

Stacking and High Availability Configuration Guide, Cisco Catalyst IE9300 Rugged Series Switches

First Published: 2022-04-26
Last Modified: 2023-10-12

Americas Headquarters

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright ${ }^{\ominus}$ 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.
Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: $\mathrm{https}: / / \mathrm{www} . \mathrm{cisco.com} / \mathrm{c} / \mathrm{en} / \mathrm{us} /$ about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)
© 2022-2023 Cisco Systems, Inc. All rights reserved.

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit Cisco DevNet.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, which maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect information about your products and software.

Documentation Feedback

To provide feedback about Cisco technical documentation, use the feedback form available in the right pane of every online document.

Bias Free Language

The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on standards documentation, or language that is used by a referenced third-party product.

CONTENTS

Full Cisco Trademarks with Software License ?

Communications, Services, and Additional Information iii

Cisco Bug Search Tool iii
Documentation Feedback iii

Bias Free Language iv

Managing Switch Stacks 1

Switch Stacks 1
Stacking and Cisco Catalyst IE9300 Rugged Series Switches 2
Prerequisites for Switch Stacks 3
Restrictions for Switch Stacks 3
Switch Stack Bridge ID and MAC Address 3
Persistent MAC Address on the Switch Stack 4
Auto-upgrading the Stack 4
Switch Stack Management Connectivity 6
Configuring a Switch Stack 6
Monitoring the Device Stack 6
Switch Stack Configuration Scenarios 11
Example: Enabling the Persistent MAC Address Feature 12
Example: show switch stack-ports summary $\mathbf{1 3}$
Example: show switch stack-ports detail 14
Examples: Stack Operations 20
Examples: Software Loopback with Connected Stack Cables 20
Example: Software Loopback with no Connected Stack Cable 21

Example: Finding a Disconnected Stack Cable 21
Example: Fixing a Bad Connection Between Stack Ports 22
Additional References for Switch Stacks 23
Feature History and Information for Switch Stacks 24

Managing Switch Stacks

- Switch Stacks, on page 1
- Stacking and Cisco Catalyst IE9300 Rugged Series Switches, on page 2
- Prerequisites for Switch Stacks, on page 3
- Restrictions for Switch Stacks, on page 3
- Switch Stack Bridge ID and MAC Address, on page 3
- Persistent MAC Address on the Switch Stack, on page 4
- Auto-upgrading the Stack, on page 4
- Switch Stack Management Connectivity, on page 6
- Configuring a Switch Stack, on page 6
- Additional References for Switch Stacks, on page 23
- Feature History and Information for Switch Stacks, on page 24

Switch Stacks

A switch stack has multiple stacking-capable switches connected through their StackWise ports. The stack members work together as a unified system. Layer 2 and Layer 3 protocols present the entire switch stack as a single entity to the network.

This document uses the following terms to refer to members of a switch stack:

- Active switch: Controls the operation of the switch stack, and is the single point of stack-wide management.
- Standby switch: Backup to the Active switch.
- Member switch: Neither an Active nor a Standby switch.

From the active switch, you configure the following:

- System-level (global) features that apply to all stack members
- Interface-level features for each stack member

The active switch contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.

Stacking and Cisco Catalyst IE9300 Rugged Series Switches

Cisco Catalyst IE9300 Rugged Series Switches with IE9320 model numbers have a stacking interface that allows multiple switches to act as a single switch. Each switch has two stack interface connectors, and each connector has its own LED.

All IE9320 switch models are supported for stacking:

- IE9320 GE Fiber switch (IE-9320-26S2C-A and IE-9320-26S2C-E)
- IE9320 Fiber switch with 10 GE uplinks (IE-9320-22S2C4X-A and IE-9320-22S2C4X-E)
- IE9320 10 GE Copper Data switch (IE-9320-24T4X-A and IE-9320-24T4X-E)
- IE9320 10 GE PoE switch (IE-9320-24P4X-A and IE-9320-24P4X-E)
- IE9320 10 G mGig 4PPoE switch (IE-9320-16P8U4X-A and IE-9320-16P8U4X-E)
- IE9320 GE PoE switch (IE-9320-24P4S-A and IE-9320-24P4S-E)

Note The number of switches supported in a stack depends on the Cisco IOS XE. For information, see the section Feature History and Information for Switch Stacks, on page 24.

The following illustration shows the stacking interface on the front panel of a IE9320 GE Fiber ((IE-9320-26S2C-A and IE-9320-26S2C-E) switch. The interface is the same on other IE9320 switches.

Figure 1: IE9320 GE Fiber Stacking Interface

You can mount the switches in 19- or 23-inch racks. You must install the switches with the correct clearances. To install each switch, follow the instructions for the appropriate rack in the Cisco Catalyst IE9300 Rugged Series Switch Hardware Installation Guide.

You can connect the stack interfaces in such a way as to form a ring. For example, stack-port-1 of switch 1 can be connected to stack-port-2 of the next switch, and so on. The last switch's stack-port-1 connects back to stack-port-2 of the first switch to form a full ring.

See the procedures in this document for details of configuring stacking.

Prerequisites for Switch Stacks

Before you configure a switch stack, make sure that you have the following:

- All Cisco Catalyst IE9300 Rugged Series Switches with IE9320 model numbers are supported for stacking. See the section Stacking and Cisco Catalyst IE9300 Rugged Series Switches, on page 2 in this guide for the list of switches.
- Switches that are running compatible software versions.
- Switches that have the same license level.

