +3.3V for real time clock hold up | In        | PWR             | See Board Electrical Power Consumption, on page 26 |
| GND          | Reference ground                  |           | PWR             | —                                                  |

# **LED Definitions**

LED functionality is provided by a dedicated controller for driving an LED shift chain for driving the LEDs on the integrator board. You can select any combination of LEDs to implement. You are not required to implement all of the LEDs but must implement the shift chain up to the last LED needed.

I

| LED                  | Color                    | Description                                                                                           |
|----------------------|--------------------------|-------------------------------------------------------------------------------------------------------|
| System               | Off                      | System is not powered on.                                                                             |
|                      | Flashing Green           | Power on tests in progress.                                                                           |
|                      | Solid Green              | System is operating normally.                                                                         |
|                      | Flashing Yellow          | System is receiving power but is not functioning properly.                                            |
|                      | Yellow                   | System fault detected.                                                                                |
| DC-A/B               | Off<br>Solid Green       | Power is not present on the circuit, or the system is not powered up.                                 |
|                      | Solid Red                | Power is present on the associated circuit.                                                           |
|                      | Solid Red                | Power is not present on the associated circuit, and the switch<br>is configured for dual-input power. |
| Alarm Out            | Off                      | Alarm Out is not configured.                                                                          |
|                      | Solid Green              | Alarm Out is configured, no alarm detected.                                                           |
|                      | Flashing Red             | Switch has detected a major alarm.                                                                    |
|                      | Solid Red                | Switch has detected a minor alarm.                                                                    |
| Alarm In             | Off                      | Alarm In is not configured.                                                                           |
|                      | Solid Green              | Alarm In is configured, no alarm detected.                                                            |
|                      | Flashing Red             | Switch has detected a major alarm.                                                                    |
|                      | Solid Red                | Switch has detected a minor alarm.                                                                    |
| Under<br>Temperature | Red                      | The system is under temperature and is warming up.                                                    |
| Port                 | Off                      | No link or the port was administratively shut down.                                                   |
|                      | Solid Green              | Link is present, no activity.                                                                         |
|                      | Flashing Green           | Link is healthy, with activity.                                                                       |
|                      | Alternating Green/Yellow | Link faulty or an error.                                                                              |
|                      | Solid Yellow             | Port is disabled.                                                                                     |
| Console              | Off                      | USB cable or Blue-tooth dongle not connected.                                                         |
|                      | Solid Green              | USB console is active.                                                                                |
|                      | Flashing Green           | Blue-tooth dongle is active.                                                                          |
| Zeroize              | Off                      | Normal operation.                                                                                     |
|                      | Flashing Green           | Zeroization procedure has been initiated.                                                             |
|                      | Solid Yellow             | Zeroization procedure has completed; switch is about to reboot.                                       |
|                      | Solid Green              | Zeroization procedure has completed.                                                                  |

### **Board LED Register Bits**

The following table provides a listing of the Board LED register bits for the system integrator.

#### Table 6: LED Shift Chain

| GPIO Position                       | Carrier           |
|-------------------------------------|-------------------|
| 0 (First bit out of the Cisco card) | TE1/12 Green      |
| 1                                   | TE1/12 Yellow     |
| 2                                   | TE1/11 Green      |
| 3                                   | TE1/11 Yellow     |
| 4                                   | TE1/10 Green      |
| 5                                   | TE1/10 Yellow     |
| 6                                   | TE1/9 Green       |
| 7                                   | TE1/9 Yellow      |
| 8                                   | TE1/8 Green       |
| 9                                   | TE1/8 Yellow      |
| 10                                  | TE1/7 Green       |
| 11                                  | TE1/7 Yellow      |
| 12                                  | TE1/6 Green       |
| 13                                  | TE1/6 Yellow      |
| 14                                  | TE1/5 Green       |
| 15                                  | TE1/5 Yellow      |
| 16                                  | TE1/4 Green       |
| 17                                  | TE1/4 Yellow      |
| 18                                  | TE1/3 Green       |
| 19                                  | TE1/3 Yellow      |
| 20                                  | TE1/2 Green       |
| 21                                  | TE1/2 Yellow      |
| 22                                  | TE1/1 Green       |
| 23                                  | TE1/1 Yellow      |
| 24                                  | USB console Green |

| GPIO Position                    | Carrier               |
|----------------------------------|-----------------------|
| 25                               | Under temperature Red |
| 26                               | Alarm IN 2 Green      |
| 27                               | Alarm IN 2 Red        |
| 28                               | Alarm IN 1 Green      |
| 29                               | Alarm IN 1 Red        |
| 30                               | Alarm Out Green       |
| 31                               | Alarm Out Red         |
| 32                               | DC-B Green            |
| 33                               | DC-B Red              |
| 34                               | DC-A Green            |
| 35                               | DC-A Red              |
| 36                               | ZEROIZE Green         |
| 37                               | ZEROIZE Yellow        |
| 38                               | SYSTEM Green          |
| 39 (Last bit out of shift chain) | SYSTEM Yellow         |

# **Module Voltage Test Points**

The following figure shows voltage test points on the board with descriptions in the following table.



Note Red lines are Positive, Black lines are Ground.

