

Cisco IOS XR XML API Guide
Cisco IOS XR Software Release 4.1

April 2011
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-24657-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED
WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED
WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL
FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at
www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are
shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco IOS XR XML API Guide
© 2011 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

OL-24657-01
C O N T E N T S
Preface ix

Changes to This Document ix

Obtaining Documentation and Submitting a Service Request ix

C H A P T E R 1 Cisco XML API Overview 1-1

Introduction 1-1

Definition of Terms 1-1

Cisco Management XML Interface 1-2

Cisco XML API and Router System Features 1-3

Cisco XML API Tags 1-3

Basic XML Request Content 1-4

Top-Level Structure 1-4

XML Declaration Tag 1-5

Request and Response Tags 1-5

ResultSummary Tag 1-5

Maximum Request Size 1-6

Minimum Response Content 1-6

Operation Type Tags 1-8

Native Data Operation Tags 1-8

Configuration Services Operation Tags 1-9

CLI Operation Tag 1-9

GetNext Operation Tag 1-9

Alarm Operation Tags 1-10

XML Request Batching 1-10

C H A P T E R 2 Cisco XML Router Configuration and Management 2-13

Target Configuration Overview 2-13

Configuration Operations 2-14

Additional Configuration Options Using XML 2-14

Locking the Running Configuration 2-15

Browsing the Target or Running Configuration 2-15

Getting Configuration Data 2-16

Browsing the Changed Configuration 2-17

Loading the Target Configuration 2-19
1
Cisco IOS XR XML API Guide

Contents
Setting the Target Configuration Explicitly 2-20

Saving the Target Configuration 2-21

Committing the Target Configuration 2-22

Commit Operation 2-22

Commit Errors 2-25

Loading a Failed Configuration 2-27

Unlocking the Running Configuration 2-28

Additional Router Configuration and Management Options Using XML 2-28

Getting Commit Changes 2-29

Loading Commit Changes 2-30

Clearing a Target Session 2-32

Rolling Back Configuration Changes to a Specified Commit Identifier 2-33

Rolling Back the Trial Configuration Changes Before the Trial Time Expires 2-33

Rolling Back Configuration Changes to a Specified Number of Commits 2-34

Getting Rollback Changes 2-35

Loading Rollback Changes 2-36

Getting Configuration History 2-38

Getting Configuration Commit List 2-41

Getting Configuration Session Information 2-43

Clear Configuration Session 2-44

Replacing the Current Running Configuration 2-45

Clear Configuration Inconsistency Alarm 2-46

C H A P T E R 3 Cisco XML Operational Requests and Fault Management 3-49

Operational Get Requests 3-49

Action Requests 3-50

Cisco XML and Fault Management 3-51

Configuration Change Notification 3-51

C H A P T E R 4 Cisco XML and Native Data Operations 4-53

Native Data Operation Content 4-53

Request Type Tag and Namespaces 4-54

Object Hierarchy 4-54

Main Hierarchy Structure 4-55

Dependencies Between Configuration Items 4-58

Null Value Representations 4-58

Operation Triggering 4-58

Native Data Operation Examples 4-59

Set Configuration Data Request: Example 4-60
2
Cisco IOS XR XML API Guide

OL-24657-01

Contents
Get Request: Example 4-62

Get Request of Nonexistent Data: Example 4-63

Delete Request: Example 4-65

GetDataSpaceInfo Request Example 4-66

C H A P T E R 5 Cisco XML and Native Data Access Techniques 5-67

Available Set of Native Data Access Techniques 5-67

XML Request for All Configuration Data 5-68

XML Request for All Configuration Data per Component 5-68

XML Request for All Data Within a Container 5-69

XML Request for Specific Data Items 5-71

XML Request with Combined Object Class Hierarchies 5-72

XML Request Using Wildcarding (Match Attribute) 5-75

XML Request for Specific Object Instances (Repeated Naming Information) 5-79

XML Request Using Operation Scope (Content Attribute) 5-82

Limiting the Number of Table Entries Returned (Count Attribute) 5-83

Custom Filtering (Filter Element) 5-85

XML Request Using the Mode Attribute 5-86

C H A P T E R 6 Cisco XML and Encapsulated CLI Operations 6-91

XML CLI Command Tags 6-91

CLI Command Limitations 6-92

C H A P T E R 7 Cisco XML and Large Data Retrieval 7-93

Iterators 7-93

Usage Guidelines 7-93

Examples Using Iterators to Retrieve Data 7-94

Large Response Division 7-97

Terminating an Iterator 7-97

Throttling 7-98

CPU Throttle Mechanism 7-99

Memory Throttle Mechanism 7-99

Streaming 7-99

