
Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
First Published: 2019-07-20

Last Modified: 2020-08-19

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE.
EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at:
http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at http://www.cisco.com/go/warranty. US Federal Communications Commission Notices are found
here http://www.cisco.com/c/en/us/products/us-fcc-notice.html.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any
such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature
roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based
on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language
that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com
go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any
other company. (1721R)

© 2019–2020 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/softwareterms
http://www.cisco.com/go/warranty
http://www.cisco.com/c/en/us/products/us-fcc-notice.html
https://www.cisco.com/c/en/us/about/legal/trademarks.html
https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Preface xiP R E F A C E

Audience xi

Document Conventions xi

Related Documentation for Cisco Nexus 3000 Series Switches xii

Documentation Feedback xii

Communications, Services, and Additional Information xii

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

Bash 3C H A P T E R 2

About Bash 3

Accessing Bash 3

Escalate Privileges to Root 4

Examples of Bash Commands 5

Displaying System Statistics 5

Running Bash from CLI 6

Running Python from Bash 6

Copy Through Kstack 7

Guest Shell 9C H A P T E R 3

About the Guest Shell 9

Guidelines and Limitations for Guestshell 10

Accessing the Guest Shell 14

Resources Used for the Guest Shell 15

Capabilities in the Guestshell 15

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
iii

NX-OS CLI in the Guest Shell 16

Network Access in Guest Shell 16

Access to Bootflash in Guest Shell 18

Python in Guest Shell 19

Python 3 in Guest Shell versions up to 2.10 (CentOS 7) 19

Installing RPMs in the Guest Shell 22

Security Posture for Guest Shell 23

Kernel Vulnerability Patches 24

ASLR and X-Space Support 24

Namespace Isolation 24

Root-User Restrictions 25

Resource Management 26

Guest File System Access Restrictions 26

Managing the Guest Shell 26

Disabling the Guest Shell 30

Destroying the Guest Shell 31

Enabling the Guest Shell 31

Replicating the Guest Shell 32

Exporting Guest Shell rootfs 33

Importing Guest Shell rootfs 33

Importing YAML File 34

show guestshell Command 38

Verifying Virtual Service and Guest Shell Information 38

Persistently Starting Your Application From the Guest Shell 40

Procedure for Persistently Starting Your Application from the Guest Shell 41

An Example Application in the Guest Shell 41

Troubleshooting Guest Shell Issues 42

Python API 45C H A P T E R 4

Information About the Python API 45

Using Python 45

Cisco Python Package 45

Using the CLI Command APIs 47

Invoking the Python Interpreter from the CLI 48

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
iv

Contents

Display Formats 49

Non-Interactive Python 50

Running Scripts with Embedded Event Manager 51

Python Integration with Cisco NX-OS Network Interfaces 52

Cisco NX-OS Security with Python 52

Examples of Security and User Authority 53

Example of Running Script with Schedular 53

Scripting with Tcl 55C H A P T E R 5

About Tcl 55

Tclsh Command Help 55

Tclsh Command History 56

Tclsh Tab Completion 56

Tclsh CLI Command 56

Tclsh Command Separation 56

Tcl Variables 57

Tclquit 57

Tclsh Security 57

Running the Tclsh Command 57

Navigating Cisco NX-OS Modes from the Tclsh Command 58

Tcl References 60

Ansible 61C H A P T E R 6

Prerequisites 61

About Ansible 61

Cisco Ansible Module 61

Puppet Agent 63C H A P T E R 7

About Puppet 63

Prerequisites 63

Puppet Agent NX-OS Environment 64

ciscopuppet Module 64

SaltStack 67C H A P T E R 8

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
v

Contents

About SaltStack 67

About NX-OS and SaltStack 68

Guidelines and Limitations 68

Cisco NX-OS Environment for SaltStack 68

Enabling NX-API for SaltStack 69

Installing SaltStack for NX-OS 69

Using Chef Client with Cisco NX-OS 71C H A P T E R 9

About Chef 71

Prerequisites 71

Chef Client NX-OS Environment 72

cisco-cookbook 72

Using Docker with Cisco NX-OS 75C H A P T E R 1 0

About Docker with Cisco NX-OS 75

Guidelines and Limitations 75

Prerequisites for Setting Up Docker Containers Within Cisco NX-OS 76

Starting the Docker Daemon 76

Configure Docker to Start Automatically 77

Starting Docker Containers: Host Networking Model 78

Starting Docker Containers: Bridged Networking Model 79

Mounting the bootflash and volatile Partitions in the Docker Container 80

Enabling Docker Daemon Persistence on Enhanced ISSU Switchover 80

Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover 81

Resizing the Docker Storage Backend 82

Stopping the Docker Daemon 84

Docker Container Security 85

Securing Docker Containers With User namespace Isolation 85

Moving the cgroup Partition 86

Docker Troubleshooting 86

Docker Fails to Start 86

Docker Fails to Start Due to Insufficient Storage 87

Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message) 87

Failure to Pull Images from Docker Hub (Client Timeout Error Message) 88

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
vi

Contents

Docker Daemon or Containers Not Running On Switch Reload or Switchover 88

Resizing of Docker Storage Backend Fails 89

Docker Container Doesn't Receive Incoming Traffic On a Port 89

Unable to See Data Port And/Or Management Interfaces in Docker Container 89

General Troubleshooting Tips 90

NX-API 91C H A P T E R 1 1

About NX-API 91

Feature NX-API 91

Transport 92

Message Format 92

Security 92

Using NX-API 92

NX-API Management Commands 94

Working With Interactive Commands Using NX-API 96

NX-API Request Elements 96

NX-API Response Elements 99

About JSON (JavaScript Object Notation) 100

CLI Execution 100

XML and JSON Supported Commands 100

Examples of XML and JSON Output 101

NX-API Response Codes 109C H A P T E R 1 2

Table of NX-API Response Codes 109

NX-API Developer Sandbox 113C H A P T E R 1 3

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2) 113

About the NX-API Developer Sandbox 113

Guidelines and Limitations 114

Configuring the Message Format and Command Type 114

Using the Developer Sandbox 116

Using the Developer Sandbox to Convert CLI Commands to Payloads 116

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later 119

About the NX-API Developer Sandbox 119

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
vii

Contents

Guidelines and Limitations 120

Configuring the Message Format and Input Type 122

Using the Developer Sandbox 125

Using the Developer Sandbox to Convert CLI Commands to REST Payloads 126

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands 128

Using the Developer Sandbox to Convert from RESTCONF to json or XML 133

XML Support for ABM and LM in N3500 137C H A P T E R 1 4

XML Support for ABM and LM in N3500 137

Converting CLI Commands to Network Configuration Format 145C H A P T E R 1 5

Information About XMLIN 145

Licensing Requirements for XMLIN 145

Installing and Using the XMLIN Tool 146

Converting Show Command Output to XML 146

Configuration Examples for XMLIN 147

Model-Driven Telemetry 151C H A P T E R 1 6

About Telemetry 151

Telemetry Components and Process 151

High Availability of the Telemetry Process 153

Licensing Requirements for Telemetry 153

Installing and Upgrading Telemetry 153

Guidelines and Limitations 154

Configuring Telemetry Using the CLI 159

Configuring Telemetry Using the NX-OS CLI 159

Configuration Examples for Telemetry Using the CLI 164

Displaying Telemetry Configuration and Statistics 167

Displaying Telemetry Log and Trace Information 172

Configuring Telemetry Using the NX-API 173

Configuring Telemetry Using the NX-API 173

Configuration Example for Telemetry Using the NX-API 183

Telemetry Model in the DME 186

Telemetry Path Labels 187

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
viii

Contents

About Telemetry Path Labels 187

Polling for Data or Receiving Events 188

Guidelines and Limitations for Path Labels 188

Configuring the Interface Path to Poll for Data or Events 188

Configuring the Interface Path for Non-Zero Counters 190

Configuring the Interface Path for Operational Speeds 191

Configuring the Interface Path with Multiple Queries 193

Configuring the Environment Path to Poll for Data or Events 194

Configuring the Resources Path to Poll for Events or Data 196

Configuring the VXLAN Path to Poll for Events or Data 197

Verifying the Path Label Configuration 198

Displaying Path Label Information 199

Native Data Source Paths 202

About Native Data Source Paths 202

Telemetry Data Streamed for Native Data Source Paths 202

Guidelines and Limitations 204

Configuring the Native Data Source Path for Routing Information 205

Configuring the Native Data Source Path for MAC Information 206

Configuring the Native Data Path for IP Adjacencies 208

Additional References 210

Related Documents 210

XML Management Interface 211C H A P T E R 1 7

About the XML Management Interface 211

About the XML Management Interface 211

NETCONF Layers 211

SSH xmlagent 212

Licensing Requirements for the XML Management Interface 212

Prerequisites to Using the XML Management Interface 213

Using the XML Management Interface 213

Configuring SSH and the XML Server Options 213

Starting an SSH Session 213

Sending the Hello Message 214

Obtaining the XSD Files 214

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
ix

Contents

Sending an XML Document to the XML Server 215

Creating NETCONF XML Instances 215

RPC Request Tag rpc 216

NETCONF Operations Tags 217

Device Tags 218

Extended NETCONF Operations 220

NETCONF Replies 223

RPC Response Tag 224

Interpreting Tags Encapsulated in the Data Tag 224

Information About Example XML Instances 225

Example XML Instances 225

NETCONF Close Session Instance 225

NETCONF Kill-session Instance 226

NETCONF copy-config Instance 226

NETCONF edit-config Instance 226

NETCONF get-config Instance 228

NETCONF Lock Instance 228

NETCONF unlock Instance 229

NETCONF Commit Instance - Candidate Configuration Capability 230

NETCONF Confirmed-commit Instance 230

NETCONF rollback-on-error Instance 230

NETCONF validate Capability Instance 231

Additional References 231

Streaming Telemetry Sources 233A P P E N D I X A

About Streaming Telemetry 233

Guidelines and Limitations 233

Data Available for Telemetry 233

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
x

Contents

Preface

This preface includes the following sections:

• Audience, on page xi
• Document Conventions, on page xi
• Related Documentation for Cisco Nexus 3000 Series Switches, on page xii
• Documentation Feedback, on page xii
• Communications, Services, and Additional Information, on page xii

Audience
This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which the user supplies the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments separated by a vertical
bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments separated by a vertical bar
indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
xi

DescriptionConvention

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string will include the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

Related Documentation for Cisco Nexus 3000 Series Switches
The entire Cisco Nexus 3000 Series switch documentation set is available at the following URL:

https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/
tsd-products-support-series-home.html

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to nexus3k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
xii

Preface
Related Documentation for Cisco Nexus 3000 Series Switches

https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/tsd-products-support-series-home.html
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/tsd-products-support-series-home.html
https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
xiii

Preface
Preface

https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
xiv

Preface
Preface

C H A P T E R 1
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 3500
Series NX-OS Programmability Guide, Release 9.3(x).

• New and Changed Information, on page 1

New and Changed Information
This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 3500
Series NX-OS Programmability Guide, Release 9.3(x).

Table 1: New and Changed Features

Where DocumentedChanged in ReleaseDescriptionFeature

Python API, on page 459.3(5)Added support for Python 3.Python 3 on NX-OS

SaltStack, on page 679.3(1)Enhanced the support for
SaltStack automation and
integration

SaltStack

Copy Through Kstack, on page
7

9.3(1)Enabled speed and
operability of the switch's
copy command

NX-OS copy
commands

XML and JSON Supported
Commands, on page 100

9.3(1)Added JSON Native and
JSON Native Pretty support
for NX-OS show commands

NX-OS show
commands

NX-API, on page 919.3(1)Enhanced messages and
chunking functionality

NX-API Chunking

About Telemetry Path Labels,
on page 187

Model-Driven Telemetry, on
page 151

9.3(1)Added Path Labels, which
consolidate multiple queries
for telemetry path data.

Added support for setting or
changing the node ID string
of the telemetry receiver data

Model Driven
Telemetry, ease of use
enhancements

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
1

Where DocumentedChanged in ReleaseDescriptionFeature

About Native Data Source
Paths, on page 202

9.3(1)Added support for
applications to stream
telemetry data without the
restriction of a specific type
of infrastructure or database.

Model-Driven
Telemetry, Native
Data Source Paths

Not applicableNot applicableFirst 9.3(x) releaseNo updates since
Cisco NX-OS Release
9.2(x)

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
2

New and Changed Information
New and Changed Information

C H A P T E R 2
Bash

• About Bash, on page 3
• Accessing Bash, on page 3
• Escalate Privileges to Root, on page 4
• Examples of Bash Commands, on page 5
• Copy Through Kstack, on page 7

About Bash
In addition to the Cisco NX-OSCLI, Cisco Nexus 3500 platform switches support access to the Bourne-Again
SHell (Bash). Bash interprets commands that you enter or commands that are read from a shell script. Using
Bash enables access to the underlying Linux system on the device and to manage the system.

Accessing Bash
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops
role or the Cisco NX-OS network-admin role.

The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops

Role: dev-ops
Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *

switch# show role name network-admin

Role: network-admin
Description: Predefined network admin role has access to all commands
on the switch

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
3

Rule Perm Type Scope Entity

1 permit read-write

switch#

Bash is enabled by running the feature bash-shell command.

The run bash command loads Bash and begins at the home directory for the user.

The following examples show how to enable the Bash shell feature and how to run Bash.
switch# configure terminal
switch(config)# feature bash-shell

switch# run bash
Linux# whoami
admin
Linux# pwd
/bootflash/home/admin
Linux#

You can also execute Bash commands with the run bash <command> command.

The following is an example of the run bash <command> command.
run bash whoami

Note

Escalate Privileges to Root
The privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an admin user can escalate privileges to root.

• Bash must be enabled before escalating privileges.

• Escalation to root is password protected.

• SSH to the switch using root username through a non-management interface will default to Linux Bash
shell-type access for the root user. Type vsh to return to NX-OS shell access.

The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
Linux# sudo su root

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

Password:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
4

Bash
Escalate Privileges to Root

Linux# whoami
root
Linux# exit
exit

Examples of Bash Commands
This section contains examples of Bash commands and output.

Displaying System Statistics
The following example shows how to display system statistics:
switch# run bash
Linux# cat /proc/meminfo
MemTotal: 3795100 kB
MemFree: 1472680 kB
Buffers: 136 kB
Cached: 1100116 kB
ShmFS: 1100116 kB
Allowed: 948775 Pages
Free: 368170 Pages
Available: 371677 Pages
SwapCached: 0 kB
Active: 1198872 kB
Inactive: 789764 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 888272 kB
Mapped: 144044 kB
Slab: 148836 kB
SReclaimable: 13892 kB
SUnreclaim: 134944 kB
PageTables: 28724 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 1897548 kB
Committed_AS: 19984932 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 215620 kB
VmallocChunk: 34359522555 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 40960 kB
DirectMap2M: 4190208 kB
Linux#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
5

Bash
Examples of Bash Commands

Running Bash from CLI
The following example shows how to run a bash command from the CLI with the run bash <command>
command:
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 497 select ? 00:00:08 init
5 S 0 2 0 0 75 -5 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 -40 - - 0 migrat ? 00:00:00 migration/0
1 S 0 4 2 0 75 -5 - 0 ksofti ? 00:00:01 ksoftirqd/0
5 S 0 5 2 0 58 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 6 2 0 -40 - - 0 migrat ? 00:00:00 migration/1
1 S 0 7 2 0 75 -5 - 0 ksofti ? 00:00:00 ksoftirqd/1
5 S 0 8 2 0 58 - - 0 watchd ? 00:00:00 watchdog/1
1 S 0 9 2 0 -40 - - 0 migrat ? 00:00:00 migration/2
1 S 0 10 2 0 75 -5 - 0 ksofti ? 00:00:00 ksoftirqd/2
5 S 0 11 2 0 58 - - 0 watchd ? 00:00:00 watchdog/2
1 S 0 12 2 0 -40 - - 0 migrat ? 00:00:00 migration/3
1 S 0 13 2 0 75 -5 - 0 ksofti ? 00:00:00 ksoftirqd/3
5 S 0 14 2 0 58 - - 0 watchd ? 00:00:00 watchdog/3

...

4 S 0 8864 1 0 80 0 - 2249 wait ttyS0 00:00:00 login
4 S 2002 28073 8864 0 80 0 - 69158 select ttyS0 00:00:00 vsh
4 R 0 28264 3782 0 80 0 - 54790 select ? 00:00:00 in.dcos-telnet
4 S 0 28265 28264 0 80 0 - 2247 wait pts/0 00:00:00 login
4 S 2002 28266 28265 0 80 0 - 69175 wait pts/0 00:00:00 vsh
1 S 2002 28413 28266 0 80 0 - 69175 wait pts/0 00:00:00 vsh
0 R 2002 28414 28413 0 80 0 - 887 - pts/0 00:00:00 ps
switch#

Running Python from Bash
The following example shows how to load Python and configure a switch using Python objects:
switch# run bash
Linux# python
Python 2.7.5 (default, May 16 2014, 10:58:01)
[GCC 4.3.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Loaded cisco NxOS lib!
>>>
>>> from cisco import *
>>> from cisco.vrf import *
>>> from cisco.interface import *
>>> vrfobj=VRF('myvrf')
>>> vrfobj.get_name()
'myvrf'
>>> vrfobj.add_interface('Ethernet1/3')
True
>>> intf=Interface('Ethernet1/3')
>>> print intf.config()

!Command: show running-config interface Ethernet1/3
!Time: Thu Aug 21 23:32:25 2014

version 6.0(2)U4(1)

interface Ethernet1/3
no switchport

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
6

Bash
Running Bash from CLI

vrf member myvrf

>>>

Copy Through Kstack
In Cisco NX-OS release 9.3(1) and later, file copy operations have the option of running through a different
network stack by using the use-kstack option. Copying files through use-kstack enables faster copy times.
This option can be beneficial when copying files from remote servers that are multiple hops from the switch.
The use-kstack option work with copying files from, and to, the switch though standard file copy features,
such as scp and sftp.

The use-kstack option does not work when the switch is running the FIPS mode feature. If the switch has
FIPS mode that is enabled, the copy operation is still successful, but through the default copy method.

Note

To copy through use-kstack, append the argument to the end of an NX-OS copy command. Some examples:

switch-1# copy scp://test@10.1.1.1/image.bin . vrf management use-kstack
switch-1#
switch-1# copy scp://test@10.1.1.1/image.bin bootflash:// vrf management
use-kstack
switch-1#
switch-1# copy scp://test@10.1.1.1/image.bin . use-kstack
switch-1#
switch-1# copy scp://test@10.1.1.1/image.bin bootflash:// vrf default
use-kstack
switch-1#

The use-kstack option is supported for all NX-OS copy commands and file systems. The option is OpenSSL
(Secure Copy) certified.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
7

Bash
Copy Through Kstack

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
8

Bash
Copy Through Kstack

C H A P T E R 3
Guest Shell

• About the Guest Shell, on page 9
• Guidelines and Limitations for Guestshell, on page 10
• Accessing the Guest Shell, on page 14
• Resources Used for the Guest Shell, on page 15
• Capabilities in the Guestshell, on page 15
• Security Posture for Guest Shell, on page 23
• Guest File System Access Restrictions , on page 26
• Managing the Guest Shell, on page 26
• Verifying Virtual Service and Guest Shell Information, on page 38
• Persistently Starting Your Application From the Guest Shell, on page 40
• Procedure for Persistently Starting Your Application from the Guest Shell, on page 41
• An Example Application in the Guest Shell, on page 41
• Troubleshooting Guest Shell Issues, on page 42

About the Guest Shell
In addition to the NX-OS CLI and Bash access on the underlying Linux environment, switches support access
to a decoupled execution space running within a Linux Container (LXC) called the “Guest Shell”.

From within the Guest Shell the network-admin has the following capabilities:

• Access to the network over Linux network interfaces.

• Access to the switch's bootflash.

• Access to the switch's volatile tmpfs.

• Access to the switch's CLI.

• Access to Cisco NX-API REST.

• The ability to install and run python scripts.

• The ability to install and run 32-bit and 64-bit Linux applications.

Decoupling the execution space from the native host system allows customization of the Linux environment
to suit the needs of the applications without impacting the host system or applications running in other Linux
Containers.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
9

On NX-OS devices, Linux Containers are installed and managed with the virtual-service commands. The
Guest Shell will appear in the virtual-service show command output.

By default, the Guest Shell occupies approximately 35 MB of RAM and 350 MB of bootflash when enabled.
Use the guestshell destroy command to reclaim resources if the Guest Shell is not used.

Note

Guidelines and Limitations for Guestshell
Common Guidelines Across All Releases

If you have performed custom work inside your installation of the Guestshell, save your changes to the
bootflash, off-box storage, or elsewhere outside the Guestshell root file system before performing a guestshell
upgrade.

The guestshell upgrade command essentially performs a guestshell destroy and guestshell enable

in succession.

Important

• If you are running a third-party DHCPD server in Guestshell, there might be issues with offers reaching
the client if used along with SVI. A possible workaround is to use broadcast responses.

• Use the run guestshell CLI command to access the Guestshell on the switch: The run guestshell

command parallels the run bash command that is used to access the host shell. This command allows
you to access the Guestshell and get a Bash prompt or run a commandwithin the context of the Guestshell.
The command uses password-less SSH to an available port on the localhost in the default network
namespace.

• The sshd utility can secure the pre-configured SSH access into the Guestshell by listening on localhost
to avoid connection attempts from outside the network. The sshd has the following features:

• It is configured for key-based authentication without fallback to passwords.

• Only root can read keys use to access the Guestshell after Guestshell restarts.

• Only root can read the file that contains the key on the host to prevent a nonprivileged user with
host Bash access from being able to use the key to connect to the Guestshell. Network-admin users
may start another instance of sshd in the Guestshell to allow remote access directly into the Guestshell,
but any user that logs into the Guestshell is also given network-admin privilege.

Introduced in Guestshell 2.2 (0.2), the key file is readable for
whom the user account was created for.

In addition, the Guestshell accounts are not automatically
removed, and must be removed by the network administrator
when no longer needed.

Guestshell installations before 2.2 (0.2) will not dynamically
create individual user accounts.

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
10

Guest Shell
Guidelines and Limitations for Guestshell

• Installing the Cisco NX-OS software release on a fresh out-of-the-box switch will automatically enable
the Guestshell. Subsequent upgrades to the switch software will not automatically upgrade Guestshell.

• Guestshell releases increment the major number when distributions or distribution versions change.

• Guestshell releases increment the minor number when CVEs have been addressed. The Guestshell updates
CVEs only when CentOS makes them publicly available.

• Cisco recommends using yum update to pick up third-party security vulnerability fixes directly from
the CentOS repository. This provides the flexibility of getting updates as, and when, available without
needing to wait for a Cisco NX-OS software update.

Alternatively, using the guestshell update command would replace the existing Guestshell rootfs. Any
customizations and software package installations would then need to be performed again within the
context of this new Guestshell rootfs.

CentOS end of life and impact on Guestshell

Guestshell is an LXC container based on CentOS environment. As per updates in the open source
community, CentOS 8 Project is reaching end of support by December 2021. The CentOS 7 project is to
continue through and is targeted to reach end of support by June 2024. Due to this long term support for
CentOS 7, the latest Cisco NX-OS software 10.2.x is packaged with Guestshell 2.11 (CentOS 7 based). This
replaces Guestshell 3.0 (CentOS 8) which is the default environment in 10.1.x release.

Guestshell 2.11

Beginning with Cisco NX-OS release 10.2(1), CentOS 7 is re-introduced as the default Guestshell environment.
See section "CentOS End of Life" for a detailed explanation on the reasons.

Guestshell 2.11 comes with python2 and python3.6 support. The functionality between Guestshell 2.11 and
Guestshell 3.0 remains the same.

The rootfs size of Guestshell 2.11 has increased to approximately 200 MB.Note

Upgrading from Guestshell 1.0 to Guestshell 2.x

Guestshell 2.x is based on a CentOS 7 root file system. If you have an off-box repository of .conf files or
utilities that pulled the content down into Guestshell 1.0, you must repeat the same deployment steps in
Guestshell 2.x. Your deployment script may need to be adjusted to account for the CentOS 7 differences.

Guestshell 2.x

The Cisco NX-OS automatically installs and enables the Guestshell by default on systems with sufficient
resources. However, if the device is reloaded with a Cisco NX-OS image that does not provide Guestshell
support, the installer will automatically remove the existing Guestshell and issue a
%VMAN-2-INVALID_PACKAGE.

Systems with 4 GB of RAM will not enable Guestshell by default. Use the guestshell enable command to
install and enable Guestshell.

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
11

Guest Shell
Guidelines and Limitations for Guestshell

The install all command validates the compatibility between the current Cisco NX-OS image against the
target Cisco NX-OS image.

The following is an example output from installing an incompatible image:
switch#
Installer will perform compatibility check first. Please wait.
uri is: /
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guestshell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#

As a best practice, remove the Guestshell with the guestshell destroy command before reloading an older
Cisco NX-OS image that does not support the Guestshell.

Note

Pre-Configured SSHD Service

The Guestshell starts an OpenSSH server upon boot up. The server listens on a randomly generated port on
the localhost IP address interface 127.0.0.1 only. This provides the password-less connectivity into the
Guestshell from the NX-OS virtual-shell when the guestshell keyword is entered. If this server is killed or its
configuration (residing in /etc/ssh/sshd_config-cisco) is altered, access to the Guestshell from
the NX-OS CLI might not work.

The following steps instantiate an OpenSSh server within the Guestshell as root:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
12

Guest Shell
Guidelines and Limitations for Guestshell

1. Determine which network namespace or VRF you want to establish your SSH connections through.

2. Determine the port that youwant OpenSSH to listen on. Use the NX-OS command show socket connection
to view ports already in use.

The Guestshell sshd service for password-less access uses a randomized port starting at 17680 through 49150.
To avoid port conflict, choose a port outside this range.

Note

The following steps start the OpenSSH server. The examples start the OpenSSH server for management netns
on IP address 10.122.84.34:2222:

1. Create the following files: /usr/lib/systemd/systm/sshd-mgmt.service and
/etc/ssh/sshd-mgmt_config. The files should have the following configurations:
-rw-r--r-- 1 root root 394 Apr 7 14:21 /usr/lib/systemd/system/sshd-mgmt.service
-rw------- 1 root root 4478 Apr 7 14:22 /etc/ssh/sshd-mgmt_config

2. Copy the Unit and Service contents from the /usr/lib/systemd/system/ssh.service file
to sshd-mgmt.service.

3. Edit the sshd-mgmt.service file to match the following:
[Unit]
Description=OpenSSH server daemon
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/sbin/ip netns exec management /usr/sbin/sshd -f /etc/ssh/sshd-mgmt_config
-D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
[Install]
WantedBy=multi-user.target

4. Copy the contents of /etc/ssh/sshd-config to /etc/ssh/sshd-mgmt_config. Modify
the ListenAddress IP and port as necessary.
Port 2222
ListenAddress 10.122.84.34

5. Start the systemctl daemon using the following commands:
sudo systemctl daemon-reload
sudo systemctl start sshd-mgmt.service
sudo systemctl status sshd-mgmt.service -l

6. (Optional) Check the configuration.
ss -tnldp | grep 2222

7. SSH into Guestshell:
ssh -p 2222 guestshell@10.122.84.34

8. Save the configuration across multiple Guestshell or switch reboots.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
13

Guest Shell
Guidelines and Limitations for Guestshell

sudo systemctl enable sshd-mgmt.service

9. For passwordless SSH/SCP and remote execution, generate the public and private keys for the user ID
you want to user for SSH/SCP using the ssh-keygen -t dsa command.

The key is then stored in the id_rsa and id_rsa.pub files in the /.ssh directory:
[root@node01 ~]# cd ~/.ssh
[root@node02 .ssh]# ls -l
total 8
-rw-------. 1 root root 1675 May 5 15:01 id_rsa
-rw-r--r--. 1 root root 406 May 5 15:01 id_rsa.pub

10. Copy the public key into the machine you want to SSH into and fix permissions:
cat id_rsa.pub >> /root/.ssh/authorized_keys
chmod 700 /root/.ssh
chmod 600 /root/.ssh/*

11. SSH or SCP into the remote switch without a password:
ssh -p <port#> userid@hostname [<remote command>]
scp -P <port#> userid@hostname/filepath /destination

Localtime

The Guestshell shares /etc/localtime with the host system.

If you do not want to share the same localtime with the host, this symlink can be broken and a Guestshell
specific /etc/localtime can be created.

Note

switch(config)# clock timezone PDT -7 0
switch(config)# clock set 10:00:00 27 Jan 2017
Fri Jan 27 10:00:00 PDT 2017
switch(config)# show clock
10:00:07.554 PDT Fri Jan 27 2017
switch(config)# run guestshell
guestshell:~$ date
Fri Jan 27 10:00:12 PDT 2017

Accessing the Guest Shell
In Cisco NX-OS, the Guest Shell is accessible to the network-admin. It is automatically enabled in the system
and can be accessed using the run guestshell command. Consistent with the run bash command, these
commands can be issued within the Guest Shell with the run guestshell command form of the NX-OS CLI
command.

The Guest Shell is automatically enabled on systems with more than 4 GB of RAM.Note

switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
14

Guest Shell
Accessing the Guest Shell

When running in the Guest Shell, you have network-admin level privileges.Note

The Guest Shell starting in 2.2(0.2) will dynamically create user accounts with the same as the user logged
into switch. However, all other information is NOT shared between the switch and the Guest Shell user
accounts.

In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network
administrator when no longer needed.

Note

Resources Used for the Guest Shell
By default, the resources for the Guest Shell have a small impact on resources available for normal switch
operations. If the network-admin requires additional resources for the Guest Shell, the guestshell resize {cpu
| memory | rootfs} command changes these limits.

Minimum/MaximumDefaultResource

1/%1%CPU

256/3840 MB400 MBMemory

200/2000 MB200 MBStorage

The CPU limit is the percentage of the system compute capacity that tasks running within the Guest Shell are
given when there is contention with other compute loads in the system. When there is no contention for CPU
resources, the tasks within the Guest Shell are not limited.

A Guest Shell reboot is required after changing the resource allocations. This can be accomplished with the
guestshell reboot command.

Note

Capabilities in the Guestshell
The Guestshell has a number of utilities and capabilities available by default.

The Guestshell is populated with CentOS 7 Linux which provides the ability to dnf install software packages
built for this distribution. The Guestshell is pre-populated with many of the common tools that would naturally
be expected on a networking device including net-tools, iproute, tcpdump and OpenSSH. For Guestshell
2.x, python 2.7.5 is included by default as is the PIP for installing additional python packages. In Guestshell
2.11, by default, python 3.6 is also included.

By default the Guestshell is a 64-bit execution space. If 32-bit support is needed, the glibc.i686 package can
be dnf installed.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
15

Guest Shell
Resources Used for the Guest Shell

The Guestshell has access to the Linux network interfaces used to represent the management and data ports
of the switch. Typical Linux methods and utilities like ifconfig and ethtool can be used to collect counters.
When an interface is placed into a VRF in the NX-OS CLI, the Linux network interface is placed into a
network namespace for that VRF. The name spaces can be seen at /var/run/netns and the ip netns
utility can be used to run in the context of different namespaces. A couple of utilities, chvrf and vrfinfo, are
provided as a convenience for running in a different namespace and getting information about which
namespace/vrf a process is running in.

systemd is used to manage services in CentOS 8 environments, including the Guestshell.

NX-OS CLI in the Guest Shell
The Guest Shell provides an application to allow the user to issue NX-OS commands from the Guest Shell
environment to the host network element. The dohost application accepts any valid NX-OS configuration or
exec commands and issues them to the host network element.

When invoking the dohost command each NX-OS command may be in single or double quotes:

dohost "<NXOS CLI>"

The NX-OS CLI can be chained together:

[guestshell@guestshell ~]$ dohost "sh lldp time | in Hold" "show cdp global"
Holdtime in seconds: 120
Global CDP information:
CDP enabled globally
Refresh time is 21 seconds
Hold time is 180 seconds
CDPv2 advertisements is enabled
DeviceID TLV in System-Name(Default) Format
[guestshell@guestshell ~]$

The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding
a semicolon between each command. (A space on either side of the semicolon is required.):

[guestshell@guestshell ~]$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
Enter configuration commands, one per line. End with CNTL/Z.
cdp timer 13
[guestshell@guestshell ~]$

Starting with Guest Shell 2.2 (0.2), commands issued on the host through the dohost command are run with
privileges based on the effective role of the Guest Shell user.

Prior versions of Guest Shell will run command with network-admin level privileges.

The dohost command fails when the number of UDS connections to NX-API are at the maximum allowed.

Note

Network Access in Guest Shell
The NX-OS switch ports are represented in the Guest Shell as Linux network interfaces. Typical Linuxmethods
like view stats in /proc/net/dev, through ifconfig or ethtool are all supported:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
16

Guest Shell
NX-OS CLI in the Guest Shell

The Guest Shell has a number of typical network utilities included by default and they can be used on different
VRFs using the chvrf vrf command command.
[guestshell@guestshell bootflash]$ ifconfig Eth1-47
Eth1-47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 13.0.0.47 netmask 255.255.255.0 broadcast 13.0.0.255
ether 54:7f:ee:8e:27:bc txqueuelen 100 (Ethernet)
RX packets 311442 bytes 21703008 (20.6 MiB)
RX errors 0 dropped 185 overruns 0 frame 0
TX packets 12967 bytes 3023575 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Within the Guest Shell, the networking state can bemonitored, but may not be changed. To change networking
state, use the NX-OS CLI or the appropriate Linux utilities in the host bash shell.

The tcpdump command is packaged with the Guest Shell to allow packet tracing of punted traffic on the
management or switch ports.

The sudo ip netns exec management ping utility is a common method for running a command in the context
of a specified network namespace. This can be done within the Guest Shell:
[guestshell@guestshell bootflash]$ sudo ip netns exec management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

The chvrf utility is provided as a convenience:
guestshell@guestshell bootflash]$ chvrf management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Commands that are run without the chvrf command are run in the current VRF/network namespace.Note

For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management
ping 10.0.0.1”. Other utilities such as scp or ssh would be similar.

Example:

switch# guestshell
[guestshell@guestshell ~]$ cd /bootflash
[guestshell@guestshell bootflash]$ chvrf management scp foo@10.28.38.48:/foo/index.html
index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
[guestshell@guestshell bootflash]$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
[guestshell@guestshell bootflash]$
[guestshell@guestshell bootflash]$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
[guestshell@guestshell bootflash]$

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
17

Guest Shell
Network Access in Guest Shell

To obtain a list of VRFs on the system, use the show vrf command natively from NX-OS or through the
dohost command:

Example:

[guestshell@guestshell bootflash]$ dohost 'sh vrf'
VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --
red 6 Up --

Within the Guest Shell, the network namespaces associated with the VRFs are what is actually used. It can
be more convenient to just see which network namespaces are present:
[guestshell@guestshell bootflash]$ ls /var/run/netns
default management red
[guestshell@guestshell bootflash]$

To resolve domain names from within the Guest Shell, the resolver needs to be configured. Edit the
/etc/resolv.conf file in the Guest Shell to include a DNS nameserver and domain as appropriate for the network.

Example:

nameserver 10.1.1.1
domain cisco.com

The nameserver and domain information should match what is configured through the NX-OS configuration.

Example:

switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1

If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy environment
variables must be set up within the Guest Shell also.

Example:

export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they
are persistent.

Access to Bootflash in Guest Shell
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI
commands. Bymounting the system bootflash at /bootflash in the Guest Shell environment, the network-admin
can operate on these files with Linux commands.

Example:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
18

Guest Shell
Access to Bootflash in Guest Shell

find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”

While the name of the user within the Guest Shell is the same as when on the host, the Guest Shell is in a
separate user namespace, and the uid does not match that of the user on the host. The file permissions for
group and others will control the type of access the Guest Shell user has on the file.

Note

Python in Guest Shell
Python can be used interactively or python scripts can be run in the Guest Shell.

Example:

guestshell:~$ python
Python 2.7.5 (default, Jun 24 2015, 00:41:19)
[GCC 4.8.3 20140911 (Red Hat 4.8.3-9)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
guestshell:~$

The pip python package manager is included in the Guest Shell to allow the network-admin to install new
python packages.

Example:
[guestshell@guestshell ~]$ sudo su
[root@guestshell guestshell]# pip install Markdown
Collecting Markdown
Downloading Markdown-2.6.2-py2.py3-none-any.whl (157kB)
100% |################################| 159kB 1.8MB/s
Installing collected packages: Markdown
Successfully installed Markdown-2.6.2
[root@guestshell guestshell]# pip list | grep Markdown
Markdown (2.6.2)
[root@guestshell guestshell]#

You must enter the sudo su command before entering the pip install command.Note

Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
Guest Shell 2.X provides a CentOS 7.1 environment, which does not have Python 3 installed by default. There
are multiple methods of installing Python 3 on CentOS 7.1, such as using third-party repositories or building
from source. Another option is using the Red Hat Software Collections, which supports installing multiple
versions of Python within the same system.