Restrictions for Switch Stacks

The following are the restrictions for switch stack configuration:

- Only Cisco Catalyst IE9300 Rugged Series Switches supported for stacking can be used in stacks. See the section Stacking and Cisco Catalyst IE9300 Rugged Series Switches, on page 2 in this guide for the list of switches.
- A switch stack can have multiple stacking-capable switches connected through their StackWise ports.

For information about how many switches are supported in each release, see the section Feature History and Information for Switch Stacks, on page 24.

- Stacks must be homogenous: That is, a stack must consist only of IE9320 switches that support stacking.
- REP over stacking is supported, however, increased convergence time (3 seconds to 20 seconds) will be observed, if a stack-member REP port goes down.
- A switch stack cannot contain a mix of different license levels.
- A switch stack does not support the following features (which standalone switches support):
- Dying gasp
- Management through PROFINET or CIP
- Modicon Communication Bus (MODBUS)
- Parallel Redundancy Protocol (PRP)
- Precision Time Protocol (PTP)

Switch Stack Bridge ID and MAC Address

A switch stack is identified in the network by its bridge ID and, if it is operating as a Layer 3 device, its router MAC address. The bridge ID and router MAC address are determined by the MAC address of the active switch.

If the active switch changes, the MAC address of the new active switch determines the new bridge ID and router MAC address.

If the entire switch stack reloads, the switch stack uses the MAC address of the active switch.

Persistent MAC Address on the Switch Stack

You can use the persistent MAC address feature to set a time delay before the stack MAC address changes. During this period, if the previous active switch rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not an active switch.

If the previous active switch does not rejoin the stack during the delay, the switch stack takes the MAC address of the new active switch as the stack MAC address. By default, the stack MAC address is the MAC address of the first active switch, even if a new active switch takes over.

Note You can also configure stack MAC persistency so that the stack MAC address never changes to the new active switch MAC address. You do so by using the stack-mac persistent timer ocommand. Configuring persistency avoids Link Aggregation Control Protocol (LACP) and Port Aggregation Protocol (PAgP) flaps or inconsistencies.

Auto-upgrading the Stack

StackWise architecture enables you to increase the number of ports in the wiring closet without needing to configure the management plane or upgrade the newly installed switch manually. The newly added switch automatically upgrades to the software that the stack is currently running. IE9320 GE Fiber switches provide backward compatibility to dynamically insert a new switch into the stack ring without a major network disruption. The system and management operation, network configuration, and topologies remain transparent for network upgrades.

As a best practice, the newly joined switch can automatically receive consistent software versions from an active switch and bring the system online without any user intervention. To automatically download consistent software versions to newly joined switches, you can use the following command from the global configuration mode.

STACK\# conf t
Enter configuration commands, one per line. End with CNTL/Z.
STACK (config) \# software auto-upgrade enable
With the preceding command enabled, any member switch that is added to the stack automatically upgrades to the current stack software.

Note The auto-upgrade feature is not supported in bundled mode.
The following example shows logs for a two-member stack:

```
IOS loaded on Switch1 & Switch2:
==========================
Switch-1 (Active): BLD_DEV_LATEST_20220418_072148_V17_9_0_3
```



```
Switch-1 Log:
==========
IE9300-2member#show switch
Switch/Stack Mac Address : 6c03.09a0.1d00 - Local Mac Address
Mac persistency wait time: Indefinite
```



```
Switch-2 Log:
============
Switch number is 2
All switches in the stack have been discovered. Accelerating discovery
Chassis is declared incompatible.
FAILED: Version 'BLD_DEV_LATEST_20220325_072116_V17_9_0_13' mismatch with Active's running
    version 'BLD_DEV_LATEST_20220418_072148_V17_9_0_3' for package: 'rp_base'
Autoupgrade Log:
*Apr 21 08:34:44.269: %STACKMGR-6-STACK_LINK_CHANGE: Switch 1 R0/0: stack_mgr: Stack port
1 on Switch 1 is up
*Apr 21 08:34:44.277: %STACKMGR-6-STACK_LINK_CHANGE: Switch 1 R0/0: stack_mgr: Stack port
2 on Switch 1 is up
*Apr 21 08:34:46.731: %STACKMGR-4-SWITCH_ADDED: Switch 1 R0/0: stack_mgr: Switch 2 has been
    added to the stack.
*Apr 21 08:34:51.496: %STACKMGR-4-SWITCH_ADDED: Switch 1 R0/0: stack_mgr: Switch 2 has been
    added to the stack.
*Apr 21 08:34:51.855: %BOOT-3-BOOTTIME INCOMPATIBLE SW DETECTED: Switch 1 R0/0: issu stack:
    Incompatible software detected. Details: Active's subpackage boot mode does not match with
    member's super boot mode. Please boot switch 2 in subpackage mode.
*Apr 21 08:34:52.901: %AUTO_UPGRADE-5-AUTO_UPGRADE_START_CHECK: Switch 1 R0/0:
auto upgrade client helper: Auto upgrade start checking for incompatible switches.
*Apr 21 08:34}:53.919 : %AUTO_UPGRADE-5-AUTO_UPGRADE_INITIATED: Switch 1 R0/0:
auto_upgrade_client_helper: Auto upgrade initiated for switch 2/R0.
*Apr 21 08:3\overline{4}:53.98\overline{2}: %AUTO_UPGRADE-5-AUTO_UPGRADE_SEARCH: Switch 1 R0/0:
auto_upgrade_client_helper: Searching stack for software to upgrade switch 2/R0.
*Apr }21 08:3\overline{4}:53.99\overline{3}: %AUTO_UPGRADE-5-AUTO_UPGRADE_FOUND: Switch 1 R0/0
auto_upgrade_client_helper: Found donor switch 1 to auto upgrade switch 2/R0.
*Apr - 21 08:3\overline{4:54.00\overline{2}: %AUTO_UPGRADE-5-AUTO_UPGRADE_START: Switch 1 R0/0:}
auto_upgrade_client_helper: Upgrading switch 2/R0 with software from switch 1.
*Apr 21 08:34:57.610: %IOSD_INFRA-6-IFS_DEVICE_OIR: Device sdflash-2 added
*Apr 21 08:34:57.776: %IOSD_INFRA-6-IFS_DEVICE_OIR: Device sdflash-2 added
*Apr 21 08:35:33.132: %SMART_LIC-3-COMM_FAILED: Communications failure with the Cisco Smart
License Utility (CSLU) : Unable to resolve server hostname/domain name
*Apr 21 08:35:44.454: %AUTO UPGRADE MODULAR-5-SMU AUTO UPGRADE INITIATING: Switch 1 R0/0:
auto_upgrade_client_helper: Initiating SMU autoupgrade for switch 2/R0
*Apr 21 08:35:45.784: %AUTO UPGRADE-5-AUTO UPGRADE FINISH: Switch 1 R0/0:
auto_upgrade_client_helper: Finished installing software on switch 2/R0.
*Apr 21 08:35:45.825: %AUTO_UPGRADE-5-AUTO_UPGRADE_RELOAD: Switch 1 R0/0:
auto_upgrade_client_helper: Reloading swit\overline{ch }2\mathrm{ to complete the auto upgrade.}
```