Usage Guidelines 7-99

C H A P T E R 8 Cisco XML Security 8-101

Authentication 8-101

Authorization 8-101
3
Cisco IOS XR XML API Guide

OL-24657-01

Contents
Retrieving Task Permissions 8-102

Task Privileges 8-102

Task Names 8-103

Authorization Failure 8-104

Management Plane Protection 8-104

Inband Traffic 8-104

Out-of-Band Traffic 8-104

VRF 8-105

Access Control List 8-105

C H A P T E R 9 Cisco XML Schema Versioning 9-107

Major and Minor Version Numbers 9-107

Run-Time Use of Version Information 9-108

Placement of Version Information 9-109

Version Lag with the AllowVersionMisMatch Attribute Set as TRUE 9-110

Version Lag with the AllowVersionMismatch Attribute Set as FALSE 9-111

Version Creep with the AllowVersionMisMatch Attribute Set as TRUE 9-112

Version Creep with the AllowVersionMisMatch Attribute Set as FALSE 9-113

Retrieving Version Information 9-113

Retrieving Schema Detail 9-115

C H A P T E R 10 Alarms 10-117

Alarm Registration 10-117

Alarm Deregistration 10-118

Alarm Notification 10-119

C H A P T E R 11 Error Reporting in Cisco XML Responses 11-121

Types of Reported Errors 11-121

Error Attributes 11-122

Transport Errors 11-122

XML Parse Errors 11-122

XML Schema Errors 11-123

Operation Processing Errors 11-125

Error Codes and Messages 11-126
4
Cisco IOS XR XML API Guide

OL-24657-01

Contents
C H A P T E R 12 Summary of Cisco XML API Configuration Tags 12-127

C H A P T E R 13 XML Transport and Event Notifications 13-129

TTY-Based Transports 13-129

Enabling the TTY XML Agent 13-129

Enabling a Session from a Client 13-129

Sending XML Requests and Receiving Responses 13-130

Configuring Idle Session Timeout 13-130

Ending a Session 13-130

Errors That Result in No XML Response Being Produced 13-130

Dedicated Connection Based Transports 13-131

Enabling the Dedicated XML Agent 13-131

Enabling a Session from a Client 13-131

Sending XML Requests and Receiving Responses 13-132

Configuring Idle Session Timeout 13-132

Ending a Session 13-132

Errors That Result in No XML Response Being Produced 13-132

SSL Dedicated Connection based Transports 13-132

Enabling the SSL Dedicated XML Agent 13-133

Enabling a Session from a Client 13-133

Sending XML Requests and Receiving Responses 13-133

Configuring Idle Session Timeout 13-133

Ending a Session 13-134

Errors That Result in No XML Response Being Produced 13-134

C H A P T E R 14 Cisco XML Schemas 14-135

XML Schema Retrieval 14-135

Common XML Schemas 14-136

Component XML Schemas 14-136

Schema File Organization 14-136

Schema File Upgrades 14-137

C H A P T E R 15 Network Configuration Protocol 15-139

Starting a NETCONF Session 15-139

Ending a NETCONF Agent Session 15-140

Starting an SSH NETCONF Session 15-140

Ending an SSH NETCONF Agent Session 15-141

Configuring a NETCONF agent 15-141
5
Cisco IOS XR XML API Guide

OL-24657-01

Contents
Limitations of NETCONF in Cisco IOS XR 15-142

Configuration Datastores 15-142

Configuration Capabilities 15-142

Transport (RFC4741 and RFC4742) 15-142

Subtree Filtering (RFC4741) 15-142

Protocol Operations (RFC4741) 15-144

Event Notifications (RFC5277) 15-145

C H A P T E R 16 Cisco IOS XR Perl Scripting Toolkit 16-147

Cisco IOS XR Perl Scripting Toolkit Concepts 16-148

Security Implications for the Cisco IOS XR Perl Scripting Toolkit 16-148

Prerequisites for Installing the Cisco IOS XR Perl Scripting Toolkit 16-148

Installing the Cisco IOS XR Perl Scripting Toolkit 16-149

Using the Cisco IOS XR Perl XML API in a Perl Script 16-150

Handling Types of Errors for the Cisco IOS XR Perl XML API 16-150

Starting a Management Session on a Router 16-150

Closing a Management Session on a Router 16-152

Sending an XML Request to the Router 16-152

Using Response Objects 16-153

Using the Error Objects 16-154

Using the Configuration Services Methods 16-154

Using the Cisco IOS XR Perl Data Object Interface 16-157

Understanding the Perl Data Object Documentation 16-158

Generating the Perl Data Object Documentation 16-158

Creating Data Objects 16-159

Specifying the Schema Version to Use When Creating a Data Object 16-161

Using the Data Operation Methods on a Data Object 16-161

get_data Method 16-161

find_data Method 16-162

get_keys Method 16-162

get_entries Method 16-163

set_data Method 16-163

delete_data Method 16-164

Using the Batching API 16-164

batch_start Method 16-164

batch_send Method 16-165

Displaying Data and Keys Returned by the Data Operation Methods 16-165

Specifying the Session to Use for the Data Operation Methods 16-166
6
Cisco IOS XR XML API Guide