To install the Red Hat Software Collections (SCL) tool:

1. Install the scl-utils package.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
19

Guest Shell
Python in Guest Shell

2. Enable the CentOS SCL repository and install one of its provided Python 3 RPMs.

[admin@guestshell ~]$ sudo su
[root@guestshell admin]# yum install -y scl-utils | tail
Running transaction test
Transaction test succeeded
Running transaction
Installing : scl-utils-20130529-19.el7.x86_64 1/1
Verifying : scl-utils-20130529-19.el7.x86_64 1/1

Installed:
scl-utils.x86_64 0:20130529-19.el7

Complete!

[root@guestshell admin]# yum install -y centos-release-scl | tail
Verifying : centos-release-scl-2-3.el7.centos.noarch 1/2
Verifying : centos-release-scl-rh-2-3.el7.centos.noarch 2/2

Installed:
centos-release-scl.noarch 0:2-3.el7.centos

Dependency Installed:
centos-release-scl-rh.noarch 0:2-3.el7.centos

Complete!

[root@guestshell admin]# yum install -y rh-python36 | tail
warning: /var/cache/yum/x86_64/7/centos-sclo-rh/packages/rh-python36-2.0-1.el7.x86_64.rpm:
Header V4 RSA/SHA1 Signature, key ID f2ee9d55: NOKEY
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm:
[Errno 12] Timeout on
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: (28,
'Operation too slow. Less than 1000 bytes/sec transferred the last 30 seconds')
Trying other mirror.
Importing GPG key 0xF2EE9D55:
Userid : "CentOS SoftwareCollections SIG
(https://wiki.centos.org/SpecialInterestGroup/SCLo) <security@centos.org>"
Fingerprint: c4db d535 b1fb ba14 f8ba 64a8 4eb8 4e71 f2ee 9d55
Package : centos-release-scl-rh-2-3.el7.centos.noarch (@extras)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-SCLo
rh-python36-python-libs.x86_64 0:3.6.9-2.el7
rh-python36-python-pip.noarch 0:9.0.1-2.el7
rh-python36-python-setuptools.noarch 0:36.5.0-1.el7
rh-python36-python-virtualenv.noarch 0:15.1.0-2.el7
rh-python36-runtime.x86_64 0:2.0-1.el7
scl-utils-build.x86_64 0:20130529-19.el7
xml-common.noarch 0:0.6.3-39.el7
zip.x86_64 0:3.0-11.el7

Complete!

Using SCL, it is possible to create an interactive bash session with Python 3’s environment variables
automatically setup.

The root user is not needed to use the SCL Python installation.Note

[admin@guestshell ~]$ scl enable rh-python36 bash
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
20

Guest Shell
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python SCL installation also provides the pip utility.
[admin@guestshell ~]$ pip3 install requests --user
Collecting requests
Downloading

https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl
(57kB)

100% |################################| 61kB 211kB/s
Collecting idna<2.9,>=2.5 (from requests)
Downloading

https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl
(58kB)

100% |################################| 61kB 279kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests)
Downloading

https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl
(133kB)

100% |################################| 143kB 441kB/s
Collecting certifi>=2017.4.17 (from requests)
Downloading

https://files.pythonhosted.org/packages/b9/63/df50cac98ea0d5b006c55a399c3bf1db9da7b5a24de7890bc9cfd5dd9e99/certifi-2019.11.28-py2.py3-none-any.whl
(156kB)

100% |################################| 163kB 447kB/s
Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
Downloading

https://files.pythonhosted.org/packages/e8/74/6e4f91745020f967d09332bb2b8b9b10090957334692eb88ea4afe91b77f/urllib3-1.25.8-py2.py3-none-any.whl
(125kB)

100% |################################| 133kB 656kB/s
Installing collected packages: idna, chardet, certifi, urllib3, requests
Successfully installed certifi-2019.11.28 chardet-3.0.4 idna-2.8 requests-2.22.0
urllib3-1.25.8
You are using pip version 9.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>> requests.get("https://cisco.com")
<Response [200]>

The default Python 2 installation can be used alongside the SCL Python installation.
[admin@guestshell ~]$ which python3
/opt/rh/rh-python36/root/usr/bin/python3
[admin@guestshell ~]$ which python2
/bin/python2
[admin@guestshell ~]$ python2
Python 2.7.5 (default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello world!'
Hello world!

Software Collections makes it possible to install multiple versions of the same RPM on a system. In this case,
it is possible to install Python 3.5 in addition to Python 3.6.
[admin@guestshell ~]$ sudo yum install -y rh-python35 | tail
Dependency Installed:
rh-python35-python.x86_64 0:3.5.1-13.el7
rh-python35-python-devel.x86_64 0:3.5.1-13.el7
rh-python35-python-libs.x86_64 0:3.5.1-13.el7
rh-python35-python-pip.noarch 0:7.1.0-2.el7

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
21

Guest Shell
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

rh-python35-python-setuptools.noarch 0:18.0.1-2.el7
rh-python35-python-virtualenv.noarch 0:13.1.2-2.el7
rh-python35-runtime.x86_64 0:2.0-2.el7

Complete!

[admin@guestshell ~]$ scl enable rh-python35 python3
Python 3.5.1 (default, May 29 2019, 15:41:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Creating new interactive bash sessions when multiple Python versions are installed in SCL can cause an issue
where the libpython shared object file cannot be loaded. There is a workaround where you can use the source
scl_source enable python-installation command to properly set up the environment in the current bash session.

The default Guest Shell storage capacity is not sufficient to install Python 3. Use the guestshell resize rootfs
size-in-MB command to increase the size of the file system. Typically, setting the rootfs size to 550 MB is
sufficient.

Note

Installing RPMs in the Guest Shell
The /etc/yum.repos.d/CentOS-Base.repo file is set up to use the CentOS mirror list by default. Follow
instructions in that file if changes are needed.

Yum can be pointed to one or more repositories at any time by modifying the yumrepo_x86_64.repo
file or by adding a new .repo file in the repos.d directory.

For applications to be installed inside Guest Shell 3.0, go to the CentOS 8 repo at http://mirror.centos.org/
centos/8/BaseOS/x86_64/os/Packages/.

For applications to be installed inside Guest Shell 2.x, go to the CentOS 7 repo at http://mirror.centos.org/
centos/7/os/x86_64/Packages/.

Yum resolves the dependancies and installs all the required packages.
[guestshell@guestshell ~]$ sudo chvrf management yum -y install glibc.i686
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: bay.uchicago.edu
* extras: pubmirrors.dal.corespace.com
* updates: mirrors.cmich.edu
Resolving Dependencies
"-->" Running transaction check
"--->" Package glibc.i686 0:2.17-78.el7 will be installed
"-->" Processing Dependency: libfreebl3.so(NSSRAWHASH_3.12.3) for package:
glibc-2.17-78.el7.i686
"-->" Processing Dependency: libfreebl3.so for package: glibc-2.17-78.el7.i686
"-->" Running transaction check
"--->" Package nss-softokn-freebl.i686 0:3.16.2.3-9.el7 will be installed
"-->" Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
22

Guest Shell
Installing RPMs in the Guest Shell

http://mirror.centos.org/centos/8/BaseOS/x86_64/os/Packages/
http://mirror.centos.org/centos/8/BaseOS/x86_64/os/Packages/
http://mirror.centos.org/centos/7/os/x86_64/Packages/
http://mirror.centos.org/centos/7/os/x86_64/Packages/

glibc i686 2.17-78.el7 base 4.2 M
Installing for dependencies:
nss-softokn-freebl i686 3.16.2.3-9.el7 base 187 k

Transaction Summary
==
Install 1 Package (+1 Dependent package)

Total download size: 4.4 M
Installed size: 15 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/2): nss-softokn-freebl-3.16.2.3-9.el7.i686.rpm | 187 kB 00:00:25
(2/2): glibc-2.17-78.el7.i686.rpm | 4.2 MB 00:00:30
--
Total 145 kB/s | 4.4 MB 00:00:30
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nss-softokn-freebl-3.16.2.3-9.el7.i686 1/2
Installing : glibc-2.17-78.el7.i686 2/2
error: lua script failed: [string "%triggerin(glibc-common-2.17-78.el7.x86_64)"]:1: attempt
to compare number with nil
Non-fatal "<"unknown">" scriptlet failure in rpm package glibc-2.17-78.el7.i686
Verifying : glibc-2.17-78.el7.i686 1/2
Verifying : nss-softokn-freebl-3.16.2.3-9.el7.i686 2/2

Installed:
glibc.i686 0:2.17-78.el7

Dependency Installed:
nss-softokn-freebl.i686 0:3.16.2.3-9.el7

Complete!

Whenmore space is needed in the Guest Shell root file system for installing or running packages, the guestshell
resize roofs size-in-MB command is used to increase the size of the file system.

Note

Some open source software packages from the repository might not install or run as expected in the Guest
Shell as a result of restrictions that have been put into place to protect the integrity of the host system.

Note

Security Posture for Guest Shell
Use of the Guest Shell in switches is just one of the many ways the network admin can manage or extend the
functionality of the system. The Guest Shell is intended to provide an execution environment that is decoupled
from the native host context. This separation allows the introduction of software into the system that may not
be compatible with the native execution environment. It also allows the software to run in an environment
that does not interfere with the behavior, performance, or scale of the system.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
23

Guest Shell
Security Posture for Guest Shell

Kernel Vulnerability Patches
Cisco responds to pertinent CommonVulnerabilities and Exposures (CVEs) with platform updates that address
known vulnerabilities.

ASLR and X-Space Support
Cisco NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable Space
Protection (X-Space) for runtime defense. The software in Cisco-signed packages make use of this capability.
If other software is installed on the system, it is recommended that it be built using a host OS and development
toolchain that supports these technologies. Doing so reduces the potential attack surface that the software
presents to potential intruders.

Namespace Isolation
The Guest Shell environment runs within a Linux container that makes use of various namespaces to decouple
the Guest Shell execution space from that of the host. Starting in the NX-OS 9.2(1) release, the Guest Shell
is run in a separate user namespace, which helps protect the integrity of the host system, as processes running
as root within the Guest Shell are not root of the host. These processes appear to be running as uid 0 within
the Guest Shell due to uid mapping, but the kernel knows the real uid of these processes and evaluates the
POSIX capabilities within the appropriate user namespace.

When a user enters the Guest Shell from the host, a user of the same name is created within the Guest Shell.
While the names match, the uid of the user within the Guest Shell is not the same as the uid on the host. To
still allow users within the Guest Shell to access files on shared media (for example, /bootflash or
/volatile), the common NX-OS gids used on the host (for example, network-admin or network-operator)
are mapped into the Guest Shell such that the values are the same and the Guest Shell instance of the user is
associated with the appropriate groups based on group membership on the host.

As an example, consider user bob. On the host, bob has the following uid and gid membership:
bash-4.3$ id
uid=2004(bob) gid=503(network-admin) groups=503(network-admin),504(network-operator)

When user bob is in the Guest Shell, the group membership from the host is set up in the Guest Shell:
[bob@guestshell ~]$ id
uid=1002(bob) gid=503(network-admin)
groups=503(network-admin),504(network-operator),10(wheel)

Files created by user bob in the host Bash shell and the Guest Shell have different owner ids. The example
output below shows that the file created from within the Guest Shell has owner id 12002, instead of 1002 as
shown in the example output above. This is due to the command being issued from the host Bash shell and
the id space for the Guest Shell starting at id 11000. The group id of the file is network-admin, which is 503
in both environments.
bash-4.3$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 12002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 2004 503 4 Jun 22 15:47 /bootflash/bob_host

bash-4.3$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 12002 network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
24

Guest Shell
Kernel Vulnerability Patches

-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_host

The user is allowed to access the file due to the file permission settings for the network-admin group, and the
fact that bob is a member of network-admin in both the host and Guest Shell.

Inside the Guest Shell environment, the example output below shows that the owner id for the file created by
bob from the host is 65534. This indicates the actual id is in a range that is outside range of ids mapped into
the user namespace. Any unmapped id will be shown as this value.
[bob@guestshell ~]$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 1002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 503 4 Jun 22 15:47 /bootflash/bob_host

[bob@guestshell ~]$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 network-admin 4 Jun 22 15:47 /bootflash/bob_host

Root-User Restrictions
As a best practice for developing secure code, it is recommend running applications with the least privilege
needed to accomplish the assigned task. To help prevent unintended accesses, software added into the Guest
Shell should follow this best practice.

All processes within the Guest Shell are subject to restrictions imposed by reduced Linux capabilities. If your
application must perform operations that require root privileges, restrict the use of the root account to the
smallest set of operations that absolutely requires root access, and impose other controls such as a hard limit
on the amount of time that the application can run in that mode.

The set of Linux capabilities that are dropped for root within the Guest Shell follow:

• cap_audit_control

• cap_audit_write

• cap_mac_admin

• cap_mac_override

• cap_mknod

• cap_net_broadcast

• cap_sys_boot

• cap_syslog

• cap_sys_module

• cap_sys_nice

• cap_sys_pacct

• cap_sys_ptrace

• cap_sys_rawio

• cap_sys_resource

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
25

Guest Shell
Root-User Restrictions

• cap_sys_time

• cap_wake_alarm

While the net_admin capability is not dropped, user namespace and the host ownership of the network
namespaces prevents the Guest Shell user from modifying the interface state. As root within the Guest Shell,
bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts are prevented.

Resource Management
ADenial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended
users.Misbehaving ormalicious application code can causeDoS as the result of over-consumption of connection
bandwidth, disk space, memory, and other resources. The host provides resource-management features that
ensure fair allocation of resources between Guest Shell and services on the host.

Guest File System Access Restrictions
To preserve the integrity of the files within the Guest Shell, the file systems of the Guest Shell are not accessible
from the NX-OS CLI.

bootflash: and volatile: of the host are mounted as /bootflash and /volatile within the Guest
Shell. A network-admin can access files on this media using the NX-OS exec commands from the host or
using Linux commands from within the Guest Shell.

Managing the Guest Shell
The following are commands to manage the Guest Shell:

Table 2: Guest Shell CLI Commands

DescriptionCommands

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
26

Guest Shell
Resource Management

DescriptionCommands

• When guest shell OVA file is specified:

Installs and activates the Guest Shell using the
OVA that is embedded in the system image.

Installs and activates the Guest Shell using the
specified software package (OVA file) or the
embedded package from the system image (when
no package is specified). Initially, Guest Shell
packages are only available by being embedded
in the system image.

When the Guest Shell is already installed, this
command enables the installed Guest Shell.
Typically this is used after a guestshell disable
command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs when the Guest
Shell is in a destroyed state. This command
brings up the Guest Shell with the specified
package.

guestshell enable {package [guest shell OVA file |
rootfs-file-URI]}

Exports a Guest Shell rootfs file to a local URI
(bootflash, USB1, etc.).

guestshell export rootfs package destination-file-URI

Shuts down and disables the Guest Shell.guestshell disable

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
27

Guest Shell
Managing the Guest Shell

DescriptionCommands

• When guest shell OVA file is specified:

Deactivates and upgrades the Guest Shell using
the specified software package (OVA file) or the
embedded package from the system image (if no
package is specified). Initially Guest Shell
packages are only available by being embedded
in the system image.

The current rootfs for the Guest Shell is replaced
with the rootfs in the software package. The
Guest Shell does not make use of secondary
filesystems that persist across an upgrade.
Without persistent secondary filesystems, a
guestshell destroy command followed by a
guestshell enable command could also be used
to replace the rootfs. When an upgrade is
successful, the Guest Shell is activated.

You are prompted for a confirmation prior to
carrying out the upgrade command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs file when the Guest
Shell is already installed. This command removes
the existing Guest Shell and installs the

specified package.

guestshell upgrade {package [guest shell OVA file
| rootfs-file-URI]}

Deactivates the Guest Shell and then reactivates it.

You are prompted for a confirmation prior to carrying
out the reboot command.

This is the equivalent of a guestshell
disable command followed by a guestshell
enable command in exec mode.

This is useful when processes inside the
Guest Shell have been stopped and need
to be restarted. The run guestshell
command relies on sshd running in the
Guest Shell.

If the command does not work, the sshd
process may have been inadvertently
stopped. Performing a reboot of the Guest
Shell from the NX-OS CLI allows it to
restart and restore the command.

Note

guestshell reboot

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
28

Guest Shell
Managing the Guest Shell

DescriptionCommands

Deactivates and uninstalls the Guest Shell. All
resources associated with the Guest Shell are returned
to the system. The show virtual-service global
command indicates when these resources become
available.

Issuing this command results in a prompt for a
confirmation prior to carrying out the destroy
command.

guestshell destroy

Connects to the Guest Shell that is already running
with a shell prompt. No username/password is
required.

guestshell

run guestshell

Executes a Linux/UNIX commandwithin the context
of the Guest Shell environment.

After execution of the command you are returned to
the switch prompt.

guestshell run command

run guestshell command

Changes the allotted resources available for the Guest
Shell. The changes take effect the next time the Guest
Shell is enabled or rebooted.

Resize values are cleared when the
guestshell destroy command is used.

Note

guestshell resize [cpu | memory | rootfs]

On systems that have active and standby supervisors,
this command synchronizes the Guest Shell contents
from the active supervisor to the standby supervisor.
The network-admin issues this command when the
Guest Shell rootfs has been set up to a point that they
would want the same rootfs used on the standby
supervisor when it becomes the active supervisor. If
this command is not used, the Guest Shell is freshly
installed when the standby supervisor transitions to
an active role using the Guest Shell package available
on that supervisor.

guestshell sync

In the event that the guestshell or virtual-services
cannot be managed, even after a system reload, the
reset command is used to force the removal of the
Guest Shell and all virtual-services. The system needs
to be reloaded for the cleanup to happen. No Guest
Shell or additional virtual-services can be installed or
enabled after issuing this command until after the
system has been reloaded.

You are prompted for a confirmation prior to initiating
the reset.

virtual-service reset force

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
29

Guest Shell
Managing the Guest Shell

Administrative privileges are necessary to enable/disable and to gain access to the Guest Shell environment.Note

The Guest Shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs
are installed and managed with the virtual-service commands. The Guest Shell appears in the virtual-service
commands as a virtual service named guestshell+.

Note

Virtual-service commands that do not pertain to the Guest Shell are being deprecated. These commands have
been hidden in the NX-OS 9.2(1) release and will be removed in future releases.

The following exec keywords are being deprecated:
virtual-service ?
connect Request a virtual service shell
install Add a virtual service to install database
uninstall Remove a virtual service from the install database
upgrade Upgrade a virtual service package to a different version

show virtual-service ?
detail Detailed information config)

The following config keywords are being deprecated:
(config) virtual-service ?
WORD Virtual service name (Max Size 20)

(config-virt-serv)# ?
activate Activate configured virtual service
description Virtual service description

Note

Disabling the Guest Shell
The guestshell disable command shuts down and disables the Guest Shell.

When the Guest Shell is disabled and the system is reloaded, the Guest Shell remains disabled.

Example:

switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n) y

2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual
service 'guestshell+'

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
30

Guest Shell
Disabling the Guest Shell

2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'
switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova

The Guest Shell is reactivated with the guestshell enable command.Note

Destroying the Guest Shell
The guestshell destroy command uninstalls the Guest Shell and its artifacts. The command does not remove
the Guest Shell OVA.

When the Guest Shell is destroyed and the system is reloaded, the Guest Shell remains destroyed.
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova

switch# guestshell destroy

You are about to destroy the guest shell and all of its contents. Be sure to save your work.
Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'

switch# show virtual-service list
Virtual Service List:

The Guest Shell can be re-enabled with the guestshell enable command.Note

If you do not want to use the Guest Shell, you can remove it with the guestshell destroy command. Once the
Guest Shell has been removed, it remains removed for subsequent reloads. This means that when the Guest
Shell container has been removed and the switch is reloaded, the Guest Shell container is not automatically
started.

Note

Enabling the Guest Shell
The guestshell enable command installs the Guest Shell from a Guest Shell software package. By default,
the package embedded in the system image is used for the installation. The command is also used to reactivate
the Guest Shell if it has been disabled.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
31

Guest Shell
Destroying the Guest Shell

When the Guest Shell is enabled and the system is reloaded, the Guest Shell remains enabled.

Example:

switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating

2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova

Enabling the Guest Shell in Base Boot Mode

Beginning in the NX-OS 9.2(1) release, you can choose to boot your system in base boot mode. When you
boot your system in base boot mode, the Guest Shell is not started by default. In order to use the Guest Shell
in this mode, you must activate the RPMs containing the virtualization infrastructure as well as the Guest
Shell image. Once you have done this, the Guest Shell and virtual-service commands will be available.

If the RPM activation commands are run in this order:

1. install activate guestshell

2. install activate virtualization

The Guest Shell container will be activated automatically as it would have been if the system had been booted
in full mode.

If the RPM activation commands are run in the reverse order:

1. install activate virtualization

2. install activate guestshell

Then the Guest Shell will not be enabled until you run the guestshell enable command.

Replicating the Guest Shell
Beginning with Cisco NX-OS release 7.0(3)I7(1), a Guest Shell rootfs that is customized on one switch can
be deployed onto multiple switches.

The approach is to customize and then export the Guest Shell rootfs and store it on a file server. A POAP
script can download (import) the Guest Shell rootfs to other switches and install the specific Guest Shell
across many devices simultaneously.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
32

Guest Shell
Replicating the Guest Shell

Exporting Guest Shell rootfs

Use the guestshell export rootfs package destination-file-URI command to export a Guest Shell rootfs.

The destination-file-URI parameter is the name of the file that the Guest Shell rootfs is copied to. This file
allows for local URI options (bootflash, USB1, etc.).

The guestshell export rootfs package command:

• Disables the Guest Shell (if already enabled).

• Creates a Guest Shell import YAML file and inserts it into the /cisco directory of the rootfs ext4 file.

• Copies the rootfs ext4 file to the target URI location.

• Re-enables the Guest Shell if it had been previously enabled.

Importing Guest Shell rootfs

When importing a Guest Shell rootfs, there are two situations to consider:

• Use the guestshell enable package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is in a destroyed state. This command brings up the Guest Shell with the specified package.

• Use the guestshell upgrade package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is already installed. This command removes the existing Guest Shell and installs the specified
package.

The rootfs-file-URI parameter is the rootfs file stored on local storage (bootflash, USB, etc.).

When this command is executed with a file that is on bootflash, the file is moved to a storage pool on bootflash.

As a best practice, you should copy the file to the bootflash and validate the md5sum before using the
guestshell upgrade package rootfs-file-URI command.

The guestshell upgrade package rootfs-file-URI command can be executed from within the Guest Shell.Note

The rootfs file is not a Cisco signed package, you must configure to allow unsigned packages before enabling
as shown in the example:

(config-virt-serv-global)# signing level unsigned
Note: Support for unsigned packages has been user-enabled. Unsigned packages are not endorsed
by Cisco. User assumes all responsibility.

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
33

Guest Shell
Exporting Guest Shell rootfs

To restore the embedded version of the rootfs:

• Use the guestshell upgrade command (without additional parameters) when the Guest Shell has already
been installed.

• Use the guestshell enable command (without additional parameters) when the Guest Shell had been
destroyed.

Note

When running this command from within a Guest Shell, or outside a switch using NX-API, you must set
terminal dont-ask to skip any prompts.

Note

The guestshell enable package rootfs-file-URI command:

• Performs basic validation of the rootfs file.

• Moves the rootfs into the storage pool.

• Mounts the rootfs to extract the YAML file from the /cisco directory.

• Parses the YAML file to obtain VM definition (including resource requirements).

• Activates the Guest Shell.

Example workflow for guestshell enable :

switch# copy scp://user@10.1.1.1/my_storage/gs_rootfs.ext4 bootflash: vrf management
switch# guestshell resize cpu 8
Note: System CPU share will be resized on Guest shell enable
switch# guestshell enable package bootflash:gs_rootfs.ext4
Validating the provided rootfs
switch# 2017 Jul 31 14:58:01 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual
service 'guestshell+'
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2017 Jul 31 14:58:33 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

Workflow for guestshell upgrade is preceded by the existing Guest Shell being destroyed.Note

Resize values are cleared when the guestshell upgrade command is used.Note

Importing YAML File
A YAML file that defines some user modifiable characteristics of the Guest Shell is automatically created as
a part of the export operation. It is embedded into the Guest Shell rootfs in the /cisco directory. It is not a

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
34

Guest Shell
Importing YAML File

complete descriptor for the Guest Shell container. It only contains some of the parameters that are user
modifiable.

Example of a Guest Shell import YAML file:

import-schema-version: "1.0"
info:
name: "GuestShell"
version: "2.2(0.3)"
description: "Exported GuestShell: 20170216T175137Z"

app:
apptype: "lxc"
cpuarch: "x86_64"
resources:
cpu: 3
memory: 307200
disk:
- target-dir: "/"
capacity: 250

...

The YAML file is generated when the guestshell export rootfs package command is executed. The file
captures the values of the currently running Guest Shell.

The info section contains non-operational data that is used to help identify the Guest Shell. Some of the
information will be displayed in the output of the show guestshell detail command.

The description value is an encoding of the UTC time when the YAML file was created. The time string
format is the same as DTSTAMP in RFC5545 (iCal).

The resources section describes the resources required for hosting the Guest Shell. The value "/" for the
target-dir in the example identifies the disk as the rootfs.

If resized values were specified while the Guest Shell was destroyed, those values take precedence over the
values in the import YAML file when the guestshell enable package command is used.

Note

The cpuarch value indicates the CPU architecture that is expected for the container to run.

You can modify the YAML file (such as the description or increase the resource parameters, if appropriate)
after the export operation is complete .

Cisco provides a python script that you can run to validate a modified YAML file with a JSON schema. It is
not meant to be a complete test (for example, device-specific resource limits are not checked), but it is able
to flag common errors. The python script with examples is located at Guest Shell Import Export. The following
JSON file describes the schema for version 1.0 of the Guest Shell import YAML .

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Guest Shell import schema",
"description": "Schema for Guest Shell import descriptor file - ver 1.0",
"copyright": "2017 by Cisco systems, Inc. All rights reserved.",
"id": "",
"type": "object",
"additionalProperties": false,
"properties": {
"import-schema-version": {
"id": "/import-schema-version",

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
35

Guest Shell
Importing YAML File

https://github.com/datacenter/opennxos/tree/master/guestshell_import_export

"type": "string",
"minLength": 1,
"maxLength": 20,
"enum": [

"1.0"
]

},
"info": {
"id": "/info",
"type": "object",
"additionalProperties": false,
"properties": {
"name": {
"id": "/info/name",
"type": "string",
"minLength": 1,
"maxLength": 29

},
"description": {
"id": "/info/description",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"version": {
"id": "/info/version",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"author-name": {
"id": "/info/author-name",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"author-link": {
"id": "/info/author-link",
"type": "string",
"minLength": 1,
"maxLength": 199

}
}

},
"app": {
"id": "/app",
"type": "object",
"additionalProperties": false,
"properties": {
"apptype": {
"id": "/app/apptype",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"lxc"

]
},
"cpuarch": {
"id": "/app/cpuarch",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
36

Guest Shell
Importing YAML File

"x86_64"
]

},
"resources": {
"id": "/app/resources",
"type": "object",
"additionalProperties": false,
"properties": {
"cpu": {
"id": "/app/resources/cpu",
"type": "integer",
"multipleOf": 1,
"maximum": 100,
"minimum": 1

},
"memory": {
"id": "/app/resources/memory",
"type": "integer",
"multipleOf": 1024,
"minimum": 1024

},
"disk": {
"id": "/app/resources/disk",
"type": "array",
"minItems": 1,
"maxItems": 1,
"uniqueItems": true,
"items": {
"id": "/app/resources/disk/0",
"type": "object",
"additionalProperties": false,
"properties": {
"target-dir": {
"id": "/app/resources/disk/0/target-dir",
"type": "string",
"minLength": 1,
"maxLength": 1,
"enum": [
"/"

]
},
"file": {
"id": "/app/resources/disk/0/file",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"capacity": {
"id": "/app/resources/disk/0/capacity",
"type": "integer",
"multipleOf": 1,
"minimum": 1

}
}

}
}

},
"required": [
"memory",
"disk"

]
}

},
"required": [

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
37

Guest Shell
Importing YAML File

"apptype",
"cpuarch",
"resources"

]
}

},
"required": [
"app"

]
}

show guestshell Command
The output of the show guestshell detail command includes information that indicates whether the Guest
Shell was imported or was installed from an OVA.

Example of the show guestshell detail command after importing rootfs.

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : rootfs_puppet
Path : usb2:/rootfs_puppet
Application
Name : GuestShell
Installed version : 2.3(0.0)
Description : Exported GuestShell: 20170613T173648Z

Signing
Key type : Unsigned
Method : Unknown

Licensing
Name : None
Version : None

Verifying Virtual Service and Guest Shell Information
You can verify virtual service and Guest Shell information with the following commands:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
38

Guest Shell
show guestshell Command

DescriptionCommand

Displays the global state and
limits for virtual services.

show virtual-service global

switch# show virtual-service global

Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.11
Total virtual services installed : 1
Total virtual services activated : 1

Machine types supported : LXC
Machine types disabled : KVM

Maximum VCPUs per virtual service : 1

Resource virtualization limits:
Name Quota Committed Available

system CPU (%) 20 1 19
memory (MB) 3840 256 3584
bootflash (MB) 8192 200 7992
switch#

Displays a summary of the
virtual services, the status of
the virtual services, and
installed software packages.

show virtual-service list

switch# show virtual-service list *

Virtual Service List:

Name Status Package Name
--
guestshell+ Activated guestshell.ova

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
39

Guest Shell
Verifying Virtual Service and Guest Shell Information

DescriptionCommand

Displays details about the
guestshell package (such as
version, signing resources, and
devices).

show guestshell detail

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isan/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.2(0.2)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation
Disk : 400 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Persistently Starting Your Application From the Guest Shell
Your application should have a systemd / systemctl service file that gets installed in
/usr/lib/systemd/system/application_name.service. This service file should have the following
general format:
[Unit]
Description=Put a short description of your application here

[Service]
ExecStart=Put the command to start your application here
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

To run systemd as a specific user, add User=<username> to the [Service] section of your service.Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
40

Guest Shell
Persistently Starting Your Application From the Guest Shell

Procedure for Persistently Starting Your Application from the
Guest Shell

Procedure

Step 1 Install your application service file that you created above into
/usr/lib/systemd/system/application_name.service

Step 2 Start your application with systemctl start application_name

Step 3 Verify that your application is running with systemctl status -l application_name

Step 4 Enable your application to be restarted on reload with systemctl enable application_name

Step 5 Verify that your application is running with systemctl status -l application_name

An Example Application in the Guest Shell
The following example demonstrates an application in the Guest Shell:
root@guestshell guestshell]# cat /etc/init.d/hello.sh
#!/bin/bash

OUTPUTFILE=/tmp/hello

rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
[root@guestshell guestshell]#
[root@guestshell guestshell]#
[root@guestshell system]# cat /usr/lib/systemd/system/hello.service
[Unit]
Description=Trivial "hello world" example daemon

[Service]
ExecStart=/etc/init.d/hello.sh &
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target
[root@guestshell system]#
[root@guestshell system]# systemctl start hello
[root@guestshell system]# systemctl enable hello
[root@guestshell system]# systemctl status -l hello
hello.service - Trivial "hello world" example daemon

Loaded: loaded (/usr/lib/systemd/system/hello.service; enabled)
Active: active (running) since Sun 2015-09-27 18:31:51 UTC; 10s ago

Main PID: 355 (hello.sh)
CGroup: /system.slice/hello.service

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
41

Guest Shell
Procedure for Persistently Starting Your Application from the Guest Shell

##355 /bin/bash /etc/init.d/hello.sh &
##367 sleep 10

Sep 27 18:31:51 guestshell hello.sh[355]: Executing: /etc/init.d/hello.sh &
[root@guestshell system]#
[root@guestshell guestshell]# exit
exit
[guestshell@guestshell ~]$ exit
logout
switch# reload
This command will reboot the system. (y/n)? [n] y

After reload
[root@guestshell guestshell]# ps -ef | grep hello
root 20 1 0 18:37 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 123 108 0 18:38 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# cat /tmp/hello
Sun Sep 27 18:38:03 UTC 2015
Hello World
Sun Sep 27 18:38:13 UTC 2015
Hello World
Sun Sep 27 18:38:23 UTC 2015
Hello World
Sun Sep 27 18:38:33 UTC 2015
Hello World
Sun Sep 27 18:38:43 UTC 2015
Hello World
[root@guestshell guestshell]#

Running under systemd / systemctl, your application is automatically restarted if it dies (or if you
kill it). The Process ID is originally 226. After killing the application, it is automatically restarted with a
Process ID of 257.
[root@guestshell guestshell]# ps -ef | grep hello
root 226 1 0 19:02 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 254 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# kill -9 226
[root@guestshell guestshell]#
[root@guestshell guestshell]# ps -ef | grep hello
root 257 1 0 19:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 264 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#

Troubleshooting Guest Shell Issues
Unable to Get Into Guest Shell After Downgrade to 7.0(3)I7

If you downgrade from the NX-OS 9.2(1) release to the NX-OS 7.0(3)7 release image (which does not have
user namespace support) while the Guest Shell is in the process of activating or deactivating, you may run
into the following condition where the Guest Shell activates, but you are unable to get into the Guest Shell.
The reason for this issue is that if a reload is issued while the Guest Shell is in transition, the files within the
Guest Shell can't get shifted back into an id range that is usable for NX-OS releases that don't have user
namespace support.
switch# guestshell
Failed to mkdir .ssh for admin
admin RSA add failed

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
42

Guest Shell
Troubleshooting Guest Shell Issues

ERROR: Failed to connect with Virtual-service 'guestshell+'
switch#
switch# sh virt list

Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshell.ova

switch# run bash ls -al /isan/vdc_1/virtual-instance/guestshell+/rootfs/
drwxr-xr-x 24 11000 11000 1024 Apr 11 10:44 .
drwxrwxrwx 4 root root 80 Apr 27 20:08 ..
-rw-r--r-- 1 11000 11000 0 Mar 21 16:24 .autorelabel
lrwxrwxrwx 1 11000 11000 7 Mar 21 16:24 bin -> usr/bin

To recover from this issue without losing the contents of the Guest Shell, reload the system with the
previously-running NX-OS 9.2(x) image and let the Guest Shell get to the Activated state before reloading
the systemwith the NX-OS 7.0(3)I7 image. Another option is to disable the Guest Shell while running NX-OS
9.2(x) and re-enable it after reloading with 7.0(3)I7.

If you do not have anything to preserve in the Guest Shell and you just want to recover it, you can destroy
and recreate it without needing to change images.

Unable to Access Files on bootflash from root in the Guest Shell

You may find that you are unable to access files on bootflash from root in the Guest Shell.

From the host:
root@switch# ls -al /bootflash/try.that
-rw-r--r-- 1 root root 0 Apr 27 20:55 /bootflash/try.that
root@switch#

From the Guest Shell:
[root@guestshellbootflash]# ls -al /bootflash/try.that
-rw-r--r-- 1 65534 host-root 0 Apr 27 20:55 /bootflash/try.that
[root@guestshellbootflash]# echo "some text" >> /bootflash/try.that
-bash: /bootflash/try.that: Permission denied
[root@guestshellbootflash]#

This may be due to the fact that, because the user namespace is being used to protect the host system, root in
the Guest Shell is not actually the root of the system.

To recover from this issue, verify that the file permissions and group-id of the files allow for shared files on
bootflash to be accessed as expected. You may need to change the permissions or group-id from the host Bash
session.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
43

Guest Shell
Troubleshooting Guest Shell Issues

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
44

Guest Shell
Troubleshooting Guest Shell Issues

C H A P T E R 4
Python API

• Information About the Python API, on page 45
• Using Python, on page 45

Information About the Python API
Beginning with Cisco NX-OS Release 9.3(5), Python 3 is now supported. Python 2.7 will continue to be
supported. We recommend that you use the python3 command for new scripts.

The Cisco Nexus 3500 platform switches support Python v2.7.11 and v3.7.3 in both interactive and
noninteractive (script) modes and are available in the Guest Shell.

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting and rapid application development
in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all
major platforms from the Python website:

http://www.python.org/

The same site also contains distributions of and pointers to many free third-party Python modules, programs
and tools, and more documentation.