Switch Stack Management Connectivity

You manage the switch stack and the stack member interfaces through the active switch. You cannot manage stack members on an individual basis.

You can use WebUI and DNAC, both of which recognize and support the stack. You can also use CiscoWorks, the CLI, and SNMP.

Configuring a Switch Stack

The following section provides information for monitoring the device stack, configuration scenarios, and configuration examples.

Monitoring the Device Stack

This section shows the commands for displaying stack information.

show module

Description: Displays summary information about the stack.
Example:

show switch detail

Description: Displays detailed information about the stack.
Example:

	Stack Port Status	Neighbors	
Switch\#	Port 1 Port 2	Port 1	Port 2

1	OK	OK	3	2
2	OK	OK	1	3
3	OK	OK	2	1

switch\#
show switch neighbors
Description: Displays the stack neighbors.
Example:

```
switch#show switch neighbors
    Switch # Port 1 Port 2
    -------- ------------
            1 lll
switch#
```


show switch stack-ports [summary]

Description: Displays port information for the stack. Use the summary keyword to display the stack cable length, the stack link status, and the loopback status.
Example:

show switch stack-ports [detail]

Description: Displays the stack link status and information for each stack member. Use the detail keyword to display the stack interface status, errors, drops, packet transmission and bandwidth details. Example:

```
switch#show switch stack-ports detail
1/1 is OK Loopback No
Cable Length 50cm Neighbor 3
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 1062 bytes/sec
    Five minute output rate 778 bytes/sec
        8377526285 bytes input
        1 1 6 4 6 7 5 7 4 2 ~ b y t e s ~ o u t p u t
    CRC Errors
                    Data CRC 0
            Ringword CRC 0
                InvRingWord 0
                PcsCodeWord 0
1/2 is OK Loopback No
Cable Length 100cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 1325 bytes/sec
    Five minute output rate 1016 bytes/sec
        8727757021 bytes input
```

```
        1 6 3 4 1 5 2 5 1 5 ~ b y t e s ~ o u t p u t
    CRC Errors
            Data CRC O
            Ringword CRC 0
                InvRingWord 0
                PcsCodeWord 0
2/1 is OK Loopback No
Cable Length 100cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 445 bytes/sec
    Five minute output rate 539 bytes/sec
        6 5 2 3 7 6 8 3 0 ~ b y t e s ~ i n p u t
        7590551492 bytes output
    CRC Errors
                Data CRC 0
                    Ringword CRC 0
                        InvRingWord 0
                PcsCodeWord 0
2/2 is OK Loopback No
Cable Length 50cm Neighbor 3
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate }561\mathrm{ bytes/sec
    Five minute output rate }720\mathrm{ bytes/sec
        912545469 bytes input
        7918619712 bytes output
    CRC Errors
                Data CRC 0
                    Ringword CRC 0
                        InvRingWord 0
                        PcsCodeWord 0
3/1 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 356 bytes/sec
    Five minute output rate }551\mathrm{ bytes/sec
        543539448 bytes input
        818158430 bytes output
    CRC Errors
                Data CRC 0
                    Ringword CRC 0
                        InvRingWord 0
                PcsCodeWord 0
3/2 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkoK 1
    Five minute input rate 485 bytes/sec
    Five minute output rate }627\mathrm{ bytes/sec
        7 7 3 2 0 1 8 7 1 ~ b y t e s ~ i n p u t
        843637340 bytes output
    CRC Errors
                Data CRC 0
            Ringword CRC 0
                InvRingWord 0
                PcsCodeWord 0
switch#
```

show redundancy
Description: Displays the redundant system and the current processor information. The redundant system information includes the following:

- System uptime

- Standby failures
- Switchover reason
- Hardware
- Configured mode
- Operating redundancy mode

The current processor information displayed includes the active location, the software state, the uptime in the current state and so on.