OL-24657-01

Contents
Cisco IOS XR Perl Notification and Alarm API 16-166

Registering for Alarms 16-166

Deregistering an Existing Alarm Registration 16-167

Deregistering All Registration on a Particular Session 16-167

Receiving an Alarm on a Management Session 16-167

Using the Debug and Logging Facilities 16-168

Debug Facility Overview 16-168

Logging Facility Overview 16-169

Examples of Using the Cisco IOS XR Perl XML API 16-170

Configuration Examples 16-171

Setting the IP Address of an Interface 16-171

Configuring a Simple BGP Neighbor 16-172

Adding a List of Neighbors to a BGP Neighbor Group 16-172

Displaying the Members of Each BGP Neighbor Group 16-173

Setting Up ISIS on an Interface 16-173

Finding the Circuit Type That is Currently Configured for an Interface for ISIS 16-173

Configuring a New Instance, Area, and Interface for OSPF 16-175

Getting a List of the Usernames That are Configured on the Router 16-175

Finding the IP Address of All Interfaces That Have IP Configured 16-175

Adding an Entry to the Access Control List 16-176

Denying Access to a Set of Interfaces from a Particular IP Address 16-176

Configuring a New Static Route Entry 16-177

Operational Examples 16-177

Retrieving the Operational Information for All Interfaces on the Router 16-178

Retrieving the Link State Database for a Particular Level for ISIS 16-178

Getting a List of All Interfaces on the System 16-179

Retrieving the Combined Interface and IP Information for Each Interface 16-179

Listing the Hostname and Interface for Each ISIS Neighbor 16-180

Recreating the Output of the show ip interfaces CLI Command 16-180

Producing a Textual Output Similar to the show bgp neighbors CLI Command 16-180

Displaying Tabular XML Data in a Generic HTML Table Using XSLT 16-181

Displaying the Interface State in a Customized HTML Table 16-182

Displaying the BGP Neighbor Operational Data in a Complex HTML Format 16-182

Performing Actions Whenever Certain Events Occur 16-183

Sample BGP Configuration 17-185

G L O S S A R Y

I N D E X
7
Cisco IOS XR XML API Guide

OL-24657-01

Contents
8
Cisco IOS XR XML API Guide

OL-24657-01

Preface

The XML application programming interface (API) is available for use on any Cisco platform running
Cisco IOS XR software. This document describes the XML API provided to developers of external
management applications. The XML interface provides a mechanism for router configuration and
monitoring using XML formatted request and response streams.

The XML schemas referenced in this guide are used by the management application developer to
integrate client applications with the router programmable interface.

The preface contains these sections:

 • Changes to This Document, page ix

 • Obtaining Documentation and Submitting a Service Request, page ix

Changes to This Document
Table 1 lists the technical changes made to this document since it was first published.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed
and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free
service and Cisco currently supports RSS Version 2.0.

Table 1 Changes to This Document

Revision Date Change Summary

OL-24657-01 April 2011 Initial release of this document.
ix
Cisco IOS XR XML API Guide

OL-24657-01

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Preface
x
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 1

Cisco XML API Overview

This chapter contains these sections:

 • Introduction, page 1-1

 • Cisco Management XML Interface, page 1-2

 • Cisco XML API and Router System Features, page 1-3

 • Cisco XML API Tags, page 1-3

Introduction
This Cisco IOS XR XML API Guide explains how to use the Cisco XML API to configure routers or
request information about configuration, management, or operation of the routers. The goal of this guide
is to help management application developers write client applications to interact with the Cisco XML
infrastructure on the router, and to use the Management XML API to build custom end-user interfaces
for configuration and information retrieval and display.

The XML application programming interface (API) provided by the router is an interface used for
development of client applications and perl scripts to manage and monitor the router. The XML interface
is specified by XML schemas. The XML API provides a mechanism, which exchanges XML formatted
request and response streams, for router configuration and monitoring.

Client applications can be used to configure the router or to request status information from the router,
by encoding a request in XML API tags and sending it to the router. The router processes the request
and sends the response to the client by again encoding the response in XML API tags. This guide
describes the XML requests that can be sent by external client applications to access router management
data, and also details the responses to the client by the router.

Customers use a variety of vendor-specific CLI scripts to manage their routers because no alternative
programmatic mechanism is available. In addition, a common framework has not been available to
develop CLI scripts. In response to this need, the XML API provides the necessary common framework
for development, deployment, and maintenance of router management.

Note The XML API code is available for use on any Cisco platform that runs Cisco IOS XR software.
1-1
Cisco IOS XR XML API Guide

Chapter 1 Cisco XML API Overview
Cisco Management XML Interface
Definition of Terms
Table 1-1 defines the words, acronyms, and actions used throughout this guide.