The Python scripting capability gives programmatic access to the device's command-line interface (CLI) to
perform various tasks and Power On Auto Provisioning (POAP) or Embedded EventManager (EEM) actions.
Python can be accessed from the Bash shell.

The Python interpreter is available in the Cisco NX-OS software.

Using Python
This section describes how to write and execute Python scripts.

Cisco Python Package
Cisco NX-OS provides a Cisco Python package that enables access to many core network-device modules,
such as interfaces, VLANs, VRFs, ACLs, and routes. You can display the details of the Cisco Python package

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
45

http://www.python.org

by entering the help() command. To obtain additional information about the classes and methods in a module,
you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco Python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

FILE
/isan/python/scripts/cisco/__init__.py

PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf

CLASSES
__builtin__.object

cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

The following is an example of how to display information about the Cisco Python Package for Python 3:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

PACKAGE CONTENTS
acl
bgp
buffer_depth_monitor
check_port_discards
cisco_secret
feature
historys
interface

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
46

Python API
Cisco Python Package

ipaddress
key
line_parser
mac_address_table
md5sum
nxcli
nxos_cli
ospf
routemap
routes
section_parser
ssh
system
tacacs
transfer
vlan
vrf

CLASSES
builtins.dict(builtins.object)
cisco.history.History
builtins.object
cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You must enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Table 3: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control or special characters.

The interactive Python interpreter prints
control or special characters 'escaped'.
Carriage return is printed as '\n' and gives
results that can be difficult to read. The
clip() API gives results that are more
readable.

Note

cli()

Example:
string = cli (“cli-command”)

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

This API can be useful when searching the
output of show commands.

Note

clid()

Example:
json_string = clid (“cli-command”)

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
47

Python API
Using the CLI Command APIs

DescriptionAPI

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

Note

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:
>>> cli("conf t ; interface eth4/1 ; shut")

Commands are separated with " ; " as shown in the example. The semicolon (;) must be surrounded with
single blank characters.

Note

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python 2 from the CLI:

The Python interpreter is designated with the ">>>" or "…" prompt.Note

Python 2.7 is End of Support, future Cisco NX-OS software deprecates Python 2.7 support. We recommend
for new scripts to use python3 instead. Type python3 to use the new shell.

Important

switch# python
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
48

Python API
Invoking the Python Interpreter from the CLI

Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print intf['interface']
...
mgmt0
loopback1
>>>

The following example shows how to invoke Python 3 from the CLI:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print(intf['interface'])
...
mgmt0
loopback1
>>>

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:
username: admin
vdc: switch
routing-context vrf: default

Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
49

Python API
Display Formats

>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>

Example 3:
>>> r = cli('where detail')
>>> print(r)
mode:
username: admin
vdc: switch
routing-context vrf: default

>>>

Example 4:

Non-Interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command-line arguments for the Python script are allowed with the Python CLI command.

The Cisco Nexus 3500 platform switches also support the source CLI command for running Python scripts.
The bootflash:scripts directory is the default script directory for the source CLI command.

This example shows the script first and then executing it. Saving is like bringing any file to the bootflash.
switch# show file bootflash:scripts/deltaCounters.py
#!/isan/bin/python3
from cli import *
import sys, time
ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'
out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print ('row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast')
print ('===')
print (' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc))
print ('===')
i = 0
while (i < count):

time.sleep(delay)
out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print ('%-3d %8d %8d %8d %8d %8d %8d' % (i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew -

rxbc, txucNew - txuc, txmcNew - txmc, txbcNew - txbc))

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
50

Python API
Non-Interactive Python

switch# python bootflash:scripts/deltaCounters.py mgmt0 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===

291 8233 1767 185 57 2
===
1 1 4 1 1 0 0
2 2 5 1 2 0 0
3 3 9 1 3 0 0
4 4 12 1 4 0 0
5 5 17 1 5 0 0
switch#

The following example shows how a source command specifies command-line arguments. In the example,
policy-map is an argument to the cgrep python script. The example also shows that a source command can
follow the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map

policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo
policy-map type qos classify
policy-map type qos cos-based
policy-map type qos no-drop-2
policy-map type qos pfc-tor-port

Running Scripts with Embedded Event Manager
On Cisco Nexus 3500 platform switches, Embedded Event Manager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.
switch# show running-config eem

!Command: show running-config eem
!Running configuration last done at: Thu Jun 25 15:29:38 2020
!Time: Thu Jun 25 15:33:19 2020

version 9.3(5) Bios:version 07.67
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py

switch# show file logflash:vdc_1/event_archive_1 | last 33

eem_event_time:06/25/2020,15:34:24 event_type:cli event_id:24 slot:active(1) vdc
:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
stty: standard input: Inappropriate ioctl for device
Executing the following commands succeeded:

python bootflash:pydate.py
Completed executing policy a1
Event Id:24 event type:10241 handling completed

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
51

Python API
Running Scripts with Embedded Event Manager

• You can search for the action that is triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Python Integration with Cisco NX-OS Network Interfaces
On Cisco Nexus 3500 platform switches, Python is integrated with the underlying Cisco NX-OS network
interfaces. You can switch from one virtual routing context to another by setting up a context through the
cisco.vrf.set_global_vrf() API.

The following example shows how to retrieve an HTML document over themanagement interface of a device.
You can also establish a connection to an external entity over the in-band interface by switching to a desired
virtual routing context.
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')
>>> print page.read()
Hello Cisco Nexus 9000
>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:
set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other
python libraries).
Arguments:
vrf: VRF name (string) or the VRF ID (int).
Returns: Nothing
>>>

Cisco NX-OS Security with Python
CiscoNX-OS resources are protected by the CiscoNX-OS Sandbox layer of software and by the CLI role-based
access control (RBAC).

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
52

Python API
Python Integration with Cisco NX-OS Network Interfaces

All users who are associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users
who are granted access to Python with a custom role are regarded as nonprivileged users. Nonprivileged users
have limited access to Cisco NX-OS resources, such as the file system, guest shell, and Bash commands.
Privileged users have greater access to all the resources of Cisco NX-OS.

Examples of Security and User Authority
•

Example of Running Script with Schedular
•

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
53

Python API
Examples of Security and User Authority

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
54

Python API
Example of Running Script with Schedular

C H A P T E R 5
Scripting with Tcl

• About Tcl, on page 55
• Running the Tclsh Command, on page 57
• Navigating Cisco NX-OS Modes from the Tclsh Command, on page 58
• Tcl References, on page 60

About Tcl
Tcl (pronounced "tickle") is a scripting language that increases flexibility of CLI commands. You can use Tcl
to extract certain values in the output of a show command, perform switch configurations, run Cisco NX-OS
commands in a loop, or define Embedded Event Manager (EEM) policies in a script.

This section describes how to run Tcl scripts or run Tcl interactively on switches.

Tclsh Command Help
Command help is not available for Tcl commands. You can still access the help functions of Cisco NX-OS
commands from within an interactive Tcl shell.

This example shows the lack of Tcl command help in an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# puts ?

^
% Invalid command at '^' marker.
switch-tcl# configure ?
<CR>
session Configure the system in a session
terminal Configure the system from terminal input

switch-tcl#

In the preceding example, the Cisco NX-OS command help function is still available but the Tcl puts command
returns an error from the help function.

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
55

Tclsh Command History
You can use the arrow keys on your terminal to access commands you previously entered in the interactive
Tcl shell.

The tclsh command history is not saved when you exit the interactive Tcl shell.Note

Tclsh Tab Completion
You can use tab completion for Cisco NX-OS commands when you are running an interactive Tcl shell. Tab
completion is not available for Tcl commands.

Tclsh CLI Command
Although you can directly access Cisco NX-OS commands from within an interactive Tcl shell, you can only
execute Cisco NX-OS commands in a Tcl script if they are prepended with the Tcl cli command.

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli show module 1 | incl Mod
switch-tcl# cli "show module 1 | incl Mod"
switch-tcl# show module 1 | incl Mod

In a Tcl script, you must prepend Cisco NX-OS commands with the Tcl cli command as shown in the following
example:
set x 1
cli show module $x | incl Mod
cli "show module $x | incl Mod"

If you use the following commands in your script, the script fails and the Tcl shell displays an error:
show module $x | incl Mod
"show module $x | incl Mod"

Tclsh Command Separation
The semicolon (;) is the command separator in both Cisco NX-OS and Tcl. To execute multiple Cisco NX-OS
commands in a Tcl command, you must enclose the Cisco NX-OS commands in quotes ("").

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli "configure terminal ; interface loopback 10 ; description loop10"
switch-tcl# cli configure terminal ; cli interface loopback 10 ; cli description loop10
switch-tcl# cli configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# cli interface loopback 10
switch(config-if-tcl)# cli description loop10
switch(config-if-tcl)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
56

Scripting with Tcl
Tclsh Command History

In an interactive Tcl shell, you can also execute Cisco NX-OS commands directly without prepending the Tcl
cli command:
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# description loop10
switch(config-if-tcl)#

Tcl Variables
You can use Tcl variables as arguments to the Cisco NX-OS commands. You can also pass arguments into
Tcl scripts. Tcl variables are not persistent.

The following example shows how to use a Tcl variable as an argument to a Cisco NX-OS command:
switch# tclsh
switch-tcl# set x loop10
switch-tcl# cli "configure terminal ; interface loopback 10 ; description $x"
switch(config-if-tcl)#

Tclquit
The tclquit command exits the Tcl shell regardless of which Cisco NX-OS commandmode is currently active.
You can also press Ctrl-C to exit the Tcl shell. The exit and end commands change Cisco NX-OS command
modes. The exit command terminates the Tcl shell only from the EXEC command mode.

Tclsh Security
The Tcl shell is executed in a sandbox to prevent unauthorized access to certain parts of the Cisco NX-OS
system. The system monitors CPU, memory, and file system resources being used by the Tcl shell to detect
events such as infinite loops, excessive memory utilization, and so on.

You configure the initial Tcl environment with the scripting tcl init init-file command.

You can define the looping limits for the Tcl environment with the scripting tcl recursion-limit iterations
command. The default recursion limit is 1000 iterations.

Running the Tclsh Command
You can run Tcl commands from either a script or on the command line using the tclsh command.

You cannot create a Tcl script file at the CLI prompt. You can create the script file on a remote device and
copy it to the bootflash: directory on the Cisco NX-OS device.

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
57

Scripting with Tcl
Tcl Variables

Procedure

PurposeCommand or Action

Starts a Tcl shell.tclsh [bootflash:filename [argument ...
]]

Step 1

If you run the tclsh command with no
arguments, the shell runs interactively, readingExample:
Tcl commands from standard input and printingswitch# tclsh ?

<CR>
bootflash: The file to run

command results and error messages to the
standard output. You exit from the interactive
Tcl shell by typing tclquit or Ctrl-C.

If you run the tclsh command with arguments,
the first argument is the name of a script file
containing Tcl commands and any additional
arguments are made available to the script as
variables.

Example

The following example shows an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# cli show module $x | incl Mod
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch-tcl# exit
switch#

The following example shows how to run a Tcl script:
switch# show file bootflash:showmodule.tcl
set x 1
while {$x < 19} {
cli show module $x | incl Mod
set x [expr {$x + 1}]
}

switch# tclsh bootflash:showmodule.tcl
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch#

Navigating Cisco NX-OS Modes from the Tclsh Command
You can change modes in Cisco NX-OS while you are running an interactive Tcl shell.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
58

Scripting with Tcl
Navigating Cisco NX-OS Modes from the Tclsh Command

Procedure

PurposeCommand or Action

Starts an interactive Tcl shell.tclsh

Example:

Step 1

switch# tclsh
switch-tcl#

Runs a Cisco NX-OS command in the Tcl shell,
changing modes.

configure terminal

Example:

Step 2

The Tcl prompt changes to indicate
the Cisco NX-OS command mode.

Noteswitch-tcl# configure terminal
switch(config-tcl)#

Terminates the Tcl shell, returning to the
starting mode.

tclquit

Example:

Step 3

switch-tcl# tclquit
switch#

Example

The following example shows how to change Cisco NX-OS modes from an interactive Tcl shell:
switch# tclsh
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# ?
description Enter description of maximum 80 characters
inherit Inherit a port-profile
ip Configure IP features
ipv6 Configure IPv6 features
logging Configure logging for interface
no Negate a command or set its defaults
rate-limit Set packet per second rate limit
shutdown Enable/disable an interface
this Shows info about current object (mode's instance)
vrf Configure VRF parameters
end Go to exec mode
exit Exit from command interpreter
pop Pop mode from stack or restore from name
push Push current mode to stack or save it under name
where Shows the cli context you are in

switch(config-if-tcl)# description loop10
switch(config-if-tcl)# tclquit
Exiting Tcl
switch#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
59

Scripting with Tcl
Navigating Cisco NX-OS Modes from the Tclsh Command

Tcl References
The following titles are provided for your reference:

• Mark Harrison (ed), Tcl/Tk Tools, O'Reilly Media, ISBN 1-56592-218-2, 1997

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming, Addison-Wesley, Reading, MA,
USA, ISBN 0-201-63474-0, 1998

• John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading,MA, USA, ISBN 0-201-63337-X,
1994.

• Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, Upper Saddle River, NJ, USA,
ISBN 0-13-038560-3, 2003.

• J Adrian Zimmer, Tcl/Tk for Programmers, IEEE Computer Society, distributed by JohnWiley and Sons,
ISBN 0-8186-8515-8, 1998.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
60

Scripting with Tcl
Tcl References

C H A P T E R 6
Ansible

• Prerequisites, on page 61
• About Ansible, on page 61
• Cisco Ansible Module, on page 61

Prerequisites
Go to https://docs.ansible.com/ansible/intro_installation.html for installation requirements for supported
control environments.

About Ansible
Ansible is an open-source IT automation engine that automates cloud provisioning, configurationmanagement,
application deployment, intraservice orchestration, and other IT needs.

Ansible uses small programs that are called Ansible modules to make API calls to your nodes, and apply
configurations that are defined in playbooks.

By default, Ansible represents what machines it manages using a simple INI file that puts all your managed
machines in groups of your own choosing.

More information can be found from Ansible:

https://www.ansible.com/Ansible

https://docs.ansible.com/Ansible Automation Solutions. Includes installation
instructions, playbook instructions and examples,
module lists, and so on.

Cisco Ansible Module
There are multiple Cisco NX-OS-supported modules and playbooks for Ansible, as per the following table
of links:

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
61

https://docs.ansible.com/ansible/intro_installation.html
https://www.ansible.com/
https://docs.ansible.com/
https://developer.cisco.com/docs/nx-os/#getting-started

Repo for ansible nxos playbooksAnsible NX-OS playbook examples

nxos network modulesAnsible NX-OS network modules

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
62

Ansible
Cisco Ansible Module

https://github.com/datacenter/Ansible-NXOS
http://docs.ansible.com/ansible/latest/list_of_network_modules.html#nxos

C H A P T E R 7
Puppet Agent

This chapter includes the following sections:

• About Puppet, on page 63
• Prerequisites, on page 63
• Puppet Agent NX-OS Environment, on page 64
• ciscopuppet Module, on page 64

About Puppet
The Puppet software package, developed by Puppet Labs, is an open source automation toolset for managing
servers and other resources. The Puppet software accomplishes server and resource management by enforcing
device states, such as configuration settings.

Puppet components include a puppet agent which runs on the managed device (node) and a Puppet Primary
(server). The Puppet Primary typically runs on a separate dedicated server and serves multiple devices. The
operation of the puppet agent involves periodically connecting to the Puppet Primary, which in turn compiles
and sends a configuration manifest to the agent. The agent reconciles this manifest with the current state of
the node and updates state that is based on differences.

A puppet manifest is a collection of property definitions for setting the state on the device. The details for
checking and setting these property states are abstracted so that a manifest can be used for more than one
operating system or platform. Manifests are commonly used for defining configuration settings, but they also
can be used to install software packages, copy files, and start services.

More information can be found from Puppet Labs:

https://puppetlabs.comPuppet Labs

https://puppet.com/products/faqPuppet Labs FAQ

https://puppet.com/docsPuppet Labs Documentation

Prerequisites
The following are prerequisites for the Puppet Agent:

• You must have a switch and operating system software release that supports the installation.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
63

http://puppetlabs.com/
https://puppet.com/products/faq
https://puppet.com/docs

• Cisco Nexus 3600 platform switches.

• Cisco Nexus 3500 platform switches

• Cisco Nexus 3100 platform switches.

• Cisco Nexus 3000 Series switches.

• Cisco NX-OS Release 7.0(3)I2(1) or later.

• You must have the required disk storage available on the device for virtual services installation and
deployment of Puppet Agent.

• A minimum of 450MB free disk space on bootflash.

• You must have Puppet Primary server with Puppet 4.0 or later.

• You must have Puppet Agent 4.0 or later.

Puppet Agent NX-OS Environment
The Puppet Agent software must be installed on a switch in the Guest Shell (the Linux container environment
running CentOS). The Guest Shell provides a secure, open execution environment that is decoupled from the
host.

Starting with the CiscoNX-OSRelease 9.2(1), the Bash-shell (nativeWindRiver Linux environment underlying
Cisco NX-OS) install of Puppet Agent is no longer supported.

The following provides information about agent-software download, installation, and setup:

https://github.com/cisco/
cisco-network-puppet-module/blob/develop/docs/
README-agent-install.md

Puppet Agent: Installation & Setup on Cisco Nexus
switches (Manual Setup)

ciscopuppet Module
The ciscopuppet module is a Cisco developed open-source software module. It interfaces between the abstract
resources configuration in a puppet manifest and the specific implementation details of the Cisco NX-OS
operating system and platform. This module is installed on the Puppet Primary and is required for puppet
agent operation on Cisco Nexus switches.

The ciscopuppet module is available on Puppet Forge.

The following provide additional information about the ciscopuppet module installation procedures:

Puppet Forgeciscopuppet Module location

(Puppet Forge)

Cisco Puppet Resource ReferenceResource Type Catalog

Cisco Network Puppet Moduleciscopuppet Module: Source Code
Repository

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
64

Puppet Agent
Puppet Agent NX-OS Environment

https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://forge.puppet.com/puppetlabs/ciscopuppet
https://github.com/cisco/cisco-network-puppet-module/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-puppet-module/tree/master

Cisco Puppet Module::README.mdciscopuppetModule: Setup&Usage

https://docs.puppetlabs.com/puppet/latest/reference/modules_installing.htmlPuppet Labs: Installing Modules

Cisco Network Puppet Module ExamplesPuppet NX-OS Manifest Examples

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
65

Puppet Agent
ciscopuppet Module

https://github.com/cisco/cisco-network-puppet-module/tree/master#setup
https://docs.puppetlabs.com/puppet/latest/reference/modules_installing.html
https://github.com/cisco/cisco-network-puppet-module/tree/master/examples
https://developer.cisco.com/site/nx-os/docs/automation/configuration-management/index.gsp

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
66

Puppet Agent
ciscopuppet Module

C H A P T E R 8
SaltStack

This chapter contains the following topics:

• About SaltStack, on page 67
• Guidelines and Limitations, on page 68
• Cisco NX-OS Environment for SaltStack, on page 68
• Enabling NX-API for SaltStack, on page 69
• Installing SaltStack for NX-OS, on page 69

About SaltStack
The Cisco Nexus switches support SaltStack through NX-OS. For information about Cisco NX-OS releases
that support SaltStack, see https://github.com/saltstack/salt/blob/develop/doc/topics/installation/
nxos.rst#step-1-verify-platform-and-software-version-support.

SaltStack is a free and open source automation framework for configuration, management, and remote execution
of servers and other network devices. The SaltStack framework consists of a server that is called the Salt
primary, and Salt nodes that run client programs, called minions. The Cisco Nexus switch (switch) is a Salt
node, not the Salt primary.

SaltStack minions can run either on-box or off-box, respective to the switch, to execute the configuration or
management operations:

• On-box, the minions run in the switch's Bash shell. These native minions receive and execute remote
commands from the primary, and relay the command's results to the primary. In an on-box deployment,
the minions are enabled in the switch's Guest shell.

• Off-box, a different type of minion, a proxy minion, runs over an SSH connection to the switch or through
the NX-API. The proxy minion, either the SSH proxy minion or the NX-API proxy minion, receives and
executes the commands. The proxy then relays the command's results to the primary.

Keys are used to ensure security between the Salt primary and the minions running on the Cisco Nexus switch.
When the Salt primary initiates its connection with a minion running on the Cisco Nexus switch, it first passes
a key. The minion receives the key, then computes the correct response, and transmits the key back to the
primary. The primary also has computed the correct response value for the key. When the primary receives
the key from the minion, if the keys match, the session is open. The Salt primary can then send commands.
Sessions are not persistent across power cycles or reboots.

SaltStack manages and configures the switch through execution modules and salt states, which affect the
switch's CLI, properties, and features. For example, through the modules, SaltStack can be used to upgrade

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
67

https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support

the Cisco Nexus switches. The Salt primary sends commands programmatically to leverage automation and
scalability.

For more information, consult the following documentation:

https://www.saltstack.com/SaltStack

https://docs.saltstack.com/en/latest/SaltStack Documentation

https://github.com/saltstack/salt/blob/develop/doc/
topics/installation/nxos.rst

Cisco Nexus Salt Minion Installation and
Configuration Guide

About NX-OS and SaltStack
Salt Open is the open source, community edition of the Salt configuration management and distributed remote
execution system. Cisco NX-OS provides an intermediate layer between the physical switch and the Salt Open
software. Cisco NX-OS and Salt Open interoperate to provide the API and command-execution layer between
Salt minions and Cisco Nexus switches. Cisco NX-OS hosts the minions and enables them to run as follows:

• On the switch, the Cisco NX-OS guest shell hosts SaltStackminions and provides automated orchestration
of one or more switches through a unified interface. The minion running in the guest shell is a native
minion and it connects over the NX-API the UNIX Domain Socket (UDS).

• Off the switch, the Salt primary runs the Salt Open software on a network device and communicates with
NX-OS through SSH (the SSH proxy minion) or NX-API over HTTPS (the NX-API proxy minion).
Cisco NX-OS interprets the commands, performs required configuration tasks, and reports success or
failure back to the appropriate proxy minion. The proxy minion, in turn, transmits this data back to the
Salt primary.

Guidelines and Limitations
The following are the guidelines and limitations for implementing SaltStack on the Cisco Nexus switches:

• If you are running SaltStack over SSH or NX-API HTTPS, enable the NX-API feature (feature nxapi)
before you run Salt.

• The Salt primary listens for minions on port 4506. Make sure that this port is open (unblocked) and not
used by another service.

Cisco NX-OS Environment for SaltStack
The Cisco NX-OS environment is different depending on whether you are running Salt on box or off box.

• For on-box management of the switch, you must install the SaltStack minion RPM in the Guest Shell,
which is the hosting environment for the minion.

• For off-box management of the switch, SSH or NX-API must be enabled in NX-OS.

For more information, such as which Cisco Nexus switches support SaltStack, go to https://github.com/
saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
68

SaltStack
About NX-OS and SaltStack

https://www.saltstack.com/
https://docs.saltstack.com/en/latest/
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#step-1-verify-platform-and-software-version-support

Enabling NX-API for SaltStack
Before you begin

For proxy minions running over SSH or NX-API HTTPS, the NX-API feature must be enabled for SaltStack
to function. By default, NX-API is enabled. The following instructions are provided in case you need to
reenable it.

Procedure

PurposeCommand or Action

Enters configuration mode.config terminalStep 1

Example:

switch-1# config terminal
Enter configuration commands, one per
line. End with CNTL/Z.
switch-1(config)#

Enables NX-API for proxy minions.feature nxapi

Example:

Step 2

switch-1# feature nxapi
switch-1#(config)#

What to do next

Install SaltStack.

Installing SaltStack for NX-OS
Use the following installation guide to install and bring up SaltStack on the Cisco Nexus switches:

https://github.com/saltstack/salt/blob/develop/doc/topics/installation/
nxos.rst#cisco-nexus-salt-minion-installation-and-configuration-guide

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
69

SaltStack
Enabling NX-API for SaltStack

https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#cisco-nexus-salt-minion-installation-and-configuration-guide
https://github.com/saltstack/salt/blob/develop/doc/topics/installation/nxos.rst#cisco-nexus-salt-minion-installation-and-configuration-guide

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
70

SaltStack
Installing SaltStack for NX-OS

C H A P T E R 9
Using Chef Client with Cisco NX-OS

This chapter includes the following sections:

• About Chef, on page 71
• Prerequisites, on page 71
• Chef Client NX-OS Environment, on page 72
• cisco-cookbook, on page 72

About Chef
Chef is an open-source software package developed by Chef Software, Inc. It is a systems and cloud
infrastructure automation framework that deploys servers and applications to any physical, virtual, or cloud
location, no matter the size of the infrastructure. Each organization is comprised of one or more workstations,
a single server, and every node that will be configured and maintained by the chef-client. Cookbooks and
recipes are used to tell the chef-client how each node should be configured. The chef-client, which is installed
on every node, does the actual configuration.

A Chef cookbook is the fundamental unit of configuration and policy distribution. A cookbook defines a
scenario and contains everything that is required to support that scenario, including libraries, recipes, files,
and more. A Chef recipe is a collection of property definitions for setting state on the device. The details for
checking and setting these property states are abstracted away so that a recipe may be used for more than one
operating system or platform. While recipes are commonly used for defining configuration settings, they can
also be used to install software packages, copy files, start services, and more.

The following references provide more information from Chef:

LinkTopic

https://www.chef.ioChef home

https://docs.chef.io/chef_overview.htmlChef overview

https://docs.chef.io/Chef documentation (all)

Prerequisites
The following are prerequisites for Chef:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
71

https://www.chef.io
https://docs.chef.io/chef_overview.html
https://docs.chef.io/

• You must have a Cisco switch and operating system software release that supports the installation:

• Cisco Nexus 3500 platform switch

• Cisco NX-OS Release 6.1(2)I3(4) or higher

• You must have the required disk storage available on the device for Chef deployment:

• A minimum of 500 MB free disk space on bootflash

• You need a Chef server with Chef 12.4.1 or higher.

• You need Chef Client 12.4.1 or higher.

Chef Client NX-OS Environment
The chef-client software must be installed on Cisco Nexus switches. Customers can install chef-client in one
of the Linux environments provided by the Cisco Nexus switch:

• Bash Shell — This is the native WindRiver Linux environment underlying Cisco NX-OS.

• Guest Shell — This is a secure Linux container environment running CentOS. Its advantage is a secure,
open execution environment that is decoupled from the host.

The workflow for both use cases is similar.

The following documents provide step-by-step guidance on agent software download, installation, and setup:

LinkTopic

Latest information on Client RPM is available here.Chef Client (Native)

Latest information on Client RPM is available here.Chef Client (Guest Shell, CentOs7)

cisco-cookbook::README-install-agent.mdChef Client: Installation and setup on Cisco Nexus
platform (manual setup)

cisco-cookbook::README-chef-provisioning.mdChef Client: Installation and setup on Cisco Nexus
platform (automated installation using the Chef
provisioner)

cisco-cookbook
cisco-cookbook is a Cisco-developed open-source interface between the abstract resources configuration in
a Chef recipe and the specific implementation details of the Cisco NX-OS operating system and Cisco Nexus
switches. This cookbook is installed on the Chef Server and is required for proper Chef Client operation on
Cisco Nexus switches.

cisco-cookbook can be found on Chef Supermarket.

The following documents provide additional detail for cisco-cookbook and generic cookbook installation
procedures:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
72

Using Chef Client with Cisco NX-OS
Chef Client NX-OS Environment

https://s3.amazonaws.com/alpha-builds/chef-12.4.1.cisco%2B20150826000706-1.nexus5.x86_64.rpm
https://s3.amazonaws.com/alpha-builds/chef-12.4.1.cisco%2B20150826204615-1.el7.x86_64.rpm
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-chef-provisioning.md

LinkTopic

https://supermarket.chef.io/cookbooks/cisco-cookbookcisco-cookbook location

https://github.com/cisco/
cisco-network-chef-cookbook#resource-by-tech

Resource Type Catalog

https://github.com/cisco/cisco-network-chef-cookbookcisco-cookbook: Source Code Repository

cisco-cookbook::README.mdcisco-cookbook: Setup and usage

https://supermarket.chef.ioChef Supermarket

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
73

Using Chef Client with Cisco NX-OS
cisco-cookbook

https://supermarket.chef.io/cookbooks/cisco-cookbook
https://github.com/cisco/cisco-network-chef-cookbook#resource-by-tech
https://github.com/cisco/cisco-network-chef-cookbook#resource-by-tech
https://github.com/cisco/cisco-network-chef-cookbook
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/README.md#setup
https://supermarket.chef.io
https://developer.cisco.com/site/nx-os/docs/automation/configuration-management/index.gsp

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
74

Using Chef Client with Cisco NX-OS
cisco-cookbook

C H A P T E R 10
Using Docker with Cisco NX-OS

This chapter contains the following topics:

• About Docker with Cisco NX-OS, on page 75
• Guidelines and Limitations, on page 75
• Prerequisites for Setting Up Docker Containers Within Cisco NX-OS, on page 76
• Starting the Docker Daemon, on page 76
• Configure Docker to Start Automatically, on page 77
• Starting Docker Containers: Host Networking Model, on page 78
• Starting Docker Containers: Bridged Networking Model, on page 79
• Mounting the bootflash and volatile Partitions in the Docker Container, on page 80
• Enabling Docker Daemon Persistence on Enhanced ISSU Switchover, on page 80
• Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover, on page 81
• Resizing the Docker Storage Backend, on page 82
• Stopping the Docker Daemon, on page 84
• Docker Container Security, on page 85
• Docker Troubleshooting, on page 86

About Docker with Cisco NX-OS
Docker provides a way to run applications securely isolated in a container, packaged with all its dependencies
and libraries. See https://docs.docker.com/ for more information on Docker.

Beginning with Cisco NX-OS Release 9.2(1), support is now added for using Docker within Cisco NX-OS
on a switch.

The version of Docker that is included on the switch is 1.13.1. The Docker daemon is not running by default.
You must start it manually or set it up to automatically restart when the switch boots up.

This section describes how to enable and use Docker in the specific context of the switch environment. Refer
to the Docker documentation at https://docs.docker.com/ for details on general Docker usage and functionality.

Guidelines and Limitations
Following are the guidelines and limitations for using Docker on Cisco NX-OS on a switch:

• Docker functionality is supported on the switches with at least 8 GB of system RAM.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
75

https://docs.docker.com/
https://docs.docker.com/

Prerequisites for Setting Up Docker Containers Within Cisco
NX-OS

Following are the prerequisites for using Docker on Cisco NX-OS on a switch:

• Enable the host Bash shell. To use Docker on Cisco NX-OS on a switch, you must be the root user on
the host Bash shell:
switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature bash-shell

• If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy

environment variables must be set up in /etc/sysconfig/docker. For example:
export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

• Verify that the switch clock is set correctly, or you might see the following error message:
x509: certificate has expired or is not yet valid

• Verify that the domain name and name servers are configured appropriately for the network and that it
is reflected in the/etc/resolv.conf file:
switch# conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context management
switch(config-vrf)# ip domain-name ?
WORD Enter the default domain (Max Size 64)

switch(config-vrf)# ip name-server ?
A.B.C.D Enter an IPv4 address
A:B::C:D Enter an IPv6 address

root@switch# cat /etc/resolv.conf
domain cisco.com #bleed
nameserver 171.70.168.183 #bleed
root@switch#

Starting the Docker Daemon
When you start the Docker daemon for the first time, a fixed-size backend storage space is carved out in a
file called dockerpart on the bootflash, which is then mounted to /var/lib/docker. If necessary, you can
adjust the default size of this space by editing /etc/sysconfig/docker before you start the Docker daemon
for the first time. You can also resize this storage space if necessary as described later on.

To start the Docker daemon:

Procedure

Step 1 Load Bash and become superuser.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
76

Using Docker with Cisco NX-OS
Prerequisites for Setting Up Docker Containers Within Cisco NX-OS

switch# run bash sudo su -

Step 2 Start the Docker daemon.
root@switch# service docker start

Step 3 Check the status.
root@switch# service docker status
dockerd (pid 3597) is running...
root@switch#

Once you start the Docker daemon, do not delete or tamper with the dockerpart file on the bootflash
since it is critical to the docker functionality.
switch# dir bootflash:dockerpart
2000000000 Mar 14 12:50:14 2018 dockerpart

Note

Configure Docker to Start Automatically
You can configure the Docker daemon to always start up automatically when the switch boots up.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 3 Use the chkconfig utility to check the Docker service settings.
root@switch# chkconfig --list | grep docker
docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off
root@switch#

Step 4 To remove the configuration so that Docker does not start up automatically:
root@switch# chkconfig --del docker
root@switch# chkconfig --list | grep docker
root@switch#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
77

Using Docker with Cisco NX-OS
Configure Docker to Start Automatically

Starting Docker Containers: Host Networking Model
If you want Docker containers to have access to all the host network interfaces, including data port and
management, start the Docker containers with the --network host option. The user in the container can
switch between the different network namespaces at /var/run/netns (corresponding to different VRFs
configured in Cisco NX-OS) using the ip netns exec <net_namespace> <cmd>.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker container.

Following is an example of starting an Alpine Docker container on the switch and viewing all the network
interfaces. The container is launched into the management network namespace by default.
root@switch# docker run --name=alpinerun -v /var/run/netns:/var/run/netns:ro,rslave --rm
--network host --cap-add SYS_ADMIN -it alpine
/ # apk --update add iproute2
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/6) Installing libelf (0.8.13-r3)
(2/6) Installing libmnl (1.0.4-r0)
(3/6) Installing jansson (2.10-r0)
(4/6) Installing libnftnl-libs (1.0.8-r1)
(5/6) Installing iptables (1.6.1-r1)
(6/6) Installing iproute2 (4.13.0-r0)
Executing iproute2-4.13.0-r0.post-install
Executing busybox-1.27.2-r7.trigger
OK: 7 MiB in 17 packages
/ #
/ # ip netns list
management
default
/ #
/ # ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
link/ipip 0.0.0.0 brd 0.0.0.0
3: gre0@NONE: <NOARP> mtu 1476 qdisc noop state DOWN group default
link/gre 0.0.0.0 brd 0.0.0.0
...
/ #
/ # ip netns exec default ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/16 scope host lo
valid_lft forever preferred_lft forever
2: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
link/ether 42:0d:9b:3c:d4:62 brd ff:ff:ff:ff:ff:ff

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
78

Using Docker with Cisco NX-OS
Starting Docker Containers: Host Networking Model

3: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
link/ipip 0.0.0.0 brd 0.0.0.0
...

Starting Docker Containers: Bridged Networking Model
If you want Docker containers to only have external network connectivity (typically through the management
interface) and you don't necessarily care about visibility into a specific data port or other switch interface,
you can start the Docker container with the default Docker bridged networking model. This is more secure
than the host networking model described in the previous section since it also provides network namespace
isolation.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker container.

Following is an example of starting an Alpine Docker container on the switch and installing the iproute2
package.
root@switch# docker run -it --rm alpine
/ # apk --update add iproute2
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/6) Installing libelf (0.8.13-r3)
(2/6) Installing libmnl (1.0.4-r0)
(3/6) Installing jansson (2.10-r0)
(4/6) Installing libnftnl-libs (1.0.8-r1)
(5/6) Installing iptables (1.6.1-r1)
(6/6) Installing iproute2 (4.13.0-r0)
Executing iproute2-4.13.0-r0.post-install
Executing busybox-1.27.2-r7.trigger
OK: 7 MiB in 17 packages
/ #
/ # ip netns list
/ #

Step 3 Determine if you want to set up user namespace isolation.

For containers using the bridged networking model, you can also set up user namespace isolation to further
improve security. See Securing Docker Containers With User namespace Isolation, on page 85 for more
information.

You can use standard Docker port options to expose a service from within the container, such as sshd. For
example:
root@switch# docker run -d -p 18877:22 --name sshd_container sshd_ubuntu

This maps port 22 from within the container to port 18877 on the switch. The service can now be accessed
externally through port 18877, as shown in the following example:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
79

Using Docker with Cisco NX-OS
Starting Docker Containers: Bridged Networking Model

root@ubuntu-vm# ssh root@ip_address -p 18887

Mounting the bootflash and volatile Partitions in the Docker
Container

You can make the bootflash and volatile partitions visible in the Docker container by passing in the -v
/bootflash:/bootflash and -v /volatile:/volatile options in the run command for the Docker container.
This is useful if the application in the container needs access to files shared with the host, such as copying a
new NX-OS system image to bootflash.

This -v command option allows for any directory to bemounted into the container andmay result in information
leaking or other accesses that may impact the operation of the NX-OS system. Limit this to resources such
as /bootflash and /volatile that are already accessible using NX-OS CLI.