Figure 5: Voltage Test Points

### 

| Test<br>Point | Location         | Location<br>Color | Voltage         |
|---------------|------------------|-------------------|-----------------|
| 1             | C311             | Yellow            | 0.60V           |
| 2             | C370             | Orange            | 0.80V           |
| 3             | C30_M1           | Blue              | 0.85V           |
| 4             | C373             | Purple            | 0.90V           |
| 5             | Surface<br>trace | Pink              | 1.20V           |
| 6             | Surface<br>trace | Light Yellow      | 1.20V<br>(VDDH) |
| 7             | Surface<br>trace | Light Blue        | 1.80V           |
| 8             | Surface<br>trace | Dark Green        | 2.50V           |
| 9             | Surface<br>trace | Brown             | 3.30V           |
| 10            | C16_M1           | Red               | 5.0V            |

#### Cisco Catalyst ESS-9300-10X Embedded Switch Hardware Technical Guide

# **Mechanical and Environmental Testing**

The tests listed in the following tables were successfully executed on the Cisco ESS9300 using Cisco passive cooling design. These tests used a representative enclosure that conforms to the mounting and thermal mechanisms. Because this type of testing is highly dependent on factors such as the test enclosure design, the thermal solution, the front panel connectors, and the mounting, the following test results should only be used as a reference.

| High and Low Temperature Cycle Stress   | High Temperature: 74°C (165°F)                                                                                                                                                                           |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (Operational)                           | Low Temperature: -40°C (-40°F)                                                                                                                                                                           |  |  |  |
|                                         | Reference: MIL-STD-810F, Method 501.4, Procedure II and Method 502.4, Procedure II; SAE J1455 (Rev AUG94), Section 4.1.3                                                                                 |  |  |  |
| Thermal Shock                           | High Temperature: 85°C (185 °F)                                                                                                                                                                          |  |  |  |
| (Non-Operational)                       | Low Temperature: -40°C (-40 °F)                                                                                                                                                                          |  |  |  |
|                                         | Cycle: 2 hours high temperature, 2 hours low temperature                                                                                                                                                 |  |  |  |
|                                         | Test Period: 2 hour pre-soak at low temperature, followed by 5 cycles                                                                                                                                    |  |  |  |
|                                         | Repetition: 5 test periods                                                                                                                                                                               |  |  |  |
|                                         | Reference: MIL-STD-810F, Method 503.4; SAE J1455 (Rev AUG94), Section 4.1.3.2                                                                                                                            |  |  |  |
| High Temperature Component Thermal Test | Method: Thermocouples on all critical/hot components                                                                                                                                                     |  |  |  |
| (Operational)                           | at board level. Bring temperature of top center surface<br>of thermal plate to 85°C (185 °F) and allow it to<br>stabilize. Ensure that all components are within<br>manufacturer thermal specifications. |  |  |  |

#### Table 7: Temperature

#### Table 8: Altitude

| Low Pressure/Altitude | Altitude: 4.6km (15,000ft)                                                                  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------|--|--|
| (Operational)         | Equivalent Absolute Pressure: 57.2 kPa (8.3 lbf/in2)                                        |  |  |
|                       | Temperature: -40°C (-40°F) to 74°C (165°F)                                                  |  |  |
|                       | Altitude Ramp Rate: 10m/s (max)                                                             |  |  |
|                       | Temperature Ramp Rate: 1.5°C (min) to 4.5°C (max)                                           |  |  |
|                       | Reference: MIL-STD 810F, Method 500.4, Procedure II; SAE J1455 (Rev AUG94), Section 4.1.3.1 |  |  |

| Operational Altitude  | Altitude: 12.2km (40,000ft)                                                   |  |  |
|-----------------------|-------------------------------------------------------------------------------|--|--|
|                       | Equivalent Absolute Pressure: 18.6kPa (2.7lbf/in2)                            |  |  |
|                       | Temperature: -40C (-40F) to 25C (77F)                                         |  |  |
| Low Pressure/Altitude | Altitude: 12.2km (40,000 ft)                                                  |  |  |
| (Non-Operational)     | Equivalent Absolute Pressure: 18.6kPa (2.7lbf/in2)                            |  |  |
|                       | Temperature: -40°C (-40°F) to 85°C (185°F)                                    |  |  |
|                       | Altitude Ramp Rate: 10m/s (max)                                               |  |  |
|                       | Temperature Ramp Rate: 1.5°C (min) to 4.5°C (max)                             |  |  |
|                       | Reference: MIL-STD-810F, Method 500.4; SAE J1455 (Rev AUG94), Section 4.1.3.1 |  |  |
|                       |                                                                               |  |  |