Cisco Management XML Interface
These topics, which are covered in detail in the sections that follow, outline information about the Cisco
Management XML interface:

 • High-level structure of the XML request and response streams

 • Operation tag types and usage, including their XML format and content

 • Configuring the router using:

 – the two–stage “target configuration” mechanism provided by the configuration manager

 – features such as locking, loading, browsing, modifying, saving, and committing the
configuration

 • Accessing the operational data of the router with XML

Table 1-1 Definition of Terms

Term Description

AAA Authentication, authorization, and accounting.

CLI Command-line interface.

SSH Secure Shell.

SSL Secure Sockets Layer.

XML Extensible markup language.

XML agent Process on the router that receives XML requests by XML clients,
and is responsible to carry out the actions contained in the request
and to return an XML response to the client.

XML client External application that sends XML requests to the router and
receives XML responses to those requests.

XML operation Portion of an XML request that specifies an operation that the XML
client wants the XML agent to perform.

XML operation provider Code that carries out a particular XML operation including parsing
the operation XML, performing the operation, and assembling the
operation XML response.

XML request XML document sent to the router containing a number of requested
operations to be carried out.

XML response Response to an XML request.

XML schema XML document specifying the structure and possible contents of
XML elements that can be contained in an XML document.
1-2
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API and Router System Features
 • Working with native management data object class hierarchies to:

 – represent native data objects in XML

 – use techniques, including the use of wildcards and filters, for structuring XML requests that
access the management data of interest,

 • Encapsulating CLI commands in XML

 • Error reporting to the client application

 • Using iterators for large scale data retrieval

 • Handling event notifications with XML

 • Enforcing authorization of client requests

 • Versioning of XML schemas

 • Generation and packaging of XML schemas

 • Transporting options that enable corresponding XML agents on the router

 • Using the Cisco IOS XR Perl Scripting Toolkit to manage a Cisco IOS XR router

Cisco XML API and Router System Features
Using the XML API, an external client application sends XML encoded management requests to an
XML agent running on the router. The XML API readily supports available transport layers including
terminal-based protocols such as Telnet, Secure Shell (SSH), dedicated-TCP connection, and Secure
Sockets Layer (SSL) dedicated TCP connection.

Before an XML session is established, the XML transport and XML agent must be enabled on the router.
For more information, see Chapter 13, “XML Transport and Event Notifications.”

A client request sent to the router must specify the different types of operations that are to be carried out.
Three general types of management operations supported through XML are:

 • Native data access (get, set, delete, and so on) using the native management data model.

 • Configuration services for advanced configuration management through the Configuration
Manager.

 • Traditional CLI access where CLI commands and command responses are encapsulated in XML.

When a client request is received by an XML agent on the router, the request is routed to the appropriate
XML operation provider in the internal Cisco XML API library for processing. After all the requested
operations are processed, the XML agent receives the result and sends the XML encoded response
stream on to the client.

Cisco XML API Tags
An external client application can access management data on the router through an exchange of
well-structured XML-tagged request and response streams. The XML tagged request and response
streams are described in these sections:

 • Basic XML Request Content, page 1-4

 • XML Declaration Tag, page 1-5

 • Operation Type Tags, page 1-8
1-3
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
 • XML Request Batching, page 1-10

Basic XML Request Content
This section describes the specific content and format of XML data exchanged between the client and
the router for the purpose of router configuration and monitoring.

Top-Level Structure

The top level of every request sent by a client application to the router must begin with an XML
declaration tag, followed by a request tag and one or more operation type tags. Similarly, every response
returned by the router begins with an XML declaration tag followed by a response tag, one or more
operation type tags, and a result summary tag with an error count. Each request contains operation tags
for each supported operation type; these operation type tags can be repeated. The operation type tags
contained in the response corresponds to those contained in the client request.

Sample XML Request from Client Application
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion=”1” MinorVersion=”0”>
 <Operation>
 .
 .
 .
 Operation-specific content goes here
 .
 .
 .
 </Operation>
</Request>

Sample XML Response from Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion=”1” MinorVersion=”0”>
 <Operation>
 .
 .
 .
 Operation-specific response data returned here
 .
 .
 .
</Operation>
<ResultSummary ErrorCount="0"/>
</Response>

Note All examples in this document are formatted with line breaks and white space to aid readability. Actual
XML request and response streams that are exchanged with the router do not include such line breaks
and white space characters. This is because these elements would add significantly to the size of the
XML data and impact the overall performance of the XML API.
1-4
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
XML Declaration Tag
Each request and response exchanged between a client application and the router must begin with an
XML declaration tag indicating which version of XML and (optionally) which character set is being
used:

 <?xml version="1.0" encoding="UTF-8"?>

Table 1-2 defines the attributes of the XML declaration that are defined by the XML specification.

Request and Response Tags

Following the XML declaration tag, the client application must enclose each request stream within a pair
of <Request> start and </Request> end tags. Also, the system encloses each XML response within a pair
of <Response> start and </Response> end tags. Major and minor version numbers are carried on the
<Request> and <Response> elements to indicate the overall XML API version in use by the client
application and router respectively.