Note

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Pass in the -v /bootflash:/bootflash and -v /volatile:/volatile options in the run command for the
Docker container.
root@switch# docker run -v /bootflash:/bootflash -v /volatile:/volatile -it --rm alpine
/# ls /
bin etc media root srv usr
bootflash home mnt run sys var
dev lib proc sbin tmp volatile
/ #

Enabling Docker Daemon Persistence on Enhanced ISSU
Switchover

You can have both the Docker daemon and any running containers persist on an Enhanced ISSU switchover.
This is possible since the bootflash on which the backend Docker storage resides is the same and shared
between both Active and Standby supervisors.

The Docker containers are disrupted (restarted) during the switchover, so they will not be running continuously.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
80

Using Docker with Cisco NX-OS
Mounting the bootflash and volatile Partitions in the Docker Container

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Before starting the switchover, use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 3 Start any containers using the --restart unless-stopped option so that they will be restarted automatically
after the switchover.

The following example starts an Alpine container and configures it to always restart unless it is explicitly
stopped or Docker is restarted:
root@switch# docker run -dit --restart unless-stopped alpine
root@n9k-2#

The Docker containers are disrupted (restarted) during the switchover, so they will not be running continuously.

Enabling Docker Daemon Persistence on the Cisco Nexus
Platform Switches Switchover

You can have both the Docker daemon and any running containers persist on a switchover between two
separate physical supervisors with distinct bootflash partitions. However, for the Cisco Nexus switches, the
bootflash partitions on both supervisors are physically separate. You will therefore need to copy the
dockerpart file manually to the standby supervisor before performing the switchover.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start any containers using the --restart unless-stopped option so that they will be restarted automatically
after the switchover.

The following example starts an Alpine container and configures it to always restart unless it is explicitly
stopped or Docker is restarted:
root@switch# docker run -dit --restart unless-stopped alpine
root@n9k-2#

Note that the Docker containers will be disrupted (restarted) during the switchover, so they will not be running
continuously.

Step 3 Before starting the switchover, use the chkconfig utility to make the Docker service persistent.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
81

Using Docker with Cisco NX-OS
Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover

root@switch# chkconfig --add docker
root@n9k-2#

Step 4 Copy the Docker backend storage partition from the active to the standby supervisor bootflash:
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

root@switch# cp /bootflash/dockerpart /bootflash_sup-remote/

root@switch# service docker start

Resizing the Docker Storage Backend
After starting or using the Docker daemon, you can grow the size of the Docker backend storage space
according to your needs.

Procedure

Step 1 Disable the Guest Shell.

If you do not disable the Guest Shell, it may interfere with the resize.
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n] y
switch# 2018 Mar 15 17:16:55 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating
virtual service 'guestshell+'
2018 Mar 15 17:16:57 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'

Step 2 Load Bash and become superuser.
switch# run bash sudo su -

Step 3 Get information on the current amount of storage space available.
root@switch# df -kh /var/lib/docker
Filesystem Size Used Avail Use% Mounted on
/dev/loop12 1.9G 7.6M 1.8G 1% /var/lib/docker
root@n9k-2#

Step 4 Stop the Docker daemon.
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

Step 5 Get information on the current size of the Docker backend storage space (/bootflash/dockerpart).
root@switch# ls -l /bootflash/dockerpart
-rw-r--r-- 1 root root 2000000000 Mar 15 16:53 /bootflash/dockerpart
root@n9k-2#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
82

Using Docker with Cisco NX-OS
Resizing the Docker Storage Backend

Step 6 Resize the Docker backend storage space.

For example, the following command increases the size by 500 megabytes:
root@switch# truncate -s +500MB /bootflash/dockerpart
root@n9k-2#

Step 7 Get updated information on the size of the Docker backend storage space to verify that the resizing process
was completed successfully.

For example, the following output confirms that the size of the Docker backend storage was successfully
increased by 500 megabytes:
root@switch# ls -l /bootflash/dockerpart
-rw-r--r-- 1 root root 2500000000 Mar 15 16:54 /bootflash/dockerpart
root@n9k-2#

Step 8 Check the size of the filesystem on /bootflash/dockerpart.
root@switch# e2fsck -f /bootflash/dockerpart
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/bootflash/dockerpart: 528/122160 files (0.6% non-contiguous), 17794/488281 blocks

Step 9 Resize the filesystem on /bootflash/dockerpart.
root@switch# /sbin/resize2fs /bootflash/dockerpart
resize2fs 1.42.9 (28-Dec-2013)
Resizing the filesystem on /bootflash/dockerpart to 610351 (4k) blocks.
The filesystem on /bootflash/dockerpart is now 610351 blocks long.

Step 10 Check the size of the filesystem on /bootflash/dockerpart again to confirm that the filesystem was
successfully resized.
root@switch# e2fsck -f /bootflash/dockerpart
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/bootflash/dockerpart: 528/154736 files (0.6% non-contiguous), 19838/610351 blocks

Step 11 Start the Docker daemon again.
root@switch# service docker start
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...
done.
Starting dockerd with args '--debug=true':

Step 12 Verify the new amount of storage space available.
root@switch# df -kh /var/lib/docker
Filesystem Size Used Avail Use% Mounted on

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
83

Using Docker with Cisco NX-OS
Resizing the Docker Storage Backend

/dev/loop12 2.3G 7.6M 2.3G 1% /var/lib/docker

Step 13 Exit out of Bash shell.
root@switch# exit
logout
switch#

Step 14 Enable the Guest Shell, if necessary.
switch# guestshell enable

switch# 2018 Mar 15 17:12:53 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual
service 'guestshell+'
switch# 2018 Mar 15 17:13:18 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully
activated virtual service 'guestshell+'

Stopping the Docker Daemon
If you no longer wish to use Docker, follow the procedures in this topic to stop the Docker daemon.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Stop the Docker daemon.
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

Step 3 Verify that the Docker daemon is stopped.
root@switch# service docker status
dockerd is stopped
root@switch#

You can also delete the dockerpart file on the bootflash at this point, if necessary:
switch# delete bootflash:dockerpart
Do you want to delete "/dockerpart" ? (yes/no/abort) y
switch#

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
84

Using Docker with Cisco NX-OS
Stopping the Docker Daemon

Docker Container Security
Following are the Docker container security recommendations:

• Run in a separate user namespace if possible.

• Run in a separate network namespace if possible.

• Use cgroups to limit resources. An existing cgroup (ext_ser) is created to limit hosted applications to
what the platform team has deemed reasonable for extra software running on the switch. Docker allows
use of this and limiting per-container resources.

• Do not add unnecessary POSIX capabilities.

Securing Docker Containers With User namespace Isolation
For containers using the bridged networking model, you can also set up user namespace isolation to further
improve security. See https://docs.docker.com/engine/security/userns-remap/ for more information.

Procedure

Step 1 Determine if a dockremap group already exists on your system.

A dockremap user must already be set up on your system by default. If the dockremap group doesn't already
exist, follow these steps to create it.

a) Enter the following command to create the dockremap group:
root@switch# groupadd dockremap -r

b) Create the dockremap user, unless it already exists:
root@switch# useradd dockremap -r -g dockremap

c) Verify that the dockremap group and the dockremap user were created successfully:
root@switch# id dockremap
uid=999(dockremap) gid=498(dockremap) groups=498(dockremap)
root@switch#

Step 2 Add the desired re-mapped ID and range to the /etc/subuid and /etc/subgid.

For example:
root@switch# echo "dockremap:123000:65536" >> /etc/subuid
root@switch# echo "dockremap:123000:65536" >> /etc/subgid

Step 3 Using a text editor, add the --userns-remap=default option to the other_args field in the
/etc/sysconfig/docker file.

For example:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
85

Using Docker with Cisco NX-OS
Docker Container Security

https://docs.docker.com/engine/security/userns-remap/

other_args="–debug=true --userns-remap=default"

Step 4 Restart the Docker daemon, or start it if it is not already running, using service docker [re]start.

For example:
root@switch# service docker [re]start

Refer to the Docker documentation at https://docs.docker.com/engine/security/userns-remap/ for more
information on configuring and using containers with user namespace isolation.

Moving the cgroup Partition
The cgroup partition for third-party services is ext_ser, which limits CPU usage to 25% per core. Cisco
recommends that you run your Docker container under this ext_ser partition.

If the Docker container is run without the --cgroup-parent=/ext_ser/ option, it can get up to the full 100%
host CPU access, which can interfere with the regular operation of Cisco NX-OS.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Run the Docker container under the ext_ser partition.

For example:
root@switch# docker run --name=alpinerun -v /var/run/netns:/var/run/netns:ro,rslave --rm
--network host --cgroup-parent=/ext_ser/ --cap-add SYS_ADMIN -it alpine
/ #

Docker Troubleshooting
These topics describe issues that can arise with Docker containers and provides possible resolutions.

Docker Fails to Start
Problem: Docker fails to start, showing an error message similar to the following:
switch# run bash
bash-4.3$ service docker start
Free bootflash: 39099 MB, total bootflash: 51771 MB
Carving docker bootflash storage: 2000 MB
2000+0 records in
2000+0 records out

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
86

Using Docker with Cisco NX-OS
Moving the cgroup Partition

https://docs.docker.com/engine/security/userns-remap/

2000000000 bytes (2.0 GB) copied, 22.3039 s, 89.7 MB/s
losetup: /dev/loop18: failed to set up loop device: Permission denied
mke2fs 1.42.9 (28-Dec-2013)
mkfs.ext4: Device size reported to be zero. Invalid partition specified, or

partition table wasn't reread after running fdisk, due to
a modified partition being busy and in use. You may need to reboot
to re-read your partition table.

Failed to create docker volume

Possible Cause: You might be running Bash as an admin user instead of as a root user.

Solution: Determine if you are running Bash as an admin user instead of as a root user:
bash-4.3$ whoami
admin

Exit out of Bash and run Bash as root user:

bash-4.3$ exit
switch# run bash sudo su -

Docker Fails to Start Due to Insufficient Storage
Problem:Docker fails to start, showing an error message similar to the following, due to insufficient bootflash
storage:
root@switch# service docker start
Free bootflash: 790 MB, total bootflash: 3471 MB
Need at least 2000 MB free bootflash space for docker storage

Possible Cause: You might not have enough free bootflash storage.

Solution: Free up space or adjust the variable_dockerstrg values in /etc/sysconfig/docker as needed,
then restart the Docker daemon:
root@switch# cat /etc/sysconfig/docker
Replace the below with your own docker storage backend boundary value (in MB)
if desired.
boundary_dockerstrg=5000

Replace the below with your own docker storage backend values (in MB) if
desired. The smaller value applies to platforms with less than
$boundary_dockerstrg total bootflash space, the larger value for more than
$boundary_dockerstrg of total bootflash space.
small_dockerstrg=300
large_dockerstrg=2000

Failure to Pull Images from Docker Hub (509 Certificate Expiration Error
Message)

Problem: The system fails to pull images from the Docker hub with an error message similar to the following:
root@switch# docker pull alpine
Using default tag: latest

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
87

Using Docker with Cisco NX-OS
Docker Fails to Start Due to Insufficient Storage

Error response from daemon: Get https://registry-1.docker.io/v2/: x509: certificate has
expired or is not yet valid

Possible Cause: The system clock might not be set correctly.

Solution: Determine if the clock is set correctly or not:
root@n9k-2# sh clock
15:57:48.963 EST Thu Apr 25 2002
Time source is Hardware Calendar

Reset the clock, if necessary:
root@n9k-2# clock set hh:mm:ss { day month | month day } year

For example:
root@n9k-2# clock set 14:12:00 10 feb 2018

Failure to Pull Images from Docker Hub (Client Timeout Error Message)
Problem: The system fails to pull images from the Docker hub with an error message similar to the following:
root@switch# docker pull alpine
Using default tag: latest
Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: request canceled
while waiting for connection (Client.Timeout exceeded while awaiting headers)

Possible Cause: The proxies or DNS settings might not be set correctly.

Solution: Check the proxy settings and fix them, if necessary, then restart the Docker daemon:
root@switch# cat /etc/sysconfig/docker | grep proxy
#export http_proxy=http://proxy.esl.cisco.com:8080
#export https_proxy=http://proxy.esl.cisco.com:8080
root@switch# service docker [re]start

Check the DNS settings and fix them, if necessary, then restart the Docker daemon:
root@switch# cat /etc/resolv.conf
domain cisco.com #bleed
nameserver 171.70.168.183 #bleed
root@switch# # conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context management
switch(config-vrf)# ip domain-name ?
WORD Enter the default domain (Max Size 64)

switch(config-vrf)# ip name-server ?
A.B.C.D Enter an IPv4 address
A:B::C:D Enter an IPv6 address

root@switch# service docker [re]start

Docker Daemon or Containers Not Running On Switch Reload or Switchover
Problem: The Docker daemon or containers do not run after you have performed a switch reload or switchover.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
88

Using Docker with Cisco NX-OS
Failure to Pull Images from Docker Hub (Client Timeout Error Message)

Possible Cause: The Docker daemon might not be configured to persist on a switch reload or switchover.

Solution: Verify that the Docker daemon is configured to persist on a switch reload or switchover using the
chkconfig command, then start the necessary Docker containers using the --restart unless-stopped option.
For example, to start an Alpine container:
root@switch# chkconfig --add docker
root@switch#
root@switch# chkconfig --list | grep docker
docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off
root@switch# docker run -dit --restart unless-stopped alpine

Resizing of Docker Storage Backend Fails
Problem: An attempt to resize the Docker backend storage failed.

Possible Cause: You might not have Guest Shell disabled.

Solution: Use the following command to determine if Guest Shell is disabled:
root@switch# losetup -a | grep dockerpart
root@n9k-2#

The command should not display any output if Guest Shell is disabled.

Enter the following command to disable the Guest Shell, if necessary:
switch# guestshell disable

If you still cannot resize the Docker backend storage, you can delete /bootflash/dockerpart, then adjust
the [small_]large_dockerstrg in /etc/sysconfig/docker, then start Docker again to get a fresh Docker
partition with the size that you want.

Docker Container Doesn't Receive Incoming Traffic On a Port
Problem: The Docker container doesn't receive incoming traffic on a port.

Possible Cause: The Docker container might be using a netstack port instead of a kstack port.

Solution: Verify that any ephemeral ports that are used by Docker containers are within the kstack range.
Otherwise any incoming packets can get sent to netstack for servicing and dropped.
switch# show socket local-port-range
Kstack local port range (15001 - 58000)
Netstack local port range (58001 - 63535) and nat port range (63536 - 65535)
switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# sockets local-port-range <start_port> <end_port>
switch# run bash sudo su -
root@switch# cat /proc/sys/net/ipv4/ip_local_port_range
15001 58000
root@switch#

Unable to See Data Port And/Or Management Interfaces in Docker Container
Problem: You are unable to see the data port or management interfaces in the Docker container.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
89

Using Docker with Cisco NX-OS
Resizing of Docker Storage Backend Fails

Solution:

• Verify that the Docker container is started in the host network namespace with all host namespaces
mapped in using the -v /var/run/netns:/var/run/netns:ro,rslave --network host options.

• Once in the container, you will be in the management network namespace by default. You can use the
ip netns utility to move to the default (init) network namespace, which has the data port interfaces.
The ip netns utility might need to be installed in the container using yum, apk, or something similar.

General Troubleshooting Tips
Problem: You have other issues with Docker containers that were not resolved using other troubleshooting
processes.

Solution:

• Look for dockerd debug output in /var/log/docker for any clues as to what is wrong.

• Verify that your switch has 8 GB or more of RAM. Docker functionality is not supported on any switch
that has less than 8 GB of RAM.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
90

Using Docker with Cisco NX-OS
General Troubleshooting Tips

C H A P T E R 11
NX-API

• About NX-API, on page 91
• Using NX-API, on page 92
• XML and JSON Supported Commands, on page 100

About NX-API
On Cisco Nexus switches, command-line interfaces (CLIs) are run only on the switch. NX-API improves the
accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You can
use this extension to the existing Cisco NX-OS CLI system on the Cisco Nexus 3500 platform switches.
NX-API supports show commands, configurations, and Linux Bash.

NX-API supports JSON-RPC, JSON, and XML formats.

Feature NX-API
• Feature NX-API is required to be enabled for access the device through sandbox.

• | json on the device internally uses python script to generate output.

• NX-API can be enabled either on http/https via ipv4:
BLR-VXLAN-NPT-CR-179# show nxapi
nxapi enabled
HTTP Listen on port 80
HTTPS Listen on port 443
BLR-VXLAN-NPT-CR-179#

• NX-API is internally spawning third-party NGINX process, which handler receive/send/processing of
http requests/response:
nxapi certificate {httpscrt |httpskey}
nxapi certificate enable

• NX-API Certificates can be enabled for https

• Default port for nginx to operate is 80/443 for http/https respectively. It can also be changed using the
following CLI command:
nxapi {http|https} port port-number

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
91

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all of its children processes, are
under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage
exceeds the cgroup limitations, the Nginx process is restarted and restored.

The Nginx process continues to run even after NX-API is disabled using the no feature NXAPI command.
This is required for other management-related processes.

Note

Message Format

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON or JSON-RPC.

Note

Security
NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

Using NX-API
The commands, command type, and output type for the Cisco Nexus 3500 platform switches are entered using
NX-API by encoding the CLIs into the body of a HTTP/HTTPs POST. The response to the request is returned
in XML, JSON, or JSON-RPC output format.

You must enable NX-API with the feature manager CLI command on the device. By default, NX-API is
disabled.

The following example shows how to configure and launch the NX-API Sandbox:

• Enable the management interface.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
92

NX-API
Transport

switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 198.51.100.1/24
switch(config)# vrf context managment
switch(config)# ip route 203.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:
{

"ins_api": {

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
93

NX-API
Using NX-API

"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

Using the Management Interface for NX-API calls

It is recommended to use the management interface for NX-API calls.

When using non-management interface and a custom port for NX-API an entry should be made in the CoPP
policy to prevent NX-API traffic from hitting the default copp entry which could unfavorably treat API traffic.

It is recommended to use the management interface for NX-API traffic. If that is not possible and a custom
port is used, the "copp-http" class should be updated to include the custom NX-API port.

Note

The following example port 9443 is being used for NX-API traffic.

This port is added to the copp-system-acl-http ACL to allow it to be matched under the

copp-http class resulting on 100 pps policing. (This may need to be increased in certain

environments.)

!
ip access-list copp-system-acl-http
10 permit tcp any any eq www
20 permit tcp any any eq 443
30 permit tcp any any eq 9443 <---------

!
class-map type control-plane match-any copp-http
match access-group name copp-system-acl-http

!
!
policy-map type control-plane copp-system-policy
class copp-http
police pps 100

!

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 4: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
94

NX-API
NX-API Management Commands

DescriptionNX-API Management Command

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP/HTTPS.no nxapi {http | https}

Displays port information.show nxapi

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Enables a certificate.nxapi certificate enable

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

In some situations, you might get an error message saying that the certificate is invalid:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
Nginx certificate invalid.
switch(config)#

This might occur if the key file is encrypted. In that case, the key file must be decrypted before you can install
it. You might have to go into Guest Shell to decrypt the key file, as shown in the following example:
switch(config)# guestshell
[b3456@guestshell ~]$
[b3456@guestshell bootflash]$ /bin/openssl rsa -in certfilename.net.pem -out clearkey.pem

Enter pass phrase for certfilename.net.pem:
writing RSA key
[b3456@guestshell bootflash]$
[b3456@guestshell bootflash]$ exit
switch(config)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
95

NX-API
NX-API Management Commands

See Guest Shell, on page 9 for more information on Guest Shell.

If this was the reason for the issue, you should now be able to successfully install the certificate:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Working With Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Request Elements
NX-API request elements are sent to the switch in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 5: NX-API Request Elements

DescriptionNX-API Request Element

Specifies the NX-API version.version

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
96

NX-API
Working With Interactive Commands Using NX-API

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the current
user's authority.

• The pipe operation is supported in the output when
the message type is ASCII. If the output is in XML
format, the pipe operation is not supported.

• A maximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
97

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Do not chunk output.0

Chunk output.1

Only show commands support chunking.When a series
of show commands are entered, only the first command
is chunked and returned.

The output message format is XML. (XML is the
default.) Special characters, such as < or >, are converted
to form a valid XML message (< is converted into <
> is converted into >).

You can use XML SAX to parse the chunked output.

Note

When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

Note

chunk

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated with
" ; ". (The ; must be surrounded with single blank
characters.)

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
98

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

The available output message formats are the following:

Specifies output in XML format.xml

Specifies output in JSON format.json

The Cisco Nexus 3500 platform switches CLI supports
XML output, which means that the JSON output is
converted from XML. The conversion is processed on
the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML output
is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 6: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
99

NX-API
NX-API Response Elements

DescriptionNX-API Response Element

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard designed for human-readable data and is an alternative to
XML. JSON was originally designed from JavaScript, but it is language-independent data format. The
JSON/CLI Execution is currently supported in Cisco Nexus 3500 platform switches.

The NX-API/JSON functionality is now available on the Cisco Nexus 3500 platform switches.Note

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

• Ordered List :: Array

• Unordered List (Name/Value pair) :: Objects

JSON/JSON-RPC/XML output for a show command can also be accessed via sandbox.

CLI Execution
Show_Command | json

Example Code
BLR-VXLAN-NPT-CR-179# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SPARSHA-SAVBU-F10", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco WS-C2960
S-48TS-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "BLR-VXLAN-NPT-CR-178(FOC1745R01W)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

XML and JSON Supported Commands
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

• XML

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
100

NX-API
About JSON (JavaScript Object Notation)

• JSON
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read
• Introduced in NX-OS release 9.3(1), JSON Native and JSON Pretty Native displays JSON output faster
and more efficiently by bypassing an extra layer of command interpretation. JSON Native and JSON
Pretty Native preserve the data type in the output. They display integers as integers instead of converting
them to a string for output.

Converting the standard NX-OS output to JSON, JSON Pretty, or XML format occurs on the NX-OS CLI by
"piping" the output to a JSON or XML interpreter. For example, you can issue the show ip access command
with the logical pipe (|) and specify JSON, JSON Pretty, JSON Native, JSON Native Pretty, or XML, and
the NX-OS command output will be properly structured and encoded in that format. This feature enables
programmatic parsing of the data and supports streaming data from the switch through software streaming
telemetry. Most commands in Cisco NX-OS support JSON, JSON Pretty, and XML output.

Selected examples of this feature follow.

Examples of XML and JSON Output
This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
101

NX-API
Examples of XML and JSON Output

<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers configured on the switch in XML format:

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
102

NX-API
Examples of XML and JSON Output

switch(config)#

This example shows how to display ACL statistics in XML format.
switch-1(config-acl)# show ip access-lists acl-test1 | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:1.0:aclmgr" xmlns:nf="urn:ietf:p
arams:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
<ip_ipv6_mac>ip</ip_ipv6_mac>
<access-lists>
<__XML__OPT_Cmd_show_acl_name>
<name>acl-test1</name>
<__XML__OPT_Cmd_show_acl_capture>
<__XML__OPT_Cmd_show_acl_expanded>
<__XML__OPT_Cmd_show_acl___readonly__>
<__readonly__>
<TABLE_ip_ipv6_mac>
<ROW_ip_ipv6_mac>
<op_ip_ipv6_mac>ip</op_ip_ipv6_mac>
<show_summary>0</show_summary>
<acl_name>acl-test1</acl_name>
<statistics>enable</statistics>
<frag_opt_permit_deny>permit-all</frag_opt_permit_deny>
<TABLE_seqno>
<ROW_seqno>
<seqno>10</seqno>
<permitdeny>permit</permitdeny>
<ip>ip</ip>
<src_ip_prefix>192.0.2.1/24</src_ip_prefix>
<dest_any>any</dest_any>
</ROW_seqno>
</TABLE_seqno>
</ROW_ip_ipv6_mac>
</TABLE_ip_ipv6_mac>
</__readonly__>
</__XML__OPT_Cmd_show_acl___readonly__>
</__XML__OPT_Cmd_show_acl_expanded>
</__XML__OPT_Cmd_show_acl_capture>
</__XML__OPT_Cmd_show_acl_name>
</access-lists>
</__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1(config-acl)#

This example shows how to display ACL statistics in JSON format.
switch-1(config-acl)# show ip access-lists acl-test1 | json
{"TABLE_ip_ipv6_mac": {"ROW_ip_ipv6_mac": {"op_ip_ipv6_mac": "ip", "show_summar
y": "0", "acl_name": "acl-test1", "statistics": "enable", "frag_opt_permit_deny
": "permit-all", "TABLE_seqno": {"ROW_seqno": {"seqno": "10", "permitdeny": "pe
rmit", "ip": "ip", "src_ip_prefix": "192.0.2.1/24", "dest_any": "any"}}}}}
switch-1(config-acl)#

This example shows how to display the switch's redundancy information in JSON Pretty Native format.
switch-1# show system redundancy status | json-pretty native
{

"rdn_mode_admin": "HA",
"rdn_mode_oper": "None",

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
103

NX-API
Examples of XML and JSON Output

"this_sup": "(sup-1)",
"this_sup_rdn_state": "Active, SC not present",
"this_sup_sup_state": "Active",
"this_sup_internal_state": "Active with no standby",
"other_sup": "(sup-1)",
"other_sup_rdn_state": "Not present"

}
switch-1#

The following example shows how to display the switch's redundancy status in JSON format.
switch-1# show system redundancy status | json
{"rdn_mode_admin": "HA", "rdn_mode_oper": "None", "this_sup": "(sup-1)", "this_
sup_rdn_state": "Active, SC not present", "this_sup_sup_state": "Active", "this
_sup_internal_state": "Active with no standby", "other_sup": "(sup-1)", "other_
sup_rdn_state": "Not present"}
nxosv2#
switch-1#

The following example shows how to display the IP route summary in XML format.
switch-1# show ip route summary | xml
<?xml version="1.0" encoding="ISO-8859-1"?> <nf:rpc-reply
xmlns="http://www.cisco.com/nxos:1.0:urib" xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">

<nf:data>
<show>
<ip>
<route>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip>
<__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
<__XML__OPT_Cmd_urib_show_ip_route_command_topology>
<__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
<__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
<__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
<__XML__OPT_Cmd_urib_show_ip_route_command_summary>
<__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
<__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
<__readonly__>
<TABLE_vrf>
<ROW_vrf>
<vrf-name-out>default</vrf-name-out>
<TABLE_addrf>
<ROW_addrf>
<addrf>ipv4</addrf>
<TABLE_summary>
<ROW_summary>
<routes>938</routes>
<paths>1453</paths>
<TABLE_unicast>
<ROW_unicast>
<clientnameuni>am</clientnameuni>
<best-paths>2</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>local</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>direct</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>broadcast</clientnameuni>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
104

NX-API
Examples of XML and JSON Output

<best-paths>203</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>ospf-10</clientnameuni>
<best-paths>1038</best-paths>
</ROW_unicast>
</TABLE_unicast>
<TABLE_route_count>
<ROW_route_count>
<mask_len>8</mask_len>
<count>1</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>24</mask_len>
<count>600</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>31</mask_len>
<count>13</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>32</mask_len>
<count>324</count>
</ROW_route_count>
</TABLE_route_count>
</ROW_summary>
</TABLE_summary>
</ROW_addrf>
</TABLE_addrf>
</ROW_vrf>
</TABLE_vrf>
</__readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
</__XML__OPT_Cmd_urib_show_ip_route_command_summary>
</__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
</__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
</__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
</__XML__OPT_Cmd_urib_show_ip_route_command_topology>
</__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip>
</route>
</ip>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1#

The following example shows how to display the switch's OSPF routing parameters in JSON Native format.
switch-1# show ip ospf | json native
{"TABLE_ctx":{"ROW_ctx":[{"ptag":"Blah","instance_number":4,"cname":"default","
rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr
_grace_period":"PT60S","gr_state":"inactive","gr_last_status":"None","support_t
os0_only":"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false"
,"admin_dist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S"
,"spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_
time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"m
ax_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cn
t":0,"asopaque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_
nssa":0,"act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa
":0,"no_discard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"100","ins
tance_number":3,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
105

NX-API
Examples of XML and JSON Output

"true","gr_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive"
,"gr_last_status":"None","support_tos0_only":"true","support_opaque_lsa":"true"
,"is_abr":"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_
time":"PT0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0
S","lsa_hold_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_
aging_pace":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"
asext_lsa_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"
area_normal":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal"
:0,"act_area_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_
rt_int":"false"},{"ptag":"111","instance_number":1,"cname":"default","rid":"0.0
.0.0","stateful_ha":"true","gr_ha":"true","gr_planned_only":"true","gr_grace_pe
riod":"PT60S","gr_state":"inactive","gr_last_status":"None","support_tos0_only"
:"true","support_opaque_lsa":"true","is_abr":"false","is_asbr":"false","admin_d
ist":110,"ref_bw":40000,"spf_start_time":"PT0S","spf_hold_time":"PT1S","spf_max
_time":"PT5S","lsa_start_time":"PT0S","lsa_hold_time":"PT5S","lsa_max_time":"PT
5S","min_lsa_arr_time":"PT1S","lsa_aging_pace":10,"spf_max_paths":8,"max_metric
_adver":"false","asext_lsa_cnt":0,"asext_lsa_crc":"0","asopaque_lsa_cnt":0,"aso
paque_lsa_crc":"0","area_total":0,"area_normal":0,"area_stub":0,"area_nssa":0,"
act_area_total":0,"act_area_normal":0,"act_area_stub":0,"act_area_nssa":0,"no_d
iscard_rt_ext":"false","no_discard_rt_int":"false"},{"ptag":"112","instance_num
ber":2,"cname":"default","rid":"0.0.0.0","stateful_ha":"true","gr_ha":"true","g
r_planned_only":"true","gr_grace_period":"PT60S","gr_state":"inactive","gr_last
_status":"None","support_tos0_only":"true","support_opaque_lsa":"true","is_abr"
:"false","is_asbr":"false","admin_dist":110,"ref_bw":40000,"spf_start_time":"PT
0S","spf_hold_time":"PT1S","spf_max_time":"PT5S","lsa_start_time":"PT0S","lsa_h
old_time":"PT5S","lsa_max_time":"PT5S","min_lsa_arr_time":"PT1S","lsa_aging_pac
e":10,"spf_max_paths":8,"max_metric_adver":"false","asext_lsa_cnt":0,"asext_lsa
_crc":"0","asopaque_lsa_cnt":0,"asopaque_lsa_crc":"0","area_total":0,"area_norm
al":0,"area_stub":0,"area_nssa":0,"act_area_total":0,"act_area_normal":0,"act_a
rea_stub":0,"act_area_nssa":0,"no_discard_rt_ext":"false","no_discard_rt_int":"
false"}]}}
switch-1#

The following example shows how to display OSPF routing parameters in JSON Pretty Native format.
switch-1# show ip ospf | json-pretty native
{

"TABLE_ctx": {
"ROW_ctx": [{

"ptag": "Blah",
"instance_number": 4,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",
"gr_last_status": "None",
"support_tos0_only": "true",
"support_opaque_lsa": "true",
"is_abr": "false",
"is_asbr": "false",
"admin_dist": 110,
"ref_bw": 40000,
"spf_start_time": "PT0S",
"spf_hold_time": "PT1S",
"spf_max_time": "PT5S",
"lsa_start_time": "PT0S",
"lsa_hold_time": "PT5S",
"lsa_max_time": "PT5S",
"min_lsa_arr_time": "PT1S",
"lsa_aging_pace": 10,
"spf_max_paths": 8,
"max_metric_adver": "false",

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
106

NX-API
Examples of XML and JSON Output

"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}, {
"ptag": "100",
"instance_number": 3,
"cname": "default",
"rid": "0.0.0.0",
"stateful_ha": "true",
"gr_ha": "true",
"gr_planned_only": "true",
"gr_grace_period": "PT60S",
"gr_state": "inactive",

... content deleted for brevity ...

"max_metric_adver": "false",
"asext_lsa_cnt": 0,
"asext_lsa_crc": "0",
"asopaque_lsa_cnt": 0,
"asopaque_lsa_crc": "0",
"area_total": 0,
"area_normal": 0,
"area_stub": 0,
"area_nssa": 0,
"act_area_total": 0,
"act_area_normal": 0,
"act_area_stub": 0,
"act_area_nssa": 0,
"no_discard_rt_ext": "false",
"no_discard_rt_int": "false"

}]
}

}
switch-1#

The following example shows how to display the IP route summary in JSON format.
switch-1# show ip route summary | json
{"TABLE_vrf": {"ROW_vrf": {"vrf-name-out": "default", "TABLE_addrf": {"ROW_addrf": {"addrf":
"ipv4", "TABLE_summary": {"ROW_summary": {"routes": "938", "paths": "
1453", "TABLE_unicast": {"ROW_unicast": [{"clientnameuni": "am", "best-paths": "2"},
{"clientnameuni": "local", "best-paths": "105"}, {"clientnameuni": "direct",
"best-paths": "105"}, {"clientnameuni": "broadcast", "best-paths": "203"}, {"clientnameuni":
"ospf-10", "best-paths": "1038"}]}, "TABLE_route_count": {"ROW_route_
count": [{"mask_len": "8", "count": "1"}, {"mask_len": "24", "count": "600"}, {"mask_len":
"31", "count": "13"}, {"mask_len": "32", "count": "324"}]}}}}}}}}
switch-1#

The following example shows how to display the IP route summary in JSON Pretty format.
switch-1# show ip route summary | json-pretty
{

"TABLE_vrf": {

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
107

NX-API
Examples of XML and JSON Output

"ROW_vrf": {
"vrf-name-out": "default",
"TABLE_addrf": {

"ROW_addrf": {
"addrf": "ipv4",
"TABLE_summary": {

"ROW_summary": {
"routes": "938",
"paths": "1453",
"TABLE_unicast": {

"ROW_unicast": [
{

"clientnameuni": "am",
"best-paths": "2"

},
{

"clientnameuni": "local",
"best-paths": "105"

},
{

"clientnameuni": "direct",
"best-paths": "105"

},
{

"clientnameuni": "broadcast",
"best-paths": "203"

},
{

"clientnameuni": "ospf-10",
"best-paths": "1038"

}
]

},
"TABLE_route_count": {

"ROW_route_count": [
{

"mask_len": "8",
"count": "1"

},
{

"mask_len": "24",
"count": "600"

},
{

"mask_len": "31",
"count": "13"

},
{

"mask_len": "32",
"count": "324"

}
]

}
}

}
}

}
}

}
}
switch-1#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
108

NX-API
Examples of XML and JSON Output

C H A P T E R 12
NX-API Response Codes

• Table of NX-API Response Codes, on page 109

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 7: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Input Bash command error.400BASH_CMD_ERR

Chunking only allowed to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

The eoc value is not allowed as session Id in the
request.

400EOC_NOT_ALLOWED_ERR

Request message is invalid.400IN_MSG_ERR

Message version mismatch.400MSG_VER_MISMATCH

No input command.400NO_INPUT_CMD_ERR

Invalid character that is entered as a session ID.400SID_NOT_ALLOWED_ERR

Permission denied.401PERM_DENY_ERR

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
109

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Response size stopped processing because it
exceeded the maximum message size. The
maximum is 200 MB.

413RESP_SIZE_LARGE_ERR

Maximum number of concurrent chunk requests
is exceeded. The maximum is 2.

429EXCEED_MAX_INFLIGHT_CHUNK_REQ_ERR

Requested object does not exist.432OBJ_NOT_EXIST

Backend processing error.500BACKEND_ERR

Error creating a checkpoint.500CREATE_CHECKPOINT_ERR

Error deleting a checkpoint.500DELETE_CHECKPOINT_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

Error executing a rollback.500ROLLBACK_ERR

Request is rejected because the server is busy.500SERVER_BUSY_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

Volatile memory is full. Free up memory space
and retry.

500VOLATILE_FULL

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

Response chunking allowed only in show

commands.
501CHUNK_ONLY_ALLOWED_IN_SHOW_ERR

Timeout while generating chunk response.501CHUNK_TIMEOUT

CLI command not supported.501CLI_CMD_NOT_SUPPORTED_ERR

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
110

NX-API Response Codes
Table of NX-API Response Codes

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Malformed XML output.501MALFORMED_XML

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Output redirection is not supported.501OUTPUT_REDIRECT_NOT_SUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Pipe is not allowed for this input type.501PIPE_NOT_ALLOWED_IN_INPUT

Response is greater than the allowed maximum.
The maximum is 10 MB. Use XML or JSON
output with chunking enabled.