Example:

```
switch#show redundancy
Redundant System Information :
------------------------------
    Available system uptime = 6 days, 5 hours, 54 minutes
Switchovers system experienced = 0
            Standby failures = 0
        Last switchover reason = none
            Hardware Mode = Duplex
        Configured Redundancy Mode = sso
        Operating Redundancy Mode = sso
            Maintenance Mode = Disabled
                Communications = Up
Current Processor Information :
-------------------------------
            Active Location = slot 1
        Current Software state = ACTIVE
        Uptime in current state = 6 days, 5 hours, 54 minutes
                            Image Version = Cisco IOS Software [Dublin], Catalyst L3 Switch Software
    (IE9K IOSXE), Experimental Version 17.12.20230419:095045
[BLD_POLARIS_DEV_LATEST_20230419_085112:/nobackup/mcpre/s2c-build-ws 101]
Copyright (c) 1986-2023 by Cisco Systems, Inc.
Compiled Wed 19-Apr-23 02:52 by mcpre
                            BOOT = flash:packages.conf;
            Configuration register = 0x102
            Fast Switchover = Enabled
            Initial Garp = Enabled
Peer Processor Information :
---------------------------
            Standby Location = slot 2
        Current Software state = STANDBY HOT
        Uptime in current state = 6 days, 5 hours, 51 minutes
            Image Version = Cisco IOS Software [Dublin], Catalyst L3 Switch Software
    (IE9K_IOSXE), Experimental Version 17.12.20230419:095045
[BLD_POLARIS_DEV_LATEST_20230419_085112:/nobackup/mcpre/s2c-build-ws 101]
Copyright (c) 1986-2023 by Cisco Systems, Inc.
Compiled Wed 19-Apr-23 02:52 by mcpre
                            BOOT = flash:packages.conf;
    Configuration register = 0x102
switch#
```


show redundancy states

Description: Displays all the redundancy states of the active and standby devices.
Example:

```
switch#show redundancy states
            my state = 13 -ACTIVE
            peer state = 8 -STANDBY HOT
                Mode = Duplex
                Unit = Primary
            Unit ID = 1
Redundancy Mode (Operational) = sso
Redundancy Mode (Configured) = sso
Redundancy State = sso
            Maintenance Mode = Disabled
            Manual Swact = enabled
    Communications = Up
        client count = 90
    client_notification_TMR = 30000 milliseconds
                        RF debug mask = 0x0
switch#
```

sh switch stack-bandwidth
Description: Displays the bandwith and state of each switch.

Example:

Switch\#	Role	Bandwidth	State
1	Standby	160G	Ready
2	Member	160G	Ready
3	Member	160G	Ready
* 4	Active	160G	Ready

sh switch stack-mode
Description: Displays the version, mode, and state of each switch.

Example:

Switch\#	Role	Mac Address	Version	Mode	Configured	State
1	Standby	dc0b.093f.4b00	V00	N+1	None	Ready
2	Member	dc0b.093f.3a80	v00	$\mathrm{N}+1$	None	Ready
3	Member	dc0b.093f.5f00	V00	N+1	None	Ready
* 4	Active	dc0b.093f. 4100	V00	N+1	None	Ready

switch stack-ring speed
Description: Displays the ring speed, configuration, and protocol of the stack.
Example:

```
switch#sh switch stack-ring speed
Stack Ring Speed : 160G
Stack Ring Configuration: Full
Stack Ring Protocol : StackWise
```


Switch Stack Configuration Scenarios

This section lists switch stack configuration scenarios and steps, and the step results.

In the following table, the active switch is the switch member that operates the control plane. Active switch is also the interface point for all configuration management operations (CLI, SNMP, and WEB).

Table 1: Switch Stack Configuration Scenarios

Scenario	Task	Result
Active switch election determined by existing active switches.	Connect two powered-on switch stacks through the StackWise ports.	Only one of the two active switches becomes the new active switch.
Active switch election determined by the stack member priority value.	1. Connect two switches through their StackWise ports. 2. Use the switch stack-member-number priority new-priority-number command to set one stack member with a higher member priority value.	The stack member with the higher priority value is elected active switch.
Active switch election determined by the MAC address.	Assuming that both member switches have the same priority value, configuration file, and license level, restart both member switches at the same time.	The stack member with the lower MAC address is elected active switch.
Stack member number conflict.	Assuming that one stack member has a higher priority value than the other stack member: 1. Ensure that both member switches have the same stack member number. If necessary, use the switch current-stack-member-number renumber new-stack-member-number command. 2. Restart both member switches at the same time.	The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.