The XML API presents a synchronous interface to client applications. The <Request> and <Response> tags
are used by the client to correlate request and response streams. A client application issues a request after
which, the router returns a response. The client then issues another request, and so on. Therefore, the
XML session between a client and the router consist of a series of alternating requests and response
streams.

The client application optionally includes a ClientID attribute within the <Request> tag. The value of
the ClientID attribute must be an unsigned 32-bit integer value. If the <Request> tag contains a ClientID
attribute, the router includes the same ClientID value in the corresponding <Response> tag. The
ClientID value is treated as opaque data and ignored by the router.

ResultSummary Tag

The system adds a <ResultSummary> tag immediately before the </Response> end tag to indicate the
overall result of the operation performed. This tag contains the attribute ErrorCount to indicate the total
number of errors encountered. A value of 0 indicates no errors. If applicable, the ItemNotFound or
ItemNotFoundBelow attributes are also included. See Table 1-3 for explanations of these attributes.

Sample XML Response with ResultsSummary Tag
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
.
.
<ResultSummary ErrorCount="0" ItemNotFoundBelow="true"/>
</Response>

Table 1-2 Attributes for XML Declaration

Name Description

Version Specifies the version of XML to be used. Only Version “1.0” is supported by the router.

Note The version attribute is required.

Encoding Specifies the standardized character set to be used. Only “UTF-8” is supported by the
router. The router includes the encoding attribute in a response only if it is specified in
the corresponding request.

Note The encoding attribute is optional.
1-5
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
Maximum Request Size

The maximum size of an XML request or response is determined by the restrictions of the underlying
transports. For more information on transport-specific limitations of request and response sizes, see
Chapter 13, “XML Transport and Event Notifications.”

Minimum Response Content

If a <Set> or <Delete> request has nothing to return, the router returns the original request and an
appropriate empty operation type tag. The minimum response returned by the router with a single
operation <Set> or <Delete> and no result data, is shown in these examples:

Sample XML Request from Client Application
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Operation>
 .
 .
 .
 Operation-specific content goes here
 .
 .
 .
 </Operation>
</Request>

Sample XML Minimum Response from a Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Operation/>
<ResultSummary ErrorCount="0"/>
</Response>

If a <Get> request has nothing to return, the router returns the original request with an ItemNotFound
attribute at the <Get> level.

If a <Get> request has some ‘not found’ elements to return, the router returns the original request with
an ItemNotFoundBelow attribute at the <Get> level. For each requested element that is not found, the
router returns a NotFound attribute at the element level. For each requested element that is present, it
returns the corresponding data.

Table 1-3 defines the attributes when the <Get> request does not have any elements to return.

Sample XML Request from Client Application (ItemNotFound)
<?xml version="1.0"?>
<Request MajorVersion="1" MinorVersion="0">
<Get>

Table 1-3 Attributes for Elements Not Found

Attribute Description

ItemNotFound Empty response at the <Get> level.

ItemNotFoundBelow Response with some requested elements that are not found at the
<Get> level.

NotFound Requested element is not found at the element level.
1-6
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName>Loopback1</InterfaceName>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
</Get>
</Request>

Sample XML Minimum Response from a Router (ItemNotFound)
<?xml version="1.0"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get ItemNotFound="true">
 <Configuration>
 <InterfaceConfigurationTable MajorVersion="4" MinorVersion="2">
 <InterfaceConfiguration NotFound="true">
 <Naming>
 <Active>act</Active>
 <InterfaceName>Loopback1</InterfaceName>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0" ItemNotFound="true"/>
</Response>

Sample XML Request from Client Application (ItemNotFoundBelow)
<?xml version="1.0"?>
<Request MajorVersion="1" MinorVersion="0">
<Get>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName>Loopback0</InterfaceName>
 </Naming>
 <Description/>
 <Shutdown/>
 <IPV4Network/>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
</Get>
</Request>

Sample XML Minimum Response from a Router (ItemNotFoundBelow)
<?xml version="1.0"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get ItemNotFoundBelow="true">
 <Configuration>
 <InterfaceConfigurationTable MajorVersion="4" MinorVersion="2">
 <InterfaceConfiguration>
1-7
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
 <Naming>
 <Active>act</Active>
 <InterfaceName>Loopback0</InterfaceName>
 </Naming>
 <Description>desc-loop0</Description>
 <Shutdown NotFound="true"/>
 <IPV4Network MajorVersion="5" MinorVersion="1">
 <Addresses>
 <Primary>
 <IPAddress>1.1.1.1</IPAddress>
 <Netmask>255.255.0.0</Netmask>
 </Primary>
 </Addresses>
 </IPV4Network>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0" ItemNotFoundBelow="true"/>
</Response>

Operation Type Tags
Following the <Request> tag, the client application must specify the operations to be carried out by the
router. Three general types of operations are supported along with the <GetNext> operation for large
responses.

Native Data Operation Tags

Native data operations provide basic access to the native management data model. Table 1-4 describes
the native data operation tags.