#### Table 9: Humidity

| Temperature & Humidity Cycle Stress | Humidity: 95% +/- 5% RH                                                                                                                                                                                                                                             |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (Non-Operational; Energized)        | Pressure: 103.4 kPa (15 lbf in2)                                                                                                                                                                                                                                    |  |  |
|                                     | Temperature: -40°C (-40°F) to 65°C (149°F)                                                                                                                                                                                                                          |  |  |
|                                     | Cycle: One, 24 hour cycle                                                                                                                                                                                                                                           |  |  |
|                                     | Reference: SAE J1455 (Rev AUG94), Section 4.2.3                                                                                                                                                                                                                     |  |  |
| Active Temperature/Humidity         | Temperature: $-40^{\circ}$ C ( $-40^{\circ}$ F) to 65 °C (149 °F)                                                                                                                                                                                                   |  |  |
| 10 Day Soak                         | Humidity: 95% +/- 5% RH                                                                                                                                                                                                                                             |  |  |
| (Non-Operational; Energized)        | Cycle: Ramp from 25°C to 0°C over 75 minute period,<br>dwell at 0°C for 240 minutes, ramp to 65°C over 120<br>minute period, dwell at 65°C for 240 minutes (95%<br>+/- 5% RH), ramp to 25°C over 45 minute period,<br>dwell at 25°C for 120 minutes (50% +/- 5% RH) |  |  |
|                                     | Repetition: 20 total cycles (10 days total)                                                                                                                                                                                                                         |  |  |
|                                     | Reference: MIL-STD-810F, Method 507.4; SAE J1211 (Rev NOV78), Section 4.2.2; SAE J1455 (Rev AUG94), Section 4.2.3                                                                                                                                                   |  |  |

#### Table 10: Vibration and Shock

| Random Vibration | Acceleration: 1.04g rms vertical, 0.204g rms    |
|------------------|-------------------------------------------------|
| (Operational)    | transverse, 0.740g rms longitudinal             |
|                  | Duration: 2 hours per axis                      |
|                  | Test orientation: 3 axes                        |
|                  | Reference: MIL-STD-810F, Method 514.5, Category |
|                  | 4                                               |

| Crash Hazard Shock         | Acceleration: 75G                                             |  |  |
|----------------------------|---------------------------------------------------------------|--|--|
| (Non-Operational)          | Duration: 8-13ms                                              |  |  |
|                            | Test orientation: 3 axes (positive and negative)              |  |  |
|                            | Number of shocks: 2 shocks in each direction, 12 shocks total |  |  |
|                            | Reference: MIL-STD-810F, Method 516.5, Procedure V            |  |  |
| Functional Shock           | Acceleration: 40G                                             |  |  |
| (Operational)              | Duration: 15-23ms                                             |  |  |
|                            | Test orientation: All 6 faces, in 3 perpendicular axes        |  |  |
|                            | Reference: MIL-STD-810F, Method 516.5, Procedure I            |  |  |
| Bench handling shock (tip) | Test orientation: All four edges of each face to form         |  |  |
| (Operational)              | 10° angle with bench top                                      |  |  |
|                            | Reference: MIL-STD-810F, Method 516.5, Procedure VI           |  |  |

### **Overtemperature Detection**

The board has a temperature sensor mounted on the edge of the board that should be thermally attached to the Customer Designed Conduction Plate. When the temperature sensor detects a temperature exceeding the threshold of  $203^{\circ}$ F (96°C), the overtemperature LED will illuminate.

The digital temperature sensor measures the temperature of the Customer Designed Conduction Plate, not the local ambient temperature. The product datasheet states the board will operate as long as the conduction plate is in the range of -40C to +85C. The alarms are set accordingly, and the high temperature alarm thresholds are set as follows:

- Minor alarm at +80C the Customer Designed Conduction Plate temperature is close to the rated thermal limit of the unit, and will notify the user. The components are still within the specification, so there is no degradation to the long term reliability of the system.
- Major alarm at +90C the Customer Designed Conduction Plate temperature is over the rated thermal limit of the unit, and will notify the user. This will impact the long term reliability of the system.
- Critical alarm at +96C the Customer Designed Conduction Plate temperature is way over the rated thermal limit of the unit, and will notify the user. This will impact the long term reliability of the system. For the Critical Alarm threshold to be reached, it means that the ambient temperature of the system will be exceeded. Hardware failure is immanent, and the failure time will depend upon your installation. Depending on the severity at this point, the failure may be temporary or permanent.



**Caution** IOS will never shut down a device because the temperature exceeds the specification. Cisco does not guarantee the functionality, nor the long term reliability of a device operating beyond Cisco specifications, but lets the device continue operating until some piece of hardware physically shuts down. Operating outside of the temperature specifications will void the product warranty.

The status of the temperature sensors can be reported from the Cisco ESS-9300 IOS CLI:

```
Switch# show environment all
ALARM CONTACT 1
  Status:
             not asserted
  Description: external alarm contact 1
  Severity: minor
  Trigger:
            closed
ALARM CONTACT 2
  Status: not asserted
  Description: external alarm contact 2
  Severity: minor
  Trigger:
            closed
Supervisor Temperature Value: 51 C
Temperature State: GREEN
System Temperature thresholds
Minor Threshold : 80 C (Yellow)
              : 90 C (Red)
Major Threshold
Critical Threshold : 96 C
Shutdown Threshold : 105 C
Pwr Supply Type Status
_____
                 _____
POWER SUPPLY-A DC
                        OK
POWER SUPPLY-B
                DC
                        OK
```

### Thermal Design Considerations

The following sections outline the methods for dealing with thermal issues and the mounting options involving the Customer Designed Conduction Plate.

As the ESS9300 is intended for use in extreme environments, industrial temperature rated components are used.