Scenario	Task	Result
Add a stack member.	1. Power off the new switch. 2. Through their StackWise ports, connect the new switch to a powered-on switch stack. 3. Power on the new switch.	The active switch is retained. The new switch is added to the switch stack.
Active switch failure.	Remove (or power off) the active switch.	One of the remaining member switches becomes the new active switch. All other member switches in the stack remain as member switches and do not reboot.
Remove member switches.	1. Through their StackWise ports, disconnect the devices. 2. Power on all devices.	Two devices become active switches. One active switch has member switches. The other active switch remains as a standalone device. Use the Mode button and port LEDs on the device to identify which devices are active switches and which devices belong to each active switch.

Example: Enabling the Persistent MAC Address Feature

This example shows how to configure the persistent MAC address feature for a 7-minute time delay and to verify the configuration:

```
Device (config)#stack-mac persistent timer 7
WARNING: The stack continues to use the base MAC of the old active
WARNING: as the stack-mac after a active switchover until the MAC
WARNING: persistency timer expires. During this time the Network
WARNING: Administrators must make sure that the old stack-mac does
WARNING: not appear elsewhere in this network domain. If it does,
WARNING: user traffic may be blackholed.
clarke-stack(config)#
clarke-stack#show sw
clarke-stack#show switch
Switch/Stack Mac Address : 6c03.09a0.0f80 - Local Mac Address
Mac persistency wait time: Indefinite
\begin{tabular}{|c|c|c|c|c|c|}
\hline Switch\# & Role & Mac Address & Priority & \begin{tabular}{l}
H/W \\
Version
\end{tabular} & \begin{tabular}{l}
Current \\
State
\end{tabular} \\
\hline *1 & Active & \(6 \mathrm{c} 03.09 \mathrm{a} 0.0 \pm 80\) & 1 & V00 & Ready \\
\hline 2 & Standby & 6c03.09a0.1200 & 1 & V00 & Ready \\
\hline
\end{tabular}
```


Example: show switch stack-ports summary

SW\# / Port\#	Port Status	Neighbor/ Port	Cable Length	$\begin{aligned} & \text { Link } \\ & \text { OK } \end{aligned}$	Link Active	Sync OK	\#Changes To LinkOK	In Loopback
1/1	OK	2/1	50 cm	Yes	Yes	Yes	1	No
1/2	OK	2/2	50 cm	Yes	Yes	Yes	1	No
2/1	OK	1/1	50 cm	Yes	Yes	Yes	1	No
2/2	OK	1/2	50 cm	Yes	Yes	Yes	1	No

Table 2: show switch stack-ports summary Fields

Field	Description
Switch\#/Port\#	Member number and its stack port number.
Stack port status	Status of the stack port: - Absent: No cable is detected on the stack port. - Down: A cable is detected, but either no connected neighbor is up, or the stack port is disabled. - OK: A cable is detected, and the connected neighbor is up.
Neighbor	Switch number of the active member at the other end of the stack cable.
Cable length	Valid lengths are 50 cm or 1 m .
Link OK	Whether the stack cable is connected and functional. There may or may not be a neighbor connected on the other end. The link partner is a stack port on a neighbor switch. - No: There is no stack cable connected to this port or the stack cable is not functional. - Yes: There is a functional stack cable connected to this port.
Link Active	Whether a neighbor is connected on the other end of the stack cable. - No: No neighbor is detected on the other end. The port cannot send traffic over this link. - Yes: A neighbor is detected on the other end. The port can send traffic over this link.

Field	Description Sync OK \# Changes to LinkOKWhether the link partner sends valid protocol messages to the stack port. • No: The link partner does not send valid protocol messages to the stack port. • Yes: The link partner sends valid protocol messages to the port.
In Loopback	The relative stability of the link. If this counter is incrementing, stack link flapping may be occurring, which affects the stack functionality and performance. A cable or port issue may be possible.
Whether the stackports on the member are in loopback. • No: At least one stack port on the member has an attached stack cable. • Yes: On a standalone switch, when no stack cable is connected to the switch, stack ports are put in software Loopback mode.	

Example: show switch stack-ports detail

The following is a sample output of the command for a working stack:

```
Switch#
Switch#
Switch#show switch stack-port detail
1/1 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 435 bytes/sec
    Five minute output rate 423 bytes/sec
        6064931845 bytes input
        516798417781 bytes output
    CRC Errors
                    Data CRC 7
                Ringword CRC }888
                    InvRingWord 0
                        PcsCodeWord 274
1/2 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 389 bytes/sec
    Five minute output rate 376 bytes/sec
        5123997908 bytes input
        458569034166 bytes output
    CRC Errors
```

```
            Data CRC 0
            Ringword CRC 0
                        InvRingWord 0
                        PcsCodeWord 0
2/1 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 371 bytes/sec
    Five minute output rate 475 bytes/sec
        60933821787 bytes input
        4 6 3 0 0 1 3 0 1 2 9 1 ~ b y t e s ~ o u t p u t
    CRC Errors
                    Data CRC 3
            Ringword CRC 1
                        InvRingWord 1
                        PcsCodeWord 0
2/2 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 328 bytes/sec
    Five minute output rate 417 bytes/sec
        52317602279 bytes input
        399572815361 bytes output
    CRC Errors
            Data CRC 0
            Ringword CRC 0
                InvRingWord 0
                PcsCodeWord 0
Switch#
```

Table 3: show switch stack-ports detail Fields

Field	Description
Neighbor	Switch number of the active member at the other end of the stack cable.
Cable Length	Valid lengths are 50 cm or 1 m. If the switch cannot detect the cable length, the value is Unknown. The cable might not be connected, or the link might be unreliable.
Link OK	Whether the stack cable is connected and functional. There may or may not be a neighbor connected on the other end. The link partner is a stack port on a neighbor switch. • No: There is no stack cable connected to this port or the stack cable is not functional. •Yes: There is a functional stack cable connected to this port.