501RESP_BIG_USE_CHUNK_ERR

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
111

NX-API Response Codes
Table of NX-API Response Codes

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
112

NX-API Response Codes
Table of NX-API Response Codes

C H A P T E R 13
NX-API Developer Sandbox

• NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2), on page 113
• NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later, on page 119

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)

About the NX-API Developer Sandbox
The NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OS CLI commands
into equivalent XML or JSON payloads, and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request, and Response— as shown
in the figure.

Figure 1: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API
REST, and a command type, such as XML or JSON. The available command type options vary depending
on the selected message format.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
113

When you type or paste one or more CLI commands into the Command pane, the web form converts the
commands into an API payload, checking for configuration errors, and displays the resulting payload in the
Request pane. If you then choose to post the payload directly from the Sandbox to the switch, using the POST
button in the Command pane, the Response pane displays the API response.

Conversely, when you type an NX-API REST designated name (DN) and payload into the Command pane
and select the nx-api restMessage format and the model Command type, Developer Sandbox checks
the payload for configuration errors, then the Response pane displays the equivalent CLIs.

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking POST in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.

Configuring the Message Format and Command Type
The Message Format and Command Type are configured in the upper right corner of the Command pane
(the top pane). ForMessage Format, choose the format of the API protocol that you want to use. The Developer
Sandbox supports the following API protocols:

Table 8: NX-OS API Protocols

DescriptionProtocol

A standard lightweight remote procedure call (RPC) protocol that can be used to deliver
NX-OSCLI commands in a JSONpayload. The JSON-RPC 2.0 specification is outlined
by jsonrpc.org.

json-rpc

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML payload.

xml

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
a JSON payload.

json

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. For more information, see the Cisco Nexus NX-API References.

nx-api rest

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

nx yang

When the Message Format has been chosen, a set of Command Type options are presented just below the
Message Format control. The Command Type setting can constrain the input CLI and can determine the
Request and Response format. The options vary depending on the Message Format selection. For each
Message Format, the following table describes the Command Type options:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
114

NX-API Developer Sandbox
Guidelines and Limitations

http://www.jsonrpc.org
https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Table 9: Command Types

Command typeMessage format

• cli — show or configuration commands

• cli-ascii — show or configuration commands, output without
formatting

json-rpc

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

xml

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

json

• cli — configuration commands

• model — DN and corresponding payload.

nx-api rest

• json — JSON structure is used for payload

• xml — XML structure is used for payload

nx yang

Output Chunking

In order to handle large show command output, some NX-API message formats support output chunking for
show commands. In this case, an Enable chunk mode checkbox appears below the Command Type control
along with a session ID (SID) type-in box.

When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate
command response. In order to retrieve the next chunk of the response message, you must send an NX-API
request with SID set to the session ID of the previous response message.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
115

NX-API Developer Sandbox
Configuring the Message Format and Command Type

Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to Payloads

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the NX-API CLI chapter.

Only configuration commands are supported.

Tip

Procedure

Step 1 Configure the Message Format and Command Type for the API protocol you want to use.

For detailed instructions, see Configuring the Message Format and Command Type, on page 114.

Step 2 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top
pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
116

NX-API Developer Sandbox
Using the Developer Sandbox

Step 3 Click the Convert at the bottom of the top pane.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
117

NX-API Developer Sandbox
Using the Developer Sandbox to Convert CLI Commands to Payloads

Step 4 When a valid payload is present in the Request pane, you can click POST to send the payload as an API call
to the switch.

The response from the switch appears in the Response pane.

Clicking POST commits the command to the switch, which can result in a configuration or state
change.

Warning

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
118

NX-API Developer Sandbox
Using the Developer Sandbox to Convert CLI Commands to Payloads

Step 5 You can copy the contents of the Request or Response pane to the clipboard by clicking Copy in the pane.
Step 6 You can obtain a Python implementation of the request on the clipboard by clicking Python in the Request

pane.

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

About the NX-API Developer Sandbox
The Cisco NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OSCLI commands
into equivalent XML or JSON payloads and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request (middle pane), and Response
(bottom pane) — as shown in the figure below. The designated name (DN) field is located between the
Command and Request panes (seen in the figure below located between the POST and Send options).

The Request pane also has a series of tabs. Each tab represents a different language: Python, Python3, Java,
JavaScript, and Go-Lang. Each tab enables you to view the request in the respective language. For example,
after converting CLI commands into an XML or JSON payload, click the Python tab to view the request in
Python, which you can use to create scripts.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
119

NX-API Developer Sandbox
NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

Figure 2: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane enable you to choose a supported API, such as NX-API REST, an input type,
such as model (payload) or CLI, and a message format, such as XML or JSON. The available options vary
depending on the chosen method.

When you choose the NXAPI-REST (DME) method, type or paste one or more CLI commands into the
Command pane,and clickConvert, the web form converts the commands into a RESTAPI payload, checking
for configuration errors, and displays the resulting payload in the Request pane. If you then choose to post
the payload directly from the sandbox to the switch (by choosing the POST option and clicking SEND), the
Response pane displays the API response. For more information, see Using the Developer Sandbox to Convert
CLI Commands to REST Payloads, on page 126

Conversely, the Cisco NX-API Developer Sandbox checks the payload for configuration errors then displays
the equivalent CLis in the Response pane. For more information, see Using the Developer Sandbox to Convert
from REST Payloads to CLI Commands, on page 128

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.
For example, configuring a BGP router requires first enabling BGP with the feature bgp command.
Similarly, configuring an OSPF router requires first enabling OSPF with the feature ospf command.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
120

NX-API Developer Sandbox
Guidelines and Limitations

This also applies to evpn esi multihoming, which enables its dependent commands such as evpn
multihoming core-tracking. For more information about enabling features to access feature dependent
commands, see the .

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

• When you use XML or JSON as the Message Type for CLI input, you can use semicolon to separate
multiple commands on the same line. However, when you use JSON RPC as the Message Type for CLI
input, you cannot enter multiple commands on the same line and separate them with a semicolon (;).

For example, assume that you want to send show hostname and show clock commands through JSON
RPC as the following.

In the Sandbox, you enter the CLIs as follows.
show hostname ; show clock

In the JSON RPC request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show hostname ; show clock",
"version": 1

},
"id": 1

}
]

When you send the request, the response returns the following error.
{
"jsonrpc": "2.0",
"error": {
"code": -32602,
"message": "Invalid params",
"data": {
"msg": "Request contains invalid special characters"

}
},
"id": 1

}

This situation occurs because the Sandbox parses each command in a JSON RPC request as individual
items and assigns an ID to each. When using JSON RPC requests, you cannot use internal punctuation
to separate multiple commands on the same line. Instead, enter each command on a separate line and the
request completes sucessfully.

Continuing with the same example, enter the commands as follows in the NX-API CLI.
show hostname
show clock

In the request, the input is formatted as follows.
[
{
"jsonrpc": "2.0",
"method": "cli",

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
121

NX-API Developer Sandbox
Guidelines and Limitations

"params": {
"cmd": "show hostname",
"version": 1

},
"id": 1

},
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 2

}
]

The response completes successfully.
[
{
"jsonrpc": "2.0",
"result": {
"body": {
"hostname": "switch-1"

}
},
"id": 1

},
{
"jsonrpc": "2.0",
"result": {
"body": {
"simple_time": "12:31:02.686 UTC Wed Jul 10 2019\n",
"time_source": "NTP"

}
},
"id": 2

}
]

Configuring the Message Format and Input Type
The Method, Message format, and Input type are configured in the upper right corner of the Command
pane (the top pane). For Method, choose the format of the API protocol that you want to use. The Cisco
NX-API Developer Sandbox supports the following API protocols:

Table 10: NX-OS API Protocols

DescriptionProtocol

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML or a JSON payload.

NXAPI-CLI

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
122

NX-API Developer Sandbox
Configuring the Message Format and Input Type

DescriptionProtocol

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. The NXAPI-REST (DME) protocol displays a drop-down list that enables you
to choose from the following methods:

• POST

• GET

• PUT

• DELETE

For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST
SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

NXAPI-REST
(DME)

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

The RESTCONF (Yang) protocol displays a drop-down list that enables you to choose
from the following methods:

• POST

• GET

• PUT

• PATCH

• DELETE

RESTCONF (Yang)

When you choose the Method, a set of Message format or Input type options are displayed in a drop-down
list. The Message format can constrain the input CLI and determine the Request and Response format. The
options vary depending on the Method you choose.

The following table describes the Input/Command type options for each Message format:

Table 11: Command Types

Input/Command typeMessage formatMethod

• cli — show or configuration commands

• cli-ascii — show or configuration commands,
output without formatting

• cli-array — show commands. Similar to cli, but
with cli_array, data is returned as a list of one
element, or an array, within square brackets, [].

json-rpcNXAPI-CLI

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
123

NX-API Developer Sandbox
Configuring the Message Format and Input Type

https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Input/Command typeMessage formatMethod

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

xmlNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_array — show commands. Similar to
cli_show, but with cli_show_array, data is
returned as a list of one element, or an array,
within square brackets [].

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

jsonNXAPI-CLI

• cli — CLI to model conversion

• model — Model to CLI conversion.

NXAPI-REST (DME)

• json — JSON
structure is used for
payload

• xml — XML
structure is used for
payload

RESTCONF (Yang)

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
124

NX-API Developer Sandbox
Configuring the Message Format and Input Type

Output Chunking

JSON and XML NX-API message formats enable you to receive large show command responses in 10-MB
chunks. When received, the chunks are concatenated to create a valid JSON object or XML structure. To view
a sample script that demonstrates output chunking, click the following link and choose the directory that
corresponds to Release 9.3x: Cisco NX-OS NXAPI.

For chunk JSON mode, the browser or python script part does not provide the valid JSON output (there will
be no closing tags). To use chunk mode and get valid JSON, use the script provided in the directory.

Note

You receive the first chunk in the immediate command response, which also includes a sid field that contains
a session Id. To retrieve the next chunk, you enter the session Id from the previous chunk in the SID text box.
You repeat the process until reaching the last response, which is indicated by the eoc (end of content) value
in the sid field.

Chunk mode is available when using the NXAPI-CLI method with the JSON or XML format type and the
cli_show, cli_show_array, or cli_show_ascii command type. For more information about configuring the
chunk mode, see the Chunk Mode Fields table.

NX-API supports a maximum of 2 chunking sessions.Note

Table 12: Chunk Mode Fields

DescriptionField Name

Click to place a check mark in the Enable Chunk Mode check box to
enable chunking. When you enable chunk mode, responses that exceed
10 MB are sent in multiple chunks of up to 10 MB in size.

Enable Chunk Mode

Enter the session Id of the previous response in the SID text box to
retrieve the next chunk of the response message.

Only alphanumeric characters and ‘_’ are allowed. Invalid
characters receive an error.

Note

SID

Using the Developer Sandbox
You can use the Cisco NX-API Developer Sandbox to make multiple conversions, including the following:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
125

NX-API Developer Sandbox
Using the Developer Sandbox

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

Using the Developer Sandbox to Convert CLI Commands to REST Payloads

• Online help is available by clicking the help icons (?) next to the field names located in the upper-right
corner of the Cisco NX-API Developer Sandbox window.

• For additional details, such as response codes and security methods, see the NX-API CLI chapter.

• Only configuration commands are supported.

Tip

The Cisco NX-API Developer Sandbox enables you to convert CLI commands to REST payloads.

Procedure

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

The Input type drop-down list appears.

Step 2 Click the Input type drop-down list and choose cli.
Step 3 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top

pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
126

NX-API Developer Sandbox
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Step 4 Click Convert.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Step 5 (Optional) To send a valid payload as an API call to the switch, click Send.

The response from the switch appears in the Response pane.

Clicking Send commits the command to the switch, which can result in a configuration or state
change.

Warning

Step 6 (Optional) To obtain the DN for an MO in the payload:

a. From the Request pane, choose POST.

b. Click the Convert drop-down list and choose Convert (with DN).

The payload appears with with a dn field that contains the DN that corresponds to each MO in the payload.

Step 7 (Optional) To overwrite the current configuration with a new configuration:

a. Click the Convert drop-down list and choose Convert (for Replace). The Request pane displays a
payload with a status field set to replace.

b. From the Request pane, choose POST.

c. Click Send.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
127

NX-API Developer Sandbox
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

The current configuration is replaced with the posted configuration. For example, if you start with the following
configuration:

interface eth1/2
description test
mtu 1501

Then use Convert (for Replace) to POST the following configuration:

interface eth1/2
description testForcr

The mtu configuration is removed and only the new description (testForcr) is present under the interface.
This change is confirmed when entering show running-config .

Step 8 (Optional) To copy the contents of a pane, such as the Request or Response pane, click Copy. The contents
o the respective pane is copied to the clipboard.

Step 9 (Optional) To convert the request into an of the formats listed below, click on the appropriate tab in the
Request pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
TheCiscoNX-APIDeveloper Sandbox enables you to convert REST payloads to correspondingCLI commands.
This option is only available for the NXAPI-REST (DME) method.

• Online help is available by clicking help icons (?) next to the Cisco NX-API Developer Sandbox field
names. Click a help icon get information about the respective field.

For additional details, such as response codes and security methods, see the chapter NX-API CLI.

• The top-right corner of the Cisco NX-API Developer Sandbox contains links for additional information.
The links that appear depend on the Method you choose. The links that appear for the NXAPI-REST
(DME) method:

• NX-API References—Enables you to access additional NX-API documentation.

• DME Documentation—Enables you to access the NX-API DME Model Reference page.

• Model Browser—Enables you to access Visore, the Model Browser. Note that you might have to
manually enter the IP address for your switch to access the Visore page:

https://management-ip-address/visore.html.

Tip

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
128

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Procedure

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

Example:

Step 2 Click the Input Type drop-down list and choose model.
Step 3 Enter the designated name (DN) that corresponds to the payload in the field above the Request pane.
Step 4 Enter the payload in the Command pane.
Step 5 Click Convert.

Example:

For this example, the DN is /api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
129

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

When you click on theConvert button, the CLI equivalent appears in theCLI pane as shown in the following
image.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
130

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
131

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Cisco NX-API Developer Sandbox cannot convert all payloads into equivalent CLIs, even if
the sandbox converted the CLIs to NX-API REST payloads. The following is a list of possible
sources of error that can prevent a payload from completely converting to CLI commands:

Table 13: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to
the attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element
'l1PhysIf'

The payload contains an attribute that does not
exist in the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",
"fakeattribute":

"totallyFake"
}

}
}

]
}

}
]

}
}

The Error Pane will return an error related to
the unsupported MO.

Example:

CLI

Error The entire subtree of
"sys/dhcp" is not converted.

The payload includes MOs that aren't yet
supported for conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled": "yes"

}
}

}
]

}
}

]
}

}

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
132

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Using the Developer Sandbox to Convert from RESTCONF to json or XML

• Online help is available by clicking the help icon (?) in the upper-right corner of the Cisco NX-API
Developer Sandbox window.

• Click on the Yang Documentation link in the upper right corner of the Sandbox window to go to the
Model Driven Programmability with Yang page.

• Click on theYang Models link in the upper right corner of the Sandbox window to access the YangModels
GitHub site.

Tip

Procedure

Step 1 Click the Method drop-down list and choose RESTCONF (Yang).

Example:

Step 2 Click Message format and choose either json or xml.
Step 3 Enter a command in the text entry box in the top pane.
Step 4 Choose a message format.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
133

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Step 5 Click Convert.

Example:

For this example, the command is logging level netstack 6 and the message format is json:

Example:

For this example, the command is logging level netstack 6 and the message format is xml:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
134

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

When converting a negated CLI to a Yang payload using the XML or JSON message format, the
sandbox throws a warning and disables the Send option. The warningmessage that appears depends
on the message format:

• For the XMLmessage format— "This is a Netconf payload as it is being generated for DELETE
operation(s), hence SEND option is disabled for Restconf!"

• For the JSONmessage format—"This is a gRPC payload as it is being generated for DELETE
operation(s), hence SEND option is disabled for Restconf!"

Note

Step 6 You can also convert the request into the following formats by clicking on the appropriate tab in the Request
pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
135

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

The Java-generated script does not work if you choose the PATCH option from the drop-down
menu in the area above the Request tab. This is a known limitation with Java and is expected
behavior.

Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
136

NX-API Developer Sandbox
Using the Developer Sandbox to Convert from RESTCONF to json or XML

C H A P T E R 14
XML Support for ABM and LM in N3500

• XML Support for ABM and LM in N3500 , on page 137

XML Support for ABM and LM in N3500
The following commands show XML Output for ABM and LM:

show hardware profile buffer monitor sampling

CLI :

MTC-8(config)# show hardware profile buffer monitor sampling

Sampling CLI issued at: 05/25/2016 04:18:56

Sampling interval: 200

XML :

MTC-8(config)# show hardware profile buffer monitor sampling | xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w

ww.cisco.com/nxos:1.0:mtc_usd_cli">

<nf:data>

<show>

<hardware>

<profile>

<buffer>

<monitor>

<__XML__BLK_Cmd_show_hardware_profile_buffer_monitor_summary>

<__XML__OPT_Cmd_show_hardware_profile_buffer_monitor___readonly__>

<__readonly__>

<cmd_name>Sampling CLI</cmd_name>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
137

<cmd_issue_time>05/25/2016 04:19:12</cmd_issue_time>

<TABLE_sampling>

<ROW_sampling>

<sampling_interval>200</sampling_interval>

</ROW_sampling>

</TABLE_sampling>

</__readonly__>

</__XML__OPT_Cmd_show_hardware_profile_buffer_monitor___readonly__>

</__XML__BLK_Cmd_show_hardware_profile_buffer_monitor_summary>

</monitor>

</buffer>

</profile>

</hardware>

</show>

</nf:data>

</nf:rpc-reply>

]]>]]>

show hardware profile buffer monitor detail | xml

XML :

<show>
<hardware>
<profile>
<buffer>
<monitor>
<__XML__BLK_Cmd_show_hardware_profile_buffer_monitor_summary>
<__XML__OPT_Cmd_show_hardware_profile_buffer_monitor___readonly__>
<__readonly__>
<cmd_name>Detail CLI</cmd_name>
<cmd_issue_time>10/02/2001 10:58:58</cmd_issue_time>
<TABLE_detail_entry>
<ROW_detail_entry>
<detail_util_name>Ethernet1/1</detail_util_name>
<detail_util_state>Active</detail_util_state>
</ROW_detail_entry>
<ROW_detail_entry>
<time_stamp>10/02/2001 10:58:58</time_stamp>
<__XML__DIGIT384k_util>0</__XML__DIGIT384k_util>
<__XML__DIGIT768k_util>0</__XML__DIGIT768k_util>
<__XML__DIGIT1152k_util>0</__XML__DIGIT1152k_util>
<__XML__DIGIT1536k_util>0</__XML__DIGIT1536k_util>
<__XML__DIGIT1920k_util>0</__XML__DIGIT1920k_util>
<__XML__DIGIT2304k_util>0</__XML__DIGIT2304k_util>
<__XML__DIGIT2688k_util>0</__XML__DIGIT2688k_util>
<__XML__DIGIT3072k_util>0</__XML__DIGIT3072k_util>
<__XML__DIGIT3456k_util>0</__XML__DIGIT3456k_util>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
138

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

<__XML__DIGIT3840k_util>0</__XML__DIGIT3840k_util>
<__XML__DIGIT4224k_util>0</__XML__DIGIT4224k_util>
<__XML__DIGIT4608k_util>0</__XML__DIGIT4608k_util>
<__XML__DIGIT4992k_util>0</__XML__DIGIT4992k_util>
<__XML__DIGIT5376k_util>0</__XML__DIGIT5376k_util>
<__XML__DIGIT5760k_util>0</__XML__DIGIT5760k_util>
<__XML__DIGIT6144k_util>0</__XML__DIGIT6144k_util>
</ROW_detail_entry>
<ROW_detail_entry>
<time_stamp>10/02/2001 10:58:57</time_stamp>
<__XML__DIGIT384k_util>0</__XML__DIGIT384k_util>
<__XML__DIGIT768k_util>0</__XML__DIGIT768k_util>
<__XML__DIGIT1152k_util>0</__XML__DIGIT1152k_util>
<__XML__DIGIT1536k_util>0</__XML__DIGIT1536k_util>
<__XML__DIGIT1920k_util>0</__XML__DIGIT1920k_util>
<__XML__DIGIT2304k_util>0</__XML__DIGIT2304k_util>
<__XML__DIGIT2688k_util>0</__XML__DIGIT2688k_util>
<__XML__DIGIT3072k_util>0</__XML__DIGIT3072k_util>
<__XML__DIGIT3456k_util>0</__XML__DIGIT3456k_util>
<__XML__DIGIT3840k_util>0</__XML__DIGIT3840k_util>
<__XML__DIGIT4224k_util>0</__XML__DIGIT4224k_util>
<__XML__DIGIT4608k_util>0</__XML__DIGIT4608k_util>
<__XML__DIGIT4992k_util>0</__XML__DIGIT4992k_util>
<__XML__DIGIT5376k_util>0</__XML__DIGIT5376k_util>
<__XML__DIGIT5760k_util>0</__XML__DIGIT5760k_util>
<__XML__DIGIT6144k_util>0</__XML__DIGIT6144k_util>
</ROW_detail_entry>
<ROW_detail_entry>
<time_stamp>10/02/2001 10:58:56</time_stamp>
<__XML__DIGIT384k_util>0</__XML__DIGIT384k_util>
<__XML__DIGIT768k_util>0</__XML__DIGIT768k_util>
<__XML__DIGIT1152k_util>0</__XML__DIGIT1152k_util>
<__XML__DIGIT1536k_util>0</__XML__DIGIT1536k_util>
<__XML__DIGIT1920k_util>0</__XML__DIGIT1920k_util>
<__XML__DIGIT2304k_util>0</__XML__DIGIT2304k_util>
<__XML__DIGIT2688k_util>0</__XML__DIGIT2688k_util>
<__XML__DIGIT3072k_util>0</__XML__DIGIT3072k_util>
<__XML__DIGIT3456k_util>0</__XML__DIGIT3456k_util>
<__XML__DIGIT3840k_util>0</__XML__DIGIT3840k_util>
<__XML__DIGIT4224k_util>0</__XML__DIGIT4224k_util>
<__XML__DIGIT4608k_util>0</__XML__DIGIT4608k_util>
<__XML__DIGIT4992k_util>0</__XML__DIGIT4992k_util>
<__XML__DIGIT5376k_util>0</__XML__DIGIT5376k_util>
<__XML__DIGIT5760k_util>0</__XML__DIGIT5760k_util>
<__XML__DIGIT6144k_util>0</__XML__DIGIT6144k_util>
</ROW_detail_entry>
<ROW_detail_entry>
<time_stamp>10/02/2001 10:58:55</time_stamp>
<__XML__DIGIT384k_util>0</__XML__DIGIT384k_util>
<__XML__DIGIT768k_util>0</__XML__DIGIT768k_util>
<__XML__DIGIT1152k_util>0</__XML__DIGIT1152k_util>
<__XML__DIGIT1536k_util>0</__XML__DIGIT1536k_util>
<__XML__DIGIT1920k_util>0</__XML__DIGIT1920k_util>
<__XML__DIGIT2304k_util>0</__XML__DIGIT2304k_util>
<__XML__DIGIT2688k_util>0</__XML__DIGIT2688k_util>
<__XML__DIGIT3072k_util>0</__XML__DIGIT3072k_util>
<__XML__DIGIT3456k_util>0</__XML__DIGIT3456k_util>
<__XML__DIGIT3840k_util>0</__XML__DIGIT3840k_util>
<__XML__DIGIT4224k_util>0</__XML__DIGIT4224k_util>
<__XML__DIGIT4608k_util>0</__XML__DIGIT4608k_util>
<__XML__DIGIT4992k_util>0</__XML__DIGIT4992k_util>
<__XML__DIGIT5376k_util>0</__XML__DIGIT5376k_util>
<__XML__DIGIT5760k_util>0</__XML__DIGIT5760k_util>
<__XML__DIGIT6144k_util>0</__XML__DIGIT6144k_util>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
139

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

</ROW_detail_entry>
<ROW_detail_entry>
<time_stamp>10/02/2001 10:58:54</time_stamp>
<__XML__DIGIT384k_util>0</__XML__DIGIT384k_util>
<__XML__DIGIT768k_util>0</__XML__DIGIT768k_util>
<__XML__DIGIT1152k_util>0</__XML__DIGIT1152k_util>
<__XML__DIGIT1536k_util>0</__XML__DIGIT1536k_util>
<__XML__DIGIT1920k_util>0</__XML__DIGIT1920k_util>
<__XML__DIGIT2304k_util>0</__XML__DIGIT2304k_util>
<__XML__DIGIT2688k_util>0</__XML__DIGIT2688k_util>
<__XML__DIGIT3072k_util>0</__XML__DIGIT3072k_util>
<__XML__DIGIT3456k_util>0</__XML__DIGIT3456k_util>
<__XML__DIGIT3840k_util>0</__XML__DIGIT3840k_util>
<__XML__DIGIT4224k_util>0</__XML__DIGIT4224k_util>
<__XML__DIGIT4608k_util>0</__XML__DIGIT4608k_util>
<__XML__DIGIT4992k_util>0</__XML__DIGIT4992k_util>
<__XML__DIGIT5376k_util>0</__XML__DIGIT5376k_util>
<__XML__DIGIT5760k_util>0</__XML__DIGIT5760k_util>
<__XML__DIGIT6144k_util>0</__XML__DIGIT6144k_util>
</ROW_detail_entry>

show hardware profile buffer monitor brief

XML :

show hardware profile buffer monitor brief | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:mtc_usd_cli">
<nf:data>
<show>
<hardware>
<profile>
<buffer>
<monitor>
<__XML__BLK_Cmd_show_hardware_profile_buffer_monitor_summary>
<__XML__OPT_Cmd_show_hardware_profile_buffer_monitor___readonly__>
<__readonly__>
<cmd_name>Brief CLI</cmd_name>
<cmd_issue_time>03/21/2016 09:06:38</cmd_issue_time>
<TABLE_ucst_hdr>
<ROW_ucst_hdr>
<ucst_hdr_util_name>Buffer Block 1</ucst_hdr_util_name>
<ucst_hdr_1sec_util>0KB</ucst_hdr_1sec_util>
<ucst_hdr_5sec_util>0KB</ucst_hdr_5sec_util>
<ucst_hdr_60sec_util>N/A</ucst_hdr_60sec_util>
<ucst_hdr_5min_util>N/A</ucst_hdr_5min_util>
<ucst_hdr_1hr_util>N/A</ucst_hdr_1hr_util>
<ucst_hdr_total_buffer>Total Shared Buffer Available = 5397 Kbytes
</ucst_hdr_total_buffer>
<ucst_hdr_class_threshold>Class Threshold Limit = 5130 Kbytes
</ucst_hdr_class_threshold>
</ROW_ucst_hdr>
</TABLE_ucst_hdr>
<TABLE_brief_entry>
<ROW_brief_entry>
<brief_util_name>Ethernet1/45</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>

<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/46</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
140

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/47</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/48</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/21</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/22</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/23</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>

<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/24</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/9</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/10</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/11</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>
<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>
<brief_util_name>Ethernet1/12</brief_util_name>
<brief_1sec_util>0KB</brief_1sec_util>
<brief_5sec_util>0KB</brief_5sec_util>
<brief_60sec_util>N/A</brief_60sec_util>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
141

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

<brief_5min_util>N/A</brief_5min_util>
<brief_1hr_util>N/A</brief_1hr_util>

show hardware profile latency monitor sampling

CLI

MTC-8(config)# show hardware profile latency monitor sampling

Sampling CLI issued at: 05/25/2016 04:19:54

Sampling interval: 20

XML

MTC-8(config)# show hardware profile latency monitor sampling | xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w

ww.cisco.com/nxos:1.0:mtc_usd_cli">

<nf:data>

<show>

<hardware>

<profile>

<latency>

<monitor>

<__XML__BLK_Cmd_show_hardware_profile_latency_monitor_summary>

<__XML__OPT_Cmd_show_hardware_profile_latency_monitor___readonly__>

<__readonly__>

<cmd_issue_time>05/25/2016 04:20:06</cmd_issue_time>

<device_instance>0</device_instance>

<TABLE_sampling>

<ROW_sampling>

<sampling_interval>20</sampling_interval>

</ROW_sampling>

</TABLE_sampling>

</__readonly__>

</__XML__OPT_Cmd_show_hardware_profile_latency_monitor___readonly__>

</__XML__BLK_Cmd_show_hardware_profile_latency_monitor_summary>

</monitor>

</latency>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
142

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

</profile>

</hardware>

</show>

</nf:data>

</nf:rpc-reply>

]]>]]>

show hardware profile latency monitor threshold

CLI

MTC-8(config)# show hardware profile latency monitor threshold

Sampling CLI issued at: 05/25/2016 04:20:53

Threshold Avg: 3000

Threshold Max: 300000

XML

MTC-8(config)# show hardware profile latency monitor threshold | xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w

ww.cisco.com/nxos:1.0:mtc_usd_cli">

<nf:data>

<show>

<hardware>

<profile>

<latency>

<monitor>

<__XML__BLK_Cmd_show_hardware_profile_latency_monitor_summary>

<__XML__OPT_Cmd_show_hardware_profile_latency_monitor___readonly__>

<__readonly__>

<cmd_issue_time>05/25/2016 04:21:04</cmd_issue_time>

<device_instance>0</device_instance>

<TABLE_threshold>

<ROW_threshold>

<threshold_avg>3000</threshold_avg>

<threshold_max>300000</threshold_max>

</ROW_threshold>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
143

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

</TABLE_threshold>

</__readonly__>

</__XML__OPT_Cmd_show_hardware_profile_latency_monitor___readonly__>

</__XML__BLK_Cmd_show_hardware_profile_latency_monitor_summary>

</monitor>

</latency>

</profile>

</hardware>

</show>

</nf:data>

</nf:rpc-reply>

]]>]]>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
144

XML Support for ABM and LM in N3500
XML Support for ABM and LM in N3500

C H A P T E R 15
Converting CLI Commands to Network
Configuration Format

• Information About XMLIN, on page 145
• Licensing Requirements for XMLIN, on page 145
• Installing and Using the XMLIN Tool, on page 146
• Converting Show Command Output to XML, on page 146
• Configuration Examples for XMLIN, on page 147

Information About XMLIN
The XMLIN tool converts CLI commands to the Network Configuration (NETCONF) protocol format.
NETCONF is a network management protocol that provides mechanisms to install, manipulate, and delete
the configuration of network devices. It uses XML-based encoding for configuration data and protocol
messages. The NX-OS implementation of the NETCONF protocol supports the following protocol operations:
<get>, <edit-config>, <close-session>, <kill-session>, and <exec-command>.

The XMLIN tool converts show, EXEC, and configuration commands to corresponding NETCONF <get>,
<exec-command>, and <edit-config> requests. You can enter multiple configuration commands into a single
NETCONF <edit-config> instance.

The XMLIN tool also converts the output of show commands to XML format.

Licensing Requirements for XMLIN
Table 14: XMLIN Licensing Requirements

License RequirementProduct

XMLIN requires no license. Any feature not included in a license package is bundled with
the Cisco NX-OS system images and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Cisco
NX-OS

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
145

Installing and Using the XMLIN Tool
You can install the XMLIN tool and then use it to convert configuration commands to NETCONF format.

Before you begin

The XMLIN tool can generate NETCONF instances of commands even if the corresponding feature sets or
required hardware capabilities are not available on the device. But, you might still need to install some feature
sets before entering the xmlin command.

Procedure

PurposeCommand or Action

switch# xmlinStep 1

Enters global configuration mode.switch(xmlin)# configure terminalStep 2

Converts configuration commands to
NETCONF format.

Configuration commandsStep 3

Generates the corresponding <edit-config>
request.

(Optional) switch(config)(xmlin)# endStep 4

Enter the end command to finish the
current XML configuration before
you generate an XML instance for a
show command.

Note

Converts show commands to NETCONF
format.

(Optional) switch(config-if-verify)(xmlin)#
show commands

Step 5

Returns to EXEC mode.(Optional) switch(config-if-verify)(xmlin)# exitStep 6

Converting Show Command Output to XML
You can convert the output of show commands to XML.

Before you begin

Make sure that all features for the commands you want to convert are installed and enabled on the device.
Otherwise, the commands fail.

You can use the terminal verify-only command to verify that a feature is enabled without entering it on the
device.

Make sure that all required hardware for the commands you want to convert are present on the device.
Otherwise, the commands fail.

Make sure that the XMLIN tool is installed.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
146

Converting CLI Commands to Network Configuration Format
Installing and Using the XMLIN Tool

Procedure

PurposeCommand or Action

Enters global configuration mode.switch# show-command | xmlinStep 1

You cannot use this command with
configuration commands.

Note

Configuration Examples for XMLIN
The following example shows how the XMLIN tool is installed on the device and used to convert a set of
configuration commands to an <edit-config> instance.

switch# xmlin
**
Loading the xmlin tool. Please be patient.
**
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright ©) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
% Success
switch(config-if-verify)(xmlin)# cdp enable
% Success
switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec"
xmlns:m1="http://www.cisco.com/nxos:6.2.2.:configure__if-eth-base" message-id="1">
<nf:edit-config>

<nf:target>
<nf:running/>

</nf:target>
<nf:config>
<m:configure>
<m:terminal>
<interface>

<__XML__PARAM__interface>
<__XML__value>Ethernet2/1</__XML__value>
<m1:cdp>
<m1:enable/>

</m1:cdp>
</__XML__PARAM__interface>
</interface>
</m:terminal>
</m:configure>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
147

Converting CLI Commands to Network Configuration Format
Configuration Examples for XMLIN

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

The following example shows how to enter the end command to finish the current XML configuration before
you generate an XML instance for a show command.

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
switch(config-if-verify)(xmlin)# show interface ethernet 2/1
**
Please type "end" to finish and output the current XML document before building a new one.
**
% Command not successful

switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec" message-id="1">

<nf:edit-config>
<nf:target>

<nf:running/>
</nf:target>
<nf:config>

<m:configure>
<m:terminal>

<interface>
<__XML__PARAM__interface>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__interface>

</interface>
</m:terminal>
</m:configure>

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

switch(xmlin)# show interface ethernet 2/1
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager" message-id="1">
<nf:get>
<nf:filter type="subtree">
<show>
<interface>
<__XML__PARAM__ifeth>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__ifeth>

</interface>
</show>

</nf:filter>
</nf:get>

</nf:rpc>
]]>]]>
switch(xmlin)# exit
switch#

The following example shows how you can convert the output of the show interface brief command to XML.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
148

Converting CLI Commands to Network Configuration Format
Configuration Examples for XMLIN

switch# show interface brief | xmlin
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager"

message-id="1">
<nf:get>
<nf:filter type="subtree">

<show>
<interface>

<brief/>
</interface>

</show>
</nf:filter>

</nf:get>
</nf:rpc>
]]>]]>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
149

Converting CLI Commands to Network Configuration Format
Configuration Examples for XMLIN

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
150

Converting CLI Commands to Network Configuration Format
Configuration Examples for XMLIN

C H A P T E R 16
Model-Driven Telemetry

• About Telemetry, on page 151
• Licensing Requirements for Telemetry, on page 153
• Installing and Upgrading Telemetry, on page 153
• Guidelines and Limitations, on page 154
• Configuring Telemetry Using the CLI, on page 159
• Configuring Telemetry Using the NX-API, on page 173
• Telemetry Path Labels, on page 187
• Native Data Source Paths, on page 202
• Additional References, on page 210

About Telemetry
Collecting data for analyzing and troubleshooting has always been an important aspect in monitoring the
health of a network.

Cisco NX-OS provides several mechanisms such as SNMP, CLI, and Syslog to collect data from a network.
These mechanisms have limitations that restrict automation and scale. One limitation is the use of the pull
model, where the initial request for data from network elements originates from the client. The pull model
does not scale when there is more than one network management station (NMS) in the network. With this
model, the server sends data only when clients request it. To initiate such requests, continual manual intervention
is required. This continual manual intervention makes the pull model inefficient.

A push model continuously streams data out of the network and notifies the client. Telemetry enables the
push model, which provides near-real-time access to monitoring data.

Telemetry Components and Process
Telemetry consists of four key elements:

• Data Collection — Telemetry data is collected from the Data Management Engine (DME) database in
branches of the object model specified using distinguished name (DN) paths. The data can be retrieved
periodically (frequency-based) or only when a change occurs in any object on a specified path
(event-based). You can use the NX-API to collect frequency-based data.

• Data Encoding — The telemetry encoder encapsulates the collected data into the desired format for
transporting.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
151

NX-OS encodes telemetry data in the Google Protocol Buffers (GPB) and JSON format.