As a general rule, the thermal plate of the card needs to make contact with an adequate thermal mass to draw heat away from the card. This can be done in a number of ways.

The important note is that the Customer Designed Conduction Plate temperature, as measured at the center of the top surface of the conduction plate, must not exceed 85°C. As long as this requirement is satisfied, all of the card's components will be within a safe operating temperature range on the high temperature side.



Note

The area in the following figure noted by the red square is the 45A power supply and needs some additional cooling.





Note Cisco uses the following TIMs at each REFDES:

The U1, U9, U12, U13, U14, U15, U8, and other items in the figure above use the Chomerics GEL30. U1 uses a Fujipoly 32x32, 150Xr-PE thermal pad.

Samtec has 3D models, footprints, and schematic symbols for their connectors here:

| htti | ps://www.s | samtec.com | connectors/ | 'high-s | peed-board | l-to-board | /high-dei | nsitv-arra | vs/searav |
|------|------------|------------|-------------|---------|------------|------------|-----------|------------|-----------|
|      |            |            |             |         |            |            |           |            | ,         |

| RefDes                    | Thermal<br>Design Power<br>(in W) | Allowable<br>junction temp<br>(in °C) | Allowable<br>case temp (in<br>°C) | Package Type | Theta Jc (in<br>°C/W) | Theta Jb (in<br>°C/W) |
|---------------------------|-----------------------------------|---------------------------------------|-----------------------------------|--------------|-----------------------|-----------------------|
| U1                        | 33                                | 115                                   |                                   | FCTEBGA1155  |                       | -                     |
| U9, U12, U13,<br>U14, U15 | 0.2 Each                          | —                                     | 95                                | FBGA96       | 3.0                   |                       |
| U8                        | 1                                 | —                                     |                                   | FBGA153      |                       | —                     |
| U37                       |                                   |                                       |                                   | MSOP8        |                       | —                     |



**Note** Q2 is a NPN transistor that can be used by the system integrator to read the temperature of the cooling plate for their use.

L

#### Validating a Thermal Solution

To validate a thermal solution, monitor the thermal sensor of the Cisco ESS 9300 cards in a thermal chamber set to the desired maximum ambient operating temperature and with traffic running.

The temperature sensor should make contact with the Customer Designed Conduction Plate using thermal interface material. The temperature of the sensors should be less than 90.5C. The **show environment all** command can be executed from the IOS prompt to monitor the thermal sensor temperatures.

```
Switch# show environment all
ALARM CONTACT 1
Status: not asserted
Description: external alarm contact 1
Severity: minor
```

# **Product Specifications**

The following tables list the product specifications for the Cisco ESS 9300.

#### Table 11: Interface Support

| ltem     | Description                        |
|----------|------------------------------------|
| ESS-9300 | 10 ports of 1 or 10 GE fiber (XFI) |

#### Table 12: Memory

| ltem          | Description                  |
|---------------|------------------------------|
| DRAM          | 4GB                          |
| SPI Flash     | 16MB                         |
| eMMC<br>Flash | 7 GB, 2.5 GB user accessible |

#### **Table 13: Hardware Specifications**

| ltem              | Description                         |
|-------------------|-------------------------------------|
| Input<br>voltages | +5Vdc (+/- 5%) and +3.3Vdc (+/- 3%) |
| Total Power       | Thermal Power = 35W                 |
|                   | Max Power = $43W$                   |
| Mass              | 88 grams (3.10 ounces)              |



**Note** For Environmental Specifications, please see the Mechanical and Environmental Testing section for complete specifications.

### **Power Requirements**

The board requires +5 VDC and +3.3 VDC to operate. Board Electrical Power Consumption, on page 26 lists the DC power requirements.

The ESS-9300 can display a POWER GOOD status for two Power Inputs via the DC-A-GOOD and DC-B-GOOD signals. If these signals are not used, connect DC-A-GOOD to 3.3 V and DC-B-GOOD to ground through a 1k resistor.



**Note** There is no specific voltage sequence requirement for the 5V and 3.3V power inputs. They can ramp up in any order.

#### **Dying Gasp**

If the switch is configured, and the feature is enabled, in the case of a temporary power outage, the switch will send a Dying Gasp packet. If the power recovers, the switch will continue to operate normally. See more about Dying Gasp in the ESS9300 Software Configuration Guide .

#### **Board Electrical Power Consumption**

**Table 14: Power Requirements** 

| Voltage<br>Rail | Tolerance      | Typical Current<br>(A) | Maximum Current (A) |
|-----------------|----------------|------------------------|---------------------|
| 5V              | +/- 3%         | N/A                    | 7.0A                |
| 3.3V            | +/- 3%         | N/A                    | 2.0A                |
| P3_3V<br>RTC    | +10% /<br>-60% | 0.4uA                  | 0.7uA               |

# **SD Support**

There is one Cisco SD card that has been tested and is recommended, the SD-IE-4GB. If the end user or system integrator chooses to use a 3rd party device, it may work for their application and to their satisfaction. However, the end user or system integrator is solely responsible for testing and ensuring proper operation.

The following message displays when a different SD card is installed:

WARNING: Non-IT SD flash detected. Use of this card during normal operation can impact and severely degrade performance of the system. Please use supported SD flash cards only.