Field	Description
Link Active	Whether a neighbor is connected on the other end of the stack cable. - No: No neighbor is detected on the other end. The port cannot send traffic over this link. - Yes: A neighbor is detected on the other end. The port can send traffic over this link.
Sync OK	Whether the link partner sends valid protocol messages to the stack port. - No: The link partner does not send valid protocol messages to the stack port. - Yes: The link partner sends valid protocol messages to the port.
\# Changes to LinkOK	The relative stability of the link. If many changes occur in a short time, link flapping can occur.
Five minute input rate	The average rate (calculated over a 5-minute period) at which packets are received, measured in packets/sec. For example, in 5 minutes, 356 bytes per second would be 356×300 or 106,800 bytes.
Five minute output rate	The average rate (calculated over a five minute period) at which packets are transmitted, measured in packets/sec.
CRC Errors	Different types of CRC errors that are seen on a stack interface: - Data CRC: Stack interface data CRC error - Ringword CRC: Stack interface ring word CRC error - InvRingWord: Stack interface invalid ring word error - PcsCodeWord: Stack interface Physical Coding Sublayer (PCS) error These errors normally occur when a stack interface state changes due to a switchover or a switch reload. You can ignore such errors. But when these error counters increase significantly or when they increase continuously over time, check the stack cable for issues.

The following is a sample output when the stack port flaps:

```
Switch#show switch stack-ports detail
1/1 is DOWN Loopback No
Cable Length 50cm Neighbor NONE
Link Ok Yes Sync Ok Yes Link Active No
Changes to LinkOK 1
    Five minute input rate 512 bytes/sec
    Five minute output rate 492 bytes/sec
        6068997305 bytes input
        516803876697 bytes output
    CRC Errors
            Data CRC 7
            Ringword CRC 8906
            InvRingWord 0
            PcsCodeWord 274
1/2 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 410 bytes/sec
    Five minute output rate 454 bytes/sec
        5127433411 bytes input
        4 5 8 5 7 3 7 3 1 0 2 6 ~ b y t e s ~ o u t p u t
    CRC Errors
            Data CRC 0
            Ringword CRC 0
            InvRingWord 136
            PcsCodeWord 139
2/1 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 354 bytes/sec
    Five minute output rate }537\mathrm{ bytes/sec
        60934298929 bytes input
        463006840274 bytes output
    CRC Errors
            Data CRC 3
            Ringword CRC 1
            InvRingWord 1
                        PcsCodeWord 0
2/2 is DOWN Loopback No
Cable Length 50cm Neighbor NONE
Link Ok Yes Sync Ok Yes Link Active No
Changes to LinkOK 1
    Five minute input rate 410 bytes/sec
    Five minute output rate }527\mathrm{ bytes/sec
    52318079851 bytes input
    399577555753 bytes output
CRC Errors
            Data CRC 0
            Ringword CRC 0
        InvRingWord 0
        PcsCodeWord 0
```

The following is a sample output when a switch reloads:

```
Switch#switch 1 stack port 1 enable
WARNING: Enabling the switch port may result in a configuration change for the stack. Do
you want to continue?[y/n]? [yes]: yes
Switch#
*Jan 27 02:37:58.908: %STACKMGR-6-STACK_LINK_CHANGE: Switch 1 R0/0: stack_mgr: Stack port
1 on Switch 1 is up
*Jan 27 02:37:58.903: %STACKMGR-6-STACK_LINK_CHANGE: Switch 2 R0/0: stack_mgr: Stack port
```

```
2 on Switch 2 is up
Switch#
Switch#
Switch#
Switch#
Switch#
Switch#show swi
Switch#show switch s
*Jan 27 02:38:06.750: %SIF MGR-1-FAULTY CABLE: Switch 1 R0/0: sif mgr: High hardware interrupt
    seen on switch 1t
Switch#show switch stack-p
Switch#show switch stack-ports de
Switch#show switch stack-ports detail
1/1 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 2
    Five minute input rate 512 bytes/sec
    Five minute output rate 492 bytes/sec
        6069131764 bytes input
        516804010939 bytes output
    CRC Errors
            Data CRC }
            Ringword CRC 8908
            InvRingWord 0
                        PcsCodeWord 274
1/2 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 410 bytes/sec
    Five minute output rate 454 bytes/sec
        5127456236 bytes input
        4 5 8 5 7 3 7 5 6 8 8 3 ~ b y t e s ~ o u t p u t
    CRC Errors
            Data CRC O
            Ringword CRC O
                        InvRingWord 136
                        PcsCodeWord 139
2/1 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 354 bytes/sec
    Five minute output rate 537 bytes/sec
        6 0 9 3 4 3 1 9 0 2 3 ~ b y t e s ~ i n p u t
        4 6 3 0 0 6 8 6 5 2 8 9 ~ b y t e s ~ o u t p u t
    CRC Errors
                    Data CRC 3
                    Ringword CRC 1
                        InvRingWord 1
                        PcsCodeWord 0
2/2 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 2
    Five minute input rate 410 bytes/sec
    Five minute output rate 527 bytes/sec
        5 2 3 1 8 1 9 5 5 2 1 ~ b y t e s ~ i n p u t
        399577703600 bytes output
    CRC Errors
            Data CRC O
            Ringword CRC O
```

```
InvRingWord 0
PcsCodeWord 0
```