The XML schema definitions for the native data operation type tags are contained in the schema file
native_data_operations.xsd. The native data operations are described further in Chapter 5, “Cisco XML
and Native Data Access Techniques.”

Table 1-4 Native Data Operation Tags

Native Data Tag Description

<Get> Gets the value of one or more configuration, operational, or action
data items.

<Set> Creates or modifies one or more configuration or action data items.

<Delete> Deletes one or more configuration data items.

<GetVersionInfo> Gets the major and minor version numbers of one or more
components.

<GetDataSpaceInfo> Retrieves native data branch names.
1-8
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
Configuration Services Operation Tags

Configuration services operations provide more advanced configuration management functions through
the Configuration Manager. Table 1-5 describes the configuration services operation tags.

The XML schema definitions for the configuration services operation type tags are contained in the
schema file config_services_operations.xsd (see Chapter 14, “Cisco XML Schemas”).

The configuration services operations are described further in Chapter 2, “Cisco XML Router
Configuration and Management.”

CLI Operation Tag

CLI access provides support for XML encapsulated CLI commands and responses. For CLI access, a
single tag is provided. The <CLI> operation tag issues the request as a CLI command.

The XML schema definitions for the CLI tag are contained in the schema file cli_operations.xsd (see
Chapter 14, “Cisco XML Schemas”).

The CLI operations are described further in Chapter 6, “Cisco XML and Encapsulated CLI Operations.”

GetNext Operation Tag

The <GetNext> tag is used to retrieve the next portion of a large response. It can be used as required to
retrieve an oversize response following a request using one of the other operation types. The <GetNext>
operation tag gets the next portion of a response. Iterators are supported for large requests.

The XML schema definition for the <GetNext> operation type tag is contained in the schema file
xml_api_protocol.xsd (see Chapter 14, “Cisco XML Schemas”). For more information about the
<GetNext> operation, see Chapter 7, “Cisco XML and Large Data Retrieval.”

Table 1-5 Configuration Services Operation Tags

Tag Description

<Lock> Locks the running configuration.

<Unlock> Unlocks the running configuration.

<Load> Loads the target configuration from a binary file previously
saved using the <Save> tag.

<Save> Saves the target configuration to a binary file.

<Commit> Promotes the target configuration to the running configuration.

<Clear> Aborts or clears the current target configuration session.

<Rollback> Rolls back the running configuration to a previous configuration
state.

<GetConfigurationHistory> Gets a list of configuration events.

<GetConfigurationSessions> Gets a list of the user sessions currently configuring the box.

<Get ConfigurationCommitList> Gets a list of commits that were made to the running
configuration and can be rolled back.

<ClearConfigurationSession> Clears a particular configuration session.

<ClearConfigurationInconsistency> Clears a configuration inconsistency alarm.
1-9
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
Alarm Operation Tags

The <Alarm> operation tag registers, unregisters, and receives alarm notifications. Table 1-6 lists the
alarm operation tags.

The XML schema definitions for the alarm operation tags are contained in the schema file
alarm_operations.xsd (see Chapter 14, “Cisco XML Schemas”).

XML Request Batching
The XML interface supports the combining of several requests or operations into a single request. When
multiple operations are specified in a single request, the response contains the same operation tags and
in the same order as they appeared in the request.

Batched requests are performed as a “best effort.” For example, in a case where operations 1 through 3
are in the request, even if operation 2 fails, operation 3 is attempted.

If you want to perform two or more <Get> operations, and if the first one might return a large amount
of data that is potentially larger than the size of one iterator chunk, you must place the subsequent
operations within a separate XML request. If the operations are placed in the same request within the
same <Get> tags, for example, potentially sharing part of the hierarchies with the first request, an error
attribute that informs you that the operations cannot be serviced is returned on the relevant tags.

For more information, see Chapter 5, “Cisco XML and Native Data Access Techniques.”

This example shows a simple request containing six different operations:

Sample XML Client Batched Requests
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Lock/>
 <Get>
 <Configuration>
 .
 .
 .
 Get operation content goes here
 .
 .
 .
 </Configuration>
 </Get>
 <Set>
 <Configuration>
 .
 .
 .
 Set operation content goes here
 .
 .

Table 1-6 List of Alarm Operation Tags

Tag Description

<Register> Registers to receive alarm notifications.

<Unregister> Cancels a previous alarm notification registration.
1-10
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
 .
 </Configuration>
 </Set>
 <Commit/>
 <Get>
 <Operational>
 .
 .
 .
 Get operation content goes here
 .
 .
 .
 </Operational>
 </Get>
 <Unlock/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Lock/>
 <Get>
 <Configuration>
 .
 .
 .
 .
 .
 .
 .
 .
 .
 Get response content returned here
 .
 .
 .
 .
 .
 .
 .
 .
 .
 </Configuration>
 </Get>
 <Set/>
 <Commit CommitID=”1000000188”/>
 <Get>
 <Operational>
 .
 .
 .
 .
 .
 .
 .
 .
 .
 Get response content returned here
 .
 .
 .
 .
1-11
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 1 Cisco XML API Overview
Cisco XML API Tags
 .
 .
 .
 .
 .
 </Operational>
 </Get>
 <Unlock/>
 <ResultSummary ErrorCount="0"/>
</Response>
1-12
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 2

Cisco XML Router Configuration and
Management

This chapter reviews the basic XML requests and responses used to configure and manage the router.