You can find Cisco's policy on Third Party Components here:

https://www.cisco.com/c/en/us/products/warranties/warranty-doc-c99-740959.html#\_Toc3320258

# **SFP Support**

The following table lists the specific SFP transceivers and their characteristics.



LRM optics are not supported since the SFP is direct driven from the Cisco ASIC.

#### Supported SFP and SFP+ Modules

**Table 15: Supported Modules** 

| Part Number             | Specification   | SFP<br>Type | Max Distance | Cable Type | Temp<br>Range | DOM<br>Support |
|-------------------------|-----------------|-------------|--------------|------------|---------------|----------------|
| GLC-SX-MM-RGD=          | 1000BASE-SX     | GE          | 550m         | MMF        | IND           | Yes            |
| GLC-LX-SM-RGD=          | 1000BASE-LX/LH  | GE          | 550m/10km    | MMF/SMF    | IND           | Yes            |
| GLC-SX-MMD=             | 1000BASE-SX     | GE          | 550m         | MMF        | EXT           | Yes            |
| GLC-LH-SMD=             | 1000BASE-LX/LH  | GE          | 550m/10km    | MMF/SMF    | EXT           | Yes            |
| GLC-BX-D=               | 1000BASE-BX10   | GE          | 10km         | SMF        | СОМ           | Yes            |
| GLC-BX-U=               | 1000BASE-BX10   | GE          | 10km         | SMF        | СОМ           | Yes            |
| GLC-ZX-SM-RGD           | 1000BASE-ZX     | GE          | Approx. 70km | SMF        | IND           | Yes            |
| GLC-EX-SMD=             | 1000BASE-EX     | GE          | 40km         | SMF        | EXT           | Yes            |
| SFP-GE-S=               | 1000BASE-SX     | GE          | 550m         | MMF        | EXT           | Yes            |
| GLC-SX-MM=              | 1000BASE-SX     | GE          | 550m         | MMF        | СОМ           | No             |
| GLC-T-RGD=              | 1000BASE-T      | GE          | 100m         | Copper     | IND           | N/A            |
| GLC-LH-SM=              | 1000BASE-LX/LH  | GE          | 550m/10km    | MMF/SMF    | СОМ           | No             |
| GLC-TE=                 | 1000BASE-T      | GE          | 100m         | Copper     | EXT           | N/A            |
| GLC-T=                  | 1000BASE-T      | GE          | 100m         | Copper     | СОМ           | N/A            |
| CWDM-SFP-xxxx= (8 freq) | CWDM 1000BASE-X | GE          | —            | SMF        | СОМ           | Yes            |
| DWDM-SFP-xxxx=(40 freq) | DWDM 1000BASE-X | GE          | _            | SMF        | СОМ           | Yes            |

I

| Part Number      | Specification      | SFP<br>Type | Max Distance       | Cable Type | Temp<br>Range | DOM<br>Support |
|------------------|--------------------|-------------|--------------------|------------|---------------|----------------|
| SFP-10G-BXD-I=   | 10GBASE-BX10       | 10GE        | 10km               | SMF        | IND           | Yes            |
| SFP-10G-BXU-I=   | 10GBASE-BX10       | 10GE        | 10km               | SMF        | IND           | Yes            |
| SFP-10G-SR-X=    | 10GBASE-SR         | 10GE        | 400m               | MMF        | EXT           | Yes            |
| SFP-10G-LR-X=    | 10GBASE-LR         | 10GE        | 10km               | SMF        | EXT           | Yes            |
| SFP-10G-SR=      | 10GBASE-SR         | 10GE        | 400m               | MMF        | СОМ           | Yes            |
| SFP-10G-LR=      | 10GBASE-LR         | 10GE        | 10km               | SMF        | СОМ           | Yes            |
| SFP-H10GB-CUxM=  | 10G Passive Twinax | 10GE        | 1m/3m/5m           | Twinax     | СОМ           | N/A            |
| SFP-H10GB-ACUxM= | 10G Active Twinax  | 10GE        | 7m/10m             | Twinax     | СОМ           | N/A            |
| SFP-10G-T-X *    | 10GBASE-T          | 10GE        | Up to 30<br>meters | Cat6A/Cat7 | EXT           | NA             |



# **Device Zeroization and Recovery**

This chapter contains the following sections:

- Device Zeroization, on page 29
- Push Button, on page 30
- Important Notice about Zeroization, on page 30
- Zeroization Details, on page 31
- Command Line Interface, on page 32
- Zeroization Trigger, on page 32
- To Trigger Zeroization, on page 32
- Emergency Recovery Installation, on page 33

# **Device Zeroization**

Zeroization consists of erasing any and all potentially sensitive information in the switch securely and followed by sanitize operation. This includes erasure of Main memory, license, logs, cache memories, IOS-XE packages, system configs, and other memories containing packet data, NVRAM, and Flash memory.

The process of zeroization is launched upon the initiation of a user command and a subsequent trigger.



Note

Ensure that you are familiar with the Emergency Recovery Installation, on page 33 procedure **BEFORE** attempting to test the Zeroize feature.

On the ESS9300, the Push Button is used exclusively for triggering the Zeroization process. This process will zeroize and erase switch configuration files, or the entire flash file system, depending on the option provided under **service declassify**.