The following is a sample output after a member is reloaded:

```
Switch#sh switch stack-ports detail
1/1 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 3
    Five minute input rate 9752 bytes/sec
    Five minute output rate 13982 bytes/sec
        6072578128 bytes input
        516808638473 bytes output
    CRC Errors
            Data CRC 37
            Ringword CRC 8943
            InvRingWord 22
                        PcsCodeWord 351
1/2 is OK Loopback No
Cable Length 50cm Neighbor 2
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 2
    Five minute input rate 8918 bytes/sec
    Five minute output rate 11567 bytes/sec
        5130578537 bytes input
        4 5 8 5 8 9 8 1 0 9 9 6 ~ b y t e s ~ o u t p u t
    CRC Errors
            Data CRC 196
            Ringword CRC 100
            InvRingWord 240
            PcsCodeWord 368
2/1 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 1178 bytes/sec
    Five minute output rate 9969 bytes/sec
    60934969353 bytes input
    4 6 3 0 1 0 3 3 0 9 2 7 ~ b y t e s ~ o u t p u t
CRC Errors
                    Data CRC 3
            Ringword CRC 1
                        InvRingWord 1
                        PcsCodeWord 0
2/2 is OK Loopback No
Cable Length 50cm Neighbor 1
Link Ok Yes Sync Ok Yes Link Active Yes
Changes to LinkOK 1
    Five minute input rate 931 bytes/sec
    Five minute output rate 9113 bytes/sec
    52318756819 bytes input
    3 9 9 5 8 0 8 3 9 1 3 6 ~ b y t e s ~ o u t p u t
CRC Errors
            Data CRC 0
            Ringword CRC 0
        InvRingWord 0
        PcsCodeWord 0
Switch#
```


Examples: Stack Operations

In a stack with two members, stack cables connect all the members:

If you disconnect the stack cable from Port 1 on Switch 1, these messages appear on the console:

```
*Jun 27 06:25:01.654: %STACKMGR-6-STACK_LINK_CHANGE: Switch 1 R0/0: stack_mgr: Stack port
1 on Switch 1 is cable-not-connected
*Jun 27 06:25:01.654: %STACKMGR-6-STACK_LINK_CHANGE: Switch 1 R0/0: stack_mgr: Stack port
2 on Switch 1 is down
*Jun 27 06:25:01.654: %STACKMGR-6-STACK_LINK_CHANGE: Switch 1 R0/0: stack_mgr: Stack port
2 on Switch 1 is cable-not-connected
```

The output of the following command also shows when port is disconnected:

SW\# / Port\#	Port Status	Neighbor/ Port	Cable Length	$\begin{aligned} & \text { Link } \\ & \text { OK } \end{aligned}$	$\begin{aligned} & \text { Link } \\ & \text { Active } \end{aligned}$	$\begin{aligned} & \text { Sync } \\ & \text { OK } \end{aligned}$	\#Changes To LinkOK	$\begin{aligned} & \text { In } \\ & \text { Loopback } \end{aligned}$
1/1	DOWN	NONE/NONE	No cable	No	No	No	1	No
1/2	OK	$2 / 2$	50 cm	Yes	Yes	Yes	1	No
2/1	OK	1/1	50 cm	Yes	Yes	Yes	1	No
2/2	OK	1/2	50 cm	Yes	Yes	Yes	1	No

Switch\#
If you disconnect the stack cable from Port 2 on Switch 1, the stack splits.
Switch 1 is a standalone switch:

Examples: Software Loopback with Connected Stack Cables

- On Port 1 on Switch 1, the port status is Down, and a cable is connected.

On Port 2 on Switch 1, the port status is Down, and no cable is connected.

```
# show switch stack-ports summary
    #
Sw#/Port# Port Neighbor/ Cable Link Link Sync #Changes In
```



```
1/2 Down None No cable No No No No
```

- In a physical loopback, a cable connects both stack ports on a switch. You can use this configuration to test
- Cables on a switch that is running properly
- Stack ports with a cable that works properly

The port status shows that

- Switch 2 is a standalone switch.
- The ports can send and receive traffic.