The use of XML to configure the router is essentially an abstraction of a configuration editor in which
client applications can load, browse, and modify configuration data without affecting the current running
(that is, active) configuration on the router. This configuration that is being modified is called the "target
configuration” and is not the running configuration on the router. The router’s running configuration can
never be modified directly. All changes to the running configuration must go through the target
configuration.

Note Each client application session has its own target configuration, which is not visible to other client
sessions.

This chapter contains these sections:

 • Target Configuration Overview, page 2-13

 • Configuration Operations, page 2-14

 • Additional Router Configuration and Management Options Using XML, page 2-27

Target Configuration Overview
The target configuration is effectively the current running configuration overlaid with the client-entered
configuration. In other words, the target configuration is the client-intended configuration if the client
were to commit changes. In terms of implementation, the target configuration is an operating system
buffer that contains just the changes (set and delete) that are performed within the configuration session.

A “client session” is synonymous with dedicated TCP, Telnet, Secure Shell (SSH) connection, or SSL
dedicated connection and authentication, authorization, and accounting (AAA) login. The target
configuration is created implicitly at the beginning of a client application session and must be promoted
(that is, committed) to the running configuration explicitly by the client application in order to replace
or become the running configuration. If the client session breaks, the current target configuration is
aborted and any outstanding locks are released.
2-13
Cisco IOS XR XML API Guide

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
Note Only the syntax of the target configuration is checked and verified to be compatible with the installed
software image on the router. The semantics of the target configuration is checked only when the target
configuration is promoted to the running configuration.

Configuration Operations

Note Only the tasks in the “Committing the Target Configuration” section are required to change the
configuration on the router (that is, modifying and committing the target configuration).

Use these configuration options from the client application to configure or modify the router with XML:

 • Locking the Running Configuration, page 2-14

 • Browsing the Target or Running Configuration, page 2-15

 – Getting Configuration Data, page 2-15

 • Browsing the Changed Configuration, page 2-16

 • Loading the Target Configuration, page 2-19

 • Setting the Target Configuration Explicitly, page 2-20

 • Saving the Target Configuration, page 2-21

 • Committing the Target Configuration, page 2-22

 – Loading a Failed Configuration, page 2-26

 • Unlocking the Running Configuration, page 2-27

Locking the Running Configuration
The client application uses the <Lock> operation to obtain an exclusive lock on the running
configuration in order to prevent modification by other users or applications.

If the lock operation is successful, the response contains only the <Lock/> tag. If the lock operation fails,
the response also contains ErrorCode and ErrorMsg attributes that indicates the cause of the lock failure.

This example shows a request to lock the running configuration. This request corresponds to the
command-line interface (CLI) command configure exclusive.

Sample XML Request from the Client Application
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Lock/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Lock/>
 <ResultSummary ErrorCount="0"/>
</Response>
2-14
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
These conditions apply when the running configuration is locked:

 • The scope of the lock is the entire configuration “namespace.”

 • Only one client application can hold the lock on the running configuration at a time. If a client
application attempts to lock the configuration while another application holds the lock, an error is
returned.

 • If a client application has locked the running configuration, all other client applications can only
read the running configuration, but cannot modify it (that is, they cannot commit changes to it).

 • No mechanism is provided to allow a client application to break the lock of another user.

 • If a client session is terminated, any outstanding locks are automatically released.

 • The XML API does not support timeouts for locks.

 • The <GetConfigurationSessions> operation is used to identify the user session holding the lock.

Browsing the Target or Running Configuration
The client application browses the target or current running configuration using the <Get> operation
along with the <Configuration> request type tags. The client application optionally uses CLI commands
encoded within XML tags to browse the configuration.

The <Configuration> tag supports the optional Source attribute, which is used to specify the source of
the configuration information returned from a <Get> operation.

Getting Configuration Data

Table 2-1 describes the Source options.

Table 2-1 Source Options

Option Description

ChangedConfig Reads only from the changes made to the target configuration for the current
session. This option effectively gets the configuration changes made from the
current session since the last configuration commit.

This option corresponds to the CLI command show configuration.

CurrentConfig Reads from the current active running configuration.

This option corresponds to the CLI command show configuration running.

MergedConfig Reads from the target configuration for this session. This option should provide
a view of the resultant running configuration if the current target configuration is
committed without errors. For example, in the case of the “best effort” commit,
some portions of the commit could fail, while others could succeed.
MergedConfig is the default when the Source attribute is not specified on the
<Get> operation.