The Zeroization process starts as soon as the Push Button is pressed. The CLI command, **service declassify**, is used to set the desired action in response to the Push Button press. To prevent accidental erasure of the system configuration/image, the default setting is set to **no service declassify**.



#### Caution

Zeroization does NOT erase removable media such as SD Card and USB Storage. This media must be removed from the system and erased or destroyed using procedures that are outside the scope of this document.

# **Push Button**

There is no actual button on the ESS9300, and the system integrator must configure their platform with a Push Button. Reset on an ESS9300 does not cause the device to reboot, but initiates the configured level of zeroization.

Zeroization can be triggered by the Push Button, or software-triggered by a privilege 15 user with console access. There is no remote access for security reasons.

The Zeroization process starts as soon as the Push Button is pressed.

### **Important Notice about Zeroization**

eMMC is a managed NAND. This means that the embedded switch system does not interact with the flash memory directly. The flash controller presents a block-style interface to the system, and it handles the flash management (analogous to the Flash Translation Layer). The embedded switch cannot access the raw flash directly.

The JEDEC standard has commands that are supposed to remove data from the raw flash. In Cisco's implementation, the "Erase" and "Sanitize" commands are used. The eMMC standard JESD84-B51 defines "Sanitize" as follows:

"The Sanitize operation is a feature ... that is used to remove data from the device according to Secure Removal Type. The use of the Sanitize operation requires the device to physically remove data from the unmapped user address space"

After the sanitize operation is completed, no data *should exist* in the unmapped host address space.

| Caution     | Zeroize does a very thorough wipe of all non-protected parts of the eMMC flash using the best technology designed by the flash manufacturer today and can do so using the push of a button without the need for a console, ssh, or management session of any kind. It is the integrator's and end user's responsibility to determine the suitability regardless of the CLI keyword used to enable the feature. |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Â           |                                                                                                                                                                                                                                                                                                                                                                                                                |
| Caution     | Note: While Cisco IOS and Cisco IOS-XE use the command line text of "declassify" in the command line interface (CLI) to enable the zeroize feature, in no way does this represent any specific endorsement or acknowledgment of a Government approved flash erasure methodology.                                                                                                                               |
| Â           |                                                                                                                                                                                                                                                                                                                                                                                                                |
| Caution     | Declassification procedures are unique to each Government organization. Cisco solely provides the technical detail of the erasure operation here, not the policy distinction or any specific recommendation per classification.                                                                                                                                                                                |
| $\triangle$ |                                                                                                                                                                                                                                                                                                                                                                                                                |
| Caution     | Please refer to your respective Government Agency policies, procedures, and recommendations for the handling of sensitive data to see if this procedure meets with those requirements.                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                |

#### WARNING!

The CLI service declassify erase-all is literally a software self-destruct mechanism intended for defense and intelligence environments that attempts to wipe clean, all of the writable non-volatile storage on the device to clear the device configuration, other stored configurations and all security credentials including any additional license keys.

Please do not use this feature in lieu of doing a **write erase** from the CLI or from the Administration page, Reload option of the WebUI. Invoke the reload with the **Reset to Factory Default and Reload** option and click **Apply**. See the following figure.

Administration > Reload

- Save Configuration and Reload.
- Reload without Saving Configuration
- Reset to Factory Default and Reload

#### 🖺 Apply

If **service declassify erase-all** is invoked, after restoring the IOS-XE image and device configuration, you must re-license the device using the standard Cisco Smart Licensing procedures which ultimately require a Cisco Smart Account and access to the internet or a satellite license server.

### **Zeroization Details**

When zeroization is triggered from the Push Button, the following occurs:

- wipe persistent storage devices
- set flag to wipe RAM for bootloader, reload
- · bootloader checks flags, wipes RAM

#### **Tasks performed by IOS-XE**

- 1. Shutdown interfaces and flash the zeroization LED.
- 2. Clear data path related memory from ASIC.
- 3. Set rommon variable for bootloader to trigger the RAM erasure.
- 4. Calls system\_reload API to reload the device.

#### **Tasks Performed By Bootloader**

After system\_reload is triggered from IOS-XE, control transfers to Bootloader. When Bootloader sees the zeroization triggers, it performs a secure erase and sanitization of all the unlocked eMMC partitions through secure erase opcodes & sanitize opcodes. The erased and sanitized areas are:

- Crash info: This has the system crash info file.
- ROMMON Variables: System vars, including user defined vars are erased.
- · License & License Backup: System license files are stored here.
- OBFL: IOS-XE OBFL failure logs are stored here.

- Optional keys: Some optional keys are installed here, which are sanitized.
- Flash: is the partition where all the system configuration files, systems data and other user data are stored.

**Note** If a power cycle happens during zeroization, the bootloader would start zeroization over again since the rommon variable for zeroization is still present.