Example: Software Loopback with no Connected Stack Cable

\#SW\# / Port\#	Port Status	Neighbor/ Port	Cable Length	$\begin{aligned} & \text { Link } \\ & \text { OK } \end{aligned}$	Link Active	$\begin{aligned} & \text { Sync } \\ & \text { OK } \end{aligned}$	\#Changes To LinkOK	In Loopback
1/1	Down	None	No cable	No	No	No	1	Yes
1/2	Down	None	No cable	No	No	No	1	Yes

Example: Finding a Disconnected Stack Cable

Stack cables connect all stack members. Port 2 on Switch 1 connects to Port 1 on Switch 2.
This is the port status for the members:

Sw\# / Port\#	Port Status	Neighbor/ Port	Cable Length	$\begin{aligned} & \text { Link } \\ & \text { OK } \end{aligned}$	Link Active	$\begin{aligned} & \text { Sync } \\ & \text { OK } \end{aligned}$	\#Changes To LinkOK	$\begin{aligned} & \text { In } \\ & \text { Loopback } \end{aligned}$
1/1	OK	2/1	50 cm	Yes	Yes	Yes	1	No
1/2	OK	2/2	50 cm	Yes	Yes	Yes	1	No
2/1	OK	1/1	50 cm	Yes	Yes	Yes	1	No
2/2	OK	1/2	50 cm	Yes	Yes	Yes	1	No

If you disconnect the cable from Port 2 on Switch 1, these messages appear:

```
%STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 2 has changed to state DOWN
    %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 1 has changed to state DOWN
```

This is now the port status:

Sw\#/Port\#	Port Status	$\begin{aligned} & \text { Neighbor/ } \\ & \text { Port } \end{aligned}$	Cable Length	$\begin{aligned} & \text { Link } \\ & \text { OK } \end{aligned}$	Link Active	Sync OK	\#Changes To LinkOK	$\begin{aligned} & \text { In } \\ & \text { Loopback } \end{aligned}$
1/1	OK	2/1	50 cm	Yes	Yes	Yes	1	No
1/2	Down	None	No cable	No	No	No	2	No
2/1	Down	None	50 cm	No	No	No	2	No
2/2	OK	1/2	50 cm	Yes	Yes	Yes	1	No

Only one end of the cable connects to a stack port, Port 1 on Switch 2.

- The Stack Port Status value for Port 2 on Switch 1 is Down, and the value for Port 1 on Switch 2 is Down.
- The Cable Length value is No cable.

Diagnosing the problem:

- Verify the cable connection for Port 2 on Switch 1.
- Port 2 on Switch 1 has a port or cable problem if
- The In Loopback value is Yes.
or
- The Link OK, Link Active, or Sync $O K$ value is No.

Example: Fixing a Bad Connection Between Stack Ports

Stack cables connect all members. Port 2 on Switch 1 connects to Port 1 on Switch 2.
This is the port status:

Sw\# / Port\#	Port Status	Neighbor Port	Cable Length	$\begin{aligned} & \text { Link } \\ & \text { OK } \end{aligned}$	Link Active	$\begin{aligned} & \text { Sync } \\ & \text { OK } \end{aligned}$	\#Changes To LinkOK	In Loopback
1/1	OK	2/1	50 cm	Yes	Yes	Yes	1	No
1/2	Down	None	50 cm	No	No	No	2	No
$2 / 1$	Down	None	50 cm	No	No	No	2	No
$2 / 2$	OK	1/2	50 cm	Yes	Yes	Yes	1	No

Diagnosing the problem:

- The Stack Port Status value is Down.
- Link OK, Link Active, and Sync OK values are No.
- The Cable Length value is 50 cm . The switch detects and correctly identifies the cable.

The connection between Port 2 on Switch 1 and Port 1 on Switch 2 is unreliable on at least one of the connector pins.

Additional References for Switch Stacks

Related Documents

Related Topic	Document Title
Cabling and powering on a switch stack.	Cisco Catalyst IE9300 Rugged Series Switch Hardware Installation Guide

Error Message Decoder

Description	Link
To help you research and resolve system error messages in this release, use the Error Message Decoder tool.	https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi

Standards and RFCs

Standard/RFC	Trte
None	-

MIBs

MIB	MIBs Link
All the supported MIBs for this release.	To locate and download MIBs for selected platforms, Cisco IOS releases, and , use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/support
To receive security and technical information about your products, you can	
subscribe to various services, such as the Product Alert Tool (accessed from	
Field Notices), the Cisco Technical Services Newsletter, and Really Simple	
Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature History and Information for Switch Stacks

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use the Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 4: Feature History

Release	Feature	Feature Information
Cisco IOS XE Dublin 17.12.1	Stacking support for Cisco Catalyst IE9300 Rugged Series Switches	- Stacking became supported for four-member stacks. - Switches introduced in this release: - IE-9320-24T4X-A and IE-9320-24T4X-E - IE-9320-24P4X-A and IE-9320-24P4X-E - IE-9320-16P8U4X-A and IE-9320-16P8U4X-E - IE-9320-24P4S-A and IE-9320-24P4S-E
Cisco IOS XE Dublin 17.11.1	Stacking support for Cisco Catalyst IE9300 Rugged Series Switches	Stacking became supported for new switches: IE-9320-22S2C4X-A and IE-9320-22S2C4X-E.
Cisco IOS XE Cupertino 17.8.1	Stacking support for Cisco Catalyst IE9300 Rugged Series Switches	Stacking became supported for three-member stacks. (IE-9320-26S2C-A and IE-9320-26S2C-E)
Cisco IOS XE Cupertino 17.7.1	Stacking support for Cisco Catalyst IE9300 Rugged Series Switches	The switch became available, with stacking supported for two-member stacks. (IE-9320-26S2C-A and IE-9320-26S2C-E)