• Data Transport —NX-OS transports telemetry data using HTTP for JSON encoding and the Google
remote procedure call (gRPC) protocol for GPB encoding. The gRPC receiver supports message sizes
greater than 4MB. (Telemetry data using HTTPS is also supported if a certificate is configured.)

Starting with Cisco NX-OS Release 9.2(1), UDP and secure UDP (DTLS) are supported as telemetry
transport protocols. You can add destinations that receive UDP. The encoding for UDP and secure UDP
can be GPB or JSON.

Use the following command to configure the UDP transport to stream data using a datagram socket either
in JSON or GPB:

destination-group num
ip address xxx.xxx.xxx.xxx port xxxx protocol UDP encoding {JSON | GPB }

Where num is a number between 1 and 4095.

Example for IPv4 destination:

destination-group 100
ip address 171.70.55.69 port 50001 protocol UDP encoding GPB

The UDP telemetry will be sent with the following header:

typedef enum tm_encode_ {
TM_ENCODE_DUMMY,
TM_ENCODE_GPB,
TM_ENCODE_JSON,
TM_ENCODE_XML,
TM_ENCODE_MAX,

} tm_encode_type_t;

typedef struct tm_pak_hdr_ {
uint8_t version; /* 1 */
uint8_t encoding;
uint16_t msg_size;
uint8_t secure;
uint8_t padding;

}__attribute__ ((packed, aligned (1))) tm_pak_hdr_t;

Use the first 6 bytes in the payload to successfully process telemetry data using UDP, using one of the
following methods:

• Read the information in the header to determine which decoder to use to decode the data, JSON or
GPB, if the receiver is meant to receive different types of data from multiple end points, or

• Remove the header if you are expecting one decoder (JSON or GPB) but not the other

Depending on the receiving operation system and the network load,
using the UDP protocol may result in packet drops.

Note

• Telemetry Receiver —A telemetry receiver is a remote management system or application that stores
the telemetry data.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
152

Model-Driven Telemetry
Telemetry Components and Process

The GPB encoder stores data in a generic key-value format. The encoder requires metadata in the form of a
compiled .proto file to translate the data into GPB format.

In order to correctly receive and decode the data stream, the receiver requires the .proto file that describes
the encoding and the transport services. The encoding decodes the binary stream into a key value string pair.

A telemetry .proto file that describes the GPB encoding and gRPC transport is available on Cisco's GitLab:
https://github.com/CiscoDevNet/nx-telemetry-proto

High Availability of the Telemetry Process
High availability of the telemetry process is supported with the following behaviors:

• System Reload —During a system reload, any telemetry configuration and streaming services are
restored.

• Process Restart—If the telemetry process freezes or restarts for any reason, configuration and streaming
services are restored when telemetry is restarted.

Licensing Requirements for Telemetry
License RequirementProduct

Telemetry requires no license. Any feature not included in a license package is bundled
with the Cisco NX-OS image and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see theCisco NX-OS Licensing Guide.

Cisco NX-OS

Installing and Upgrading Telemetry
Installing the Application

The telemetry application is packaged as a feature RPM and included with the NX-OS release. The RPM is
installed by default as part of the image bootup. After installation, you can start the application using the
feature telemetry command. The RPM file is located in the /rpms directory and is named as follows:

As in the following example:

Installing Incremental Updates and Fixes

Copy the RPM to the device bootflash and use the following commands from the bash prompt:
feature bash
run bash sudo su

Then copy the RPM to the device bootflash. Use the following commands from the bash prompt:
yum upgrade telemetry_new_version.rpm

The application is upgraded and the change appears when the application is started again.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
153

Model-Driven Telemetry
High Availability of the Telemetry Process

https://github.com/CiscoDevNet/nx-telemetry-proto

Downgrading to a Previous Version

To downgrade the telemetry application to a previous version, use the following command from the bash
prompt:

yum downgrade telemetry

Verifying the Active Version

To verify the active version, run the following command from the switch exec prompt:
show install active

The show install active command will only show the active installed RPM after an upgrade has occurred.
The default RPM that comes bundled with the NX-OS will not be displayed.

Note

Guidelines and Limitations
Telemetry has the following configuration guidelines and limitations:

• Telemetry is supported in Cisco NX-OS releases that support the data management engine (DME) Native
Model.

• Support is in place for DME data collection, NX-API data sources, Google protocol buffer (GPB) encoding
over Google Remote Procedure Call (gRPC) transport, and JSON encoding over HTTP.

• The smallest sending interval (cadence) supported is five seconds for a depth of 0. Theminimum cadence
values for depth values greater than 0 depends on the size of the data being streamed out. Configuring
cadences below the minimum value may result in undesirable system behavior.

• Up to five remote management receivers (destinations) are supported. Configuring more than five remote
receivers may result in undesirable system behavior.

• In the event that a telemetry receiver goes down, other receivers will see data flow interrupted. The failed
receivermust be restarted. Then start a new connectionwith the switch by unconfiguring then reconfiguring
the failer receiver's IP address under the destination group.

• Telemetry can consume up to 20% of the CPU resource.

• To configure SSL certificate based authentication and the encryption of streamed data, you can provide
a self signed SSL certificate with certificate ssl cert path hostname "CN" command.

Configuration Commands After Downgrading to an Older Release

After a downgrade to an older release, some configuration commands or command options might fail because
the older release may not support them. As a best practice when downgrading to an older release, unconfigure
and reconfigure the telemetry feature after the new image comes up to avoid the failure of unsupported
commands or command options.

The following example shows this procedure:

• Copy the telemetry configuration to a file:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
154

Model-Driven Telemetry
Guidelines and Limitations

switch# show running-config | section telemetry
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch# show running-config | section telemetry > telemetry_running_config
switch# show file bootflash:telemetry_running_config
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
use-chunking size 4096

sensor-group 100
path sys/bgp/inst/dom-default depth 0

subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000

switch#

• Execute the downgrade operation. When the image comes up and the switch is ready, copy the telemetry
configurations back to the switch:

switch# copy telemetry_running_config running-config echo-commands
`switch# config terminal`
`switch(config)# feature telemetry`
`switch(config)# telemetry`
`switch(config-telemetry)# destination-group 100`
`switch(conf-tm-dest)# ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB `
`switch(conf-tm-dest)# sensor-group 100`
`switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0`
`switch(conf-tm-sensor)# subscription 600`
`switch(conf-tm-sub)# dst-grp 100`
`switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000`
`switch(conf-tm-sub)# end`
Copy complete, now saving to disk (please wait)...
Copy complete.
switch#

gRPC Error Behavior

The switch client will disable the connection to the gRPC receiver if the gRPC receiver sends 20 errors. You
will then need to unconfigure then reconfigure the receiver's IP address under the destination group to enable
the gRPC receiver. Errors include:

• The gRPC client sends the wrong certificate for secure connections,

• The gRPC receiver takes too long to handle client messages and incurs a timeout. Avoid timeouts by
processing messages using a separate message processing thread.

Telemetry Compression for gRPC Transport

Telemetry compression support is available for gRPC transport. You can use the use-compression gzip
command to enable compression. (Disable compression with the no use-compression gzip command.)

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
155

Model-Driven Telemetry
Guidelines and Limitations

The following example enables compression:

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-compression gzip

The following example shows compression is enabled:

switch(conf-tm-dest)# show telemetry transport 0 stats

Session Id: 0
Connection Stats

Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never

Transmission Stats
Compression: gzip
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms

switch2(config-if)# show telemetry transport 0 stats

Session Id: 0
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Compression: disabled
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2(config-if)#

The following is an example of use-compression as a POST payload:

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptCompression": {
"attributes": {
"name": "gzip"

}
}

}
]

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
156

Model-Driven Telemetry
Guidelines and Limitations

}
}

Support for gRPC Chunking

Starting with Release 9.2(1), support for gRPC chunking has been added. For streaming to occur successfully,
you must enable chunking if gRPC has to send an amount of data greater than 12MB to the receiver.

gRPC chunking has to be done by the gRPC user. Fragmentation has to be done on the gRPC client side and
reassembly has to be done on the gRPC server side. Telemetry is still bound to memory and data can be
dropped if the memory size is more than the allowed limit of 12MB for telemetry. In order to support chunking,
use the telemetry .proto file that is available at Cisco's GibLab, which has been updated for gRPC chunking,
as described in Telemetry Components and Process, on page 151.

The chunking size is between 64 and 4096 bytes.

Following shows a configuration example through the NX-API CLI:
feature telemetry
!
telemetry
destination-group 1
ip address 171.68.197.40 port 50051 protocol gRPC encoding GPB
use-chunking size 4096

destination-group 2
ip address 10.155.0.15 port 50001 protocol gRPC encoding GPB
use-chunking size 64

sensor-group 1
path sys/intf depth unbounded

sensor-group 2
path sys/intf depth unbounded

subscription 1
dst-grp 1
snsr-grp 1 sample-interval 10000

subscription 2
dst-grp 2
snsr-grp 2 sample-interval 15000

Following shows a configuration example through the NX-API REST:
{

"telemetryDestGrpOptChunking": {
"attributes": {

"chunkSize": "2048",
"dn": "sys/tm/dest-1/chunking"

}
}

}

The following error message will appear on systems that do not support gRPC chunking, such as the Cisco
MDS series switches:
MDS-9706-86(conf-tm-dest)# use-chunking size 200
ERROR: Operation failed: [chunking support not available]

NX-API Sensor Path Limitations

NX-API can collect and stream switch information not yet in the DME using show commands. However,
using the NX-API instead of streaming data from the DME has inherent scale limitations as outlined:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
157

Model-Driven Telemetry
Guidelines and Limitations

• The switch backend dynamically processes NX-API calls such as show commands,

• NX-API spawns several processes that can consume up to a maximum of 20% of the CPU.

• NX-API data translates from the CLI to XML to JSON.

The following is a suggested user flow to help limit excessive NX-API sensor path bandwidth consumption:

1. Check whether the show command has NX-API support. You can confirm whether NX-API supports the
command from the VSH with the pipe option: show <command> | json or show <command> | json

pretty.

Avoid commands that take the switch more than 30 seconds to return JSON output.Note

2. Refine the show command to include any filters or options.

• Avoid enumerating the same command for individual outputs; i.e., show vlan id 100, show vlan id
101, etc.. Instead, use the CLI range options; i.e., show vlan id 100-110,204, whenever possible to
improve performance.

If only the summary/counter is needed, then avoid dumping a whole show command output to limit
the bandwidth and data storage required for data collection.

3. Configure telemetry with sensor groups that use NX-API as their data sources. Add the show commands
as sensor paths

4. Configure telemetry with a cadence of 5 times the processing time of the respective show command to
limit CPI usage.

5. Receive and process the streamed NX-API output as part of the existing DME collection.

Support for Node ID

Beginning in NX-OS release 9.3.1, you can configure a customNode ID string for a telemetry receiver through
the use-nodeid command. By default, the host name is used, but support for a node ID enables you to set or
change the identifier for the node_id_str of the telemetry receiver data.

You can assign the node ID through the telemetry destination profile, by using the usenode-id command.
This command is optional.

The following example shows configuring the node ID.
switch-1(config)# telemetry
switch-1(config-telemetry)# destination-profile
switch-1(conf-tm-dest-profile)# use-nodeid test-srvr-10
switch-1(conf-tm-dest-profile)#

The following example shows a telemetry notification on the receiver after the node ID is configured.
Telemetry receiver:
==================================
node_id_str: "test-srvr-10"
subscription_id_str: "1"
encoding_path: "sys/ch/psuslot-1/psu"
collection_id: 3896
msg_timestamp: 1559669946501

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
158

Model-Driven Telemetry
Guidelines and Limitations

Telemetry VRF Support

Telemetry VRF support allows you to specify a transport VRF. This means that the telemetry data stream can
egress via front-panel ports and avoid possible competition between SSH/NGINX control sessions.

You can use the use-vrf vrf-name command to specify the transport VRF.

The following example specifies the transport VRF:

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-vrf test_vrf

The following is an example of use-vrf as a POST payload:

{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"

},
"children": [
{
"telemetryDestOptVrf": {
"attributes": {
"name": "default"

}
}

}
]

}
}

Configuring Telemetry Using the CLI

Configuring Telemetry Using the NX-OS CLI
The following steps enables streaming telemetry, and configures the source and destination of the data stream.
These steps also include optional steps to enable and configure SSL/TLS certificates and GPB encoding.

Before you begin

Your switch must be running Cisco NX-OS Release 9.2(1) or a later release.

Procedure

PurposeCommand or Action

Create an SSL/TLS certificate on the server
that will receive the data, where

(Optional) openssl argument

Example:

Step 1

private.key file is the private key and the
public.crt is the public key.Generate an SSL/TLS certificate using a

specific argument, such as the following:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
159

Model-Driven Telemetry
Configuring Telemetry Using the CLI

PurposeCommand or Action

• To generate a private RSA key: openssl
genrsa -cipher -out filename.key
cipher-bit-length

For example:
switch# openssl genrsa -des3
server.key 2048

• To write the RSA key: openssl rsa -in
filename.key -out filename.key

For example:
switch# openssl rsa -in server.key
-out server.key

• To create a certificate that contains the
public/private key: openssl req

-encoding-standard -new -new
filename.key -out filename.csr -subj
'/CN=localhost'

For example:
switch# openssl req -sha256 -new
-key server.key -out server.csr
-subj '/CN=localhost'

• To create a public key: openssl x509 -req
-encoding-standard -days timeframe
-in filename.csr -signkey filename.key
-out filename.csr

For example:
switch# openssl x509 -req -sha256
-days 365 -in server.csr -signkey
server.key
-out server.crt

Enter the global configuration mode.configure terminal

Example:

Step 2

switch# configure terminal
switch(config)#

Enable the streaming telemetry feature.feature telemetryStep 3

Enable nxapi.feature nxapiStep 4

Enable the VRF management to be used for
nxapi communication.

nxapi use-vrf managementStep 5

Enter configuration mode for streaming
telemetry.

telemetry

Example:

Step 6

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
160

Model-Driven Telemetry
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action
switch(config)# telemetry
switch(config-telemetry)#

Use an existing SSL/TLS certificate.(Optional) certificate certificate_path
host_URL

Step 7

Example:
switch(config-telemetry)# certificate
/bootflash/server.key localhost

(Optional) Specify a transport VRF and/or
enable telemetry compression for gRPC
transport.

Step 8 • Enter the destination-profile command
to specify the default destination profile.

• Enter any of the following commands:
Example:

• use-vrf vrf to specify the
destination vrf.switch(config-telemetry)#

destination-profile • use-compression gzip to specify
the destination compressionmethod.

switch(conf-tm-dest-profile)# use-vrf
default
switch(conf-tm-dest-profile)#

• use-retry size size to specify the
send retry details, with a retry buffer

use-compression gzip
switch(conf-tm-dest-profile)# use-retry
size 10 size between 10 and 1500

megabytes.switch(conf-tm-dest-profile)#
source-interface loopback1

• source-interface interface-name to
stream data from the configured
interface to a destination with the
source IP address.

After configuring the use-vrf
command, you need to configure a
new destination IP address within
the new VRF. However, you may
re-use the same destination IP
address by un-configuring and
re-configuring the destination. This
ensures that the telemetry data
streams to the same destination IP
address in the new VRF.

Note

Create a sensor group with ID srgp_id and
enter sensor group configuration mode.

sensor-group sgrp_id

Example:

Step 9

Currently only numeric ID values are
supported. The sensor group defines nodes that
will be monitored for telemetry reporting.

switch(config-telemetry)# sensor-group
100
switch(conf-tm-sensor)#

Select a data source. Select from either DME
or NX-API as the data source.

(Optional) data-source data-source-type

Example:

Step 10

DME is the default data source.Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
161

Model-Driven Telemetry
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action
switch(config-telemetry)# data-source
NX-API

Add a sensor path to the sensor group.path sensor_path depth 0
[filter-condition filter]

Step 11

• The depth setting specifies the retrieval
level for the sensor path. Depth settings
of 0 - 32, unbounded are supported.

Example:

• The following command is applicable for
DME, not for NX-API:
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0

depth 0 is the default depth.

NX-API-based sensor paths
can only use depth 0.

If a path is subscribed for the
event collection, the depth
only supports 0 and
unbounded. Other values
would be treated as 0.

Note

filter-condition eq(l2BD.operSt,
"down")

Use the syntax below for state-based
filtering to trigger only when operSt
changes from up to down, with no
notifications of when the MO changes.
switch(conf-tm-sensor)# path
sys/bd/bd-[vlan-100] depth 0 • The optional filter-condition parameter

can be specified to create a specific filter
for event-based subscriptions.

filter-condition
and(updated(l2BD.operSt),eq(l2BD.operSt,"down"))

For state-based filtering, the filter will
return both when a state has changed and

• The following command is applicable for
NX-API, not for DME:
switch(conf-tm-sensor)# path "show
interface" depth 0

when an event has occurred during the
specified state. That is, a filter condition
for the DN sys/bd/bd-[vlan] of
eq(l2Bd.operSt, "down") will trigger
when the operSt changes, and when the
DN's property changes while the operSt
remains down, such as a no shutdown
command is issued while the vlan is
operationally down.

query-condition parameter — For
DME, based on the DN, the
query-condition parameter can be
specified to fetch MOTL and
ephemeral data with the following
syntax: query-condition
"rsp-foreign-subtree=applied-config";
query-condition
"rsp-foreign-subtree=ephemeral".

Note

Create a destination group and enter
destination group configuration mode.

destination-group dgrp_id

Example:

Step 12

Currently dgrp_id only supports numeric ID
values.

switch(conf-tm-sensor)#
destination-group 100
switch(conf-tm-dest)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
162

Model-Driven Telemetry
Configuring Telemetry Using the NX-OS CLI

PurposeCommand or Action

Specify an IPv4 IP address and port to receive
encoded telemetry data.

(Optional) ip address ip_address port
port protocol procedural-protocol
encoding encoding-protocol

Step 13

gRPC is the default transport
protocol.

GPB is the default encoding.

Note
Example:
switch(conf-tm-sensor)# ip address
171.70.55.69 port 50001 protocol gRPC
encoding GPB
switch(conf-tm-sensor)# ip address
171.70.55.69 port 50007 protocol HTTP
encoding JSON

switch(conf-tm-sensor)# ip address
171.70.55.69 port 50009 protocol UDP
encoding JSON

Create a destination profile for the outgoing
data.

ip_version address ip_address port
portnum

Step 14

Example: When the destination group is linked to a
subscription, telemetry data is sent to the IP
address and port specified by this profile.

switch(conf-tm-dest)# ip address 1.2.3.4
port 50003

Create a subscription node with ID and enter
the subscription configuration mode.

subscription sub_id

Example:

Step 15

Currently sub_id only supports numeric ID
values.

switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)#

When subscribing to to a DN, check
whether the DN is supported by
DME using REST to ensure that
events will stream.

Note

Link the sensor group with ID sgrp_id to this
subscription and set the data sampling interval
in milliseconds.

snsr-grp sgrp_id sample-interval interval

Example:
switch(conf-tm-sub)# snsr-grp 100
sample-interval 15000

Step 16

An interval value of 0 creates an event-based
subscription, in which telemetry data is sent
only upon changes under the specified MO.
An interval value greater than 0 creates a
frequency-based subscription, in which
telemetry data is sent periodically at the
specified interval. For example, an interval
value of 15000 results in the sending of
telemetry data every 15 seconds.

Link the destination group with ID dgrp_id to
this subscription.

dst-grp dgrp_id

Example:

Step 17

switch(conf-tm-sub)# dst-grp 100

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
163

Model-Driven Telemetry
Configuring Telemetry Using the NX-OS CLI

Configuration Examples for Telemetry Using the CLI
The following steps describe how to configure a single telemetry DME streamwith a ten second cadence with
GPB encoding.

switch# configure terminal
switch(config)# feature telemetry
switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(config-tm-dest)# ip address 171.70.59.62 port 50051 protocol gRPC encoding GPB
switch(config-tm-dest)# exit
switch(config-telemetry)# sensor group sg1
switch(config-tm-sensor)# data-source DME
switch(config-tm-dest)# path interface depth unbounded query-condition keep-data-type
switch(config-tm-dest)# subscription 1
switch(config-tm-dest)# dst-grp 1
switch(config-tm-dest)# snsr grp 1 sample interval 10000

This example creates a subscription that streams data for the sys/bgp root MO every 5 seconds to the
destination IP 1.2.3.4 port 50003.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/intf every 5 seconds to destination IP 1.2.3.4
port 50003, and encrypts the stream using GPB encoding verified using the test.pem.

switch(config)# telemetry
switch(config-telemetry)# certificate /bootflash/test.pem foo.test.google.fr
switch(conf-tm-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
switch(config-dest)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100

This example creates a subscription that streams data for sys/cdp every 15 seconds to destination IP 1.2.3.4
port 50004.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 15000
switch(conf-tm-sub)# dst-grp 100

This example creates a cadence-based collection of show command data every 750 seconds.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
164

Model-Driven Telemetry
Configuration Examples for Telemetry Using the CLI

switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# ip address 172.27.247.72 port 60001 protocol gRPC encoding GPB
switch(conf-tm-dest)# sensor-group 1
switch(conf-tm-sensor# data-source NX-API
switch(conf-tm-sensor)# path "show system resources" depth 0
switch(conf-tm-sensor)# path "show version" depth 0
switch(conf-tm-sensor)# path "show environment power" depth 0
switch(conf-tm-sensor)# path "show environment fan" depth 0
switch(conf-tm-sensor)# path "show environment temperature" depth 0
switch(conf-tm-sensor)# path "show process cpu" depth 0
switch(conf-tm-sensor)# path "show nve peers" depth 0
switch(conf-tm-sensor)# path "show nve vni" depth 0
switch(conf-tm-sensor)# path "show nve vni 4002 counters" depth 0
switch(conf-tm-sensor)# path "show int nve 1 counters" depth 0
switch(conf-tm-sensor)# path "show policy-map vlan" depth 0
switch(conf-tm-sensor)# path "show ip access-list test" depth 0
switch(conf-tm-sensor)# path "show system internal access-list resource utilization" depth
0
switch(conf-tm-sensor)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-dest)# snsr-grp 1 sample-interval 750000

This example creates an event-based subscription for sys/fm. Data is streamed to the destination only if
there is a change under the sys/fm MO.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 0
switch(conf-tm-sub)# dst-grp 100

During operation, you can change a sensor group from frequency-based to event-based, and change event-based
to frequency-based by changing the sample-interval. This example changes the sensor-group from the previous
example to frequency-based. After the following commands, the telemetry application will begin streaming
the sys/fm data to the destination every 7 seconds.

switch(config)# telemetry
switch(config-telemetry)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000

Multiple sensor groups and destinations can be linked to a single subscription. The subscription in this example
streams the data for Ethernet port 1/1 to four different destinations every 10 seconds.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-sensor)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001 protocol HTTP encoding JSON
switch(conf-tm-dest)# ip address 1.4.8.2 port 60003

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
165

Model-Driven Telemetry
Configuration Examples for Telemetry Using the CLI

switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 10000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

A sensor group can contain multiple paths, a destination group can contain multiple destination profiles, and
a subscription can be linked to multiple sensor groups and destination groups, as shown in this example.

switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# path sys/epId-1 depth 0
switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0

switch(config-telemetry)# sensor-group 200
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# path sys/ipv4 depth 0

switch(config-telemetry)# sensor-group 300
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# path sys/bgp depth 0

switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 4.3.2.5 port 50005

switch(conf-tm-dest)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001

switch(conf-tm-dest)# destination-group 300
switch(conf-tm-dest)# ip address 1.2.3.4 port 60003

switch(conf-tm-dest)# subscription 600
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 200 sample-interval 20000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200

switch(conf-tm-dest)# subscription 900
switch(conf-tm-sub)# snsr-grp 200 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 300 sample-interval 0
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 300

You can verify the telemetry configuration using the show running-config telemetry command, as shown
in this example.

switch(config)# telemetry
switch(config-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# end
switch# show run telemetry

!Command: show running-config telemetry
!Time: Thu Oct 13 21:10:12 2016

version 7.0(3)I5(1)
feature telemetry

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
166

Model-Driven Telemetry
Configuration Examples for Telemetry Using the CLI

telemetry
destination-group 100
ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB

You can specify transport VRF and telemetry data compression for gRPC using the use-vrf and
use-compression gzip commands, as shown in this example.

switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(conf-tm-dest-profile)# use-vrf default
switch(conf-tm-dest-profile)# use-compression gzip
switch(conf-tm-dest-profile)# sensor-group 1
switch(conf-tm-sensor)# path sys/bgp depth unbounded
switch(conf-tm-sensor)# destination-group 1
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-sub)# snsr-grp 1 sample-interval 10000

Displaying Telemetry Configuration and Statistics
Use the following NX-OS CLI show commands to display telemetry configuration, statistics, errors, and
session information.

show telemetry control database

This command displays the internal databases that reflect the configuration of telemetry.

switch# show telemetry control database ?
<CR>
> Redirect it to a file
>> Redirect it to a file in append mode
destination-groups Show destination-groups
destinations Show destinations
sensor-groups Show sensor-groups
sensor-paths Show sensor-paths
subscriptions Show subscriptions
| Pipe command output to filter

switch# show telemetry control database

Subscription Database size = 1

--
Subscription ID Data Collector Type
--
100 DME NX-API

Sensor Group Database size = 1

--
Sensor Group ID Sensor Group type Sampling interval(ms) Linked subscriptions
--
100 Timer 10000(Running) 1

Sensor Path Database size = 1

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
167

Model-Driven Telemetry
Displaying Telemetry Configuration and Statistics

--
Subscribed Query Filter Linked Groups Sec Groups Retrieve level Sensor Path
--
No 1 0 Full sys/fm

Destination group Database size = 2

--
Destination Group ID Refcount
--
100 1

Destination Database size = 2

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.111 12345 JSON HTTP 1
192.168.20.123 50001 GPB gRPC 1

show telemetry control stats

This command displays the statistic regarding the internal databases regarding configuration of telemetry.

switch# show telemetry control stats
show telemetry control stats entered

--
Error Description Error Count
--
Chunk allocation failures 0
Sensor path Database chunk creation failures 0
Sensor Group Database chunk creation failures 0
Destination Database chunk creation failures 0
Destination Group Database chunk creation failures 0
Subscription Database chunk creation failures 0
Sensor path Database creation failures 0
Sensor Group Database creation failures 0
Destination Database creation failures 0
Destination Group Database creation failures 0
Subscription Database creation failures 0
Sensor path Database insert failures 0
Sensor Group Database insert failures 0
Destination Database insert failures 0
Destination Group Database insert failures 0
Subscription insert to Subscription Database failures 0
Sensor path Database delete failures 0
Sensor Group Database delete failures 0
Destination Database delete failures 0
Destination Group Database delete failures 0
Delete Subscription from Subscription Database failures 0
Sensor path delete in use 0
Sensor Group delete in use 0
Destination delete in use 0
Destination Group delete in use 0
Delete destination(in use) failure count 0
Failed to get encode callback 0
Sensor path Sensor Group list creation failures 0
Sensor path prop list creation failures 0
Sensor path sec Sensor path list creation failures 0
Sensor path sec Sensor Group list creation failures 0
Sensor Group Sensor path list creation failures 0

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
168

Model-Driven Telemetry
Displaying Telemetry Configuration and Statistics

Sensor Group Sensor subs list creation failures 0
Destination Group subs list creation failures 0
Destination Group Destinations list creation failures 0
Destination Destination Groups list creation failures 0
Subscription Sensor Group list creation failures 0
Subscription Destination Groups list creation failures 0
Sensor Group Sensor path list delete failures 0
Sensor Group Subscriptions list delete failures 0
Destination Group Subscriptions list delete failures 0
Destination Group Destinations list delete failures 0
Subscription Sensor Groups list delete failures 0
Subscription Destination Groups list delete failures 0
Destination Destination Groups list delete failures 0
Failed to delete Destination from Destination Group 0
Failed to delete Destination Group from Subscription 0
Failed to delete Sensor Group from Subscription 0
Failed to delete Sensor path from Sensor Group 0
Failed to get encode callback 0
Failed to get transport callback 0
switch# Destination Database size = 1

--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.123 50001 GPB gRPC 1

show telemetry data collector brief

This command displays the brief statistic regarding the data collection.

switch# show telemetry data collector brief

--
Collector Type Successful Collections Failed Collections
--
DME 143 0

show telemetry data collector details

This command displays details statistic regarding the data collection which includes breakdown of all sensor
paths.

switch# show telemetry data collector details

--
Succ Collections Failed Collections Sensor Path
--
150 0 sys/fm

show telemetry event collector errors

This command displays the errors statistic regarding the event collection.

switch# show telemetry event collector errors

--
Error Description Error Count

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
169

Model-Driven Telemetry
Displaying Telemetry Configuration and Statistics

--
APIC-Cookie Generation Failures - 0
Authentication Failures - 0
Authentication Refresh Failures - 0
Authentication Refresh Timer Start Failures - 0
Connection Timer Start Failures - 0
Connection Attempts - 3
Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Event Subscription Refresh Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
Subscription Refresh Timer Start Failures - 0
Websocket Connect Failures - 0

show telemetry event collector stats

This command displays the statistic regarding the event collection which includes breakdown of all sensor
paths.

switch# show telemetry event collector stats

--
Collection Count Latest Collection Time Sensor Path
--

show telemetry control pipeline stats

This command displays the statistic for the telemetry pipeline.

switch# show telemetry pipeline stats
Main Statistics:

Timers:
Errors:

Start Fail = 0

Data Collector:
Errors:

Node Create Fail = 0

Event Collector:
Errors:

Node Create Fail = 0 Node Add Fail = 0
Invalid Data = 0

Queue Statistics:
Request Queue:

High Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
170

Model-Driven Telemetry
Displaying Telemetry Configuration and Statistics

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Data Queue:
High Priority Queue:

Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

Low Priority Queue:
Info:

Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0

Errors:
Enqueue Error = 0 Dequeue Error = 0

show telemetry transport

This command displays all configured transport sessions.

switch# show telemetry transport

Session Id IP Address Port Encoding Transport Status

0 192.168.20.123 50001 GPB gRPC Connected

show telemetry transport <session-id>

This command displays detailed session information for a specific transport session.

switch# show telemetry transport 0

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: gRPC
Status: Disconnected
Last Connected: Fri Sep 02 11:45:57.505 UTC
Tx Error Count: 224
Last Tx Error: Fri Sep 02 12:23:49.555 UTC

switch# show telemetry transport 1

Session Id: 1
IP Address:Port 10.30.218.56:51235
Encoding: JSON
Transport: HTTP
Status: Disconnected
Last Connected: Never
Last Disconnected: Never

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
171

Model-Driven Telemetry
Displaying Telemetry Configuration and Statistics

Tx Error Count: 3
Last Tx Error: Wed Apr 19 15:56:51.617 PDT

show telemetry transport <session-id> stats

This command displays details of a specific transport session.

switch# show telemetry transport 0 stats

Session Id: 0
IP Address:Port 192.168.20.123:50001
Encoding: GPB
Transport: GRPC
Status: Connected
Last Connected: Mon May 01 11:29:46.912 PST
Last Disconnected: Never
Tx Error Count: 0
Last Tx Error: None

show telemetry transport <session-id> errors

This command displays detailed error statistics for a specific transport session.

switch# show telemetry transport 0 errors

Session Id: 0
Connection Stats

Connection Count 1
Last Connected: Mon May 01 11:29:46.912 PST
Disconnect Count 0
Last Disconnected: Never

Transmission Stats
Transmit Count: 1225
Last TX time: Tue May 02 11:40:03.531 PST
Min Tx Time: 7 ms
Max Tx Time: 1760 ms
Avg Tx Time: 500 ms

Displaying Telemetry Log and Trace Information
Use the following NX-OS CLI commands to display the log and trace information.

show tech-support telemetry

This NX-OS CLI command collects the telemetry log contents from the tech-support log. In this example,
the command output is redirected into a file in bootflash.

switch# show tech-support telemetry > bootflash:tmst.log

show system internal telemetry trace

The show system internal telemetry trace [tm-events | tm-errors |tm-logs | all] command displays system
internal telemetry trace information.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
172

Model-Driven Telemetry
Displaying Telemetry Log and Trace Information

switch# show system internal telemetry trace all
Telemetry All Traces:
Telemetry Error Traces:
[07/26/17 15:22:29.156 UTC 1 28577] [3960399872][tm_cfg_api.c:367] Not able to destroy dest
profile list for config node rc:-1610612714 reason:Invalid argument
[07/26/17 15:22:44.972 UTC 2 28577] [3960399872][tm_stream.c:248] No subscriptions for
destination group 1
[07/26/17 15:22:49.463 UTC 3 28577] [3960399872][tm_stream.c:576] TM_STREAM: Subscriptoin
1 does not have any sensor groups

3 entries printed
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
switch#

switch# show system internal telemetry trace tm-logs
Telemetry Log Traces:
0 entries printed
switch#
switch# show system internal telemetry trace tm-events
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers
initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created
successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf:
grpc_traces:compression,channel
[07/26/17 15:19:40.610 UTC 4 28577] [3960399872][tm_init_n9k.c:207] Adding telemetry to
cgroup
[07/26/17 15:19:40.670 UTC 5 28577] [3960399872][tm_init_n9k.c:215] Added telemetry to
cgroup successfully!

switch# show system internal telemetry trace tm-errors
Telemetry Error Traces:
0 entries printed
switch#

Configuring Telemetry Using the NX-API

Configuring Telemetry Using the NX-API
In the object model of the switch DME, the configuration of the telemetry feature is defined in a hierarchical
structure of objects as shown in Telemetry Model in the DME, on page 186. Following are the main objects
to be configured:

• fmEntity —Contains the NX-API and Telemetry feature states.

• fmNxapi —Contains the NX-API state.

• fmTelemetry —Contains the Telemetry feature state.

• telemetryEntity —Contains the telemetry feature configuration.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
173

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

• telemetrySensorGroup —Contains the definitions of one or more sensor paths or nodes to be
monitored for telemetry. The telemetry entity can contain one or more sensor groups.

• telemetryRtSensorGroupRel —Associates the sensor group with a telemetry subscription.

• telemetrySensorPath—Apath to bemonitored. The sensor group can containmultiple objects
of this type.

• telemetryDestGroup —Contains the definitions of one or more destinations to receive telemetry
data. The telemetry entity can contain one or more destination groups.

• telemetryRtDestGroupRel—Associates the destination group with a telemetry subscription.

• telemetryDest —A destination address. The destination group can contain multiple objects
of this type.

• telemetrySubscription — Specifies how and when the telemetry data from one or more sensor
groups is sent to one or more destination groups.

• telemetryRsDestGroupRel—Associates the telemetry subscription with a destination group.

• telemetryRsSensorGroupRel —Associates the telemetry subscription with a sensor group.

• telemetryCertificate —Associates the telemetry subscription with a certificate and hostname.

To configure the telemetry feature using the NX-API, you must construct a JSON representation of the
telemetry object structure and push it to the DME with an HTTP or HTTPS POST operation.

For detailed instructions on using the NX-API, see the Cisco Nexus 3000 and 9000 Series NX-API REST SDK
User Guide and API Reference.

Note

Before you begin

Your switch must be configured to run the NX-API from the CLI:
switch(config)# feature nxapi

nxapi use-vrf vrf_name
nxapi http port port_number

Procedure

PurposeCommand or Action

The root element is fmTelemetry and the base
path for this element is sys/fm. Configure the
adminSt attribute as enabled.

Enable the telemetry feature.

Example:

{

Step 1

"fmEntity" : {
"children" : [{
"fmTelemetry" : {
"attributes" : {

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
174

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

PurposeCommand or Action
"adminSt" : "enabled"

}
}

}
]

}
}

The root element is telemetryEntity and the
base path for this element is sys/tm. Configure
the dn attribute as sys/tm.

Create the root level of the JSON payload to
describe the telemetry configuration.

Example:

Step 2

{
"telemetryEntity": {

"attributes": {
"dn": "sys/tm"

},
}

}

A telemetry sensor group is defined in an
object of class telemetrySensorGroup.

Create a sensor group to contain the defined
sensor paths.

Example:

Step 3

Configure the following attributes of the
object:

"telemetrySensorGroup": { • id —An identifier for the sensor group.
Currently only numeric ID values are
supported.

"attributes": {
"id": "10",
"rn": "sensor-10"
"dataSrc": "NX-API" • rn — The relative name of the sensor

group object in the format: sensor-id.
}, "children": [{
}]

}
• dataSrc — Selects the data source from

DEFAULT, DME, or NX-API.

Children of the sensor group object will
include sensor paths and one or more relation
objects (telemetryRtSensorGroupRel) to
associate the sensor group with a telemetry
subscription.