The following message appears on the console when reset has been triggered:

```
System Bootstrap, Version 1.4(DEV) [vandvisw-vandvisw 113], DEVELOPMENT SOFTWARE
Copyright (c) 1994-2019 by cisco Systems, Inc.
Compiled at Mon Jun 3 10:56:19 2019 by vandvisw
ESS-9300-CON-K9 platform with 4194304 Kbytes of main memory
MCU Version - Bootloader: 8, App: 10
MCU is in application mode.
Reset button push detected
```

### **Command Line Interface**

There are two levels of zeroization actions, erase-nvram and erase-all. The following CLI shows the options:

```
switch(config)#service declassify ?
erase-nvram Enable erasure of switch configuration as zeroization action. Default is no
erasure.
erase-all Enable erasure of both flash and nvram file systems as part of zeroization.
Default is no erasure
```

### **Zeroization Trigger**

Zeroization can be triggered by either software or by the push button. In either case, there are a series of commands that need to be entered.

switch#config terminal
switch(config)#service declassify {erase-nvram | erase-all}

To confirm if the feature is enabled:

switch#show declassify

```
Declassify facility: Enabled=Yes In Progress=No
Erase flash=Yes Erase nvram=Yes
Declassify Console and Aux Ports
Shutdown Interfaces
Reload system
```

To remove the feature, use the following command:

switch(config)#no service declassify

### **To Trigger Zeroization**

To trigger the zeroization from the command line:

switch#declassify trigger

To trigger the zeroization from the push button, press and hold the button for 4+ seconds. When the system auto reloads, it will come up in ROMMON mode: "\$\$" with bootflash: wiped clean.

### **Emergency Recovery Installation**

The following procedure supports the Cisco ESS3300 and the Cisco ESS9300.



Note

There is different terminology used when referring to the reset button depending on the product. The IE3x00 switches call this the Express Setup switch. Other products may refer to this as the Factory Default Switch. In either case, the functionality is the same.

If the other recovery methods fail, the switch has a trap door method that you can use in order to recover the system. You must have a terminal that is connected to port Gi1/3 of the switch that runs a TFTP server. Download a valid image file from CCO and store it in the root of the TFTP server.

It is likely that the switch is stuck at the **switch**: prompt. However, if you are in a boot loop, you can use the Express Setup switch on the front of the switch in order to break the cycle: hold the button for approximately <TBD> seconds, and the switch breaks the cycle and stops at the **switch**: prompt.

Complete these steps in order to perform an emergency recovery:

Step 1: Boot the emergency install image.

```
switch: switch: boot emgy0:<image-name>.SPA.bin
Booting golden bootloader...
Initializing disk drivers...
Initializing file systems...
*****
* Rom Monitor for ESS3300
* Copyright (c) 2017-2018 by Cisco Systems, Inc.
                                                   *
* All rights reserved.
* Version: 1.1.1
* Compiled: Sun 01-Jul-18 22:17 [RELEASE SOFTWARE]
* Boot Partition: gspi-golden-bootloader
* Reset Reason: Soft Reset
Loading "emgy0:ess3x00-universalk9.17.04.01.SPA.bin" to memory...
Verifying image "emgy0:ess3x00-universalk9.17.04.01.SPA.bin"...
Image passed digital signature verification
Checking for Bootloader upgrade ...
Bootloader upgrade not required
SUP PL (profile: 1) configuration done successfully
<...>
Press RETURN to get started!
Switch>
```

Step 2: Configure an IP address on the switch. Additional details on IP configuration can be found here

switch(config-if)# ip address <ip-address> <subnet-mask>

Step 3: Ping the terminal that contains the TFTP server in order to test the connectivity:

switch> ping 192.168.2.1

Type escape sequence to abort. Sending 5, 100-byte ICMP Echoes to 192.168.2.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Step 4: Copy the image via tftp

switch> copy tftp: //location/directory/<bundle\_name> flash:
<...>

Step 5: Restart the system.



# Appendix

This chapter contains the following sections:

- Web User Interface, on page 35
- Compliance and Safety Information, on page 36
- Restriction of Hazardous Substances (RoHS), on page 38
- Related Documentation, on page 38
- Communications, Services, and Additional Information, on page 38

# Web User Interface

The Cisco IOS-XE operating system provides a graphical user interface for monitoring and configuration of your device. The WebUI needs to be enabled before it can be used. Use these commands to enable it:

```
username admin privilege 15 password 0 ess9300
ip http server
ip http authentication local
ip http secure-server
```

When launched, the initial display is a dashboard that looks similar to the following example:

| Search Menu Items | Dashboard                                                               |               |                                        |                   |          |                                     |             |
|-------------------|-------------------------------------------------------------------------|---------------|----------------------------------------|-------------------|----------|-------------------------------------|-------------|
|                   | Overview Switch View                                                    |               |                                        |                   |          |                                     |             |
| Monitoring >      | Ltd. CPU & Memory Pressure Graph<br>Last Updated: 11/2/2021, 5/21-27 PM |               |                                        |                   |          |                                     |             |
|                   |                                                                         |               | 9                                      | st: 1-RP0         |          |                                     |             |
| Configuration >   | G                                                                       | U Utilization |                                        |                   | Memo     | ary Utilization                     |             |
| Administration    | CPUE 0                                                                  | 100% T        | J (%) vs Device Time                   |                   |          | Memory Used (%) vs<br>100%          | Device Time |
|                   | Discours (No.145)                                                       | 80%           |                                        | Total             | 00000000 | 75%                                 |             |
|                   | Hocess CPO (14)                                                         | 60%           |                                        | Used              | 1690068  | 525                                 |             |
| Troublechootion   | System 0.50                                                             | 40%           |                                        | Free              | 2339248  | 265                                 | •           |
|                   | idie 97.97                                                              | 20%           |                                        | Committed         | 2383924  |                                     |             |
|                   | Advanced CPU View                                                       | = 0           | 28 012057 012127<br>or • System • Idle | C Advanced Memory | y View   | <ul> <li>Healthy Critica</li> </ul> | 10-05%)     |
|                   | O Temperature<br>Last Update: 1/12/2001, 525:30-1M                      | ×             | System information                     | PM .              | ×        |                                     |             |
|                   |                                                                         |               | Condurt                                |                   | *        |                                     |             |
|                   | 530 -1                                                                  |               | O Device Uptime:                       |                   |          |                                     |             |
|                   | 110                                                                     |               | System Time:                           |                   |          |                                     |             |
|                   | 90                                                                      |               | (O) 01:20:29 785 UTC Wed               | Jan 13 2021       |          |                                     |             |
|                   | 70 -                                                                    |               | ESS-8300-10X                           |                   |          |                                     |             |
|                   | 92 -<br>40 -                                                            |               | Boot image:                            | LOUTE OPA his     |          |                                     |             |
|                   | 30 -                                                                    |               | License Status:                        |                   |          |                                     |             |
|                   | 0 -                                                                     |               | ENABLED                                |                   |          |                                     |             |
|                   | 0.000                                                                   |               | EIP's Moder                            |                   |          |                                     |             |
|                   | System Temperature : 43°C                                               |               | Disabled                               |                   |          |                                     |             |

# **Compliance and Safety Information**

The ESS 9300 was installed in a representative chassis, tested, and shown to meet the standards listed in the following tables. Individual results will depend on final implementation. Formal compliance testing must be performed by the system integrator in a fully assembled product.

| Specification | Description                           |
|---------------|---------------------------------------|
| Safety        | UL 60950-1 Recognized Component (R/C) |
|               | CSA22.2 No. 60950-1                   |
|               | EN60950-1                             |
|               | IEC60950-1                            |
|               | IEC62368-1 2nd Ed.                    |
|               | EN62368-1                             |
|               | UL 62368-1 Recognized Component (R/C) |
|               | CSA C22.2 No. 62368-1                 |
|               |                                       |

| Specifica | tion     | Description                 |  |  |  |
|-----------|----------|-----------------------------|--|--|--|
| Emissions |          | EN 55022 / CISPR 22         |  |  |  |
|           |          | EN 55032 / CISPR 32         |  |  |  |
|           |          | FCC Part 15 Subpart B       |  |  |  |
|           |          | ICES 003 for class A device |  |  |  |
| Immunity  | 1        | EN 55024                    |  |  |  |
|           |          | EN 55035                    |  |  |  |
|           |          | EN 61000-4-2                |  |  |  |
|           |          | EN 61000-4-3                |  |  |  |
|           |          | EN 61000-4-4                |  |  |  |
|           |          | EN 61000-4-5                |  |  |  |
|           |          | EN 61000-4-6                |  |  |  |
|           |          | EN 61000-4-11               |  |  |  |
|           |          | IEC 61000-4-8               |  |  |  |
|           |          | IEC 61000-4-10              |  |  |  |
|           |          | IEC 61000-4-16              |  |  |  |
|           |          | IEC 61000-4-18              |  |  |  |
| MIL Com   | pliance  | CE101                       |  |  |  |
| Note      | In       | CE102                       |  |  |  |
|           | Progress | CS101                       |  |  |  |
|           |          | CS109                       |  |  |  |
|           |          | CS114                       |  |  |  |
|           |          | CS115                       |  |  |  |
|           |          | CS116                       |  |  |  |
|           |          | CS117                       |  |  |  |
|           |          | CS118                       |  |  |  |
|           |          | RE101                       |  |  |  |
|           |          | RE102                       |  |  |  |
|           |          | RS101                       |  |  |  |
|           |          | RS103                       |  |  |  |
|           |          | RS105                       |  |  |  |

### **Restriction of Hazardous Substances (RoHS)**

RoHS is directive being adopted worldwide that restricts certain limits of the following materials from certain manufactured products:

- Lead (Pb): < 1000 ppm
- Mercury (Hg): < 100 ppm
- Cadmium (Cd): < 100 ppm
- Hexavalent Chromium: (Cr VI) < 1000 ppm
- Polybrominated Biphenyls (PBB): < 1000 ppm</li>
- Polybrominated Diphenyl Ethers (PBDE): < 1000 ppm</li>

Cisco products fall under RoHS Category 3, Computing & Communications Equipment. Cisco products must be RoHS-certified prior to being shipped/imported to the following RoHS countries: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom

### **Related Documentation**

- ESS9300 Software Configuration Guide
- ESS9300 Documentation Landing Page

### **Communications, Services, and Additional Information**

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit Cisco DevNet.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

#### **Cisco Bug Search Tool**

Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, which maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect information about your products and software.

### **Documentation Feedback**

To provide feedback about Cisco technical documentation, use the feedback form available in the right pane of every online document.