The telemetryCertificate defines the location
of the SSL/TLS certificate with the telemetry
subscription/destination.

(Optional) Add an SSL/TLS certificate and a
host.

Example:

Step 4

{
"telemetryCertificate": {

"attributes": {
"filename": "root.pem"
"hostname": "c.com"

}
}

}

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
175

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

PurposeCommand or Action

A telemetry destination group is defined in
telemetryEntity. Configure the id attribute.

Define a telemetry destination group.

Example:

Step 5

{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
}

}

A telemetry destination profile is defined in
telemetryDestProfile.

Define a telemetry destination profile.

Example:

Step 6

• Configure the adminSt attribute as
enabled.{

"telemetryDestProfile": {
• Under

telemetryDestOptSourceInterface,
"attributes": {

"adminSt": "enabled"
}, configure the name attribute with an"children": [

interface name to stream data from the{
configured interface to a destination with
the source IP address."telemetryDestOptSourceInterface": {

"attributes": {
"name": "lo0"

}
}

}
]

}
}

A telemetry destination is defined in an object
of class telemetryDest. Configure the
following attributes of the object:

Define one or more telemetry destinations,
consisting of an IP address and port number
to which telemetry data will be sent.

Example:

Step 7

• addr—The IP address of the destination.

{ • port — The port number of the
destination."telemetryDest": {

"attributes": {
• rn—The relative name of the destination
object in the format: path-[path].

"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",

• enc—The encoding type of the telemetry
data to be sent. NX-OS supports:

"proto": "gRPC",
"rn":

"addr-[1.2.3.4]-port-50001"
} • Google protocol buffers (GPB) for

gRPC.}
}

• JSON for C.

• GPB or JSON for UDP and secure
UDP (DTLS).

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
176

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

PurposeCommand or Action

• proto — The transport protocol type of
the telemetry data to be sent. NX-OS
supports:

• gRPC

• HTTP

• VUDP and secure UDP (DTLS)

See Support for gRPC Chunking, on page 157
for more information.

Enable gRPC chunking and set the chunking
size, between 64 and 4096 bytes.

Example:

Step 8

{
"telemetryDestGrpOptChunking": {

"attributes": {
"chunkSize": "2048",
"dn":

"sys/tm/dest-1/chunking"
}

}
}

A telemetry subscription is defined in an object
of class telemetrySubscription. Configure
the following attributes of the object:

Create a telemetry subscription to configure
the telemetry behavior.

Example:

Step 9

• id —An identifier for the subscription.
Currently only numeric ID values are
supported.

"telemetrySubscription": {
"attributes": {

"id": "30",
"rn": "subs-30" • rn — The relative name of the

subscription object in the format: subs-id.}, "children": [{
}]

}
Children of the subscription object will include
relation objects for sensor groups
(telemetryRsSensorGroupRel) and
destination groups
(telemetryRsDestGroupRel).

Add the sensor group object as a child object
to the telemetrySubscription element under
the root element (telemetryEntity).

Step 10

Example:
{

"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel":

{

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
177

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

PurposeCommand or Action
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

}
]

}
}

The relation object is of class
telemetryRsSensorGroupRel and is a child

Create a relation object as a child object of the
subscription to associate the subscription to
the telemetry sensor group and to specify the
data sampling behavior.

Step 11

object of telemetrySubscription. Configure
the following attributes of the relation object:

Example: • rn — The relative name of the relation
object in the format:
rssensorGroupRel-[sys/tm/sensor-group-id]."telemetryRsSensorGroupRel": {

"attributes": {
• sampleIntvl—The data sampling period
in milliseconds. An interval value of 0

"rType": "mo",
"rn":

"rssensorGroupRel-[sys/tm/sensor-10]", creates an event-based subscription, in"sampleIntvl": "5000",
which telemetry data is sent only upon"tCl": "telemetrySensorGroup",
changes under the specified MO. An"tDn": "sys/tm/sensor-10",

"tType": "mo" interval value greater than 0 creates a
}

} frequency-based subscription, in which
telemetry data is sent periodically at the
specified interval. For example, an
interval value of 15000 results in the
sending of telemetry data every 15
seconds.

• tCl — The class of the target (sensor
group) object, which is
telemetrySensorGroup.

• tDn — The distinguished name of the
target (sensor group) object, which is
sys/tm/sensor-group-id.

• rType —The relation type, which is mo
for managed object.

• tType — The target type, which is mo
for managed object.

A sensor path is defined in an object of class
telemetrySensorPath. Configure the
following attributes of the object:

Define one or more sensor paths or nodes to
be monitored for telemetry.

Example:

Step 12

• path — The path to be monitored.Single sensor path

{
• rn—The relative name of the path object
in the format: path-[path]

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
178

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

PurposeCommand or Action
"telemetrySensorPath": {

"attributes": {
• depth—The retrieval level for the sensor
path. A depth setting of 0 retrieves only
the root MO properties.

"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",

• filterCondition — (Optional) Creates a
specific filter for event-based

"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0", subscriptions. The DME provides the
"secondaryPath": "", filter expressions. For more information
"depth": "0"

regarding filtering, see the Cisco APIC}
REST API Usage Guidelines on}

} composing queries:
https://www.cisco.com/c/en/us/td/docs/
switches/datacenter/aci/apic/sw/2-x/rest_Example:
cfg/2_1_x/b_Cisco_APIC_REST_API_Single sensor path for NX-API

{

Configuration_Guide/b_Cisco_APIC_
REST_API_Configuration_Guide_
chapter_01.html#d25e1534a1635"telemetrySensorPath": {

"attributes": {
"path": "show interface",
"path": "show bgp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Example:

Multiple sensor paths

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

},
{

"telemetrySensorPath": {
"attributes": {

"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/dhcp",
"secondaryGroup": "0",
"secondaryPath": "",

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
179

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#d25e1534a1635

PurposeCommand or Action
"depth": "0"

}
}

}

Example:

Single sensor path filtering for BGP disable
events:

{
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition":

"eq(fmBgp.operSt.\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}

Add sensor paths as child objects to the sensor
group object (telemetrySensorGroup).

Step 13

Add destinations as child objects to the
destination group object
(telemetryDestGroup).

Step 14

Add the destination group object as a child
object to the root element (telemetryEntity).

Step 15

The relation object is of class
telemetryRtSensorGroupRel and is a child

Create a relation object as a child object of the
telemetry sensor group to associate the sensor
group to the subscription.

Step 16

object of telemetrySensorGroup. Configure
the following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rtsensorGroupRel-[sys/tm/subscription-id].

"telemetryRtSensorGroupRel": {
"attributes": {

"rn":
"rtsensorGroupRel-[sys/tm/subs-30]", • tCl—The target class of the subscription

object, which is telemetrySubscription."tCl": "telemetrySubscription",

"tDn": "sys/tm/subs-30" • tDn —The target distinguished name of
the subscription object, which is
sys/tm/subscription-id.

}
}

The relation object is of class
telemetryRtDestGroupRel and is a child

Create a relation object as a child object of the
telemetry destination group to associate the
destination group to the subscription.

Step 17

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
180

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

PurposeCommand or Action

object of telemetryDestGroup. Configure the
following attributes of the relation object:

Example:

"telemetryRtDestGroupRel": { • rn — The relative name of the relation
object in the format:
rtdestGroupRel-[sys/tm/subscription-id].

"attributes": {
"rn":

"rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",

• tCl—The target class of the subscription
object, which is telemetrySubscription."tDn": "sys/tm/subs-30"

}
} • tDn —The target distinguished name of

the subscription object, which is
sys/tm/subscription-id.

The relation object is of class
telemetryRsDestGroupRel and is a child

Create a relation object as a child object of the
subscription to associate the subscription to
the telemetry destination group.

Step 18

object of telemetrySubscription. Configure
the following attributes of the relation object:Example:

• rn — The relative name of the relation
object in the format:
rsdestGroupRel-[sys/tm/destination-group-id].

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",
"rn": • tCl—The class of the target (destination

group) object, which is
telemetryDestGroup.

"rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

• tDn — The distinguished name of the
target (destination group) object, which
is sys/tm/destination-group-id.

}
}

• rType —The relation type, which is mo
for managed object.

• tType — The target type, which is mo
for managed object.

The base path for the telemetry entity is sys/tm
and the NX-API endpoint is:

Send the resulting JSON structure as an
HTTP/HTTPS POST payload to the NX-API
endpoint for telemetry configuration.

Step 19

{{URL}}/api/node/mo/sys/tm.json

Example

The following is an example of all the previous steps collected into one POST payload (note that
some attributes may not match):
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
181

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50051",
"enc": "GPB",
"proto": "gRPC"

}
}

}
]

}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
182

Model-Driven Telemetry
Configuring Telemetry Using the NX-API

Configuration Example for Telemetry Using the NX-API

Streaming Paths to a Destination

This example creates a subscription that streams paths sys/cdp and sys/ipv4 to a destination 1.2.3.4 port

50001 every five seconds.

POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{

"telemetryEntity": {
"attributes": {

"dn": "sys/tm"
},
"children": [{

"telemetrySensorGroup": {
"attributes": {

"id": "10",
"rn": "sensor-10"

}, "children": [{
"telemetryRtSensorGroupRel": {

"attributes": {
"rn": "rtsensorGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}, {
"telemetrySensorPath": {

"attributes": {
"path": "sys/ipv4",
"rn": "path-[sys/ipv4]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}]
}

}, {
"telemetryDestGroup": {

"attributes": {
"id": "20",
"rn": "dest-20"

},
"children": [{

"telemetryRtDestGroupRel": {

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
183

Model-Driven Telemetry
Configuration Example for Telemetry Using the NX-API

"attributes": {
"rn": "rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"

}
}

}, {
"telemetryDest": {

"attributes": {
"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",
"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"

}
}

}]
}

}, {
"telemetrySubscription": {

"attributes": {
"id": "30",
"rn": "subs-30"

},
"children": [{

"telemetryRsDestGroupRel": {
"attributes": {

"rType": "mo",
"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"

}
}

}, {
"telemetryRsSensorGroupRel": {

"attributes": {
"rType": "mo",
"rn": "rssensorGroupRel-[sys/tm/sensor-10]",
"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",
"tDn": "sys/tm/sensor-10",
"tType": "mo"

}
}

}]
}

}]
}

}

Filter Conditions on BGP Notifications

The following example payload enables notifications that trigger when the BFP feature is disabled as per the
filterCondition attribute in the telemetrySensorPathMO. The data is streamed to10.30.217.80 port

50055.
POST https://192.168.20.123/api/node/mo/sys/tm.json

Payload:
{
"telemetryEntity": {

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
184

Model-Driven Telemetry
Configuration Example for Telemetry Using the NX-API

"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"

}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "eq(fmBgp.operSt,\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"

}
}

}
]

}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"

}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50055",
"enc": "GPB",
"proto": "gRPC"

}
}

}
]

}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"

}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "0",
"tDn": "sys/tm/sensor-10"

}
}

},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"

}
}

}
]

}
}
]

}
}

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
185

Model-Driven Telemetry
Configuration Example for Telemetry Using the NX-API

Using Postman Collection for Telemetry Configuration

An example Postman collection is an easy way to start configuring the telemetry feature, and can run all
telemetry CLI equivalents in a single payload. Modify the file in the preceding link using your preferred text
editor to update the payload to your needs, then open the collection in Postman and run the collection.

Telemetry Model in the DME
The telemetry application is modeled in the DME with the following structure:

model
|----package [name:telemetry]

| @name:telemetry
|----objects

|----mo [name:Entity]
| @name:Entity
| @label:Telemetry System
|--property
| @name:adminSt
| @type:AdminState
|
|----mo [name:SensorGroup]
| | @name:SensorGroup
| | @label:Sensor Group
| |--property
| | @name:id [key]
| | @type:string:Basic
| | @name:dataSrc
| | @type:DataSource
| |
| |----mo [name:SensorPath]
| | @name:SensorPath
| | @label:Sensor Path
| |--property
| | @name:path [key]
| | @type:string:Basic
| | @name:filterCondition
| | @type:string:Basic
| | @name:excludeFilter
| | @type:string:Basic
| | @name:depth
| | @type:RetrieveDepth
|
|----mo [name:DestGroup]
| | @name:DestGroup
| | @label:Destination Group
| |--property
| | @name:id
| | @type:string:Basic
| |
| |----mo [name:Dest]
| | @name:Dest
| | @label:Destination
| |--property
| | @name:addr [key]
| | @type:address:Ip
| | @name:port [key]
| | @type:scalar:Uint16
| | @name:proto
| | @type:Protocol
| | @name:enc

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
186

Model-Driven Telemetry
Telemetry Model in the DME

https://github.com/CiscoDevNet/nx-telemetry-proto/tree/master/postman_collections

| | @type:Encoding
|
|----mo [name:Subscription]

| @name:Subscription
| @label:Subscription
|--property
| @name:id
| @type:scalar:Uint64
|----reldef
| | @name:SensorGroupRel
| | @to:SensorGroup
| | @cardinality:ntom
| | @label:Link to sensorGroup entry
| |--property
| @name:sampleIntvl
| @type:scalar:Uint64
|
|----reldef

| @name:DestGroupRel
| @to:DestGroup
| @cardinality:ntom
| @label:Link to destGroup entry

DNs Available to Telemetry

For a list of DNs available to the telemetry feature, see Streaming Telemetry Sources, on page 233.

Telemetry Path Labels

About Telemetry Path Labels
Beginning with NX-OS release 9.3(1), model-driven telemetry supports path labels. Path labels provide an
easy way to gather telemetry data from multiple sources at once. With this feature, you specify the type of
telemetry data you want collected, and the telemetry feature gathers that data frommultiple paths. The feature
then returns the information to one consolidated place, the path label. This feature simplifies using telemetry
because you no longer must:

• Have a deep and comprehensive knowledge of the Cisco DME model.

• Create multiple queries and addmultiple paths to the subscription, while balancing the number of collected
events and the cadence.

• Collect multiple chunks of telemetry information from the switch, which simplifies serviceability.

Path labels span across multiple instances of the same object type in the model, then gather and return counters
or events. Path labels support the following telemetry groups:

• Environment, whichmonitors chassis information, including fan, temperature, power, storage, supervisors,
and line cards.

• Interface, which monitors all the interface counters and status changes.

This label supports predefined keyword filters that can refine the returned data by using the
query-condition command.

• Resources, which monitors system resources such as CPU utilization and memory utilization.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
187

Model-Driven Telemetry
Telemetry Path Labels

• VXLAN, whichmonitors VXLANEVPNs including VXLAN peers, VXLAN counters, VLAN counters,
and BGP Peer data.

Polling for Data or Receiving Events
The sample interval for a sensor group determines how and when telemetry data is transmitted to a path label.
The sample interval can be configured either to periodically poll for telemetry data or gather telemetry data
when events occur.

• When the sample interval for telemetry is configured as a non-zero value, telemetry periodically sends
the data for the environment, interfaces, resources, and vxlan labels during each sample interval.

• When the sample interval is set to zero, telemetry sends event notifications when the environment,
interfaces, resources, and vxlan labels experience operational state updates, as well as creation and
deletion of MOs.

Polling for data or receiving events are mutually exclusive. You can configure polling or event-driven telemetry
for each path label.

Guidelines and Limitations for Path Labels
The telemetry path labels feature has the following guidelines and limitations:

• The feature supports only Cisco DME data source only.

• You cannot mix andmatch usability paths with regular DME paths in the same sensor group. For example,
you cannot configure sys/intf and interface in the same sensor group. Also, you cannot configure
the same sensor group with sys/intf and interface. If this situation occurs, NX-OS rejects the
configuration.

• User filter keywords, such as oper-speed and counters=[detailed], are supported only for the interface
path.

• The feature does not support other sensor path options, such as depth or filter-condition.

Configuring the Interface Path to Poll for Data or Events
The interface path label monitors all the interface counters and status changes. It supports the following
interface types:

• Physical

• Subinterface

• Management

• Loopback

• VLAN

• Port Channel

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
188

Model-Driven Telemetry
Polling for Data or Receiving Events

You can configure the interface path label to either periodically poll for data or receive events. See Polling
for Data or Receiving Events, on page 188.

The model does not support counters for subinterface, loopback, or VLAN, so they are not streamed out.Note

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch-1(config-telemetry)# sensor-group
6
switch-1(conf-tm-sensor)#

Configure the interface path label, which
enables sending one telemetry data query for

path interface

Example:

Step 4

multiple individual interfaces. The label
switch-1(conf-tm-sensor)# path interface
switch-1(conf-tm-sensor)#

consolidates the queries for multiple interfaces
into one. Telemetry then telemetry gathers the
data and returns it to the label.

Depending on how the polling interval is
configured, interface data is sent based on a
periodic basis or whenever the interface state
changes.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
189

Model-Driven Telemetry
Configuring the Interface Path to Poll for Data or Events

PurposeCommand or Action

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Interface Path for Non-Zero Counters
You can configure the interface path label with a pre-defined keyword filter that returns only counters that
have non-zero values. The filter is counters=[detailed].

By using this filter, the interface path gathers all the available interface counters, filters the collected data,
then forwards the results to the receiver. The filter is optional, and if you do not use it, all counters, including
zero-value counters, are displayed for the interface path.

Using the filter is conceptually similar to issuing show interface mgmt0 counters detailedNote

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
190

Model-Driven Telemetry
Configuring the Interface Path for Non-Zero Counters

PurposeCommand or Action
switch-1(config-telemetry)# sensor-group
6
switch-1(conf-tm-sensor)#

Configure the interface path label and query for
only the non-zero counters from all interfaces.

path interface query-condition
counters=[detailed]

Example:

Step 4

switch-1(conf-tm-sensor)# path interface
query-condition counters=[detailed]
switch-1(conf-tm-sensor)#

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Interface Path for Operational Speeds
You can configure the interface path label with a pre-defined keyword filter that returns counters for interfaces
of specified operational speeds. The filter is oper-speed=[]. The following operational speeds are supported:
auto, 10M, 100M, 1G, 10G, 40G, 200G, and 400G.

By using this filter, the interface path gathers the telemetry data for interfaces of the specified speed, then
forwards the results to the receiver. The filter is optional. If you do not use it, counters for all interfaces are
displayed, regardless of their operational speed.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
191

Model-Driven Telemetry
Configuring the Interface Path for Operational Speeds

The filter can accept multiple speeds as a comma-separated list, for example oper-speed=[1G,10G] to retrieve
counters for interfaces that operate at 1 and 10 Gbps. Do not use a blank space as a delimiter.

Interface types subinterface, loopback, and VLAN do not have operational speed properties, so the filter does
not support these interface types.

Note

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 3

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Configure the interface path label and query for
counters from interfaces running the specified

path interface query-condition
oper-speed=[speed]

Step 4

speed, which in this example, is 1 and 40 Gbps
only.Example:

switch-1(conf-tm-sensor)# path interface
query-condition oper-speed=[1G,40G]
switch-1(conf-tm-sensor)#

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
192

Model-Driven Telemetry
Configuring the Interface Path for Operational Speeds

PurposeCommand or Action
switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Interface Path with Multiple Queries
You can configure multiple filters for the same query condition in the interface path label. When you do so,
the individual filters you use are ANDed.

Separate each filter in the query condition by using a comma. You can specify any number of filters for the
query-condition, but be aware that the more filters you add, the more focused the results become.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch-1(config-telemetry)# sensor-group
6
switch-1(conf-tm-sensor)#

Configures multiple conditions in the same
query. In this example, the query does both of
the following:

path interface query-condition
counters=[detailed],oper-speed=[1G,40G]

Example:

Step 4

• Gathers and returns non-zero counters on
interfaces running at 1 Gbps.

switch-1(conf-tm-sensor)# path interface
query-condition

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
193

Model-Driven Telemetry
Configuring the Interface Path with Multiple Queries

PurposeCommand or Action
counters=[detailed],oper-speed=[1G,40G]
switch-1(conf-tm-sensor)#

• Gathers and returns non-zero counters on
interfaces running at 40 Gbps.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when interface events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Environment Path to Poll for Data or Events
The environment path label monitors chassis information, including fan, temperature, power, storage,
supervisors, and line cards. You can configure the environment path to either periodically poll for telemetry
data or get the data when events occur. For information, see Polling for Data or Receiving Events, on page
188.

You can set the resources path to return system resource information through either periodic polling or based
on events. This path does not support filtering.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
194

Model-Driven Telemetry
Configuring the Environment Path to Poll for Data or Events

PurposeCommand or Action
switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch-1(config-telemetry)# sensor-group
6
switch-1(conf-tm-sensor)#

Configures the environment path label, which
enables telemetry data for multiple individual

path environment

Example:

Step 4

environment objects to be sent to the label. The
switch-1(conf-tm-sensor)# path
environment
switch-1(conf-tm-sensor)#

label consolidates the multiple data inputs into
one output.

Depending on the sample interval, the
environment data is either streaming based on
the polling interval, or sent when events occur.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when environment events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
195

Model-Driven Telemetry
Configuring the Environment Path to Poll for Data or Events

PurposeCommand or Action
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Resources Path to Poll for Events or Data
The resources path monitors system resources such as CPU utilization and memory utilization. You can
configure this path to either periodically gather telemetry data, or when events occur. See Polling for Data or
Receiving Events, on page 188.

This path does not support filtering.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

switch-1(config-telemetry)# sensor-group
6
switch-1(conf-tm-sensor)#

Configure the resources path label, which
enables telemetry data for multiple individual

path resources

Example:

Step 4

system resources to be sent to the label. The
switch-1(conf-tm-sensor)# path resources
switch-1(conf-tm-sensor)#

label consolidates the multiple data inputs into
one output.

Depending on the sample interval, the resource
data is either streaming based on the polling
interval, or sent when system memory changes
to Not OK.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
196

Model-Driven Telemetry
Configuring the Resources Path to Poll for Events or Data

PurposeCommand or Action

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when resource events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the VXLAN Path to Poll for Events or Data
The vxlan path label provides information about the switch's Virtual Extensible LAN EVPNs, including
VXLAN peers, VXLAN counters, VLAN counters, and BGP Peer data. You can configure this path label to
gather telemetry information either periodically, or when events occur. See Polling for Data or Receiving
Events, on page 188.

This path does not support filtering.

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group for telemetry data.sensor-group sgrp_id

Example:

Step 3

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
197

Model-Driven Telemetry
Configuring the VXLAN Path to Poll for Events or Data

PurposeCommand or Action
switch-1(config-telemetry)# sensor-group
6
switch-1(conf-tm-sensor)#

Configure the vxlan path label, which enables
telemetry data for multiple individual VXLAN

vxlan environment

Example:

Step 4

objects to be sent to the label. The label
switch-1(conf-tm-sensor)# vxlan
environment
switch-1(conf-tm-sensor)#

consolidates the multiple data inputs into one
output. Depending on the sample interval, the
VXLAN data is either streaming based on the
polling interval, or sent when events occur.

Enter telemetry destination group submode and
configure the destination group.

destination-group grp_id

Example:

Step 5

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the subscription
to stream to the specified IP address and port.

ip address ip_addr port port

Example:

Step 6

switch-1(conf-tm-dest)# ip address
1.2.3.4 port 50004
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 7

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current subscription
and set the data sampling interval in

snsr-group sgrp_id sample-interval interval

Example:

Step 8

milliseconds. The sampling interval determines
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

whether the switch sends telemetry data
periodically, or when VXLAN events occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 9

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Verifying the Path Label Configuration
At any time, you can verify that path labels are configured, and check their values by displaying the running
telemetry configuration.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
198

Model-Driven Telemetry
Verifying the Path Label Configuration

Procedure

PurposeCommand or Action

Displays the current running config for
telemetry,

show running-config-telemetry

Example:

Step 1

In this example, sensor group 4 is configured
to gather non-zero counters from interfaces

switch-1(conf-tm-sensor)# show
running-config telemetry

running at 1 and 10 Gbps. Sensor group 6 is
configured to gather all counters from interfaces
running at 1 and 40 Gbps.

!Command: show running-config telemetry
!Running configuration last done at: Mon
Jun 10 08:10:17 2019
!Time: Mon Jun 10 08:10:17 2019

version 9.3(1) Bios:version
feature telemetry

telemetry
destination-profile
use-nodeid tester
sensor-group 4
path interface query-condition

and(counters=[detailed],oper-speed=[1G,10G])

sensor-group 6
path interface query-condition

oper-speed=[1G,40G]
subscription 6
snsr-grp 6 sample-interval 6000

nxosv2(conf-tm-sensor)#

Displaying Path Label Information

Path Label Show Commands

Through the show telemetry usability commands, you can display the individual paths that the path label
walks when you issue a query.

ShowsCommand

Either all telemetry paths for all path labels, or all
telemetry paths for a specified path label. Also, the
output shows whether each path reports telemetry data
based on periodic polling or events.

For the interfaces path label, also any keyword filters
or query conditions you configured.

show telemetry usability {all | environment |
interface | resources | vxlan}

The running configuration for telemetry and selected
path information.

show running-config telemetry

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
199

Model-Driven Telemetry
Displaying Path Label Information

Command Examples

The show telemetry usability all command is a concatenation of all the individual commands that are shown
in this section.

Note

The following shows an example of the show telemetry usability environment command.
switch-1# show telemetry usability environment
1) label_name : environment

path_name : sys/ch
query_type : poll
query_condition :

rsp-subtree=full&query-target=subtree&target-subtree-class=eqptPsuSlot,eqptFtSlot,eqptSupCSlot,eqptPsu,eqptFt,eqptSensor,eqptLCSlot

2) label_name : environment

path_name : sys/ch
query_type : event
query_condition :

rsp-subtree=full&query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(eqptFan.operSt),ne(eqptFan.operSt,"ok")),and(updated(eqptDimm.operSt),ne(eqptDimm.operSt,"ok")),and(updated(eqptFlash.operSt),ne(eqptFlash.operSt,"ok")),and(updated(eqptSpromSup.operSt),ne(eqptSpromSup.operSt,"ok")),and(updated(eqptSpromLc.operSt),ne(eqptSpromLc.operSt,"ok"))))
switch-1#

The following shows the output of the show telemetry usability interface command.
switch-1# show telemetry usability interface
1) label_name : interface

path_name : sys/intf
query_type : poll
query_condition :

query-target=children&query-target-filter=eq(l1PhysIf.adminSt,"up")&rsp-subtree=children&rsp-subtree-class=rmonEtherStats,rmonIfIn,rmonIfOut,rmonIfHCIn,rmonIfHCOut

2) label_name : interface

path_name : sys/mgmt-[mgmt0]
query_type : poll
query_condition :

query-target=subtree&query-target-filter=eq(mgmtMgmtIf.adminSt,"up")&rsp-subtree=full&rsp-subtree-class=rmonEtherStats,rmonIfIn,rmonIfOut,rmonIfHCIn,rmonIfHCOut

3) label_name : interface

path_name : sys/intf
query_type : event
query_condition :

query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(ethpmPhysIf.operSt),eq(ethpmPhysIf.operSt,"down")),and(updated(ethpmPhysIf.operSt),eq(ethpmPhysIf.operSt,"up")),and(updated(ethpmLbRtdIf.operSt),eq(ethpmLbRtdIf.operSt,"down")),and(updated(ethpmLbRtdIf.operSt),eq(ethpmLbRtdIf.operSt,"up")),and(updated(ethpmAggrIf.operSt),eq(ethpmAggrIf.operSt,"down")),and(updated(ethpmAggrIf.operSt),eq(ethpmAggrIf.operSt,"up")),and(updated(ethpmEncRtdIf.operSt),eq(
ethpmEncRtdIf.operSt,"down")),and(updated(ethpmEncRtdIf.operSt),eq(ethpmEncRtdIf.operSt,"up"))))

4) label_name : interface

path_name : sys/mgmt-[mgmt0]
query_type : event
query_condition :

query-target=subtree&query-target-filter=or(or(deleted(),created()),or(and(updated(imMgmtIf.operSt),eq(imMgmtIf.operSt,"down")),and(updated(imMgmtIf.operSt),eq(imMgmtIf.operSt,"up"))))
switch-1#

The following shows an example of the show telemetry usability resources command.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
200

Model-Driven Telemetry
Displaying Path Label Information

switch-1# show telemetry usability resources
1) label_name : resources

path_name : sys/proc
query_type : poll
query_condition : rsp-subtree=full&rsp-foreign-subtree=ephemeral

2) label_name : resources

path_name : sys/procsys
query_type : poll
query_condition :

query-target=subtree&target-subtree-class=procSystem,procSysCore,procSysCpuSummary,procSysCpu,procIdle,procIrq,procKernel,procNice,procSoftirq,procTotal,procUser,procWait,procSysCpuHistory,procSysLoad,procSysMem,procSysMemFree,procSysMemUsage,procSysMemUsed

3) label_name : resources

path_name : sys/procsys/sysmem
query_type : event
query_condition :

query-target-filter=and(updated(procSysMem.memstatus),ne(procSysMem.memstatus,"OK"))

switch-1#

The following shows an example of the show telemetry usability vxlan command.
switch-1# show telemetry usability vxlan
1) label_name : vxlan

path_name : sys/bd
query_type : poll
query_condition : query-target=subtree&target-subtree-class=l2VlanStats

2) label_name : vxlan

path_name : sys/eps
query_type : poll
query_condition : rsp-subtree=full&rsp-foreign-subtree=ephemeral

3) label_name : vxlan

path_name : sys/eps
query_type : event
query_condition : query-target=subtree&target-subtree-class=nvoDyPeer

4) label_name : vxlan

path_name : sys/bgp
query_type : event
query_condition : query-target=subtree&query-target-filter=or(deleted(),created())

5) label_name : vxlan

path_name : sys/bgp
query_type : event
query_condition :

query-target=subtree&target-subtree-class=bgpDom,bgpPeer,bgpPeerAf,bgpDomAf,bgpPeerAfEntry,bgpOperRtctrlL3,bgpOperRttP,bgpOperRttEntry,bgpOperAfCtrl

switch-1#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
201

Model-Driven Telemetry
Displaying Path Label Information

Native Data Source Paths

About Native Data Source Paths
NX-OS Telemetry supports the native data source, which is a neutral data source that is not restricted to a
specific infrastructure or database. Instead, the native data source enables components or applications to hook
into and inject relevant information into the outgoing telemetry stream. This feature provides flexibility because
the path for the native data source does not belong to any infrastructure, so any native applications can interact
with NX-OS Telemetry.

The native data source path enables you to subscribe to specific sensor paths to receive selected telemetry
data. The feature works with the NX-SDK to support streaming telemetry data from the following paths:

• RIB path, which sends telemetry data for the IP routes.

• MAC path, which sends telemetry data for static and dynamic MAC entries.

• Adjacency path, which sends telemetry data for IPv4 and IPv6 adjacencies.

When you create a subscription, all telemetry data for the selected path streams to the receiver as a baseline.
After the baseline, only event notifications stream to the receiver.

Streaming of native data source paths supports the following encoding types:

• Google Protobuf (GPB)

• JavaScript Object Notation (JSON)

• Compact Google Protobuf (compact GPB)

Telemetry Data Streamed for Native Data Source Paths
For each source path, the following table shows the information that is streamed when the subscription is first
created (the baseline) and when event notifications occur.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
202

Model-Driven Telemetry
Native Data Source Paths

Event NotificationsSubscription BaselinePath Type

Sends event notifications for create,
update, and delete events. The
following values are exported
through telemetry for the RIB path:

• Next-hop routing information:

• Address of the next hop

• Outgoing interface for
the next hop

• VRF name for the next
hop

• Owner of the next hop

• Preference for the next
hop

• Metric for the next hop

• Tag for the next hop

• Segment ID for the next
hop

• Tunnel ID for the next
hop

• Encapsulation type for
the next hop

• Bitwise OR of flags for
the Next Hop Type

• For Layer-3 routing
information:

• VRF name of the route

• Route prefix address

• Mask length for the route

• Number of next hops for
the route

• Event type

• Next hops

Sends all routesRIB

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
203

Model-Driven Telemetry
Telemetry Data Streamed for Native Data Source Paths

Event NotificationsSubscription BaselinePath Type

Sends event notifications for add,
update, and delete events. The
following values are exported
through telemetry for the MAC
path:

• MAC address

• MAC address type

• VLAN number

• Interface name

• Event types

Both static and dynamic entires are
supported in event notifications.

Executes a GETALL from DME for
static and dynamic MAC entries

MAC

Sends event notifications for add,
update, and delete events. The
following values are exported
through telemetry for the
Adjacency path:

• IP address

• MAC address

• Interface name

• Physical interface name

• VRF name

• Preference

• Source for the adjacency

• Address family for the
adjacency

• Adjacency event type

Sends the IPv4 and IPv6
adjacencies

Adjacency

For additional information, refer to Github https://github.com/CiscoDevNet/nx-telemetry-proto.

Guidelines and Limitations
The native data source path feature has the following guidelines and limitations:

• For streaming from the RIB,MAC, and Adjacency native data source paths, sensor-path property updates
do not support custom criteria like depth, query-condition, or filter-condition.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
204

Model-Driven Telemetry
Guidelines and Limitations

https://github.com/CiscoDevNet/nx-telemetry-proto

Configuring the Native Data Source Path for Routing Information
You can configure the native data source path for routing information, which sends information about all
routes that are contained in the URIB. When you subscribe, the baseline sends all the route information. After
the baseline, notifications are sent for route update and delete operations for the routing protocols that the
switch supports. For the data sent in the RIB notifications, see Telemetry Data Streamed for Native Data
Source Paths, on page 202.

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

Set the data source to native so that any native
application can use the streamed data without
requiring a specific model or database.

data-source native

Example:
switch-1(conf-tm-sensor)# data-source
native
switch-1(conf-tm-sensor)#

Step 4

Configure the RIB path which streams routes
and route update information.

path rib

Example:

Step 5

nxosv2(conf-tm-sensor)# path rib
nxosv2(conf-tm-sensor)#

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
205

Model-Driven Telemetry
Configuring the Native Data Source Path for Routing Information

PurposeCommand or Action

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch-1(conf-tm-dest)#

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch-1(conf-tm-dest)#

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Native Data Source Path for MAC Information
You can configure the native data source path forMAC information, which sends information about all entries
in the MAC table. When you subscribe, the baseline sends all the MAC information. After the baseline,
notifications are sent for add, update, and delete MAC address operations. For the data sent in the MAC
notifications, see Telemetry Data Streamed for Native Data Source Paths, on page 202.

For update or delete events, MAC notifications are sent only for the MAC addresses that have IP adjacencies.Note

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
206

Model-Driven Telemetry
Configuring the Native Data Source Path for MAC Information

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

Set the data source to native so that any native
application can use the streamed data without
requiring a specific model or database.

data-source native

Example:
switch-1(conf-tm-sensor)# data-source
native
switch-1(conf-tm-sensor)#

Step 4

Configure the MAC path which streams
information about MAC entries and MAC
notifications.

path mac

Example:

nxosv2(conf-tm-sensor)# path mac
nxosv2(conf-tm-sensor)#

Step 5

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch-1(conf-tm-dest)#

Example:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
207

Model-Driven Telemetry
Configuring the Native Data Source Path for MAC Information

PurposeCommand or Action
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch-1(conf-tm-dest)#

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch-1(conf-tm-dest)#

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Configuring the Native Data Path for IP Adjacencies
You can configure the native data source path for IP adjacency information, which sends information about
all IPv4 and IPv6 adjacencies for the switch.When you subscribe, the baseline sends all the adjacencies. After
the baseline, notifications are sent for add, update, and delete adjacency operations. For the data sent in the
adjacency notifications, see Telemetry Data Streamed for Native Data Source Paths, on page 202.

Before you begin

If you have not enabled the telemetry feature, enable it now (feature telemetry).

Procedure

PurposeCommand or Action

Enter configuration mode.configure terminal

Example:

Step 1

switch-1# configure terminal
switch-1(config)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
208

Model-Driven Telemetry
Configuring the Native Data Path for IP Adjacencies

PurposeCommand or Action

Enter configuration mode for the telemetry
features.

telemetry

Example:

Step 2

switch-1(config)# telemetry
switch-1(config-telemetry)#

Create a sensor group.sensor-group sgrp_id

Example:

Step 3

switch-1(conf-tm-sub)# sensor-grp 6
switch-1(conf-tm-sub)#

Set the data source to native so that any native
application can use the streamed data.

data-source native

Example:

Step 4

switch-1(conf-tm-sensor)# data-source
native
switch-1(conf-tm-sensor)#

Configure the Adjacency path which streams
information about the IPv4 and IPv6
adjacencies.

path adjacency

Example:

nxosv2(conf-tm-sensor)# path
adjacency
nxosv2(conf-tm-sensor)#

Step 5

Enter telemetry destination group submode
and configure the destination group.

destination-group grp_id

Example:

Step 6

switch-1(conf-tm-sensor)#
destination-group 33
switch-1(conf-tm-dest)#

Configure the telemetry data for the
subscription to stream to the specified IP

ip address ip_addr port port protocol {
HTTP | gRPC } encoding { JSON | GPB
| GPB-compact }

Step 7

address and port and set the protocol and
encoding for the data stream.

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol http
encoding json
switch-1(conf-tm-dest)#

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb
switch-1(conf-tm-dest)#

Example:
switch-1(conf-tm-dest)# ip address
192.0.2.11 port 50001 protocol grpc
encoding gpb-compact
switch-1(conf-tm-dest)#

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
209

Model-Driven Telemetry
Configuring the Native Data Path for IP Adjacencies

PurposeCommand or Action

Enter telemetry subscription submode, and
configure the telemetry subscription.

subscription sub_id

Example:

Step 8

switch-1(conf-tm-dest)# subscription 33
switch-1(conf-tm-sub)#

Link the sensor group to the current
subscription and set the data sampling interval

snsr-group sgrp_id sample-interval interval

Example:

Step 9

in milliseconds. The sampling interval
switch-1(conf-tm-sub)# snsr-grp 6
sample-interval 5000
switch-1(conf-tm-sub)#

determines whether the switch sends telemetry
data periodically, or when interface events
occur.

Link the destination group to the current
subscription. The destination group that you

dst-group dgrp_id

Example:

Step 10

specify must match the destination group that
switch-1(conf-tm-sub)# dst-grp 33
switch-1(conf-tm-sub)#

you configured in the destination-group
command.

Additional References

Related Documents
Document TitleRelated Topic

Telemetry Deployment for VXLAN EVPN SolutionExample configurations of telemetry deployment for
VXLAN EVPN.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
210

Model-Driven Telemetry
Additional References

https://pubhub.devnetcloud.com/media/nx-os/docs/telemetryvxlan/Telemetry-Deployment-VXLAN-EVPN.pdf

C H A P T E R 17
XML Management Interface

This section contains the following topics:

• About the XML Management Interface, on page 211
• Licensing Requirements for the XML Management Interface, on page 212
• Prerequisites to Using the XML Management Interface, on page 213
• Using the XML Management Interface, on page 213
• Information About Example XML Instances, on page 225
• Additional References, on page 231

About the XML Management Interface

About the XML Management Interface
You can use the XMLmanagement interface to configure a device. The interface uses the XML-based Network
Configuration Protocol (NETCONF), which allows you to manage devices and communicate over the interface
with an XML management tool or program. The Cisco NX-OS implementation of NETCONF requires you
to use a Secure Shell (SSH) session for communication with the device.

NETCONF is implemented with an XML Schema (XSD) that allows you to enclose device configuration
elements within a remote procedure call (RPC) message. From within an RPC message, you select one of the
NETCONF operations that matches the type of command that you want the device to execute. You can
configure the entire set of CLI commands on the device with NETCONF. For information about using
NETCONF, see the Creating NETCONF XML Instances, on page 215 and RFC 4741.

For more information about using NETCONF over SSH, see RFC 4742.

This section includes the following topics:

• NETCONF Layers, on page 211
• SSH xmlagent, on page 212

NETCONF Layers
The following are the NETCONF layers:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
211

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

Table 15: NETCONF Layers

ExampleLayer

SSHv2Transport protocol

<rpc>, <rpc-reply>RPC

<get-config>, <edit-config>Operations

show or configuration commandContent

The following is a description of the four NETCONF layers:

• SSH transport protocol—Provides a secure, encrypted connection between a client and the server.
• RPC tag—Introduces a configuration command from the requestor and the corresponding reply from the
XML server.

• NETCONF operation tag—Indicates the type of configuration command.
• Content—Indicates the XML representation of the feature that you want to configure.

SSH xmlagent
The device software provides an SSH service that is called xmlagent that supports NETCONF over SSH
Version 2.

The xmlagent service is referred to as the XML server in the Cisco NX-OS software.Note

NETCONF over SSH starts with the exchange of a hello message between the client and the XML server.
After the initial exchange, the client sends XML requests, which the server responds to with XML responses.
The client and server terminate requests and responses with the character sequence >. Because this character
sequence is not valid in XML, the client and the server can interpret when the messages end, which keeps
communication in sync.

The XML schemas that define XML configuration instances that you can use are described in the Creating
NETCONF XML Instances, on page 215 section.

Licensing Requirements for the XML Management Interface
ProductProduct

The XML management interface requires no license.
Any feature not included in a license package is
bundled with the Cisco NX-OS image and is provided
at no extra charge to you. For a complete explanation
of the Cisco NX-OS licensing scheme, see the Cisco
NX-OS Licensing Guide.

Cisco NX-OS

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
212

XML Management Interface
SSH xmlagent

Prerequisites to Using the XML Management Interface
The XML management interface has the following prerequisites:

• You must install SSHv2 on the client PC.
• You must install an XML management tool that supports NETCONF over SSH on the client PC.
• You must set the appropriate options for the XML server on the device.

Using the XML Management Interface
This section describes how to manually configure and use the XML management interface. Use the XML
management interface with the default settings on the device.

Configuring SSH and the XML Server Options
By default, the SSH server is enabled on the device. If you disable SSH, you must enable it before you start
an SSH session on the client PC.

You can configure XML server options to control the number of concurrent sessions and the timeout for active
sessions. You can also enable XML document validation and terminate XML sessions.

The XML server timeout applies only to active sessions.Note

For more information about configuring SSH, see the Cisco NX-OS security configuration guide for your
platform.

For more information about the XML commands, see the Cisco NX-OS system management configuration
guide for your platform.

Starting an SSH Session
You can start an SSHv2 session on the client PC with a command similar to the following:

ssh2 username@ip-address -s xmlagent

Enter the login username, the IP address of the device, and the service to connect to. The xmlagent service is
referred to as the XML server in the device software.

The SSH command syntax can differ from the SSH software on the client PC.Note

If you do not receive a hello message from the XML server, verify the following conditions:

• The SSH server is enabled on the device.
• The XML server max-sessions option is adequate to support the number of SSH connections to the
device.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
213

XML Management Interface
Prerequisites to Using the XML Management Interface

• The active XML server sessions on the device are not all in use.

Sending the Hello Message
When you start an SSH session to the XML server, the server responds immediately with a hello message
that informs the client of the server’s capabilities. You must advertise your capabilities to the server with a
hello message before the server processes any other requests. The XML server supports only base capabilities
and expects support only for the base capabilities from the client.

The following are sample hello messages from the server and the client.

You must end all XML documents with]]>]]> to support synchronization in NETCONF over SSH.Note

Hello Message from the server

<?xml version="1.0"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
</capabilities>
<session-id>25241</session-id>

</hello>]]>]]>

Hello Message from the Client

<?xml version="1.0"?>
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:capabilities>
<nc:capability>urn:ietf:params:xml:ns:netconf:base:1.0</nc:capability>
</nc:capabilities>

</nc:hello>]]>]]>

Obtaining the XSD Files

Procedure

Step 1 From your browser, navigate to the Cisco software download site at the following URL:

http://software.cisco.com/download/navigator.html

The Download Software page opens.

Step 2 In the Select a Product list, choose Switches > Data Center Switches > platform > model.
Step 3 If you are not already logged in as a registered Cisco user, you are prompted to log in now.
Step 4 From the Select a Software Type list, choose NX-OS XML Schema Definition.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
214

XML Management Interface
Sending the Hello Message

http://software.cisco.com/download/navigator.html

Step 5 Find the desired release and click Download.

Step 6 If you are requested, follow the instructions to apply for eligibility to download strong encryption software
images.

The Cisco End User License Agreement opens.

Step 7 Click Agree and follow the instructions to download the file to your PC.

Sending an XML Document to the XML Server
To send an XML document to the XML server through an SSH session that you opened in a command shell,
you can copy the XML text from an editor and paste it into the SSH session. Although typically you use an
automated method to send XML documents to the XML server, you can verify the SSH connection to the
XML server with this method.

Follow these guidelines for this method:

• Verify that the XML server sent the hello message immediately after you started the SSH session by
looking for the hello message text in the command shell output.

• Send the client hello message before you send any XML requests. Because the XML server sends the
hello response immediately, no additional response is sent after you send the client hello message.

• Always terminate the XML document with the character sequence]]>]]>.

Creating NETCONF XML Instances
You can create NETCONF XML instances by enclosing XML device elements within an RPC tag and
NETCONF operation tags. The XML device elements are defined in feature-based XML schema definition
(XSD) files, which enclose available CLI commands in an XML format.

The following are the tags that are used in the NETCONF XML request in a framework context. Tag lines
are marked with the following letter codes:

• X —XML declaration
• R—RPC request tag
• N—NETCONF operation tags
• D—Device tags

NETCONF XML Framework Context

X <?xml version="1.0"?>
R <nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
R xmlns="http://www.cisco.com/nxos:1.0:nfcli”>
N <nc:get>
N <nc:filter type="subtree">
D <show>
D <xml>
D <server>
D <status/>
D </server>
D </xml>
D </show>
N </nc:filter>
N </nc:get>
R </nc:rpc>]]>]]>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
215

XML Management Interface
Sending an XML Document to the XML Server

You must use your own XML editor or XML management interface tool to create XML instances.Note

RPC Request Tag rpc
All NETCONF XML instances must begin with the RPC request tag <rpc>. The example RPC Request Tag
<rpc> shows the <rpc> element with its requiredmessage-id attribute. The message-id attribute is replicated
in the <rpc-reply> and can be used to correlate requests and replies. The <rpc> node also contains the following
XML namespace declarations:

• NETCONF namespace declaration—The <rpc> and NETCONF tags that are defined in the
"urn:ietf:params:xml:ns:netconf:base:1.0" namespace, are present in the netconf.xsd schema file.

• Device namespace declaration—Device tags encapsulated by the <rpc> and NETCONF tags are defined
in other namespaces. Device namespaces are feature-oriented. Cisco NX-OS feature tags are defined in
different namespaces. RPC Request Tag <rpc> is an example that uses the nfcli feature. It declares that
the device namespace is "xmlns=http://www.cisco.com/nxos:1.0:nfcli". nfcli.xsd contains this namespace
definition. For more information, see section on Obtaining the XSD Files.

RPC Tag Request

<nc:rpc message-id="315" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
...
</nc:rpc>]]>]]>

Configuration Request

The following is an example of a configuration request.
<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>

</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>

</description>
</__XML__MODE_if-eth-base>

</__XML__MODE_if-ethernet>
</ethernet>

</interface>
</__XML__MODE__exec_configure>

</configure>
</nc:config>

</nc:edit-config>
</nc:rpc>]]>]]>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
216

XML Management Interface
RPC Request Tag rpc

__XML__MODE tags are used internally by the NETCONF agent. Some tags are present only as children of
a certain __XML__MODE. By examining the schema file, you can find the correct mode tag that leads to the
tags representing the CLI command in XML.

NETCONF Operations Tags
NETCONF provides the following configuration operations:

Table 16: NETCONF Operations in Cisco NX-OS

ExampleDescriptionNETCONF Operation

NETCONFClose Session Instance,
on page 225

Closes the current XML server
session.

close-session

NETCONF Commit Instance -
Candidate Configuration
Capability, on page 230

Sets the running configuration to
the current contents of the
candidate configuration.

commit

NETCONF Confirmed-commit
Instance , on page 230

Provides parameters to commit the
configuration for a specified time.
If this operation is not followed by
a commit operation within the
confirm-timeout period, the
configuration is reverted to the state
before the confirmed-commit
operation.

confirmed-commit

NETCONF copy-config Instance,
on page 226

Copies the content of source
configuration datastore to the target
datastore.

copy-config

—Operation not supported.delete-config

NETCONF edit-config Instance,
on page 226

NETCONF rollback-on-error
Instance , on page 230

Configures features in the running
configuration of the device. You
use this operation for configuration
commands.

edit-config

Creating NETCONF XML
Instances, on page 215

Receives configuration information
from the device. You use this
operation for show commands. The
source of the data is the running
configuration.

get

NETCONF get-config Instance, on
page 228

Retrieves all or part of a
configuration

get-config

NETCONF Kill-session Instance,
on page 226

Closes the specified XML server
session. You cannot close your own
session. See the close-session
NETCONF operation.

kill-session

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
217

XML Management Interface
NETCONF Operations Tags

ExampleDescriptionNETCONF Operation

NETCONFLock Instance, on page
228

Allows the client to lock the
configuration system of a device.

lock

NETCONF unlock Instance, on
page 229

Releases the configuration lock that
the session issued.

unlock

NETCONF validate Capability
Instance , on page 231

Checks a candidate configuration
for syntactical and semantic errors
before applying the configuration
to the device.

validate

Device Tags
The XML device elements represent the available CLI commands in XML format. The feature-specific schema
files contain the XML tags for CLI commands of that particular feature. See the Obtaining the XSD Files, on
page 214 section.

Using this schema, it is possible to build an XML instance. In the following examples, the relevant portions
of the nfcli.xsd schema file that was used to build Creating NETCONFXML Instances, on page 215 is shown.

The following example shows XML device tags.

show xml Device Tags

<xs:element name="show" type="show_type_Cmd_show_xml"/>
<xs:complexType name="show_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>to display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="xml" minOccurs="1" type="xml_type_Cmd_show_xml"/>
<xs:element name="debug" minOccurs="1" type="debug_type_Cmd_show_debug"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="xpath-filter" type="xs:string"/>
<xs:attribute name="uses-namespace" type="nxos:bool_true"/>
</xs:complexType>

The following example shows the server status device tags.

server status Device Tags

<xs:complexType name="xml_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="server" minOccurs="1" type="server_type_Cmd_show_xml"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="server_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent server</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
218

XML Management Interface
Device Tags

<xs:element name="status" minOccurs="1" type="status_type_Cmd_show_xml"/>
<xs:element name="logging" minOccurs="1" type="logging_type_Cmd_show_logging_facility"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

The following example shows the device tag response.

Device Tag Response

<xs:complexType name="status_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="__XML__OPT_Cmd_show_xml___readonly__" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:group ref="og_Cmd_show_xml___readonly__" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:group name="og_Cmd_show_xml___readonly__">
<xs:sequence>
<xs:element name="__readonly__" minOccurs="1" type="__readonly___type_Cmd_show_xml"/>
</xs:sequence>
</xs:group>
<xs:complexType name="__readonly___type_Cmd_show_xml">
<xs:sequence>
<xs:group ref="bg_Cmd_show_xml_operational_status" maxOccurs="1"/>
<xs:group ref="bg_Cmd_show_xml_maximum_sessions_configured" maxOccurs="1"/>
<xs:group ref="og_Cmd_show_xml_TABLE_sessions" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

“__XML__OPT_Cmd_show_xml___readonly__” is optional. This tag represents the response. For more
information on responses, see the RPC Response Tag, on page 224 section.

Note

You can use the | XML option to find the tags you can use to execute a <get>. The following is an example
of the | XML option.

XML Example

Switch#> show xml server status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:nfcli">
<nf:data>
<show>
<xml>
<server>
<status>
<__XML__OPT_Cmd_show_xml___readonly__>
<__readonly__>
<operational_status>
<o_status>enabled</o_status>
</operational_status>
<maximum_sessions_configured>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
219

XML Management Interface
Device Tags

<max_session>8</max_session>
</maximum_sessions_configured>
</__readonly__>
</__XML__OPT_Cmd_show_xml___readonly__>
</status>
</server>
</xml>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

From this response, you can see that the namespace defining tag to execute operations on this component is
http://www.cisco.com/nxos:1.0:nfcli and the nfcli.xsd file can be used to build requests for this feature.

You can enclose the NETCONF operation tags and the device tags within the RPC tag. The </rpc> end-tag
is followed by the XML termination character sequence.

Extended NETCONF Operations
Cisco NX-OS supports an <rpc> operation named <exec-command>. The operation allows client applications
to send CLI configuration and show commands and to receive responses to those commands as XML tags.

The following is an example of the tags that are used to configure an interface. Tag lines are marked with the
following letter codes:

• X —XML declaration
• R—RPC request tag
• EO—Extended operation

Configuration CLI Commands Sent Through <exec-command>

X <?xml version="1.0"?>
R <nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
EO <nxos:exec-command>
EO <nxos:cmd>conf t ; interface ethernet 2/1 </nxos:cmd>
EO <nxos:cmd>channel-group 2000 ; no shut; </nxos:cmd>
EO </nxos:exec-command>
R </nf:rpc>]]>]]>

The following is the response to the operation:

Response to CLI Commands Sent Through <exec-command>

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:ok/>
</nf:rpc-reply>
]]>]]>

The following example shows how the show CLI commands that are sent through the <exec-command> can
be used to retrieve data.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
220

XML Management Interface
Extended NETCONF Operations

show CLI Commands Sent Through <exec-command>

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show interface brief</nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>

The following is the response to the operation.

Response to the show CLI commands Sent Through <exec-command>

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0"
xmlns:mod="http://www.cisco.com/nxos:1.0:if_manager" message-id="110">
<nf:data>
<mod:show>
<mod:interface>
<mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
<mod:__readonly__>
<mod:TABLE_interface>
<mod:ROW_interface>
<mod:interface>mgmt0</mod:interface>
<mod:state>up</mod:state>
<mod:ip_addr>172.23.152.20</mod:ip_addr>
<mod:speed>1000</mod:speed>
<mod:mtu>1500</mod:mtu>
</mod:ROW_interface>
<mod:ROW_interface>
<mod:interface>Ethernet2/1</mod:interface>
<mod:vlan>--</mod:vlan>
<mod:type>eth</mod:type>
<mod:portmode>routed</mod:portmode>
<mod:state>down</mod:state>
<mod:state_rsn_desc>Administratively down</mod:state_rsn_desc>
<mod:speed>auto</mod:speed>
<mod:ratemode>D</mod:ratemode>
</mod:ROW_interface>
</mod:TABLE_interface>
</mod:__readonly__>
</mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
</mod:interface>
</mod:show>
</nf:data>
</nf:rpc-reply>
]]>]]>

The following table provides a detailed explanation of the operation tags:

Table 17: Tags

DescriptionTag

Executes a CLI command.<exec-command>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
221

XML Management Interface
Extended NETCONF Operations

DescriptionTag

Contains the CLI command. A command can be a
show or configuration command. Separate multiple
configuration commands by using a semicolon “;”.
Multiple show commands are not supported. You can
send multiple configuration commands in different
<cmd> tags as part of the same request. For more
information, see the Example in Configuration CLI
Commands Sent Through <exec-command>.

<cmd>

Replies to configuration commands that are sent through the <cmd> tag are as follows:

• <nf:ok>: All configure commands are executed successfully.
• <nf:rpc-error>: Some commands have failed. The operation stops on the first error, and the <nf:rpc-error>
subtree provides more information on what configuration failed. Notice that any configuration that is
executed before the failed command would have been applied to the running configuration.

The following example shows a failed configuration:

Failed Configuration

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nxos:exec-command>
<nxos:cmd>configure terminal ; interface ethernet2/1 </nxos:cmd>
<nxos:cmd>ip address 1.1.1.2/24 </nxos:cmd>
<nxos:cmd>no channel-group 2000 ; no shut; </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Ethernet2/1: not part of port-channel 2000
</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

Because of a command execution, the interface IP address is set, but the administrative state is not modified
(the no shut command is not executed). The reason the administrative state is not modified is because the no
port-channel 2000 command results in an error.

The <rpc-reply> results from a show command that is sent through the <cmd> tag that contains the XML
output of the show command.

You cannot combine configuration and show commands on the same <exec-command> instance. The following
example shows a configuration and show command that are combined in the same instance.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
222

XML Management Interface
Extended NETCONF Operations

Combination of Configuration and show Commands

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>conf t ; interface ethernet 2/1 ; ip address 1.1.1.4/24 ; show xml
server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: cannot mix config and show in exec-command. Config cmds
before the show were executed.
Cmd:show xml server status</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

The show command must be sent in its own <exec-command> instance as shown in the following example:

Show CLI Commands Sent Through <exec-command>

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show xml server status ; show xml server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: show cmds in exec-command shouldn't be followed by anything
</nf:error-message>
<nf:error-info>
<nf:bad-element><cmd></nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

NETCONF Replies
For every XML request sent by the client, the XML server sends an XML response enclosed in the RPC
response tag <rpc-reply>.

This section contains the following topics:

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
223

XML Management Interface
NETCONF Replies

• RPC Response Tag, on page 224
• Interpreting Tags Encapsulated in the Data Tag, on page 224

RPC Response Tag
The following example shows the RPC response tag <rpc-reply>.

RPC Response Elements

<nc:rpc-reply message-id=”315” xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
<ok/>
</nc:rpc-reply>]]>]]>

The elements <ok>, <data>, and <rpc-error> can appear in the RPC response. The following table describes
the RPC response elements that can appear in the <rpc-reply> tag.

Table 18: RPC Response Elements

DescriptionElement

The RPC request completed successfully. This
element is used when no data is returned in the
response.

<ok>

The RPC request completed successfully. The data
associated with the RPC request is enclosed in the
<data> element.

<data>

The RPC request failed. Error information is enclosed
in the <rpc-error> element.

<rpc-error>

Interpreting Tags Encapsulated in the Data Tag
The device tags encapsulated by the <data> tag contain the request followed by the response. A client application
can safely ignore all tags before the <readonly> tag. The following is an example:

RPC-reply data

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nf:data>
<show>
<interface>
<__XML__OPT_Cmd_show_interface_brief___readonly__>
<__readonly__>
<TABLE_interface>
<ROW_interface>
<interface>mgmt0</interface>
<state>up</state>
<ip_addr>xx.xx.xx.xx</ip_addr>
<speed>1000</speed>
<mtu>1500</mtu>
</ROW_interface>
<ROW_interface>
<interface>Ethernet2/1</interface>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
224

XML Management Interface
RPC Response Tag

<vlan>--</vlan>
<type>eth</type>
<portmode>routed</portmode>
<state>down</state>
<state_rsn_desc>Administratively down</state_rsn_desc>
<speed>auto</speed>
<ratemode>D</ratemode>
</ROW_interface>
</TABLE_interface>
</__readonly__>
</__XML__OPT_Cmd_show_interface_brief___readonly__>
</interface>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

<__XML__OPT.*> and <__XML__BLK.*> appear in responses and are sometimes used in requests. These
tags are used by the NETCONF agent and are present in responses after the <__readonly__> tag. They are
necessary in requests and should be added according to the schema file to reach the XML tag that represents
the CLI command.

Information About Example XML Instances

Example XML Instances
This section provides the examples of the following XML instances:

• NETCONF Close Session Instance, on page 225
• NETCONF Kill-session Instance, on page 226
• NETCONF copy-config Instance, on page 226
• NETCONF edit-config Instance, on page 226
• NETCONF get-config Instance, on page 228
• NETCONF Lock Instance, on page 228
• NETCONF unlock Instance, on page 229
• NETCONF Commit Instance - Candidate Configuration Capability, on page 230
• NETCONF Confirmed-commit Instance , on page 230
• NETCONF rollback-on-error Instance , on page 230
• NETCONF validate Capability Instance , on page 231

NETCONF Close Session Instance
The following example shows the close-session request, followed by the close-session response.

Close-session Request

<?xml version="1.0"?>
<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:close-session/>
</nc:rpc>]]>]]>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
225

XML Management Interface
Information About Example XML Instances

Close-session Response

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>

NETCONF Kill-session Instance
The following example shows the kill-session request followed by the kill-session response.

Kill-session Request

<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>

Kill-session Request

<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>

NETCONF copy-config Instance
The following example shows the copy-config request followed by the copy-config response.

Copy-config Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<running/>
</target>
<source>
<url>https://user@example.com:passphrase/cfg/new.txt</url>
</source>
</copy-config>
</rpc>

Copy-config Response

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF edit-config Instance
The following example shows the use of NETCONF edit-config.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
226

XML Management Interface
NETCONF Kill-session Instance

Edit-config Request

<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>
</description>
</__XML__MODE_if-eth-base>
</__XML__MODE_if-ethernet>
</ethernet>
</interface>
</__XML__MODE__exec_configure>
</configure>
</nc:config>
</nc:edit-config>
</nc:rpc>]]>]]>

Edit-config Response

<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager" message-id="16">
<nc:ok/>
</nc:rpc-reply>]]>]]>

The operation attribute in edit-config identifies the point in configuration where the specified operation is
performed. If the operation attribute is not specified, the configuration is merged into the existing configuration
data store. Operation attribute can have the following values:

• create
• merge
• delete

The following example shows how to delete the configuration of interface Ethernet 0/0 from the running
configuration.

Edit-config: Delete Operation Request

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
227

XML Management Interface
NETCONF edit-config Instance

<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Response to edit-config: Delete Operation

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF get-config Instance
The following example shows the use of NETCONF get-config.

Get-config Request to Retrieve the Entire Subtree

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type="subtree">
<top xmlns="http://example.com/schema/1.2/config">
<users/>
</top>
</filter>
</get-config>
</rpc>]]>]]>

Get-config Response with Results of the Query

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>
<company-info>
<dept>1</dept>
<id>1</id>
</company-info>
</user>
<!-- additional <user> elements appear here... -->
</users>
</top>
</data>
</rpc-reply>]]>]]>

NETCONF Lock Instance
The following example shows the use of NETCONF lock operation.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
228

XML Management Interface
NETCONF get-config Instance

The following examples show the lock request, a success response, and a response to an unsuccessful attempt.

Lock Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>]]>]]>

Response to Successful Acquisition of Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/> <!-- lock succeeded -->
</rpc-reply>]]>]]>

Response to Unsuccessful Attempt to Acquire the Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error> <!-- lock failed -->
<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message>
Lock failed, lock is already held
</error-message>
<error-info>
<session-id>454</session-id>
<!-- lock is held by NETCONF session 454 -->
</error-info>
</rpc-error>
</rpc-reply>]]>]]>

NETCONF unlock Instance
The following example shows the use of the NETCONF unlock operation.

unlock request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

response to unlock request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
229

XML Management Interface
NETCONF unlock Instance

<ok/>
</rpc-reply>

NETCONF Commit Instance - Candidate Configuration Capability
The following example shows the commit operation and the commit reply:

Commit Operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Commit Reply

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Confirmed-commit Instance
The following example shows the confirmed-commit operation and the confirmed-commit reply.

Confirmed Commit Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>
</commit>
</rpc>]]>]]>

Confirmed Commit Response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF rollback-on-error Instance
The following example shows the use of NETCONF rollback on error capability. The string
urn:ietf:params:netconf:capability:rollback-on-error:1.0 identifies the capability.

The following example shows how to configure rollback on error and the response to this request.

Rollback-on-error capability

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
230

XML Management Interface
NETCONF Commit Instance - Candidate Configuration Capability

</target>
<error-option>rollback-on-error</error-option>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>100000</mtu>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Rollback-on-error response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF validate Capability Instance
The following example shows the use of the NETCONF validate capability. The string
urn:ietf:params:netconf:capability:validate:1.0 identifies the capability.

Validate request

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<validate>
<source>
<candidate/>
</source>
</validate>
</rpc>]]>]]>

Response to validate request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

Additional References
This section provides additional information that is related to implementing the XML management interface.

Standards

TitleStandards

—No new or modified standards are supported by this
feature. Support for existing standards has not been
modified by this feature.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
231

XML Management Interface
NETCONF validate Capability Instance

RFCs

TitleRFCs

NETCONF Configuration ProtocolRFC 4741

Using the NETCONF Configuration Protocol over
Secure Shell (SSH)

RFC 4742

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
232

XML Management Interface
Additional References

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

A P P E N D I X A
Streaming Telemetry Sources

• About Streaming Telemetry, on page 233
• Guidelines and Limitations, on page 233
• Data Available for Telemetry, on page 233

About Streaming Telemetry
The streaming telemetry feature of Cisco Nexus switches continuously streams data out of the network and
notifies the client, providing near-real-time access to monitoring data.

Guidelines and Limitations
Following are the guideline and limitations for streaming telemetry:

• The telemetry feature is available in Cisco Nexus switches.

• Switches with less than 8 GB of memory do not support telemetry. The Cisco Nexus 3500-XL switch
has 16 GB of memory and therefore supports telemetry.

Data Available for Telemetry
For each component group, the distinguished names (DNs) in the appendix of the NX-API DME Model
Reference can provide the listed properties as data for telemetry.

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
233

https://developer.cisco.com/site/nxapi-dme-model-reference-api/
https://developer.cisco.com/site/nxapi-dme-model-reference-api/

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
234

Streaming Telemetry Sources
Data Available for Telemetry

I N D E X

B

Bash 3, 5
accessing 3
examples 5
feature bash-shell 3

Bourne-Again SHell, See Bash

N

NX-API 91–92, 94, 96, 99, 109, 113, 119
CLI 92
cookie 92
management commands 94
message format 92
request elements 96
response codes 109
response elements 99
security 92
transport 92
user interface 113, 119

S

show tech-support telemetry 172

T

tcl 55–57, 60
cli commands 56
command separation 56
history 56
no interactive help 55
options 57
references 60
sandbox 57
security 57
tab completion 56
tclquit command 57
variables 57

telemetry 153
high availability 153
installing 153

Tool Command Language, See tcl

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
IN-1

Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
IN-2

INDEX

	Cisco Nexus 3500 Series NX-OS Programmability Guide, Release 9.3(x)
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation for Cisco Nexus 3000 Series Switches
	Documentation Feedback
	Communications, Services, and Additional Information

	New and Changed Information
	New and Changed Information

	Bash
	About Bash
	Accessing Bash
	Escalate Privileges to Root
	Examples of Bash Commands
	Displaying System Statistics
	Running Bash from CLI
	Running Python from Bash

	Copy Through Kstack

	Guest Shell
	About the Guest Shell
	Guidelines and Limitations for Guestshell
	Accessing the Guest Shell
	Resources Used for the Guest Shell
	Capabilities in the Guestshell
	NX-OS CLI in the Guest Shell
	Network Access in Guest Shell
	Access to Bootflash in Guest Shell
	Python in Guest Shell
	Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
	Installing RPMs in the Guest Shell

	Security Posture for Guest Shell
	Kernel Vulnerability Patches
	ASLR and X-Space Support
	Namespace Isolation
	Root-User Restrictions
	Resource Management

	Guest File System Access Restrictions
	Managing the Guest Shell
	Disabling the Guest Shell
	Destroying the Guest Shell
	Enabling the Guest Shell
	Replicating the Guest Shell
	Exporting Guest Shell rootfs
	Importing Guest Shell rootfs
	Importing YAML File
	show guestshell Command

	Verifying Virtual Service and Guest Shell Information
	Persistently Starting Your Application From the Guest Shell
	Procedure for Persistently Starting Your Application from the Guest Shell
	An Example Application in the Guest Shell
	Troubleshooting Guest Shell Issues

	Python API
	Information About the Python API
	Using Python
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-Interactive Python
	Running Scripts with Embedded Event Manager
	Python Integration with Cisco NX-OS Network Interfaces
	Cisco NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Schedular

	Scripting with Tcl
	About Tcl
	Tclsh Command Help
	Tclsh Command History
	Tclsh Tab Completion
	Tclsh CLI Command
	Tclsh Command Separation
	Tcl Variables
	Tclquit
	Tclsh Security

	Running the Tclsh Command
	Navigating Cisco NX-OS Modes from the Tclsh Command
	Tcl References

	Ansible
	Prerequisites
	About Ansible
	Cisco Ansible Module

	Puppet Agent
	About Puppet
	Prerequisites
	Puppet Agent NX-OS Environment
	ciscopuppet Module

	SaltStack
	About SaltStack
	About NX-OS and SaltStack

	Guidelines and Limitations
	Cisco NX-OS Environment for SaltStack
	Enabling NX-API for SaltStack
	Installing SaltStack for NX-OS

	Using Chef Client with Cisco NX-OS
	About Chef
	Prerequisites
	Chef Client NX-OS Environment
	cisco-cookbook

	Using Docker with Cisco NX-OS
	About Docker with Cisco NX-OS
	Guidelines and Limitations
	Prerequisites for Setting Up Docker Containers Within Cisco NX-OS
	Starting the Docker Daemon
	Configure Docker to Start Automatically
	Starting Docker Containers: Host Networking Model
	Starting Docker Containers: Bridged Networking Model
	Mounting the bootflash and volatile Partitions in the Docker Container
	Enabling Docker Daemon Persistence on Enhanced ISSU Switchover
	Enabling Docker Daemon Persistence on the Cisco Nexus Platform Switches Switchover
	Resizing the Docker Storage Backend
	Stopping the Docker Daemon
	Docker Container Security
	Securing Docker Containers With User namespace Isolation
	Moving the cgroup Partition

	Docker Troubleshooting
	Docker Fails to Start
	Docker Fails to Start Due to Insufficient Storage
	Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message)
	Failure to Pull Images from Docker Hub (Client Timeout Error Message)
	Docker Daemon or Containers Not Running On Switch Reload or Switchover
	Resizing of Docker Storage Backend Fails
	Docker Container Doesn't Receive Incoming Traffic On a Port
	Unable to See Data Port And/Or Management Interfaces in Docker Container
	General Troubleshooting Tips

	NX-API
	About NX-API
	Feature NX-API
	Transport
	Message Format
	Security

	Using NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Request Elements
	NX-API Response Elements
	About JSON (JavaScript Object Notation)
	CLI Execution

	XML and JSON Supported Commands
	Examples of XML and JSON Output

	NX-API Response Codes
	Table of NX-API Response Codes

	NX-API Developer Sandbox
	NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Command Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to Payloads

	NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Input Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to REST Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
	Using the Developer Sandbox to Convert from RESTCONF to json or XML

	XML Support for ABM and LM in N3500
	XML Support for ABM and LM in N3500

	Converting CLI Commands to Network Configuration Format
	Information About XMLIN
	Licensing Requirements for XMLIN
	Installing and Using the XMLIN Tool
	Converting Show Command Output to XML
	Configuration Examples for XMLIN

	Model-Driven Telemetry
	About Telemetry
	Telemetry Components and Process
	High Availability of the Telemetry Process

	Licensing Requirements for Telemetry
	Installing and Upgrading Telemetry
	Guidelines and Limitations
	Configuring Telemetry Using the CLI
	Configuring Telemetry Using the NX-OS CLI
	Configuration Examples for Telemetry Using the CLI
	Displaying Telemetry Configuration and Statistics
	Displaying Telemetry Log and Trace Information

	Configuring Telemetry Using the NX-API
	Configuring Telemetry Using the NX-API
	Configuration Example for Telemetry Using the NX-API
	Telemetry Model in the DME

	Telemetry Path Labels
	About Telemetry Path Labels
	Polling for Data or Receiving Events
	Guidelines and Limitations for Path Labels
	Configuring the Interface Path to Poll for Data or Events
	Configuring the Interface Path for Non-Zero Counters
	Configuring the Interface Path for Operational Speeds
	Configuring the Interface Path with Multiple Queries
	Configuring the Environment Path to Poll for Data or Events
	Configuring the Resources Path to Poll for Events or Data
	Configuring the VXLAN Path to Poll for Events or Data
	Verifying the Path Label Configuration
	Displaying Path Label Information

	Native Data Source Paths
	About Native Data Source Paths
	Telemetry Data Streamed for Native Data Source Paths
	Guidelines and Limitations
	Configuring the Native Data Source Path for Routing Information
	Configuring the Native Data Source Path for MAC Information
	Configuring the Native Data Path for IP Adjacencies

	Additional References
	Related Documents

	XML Management Interface
	About the XML Management Interface
	About the XML Management Interface
	NETCONF Layers
	SSH xmlagent

	Licensing Requirements for the XML Management Interface
	Prerequisites to Using the XML Management Interface
	Using the XML Management Interface
	Configuring SSH and the XML Server Options
	Starting an SSH Session
	Sending the Hello Message
	Obtaining the XSD Files
	Sending an XML Document to the XML Server
	Creating NETCONF XML Instances
	RPC Request Tag rpc
	NETCONF Operations Tags
	Device Tags

	Extended NETCONF Operations
	NETCONF Replies
	RPC Response Tag
	Interpreting Tags Encapsulated in the Data Tag

	Information About Example XML Instances
	Example XML Instances
	NETCONF Close Session Instance
	NETCONF Kill-session Instance
	NETCONF copy-config Instance
	NETCONF edit-config Instance
	NETCONF get-config Instance
	NETCONF Lock Instance
	NETCONF unlock Instance
	NETCONF Commit Instance - Candidate Configuration Capability
	NETCONF Confirmed-commit Instance
	NETCONF rollback-on-error Instance
	NETCONF validate Capability Instance

	Additional References

	Streaming Telemetry Sources
	About Streaming Telemetry
	Guidelines and Limitations
	Data Available for Telemetry

	INDEX