This option corresponds to the CLI command show configuration merge.
2-15
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
If the <Get> operation fails, the response contains one or more ErrorCode and ErrorMsg attributes
indicating the cause of the failure.

This example shows a <Get> request used to browse the current Border Gateway Protocol (BGP)
configuration:

Sample XML Client Request to Browse the Current BGP Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”CurrentConfig”>
 <BGP MajorVersion=”18” MinorVersion=”0”/>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”CurrentConfig”>
 <BGP MajorVersion=”18” MinorVersion=”0”>
 ..
 .
 .
 response data goes here
 .
 .
 .
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Browsing the Changed Configuration
When a client application issues a <Get> request with a Source type of ChangedConfig, the response
contains the OperationType attribute to indicate whether the returned changes to the target configuration
were a result of <Set> or <Delete> operations.

Use <Get> to browse uncommitted target configuration changes.

CommitChanges Reads from the commit database for the specified commit ID.

This operation corresponds to the CLI command show configuration commit
changes.

RollbackChanges Reads from a set of rollback changes.

This operation corresponds to the CLI command show configuration
rollback-changes.

Table 2-1 Source Options (continued)

Option Description
2-16
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
This example shows <Set> and <Delete> operations that modify the BGP configuration followed by a
<Get> request to browse the uncommitted BGP configuration changes. These requests correspond to
these CLI commands:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 3
RP/0/RP0/CPU0:router(config-bgp)# default-metric 10
RP/0/RP0/CPU0:router(config-bgp)# no neighbor 10.0.101.8
RP/0/RP0/CPU0:router(config-bgp)# exit
RP/0/RP0/CPU0:router# show configuration

Sample XML to Modify the BGP Configuration
<?xml version="1.0" encoding="UTF-8"?>
 <Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <Global>
 <DefaultMetric>10</DefaultMetric>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Set>
 <Delete>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.8</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
2-17
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
 </Delete>
 </Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <Delete>
 <Configuration/>
 </Delete>
 <ResultSummary ErrorCount="0"/>
</Response>

Sample XML Client Request to Browse Uncommitted Target Configuration Changes
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”ChangedConfig”>
 <BGP/>
 </Configuration>
 </Get>
</Request>

Sample Secondary XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source="ChangedConfig” OperationType="Set">
 <BGP MajorVersion=”30” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <BGPRunning>true</BGPRunning>
 <DefaultVRF>
 <Global>
 <DefaultMetric>
 10
 </DefaultMetric>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 <Configuration Source="ChangedConfig" OperationType=”Delete”>
 <BGP MajorVersion=”30” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
2-18
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>
 10.0.101.8
 </IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Loading the Target Configuration
The client application uses the <Load> operation along with the <File> tag to populate the target
configuration with the contents of a binary configuration file previously saved on the router using the
<Save> operation.

Note At the current time, a configuration file saved using CLI is not loadable with XML <Load>. The
configuration should have been saved using the XML <Save> operation. Using the <Load> operation is
strictly optional. It can be used alone or with the <Set> and <Delete> operations, as described in the
section “Setting the Target Configuration Explicitly” section on page 2-20.

Use the <File> tag to name the file from which the configuration is to be loaded. When you use the
<File> tag to name the file from which the configuration is to be loaded, specify the complete path of
the file to be loaded.

If the load operation is successful, the response contains both the <Load> and <File> tags. If the load
operation fails, the response contains the ErrorCode and ErrorMsg attributes that indicate the cause of
the load failure.

This example shows a request to load the target configuration from the contents of the file my_bgp.cfg:

Sample XML Client Request to Load the Target Configuration from a Named File
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <File>disk0:/my_bgp.cfg</File>
 </Load>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <File>disk0:/my_bgp.cfg</File>
2-19
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>

See also the “Setting the Target Configuration Explicitly” section on page 20.

Setting the Target Configuration Explicitly
The client application modifies the target configuration as required using the <Delete> and <Set>
operations.

Note There are no separate “Create” and “Modify” operations, because a <Set> operation for an item can
result in the creation of the item if it does not already exist in the configuration, and can result in the
modification of the item if it does already exist.

The client application can optionally use CLI commands encoded within XML tags to modify the target
configuration.

If the operation to modify the target configuration is successful, the response contains only the <Delete/>
or <Set/> tag. If the operation fails, the response includes the element or object hierarchy passed in the
request along with one or more ErrorCode and ErrorMsg attributes indicating the cause of the failure.

A syntax check is performed whenever the client application writes to the target configuration. A
successful write to the target configuration, however, does not guarantee that the configuration change
can succeed when a subsequent commit of the target configuration is attempted. For example, errors
resulting from failed verifications may be returned from the commit.

This example shows how to use a <Set> request to set the default metric and routing timers and disable
neighbor change logging for a particular BGP autonomous system. This request corresponds to these
CLI commands:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 3
RP/0/RP0/CPU0:router(config-bgp)# default-metric 10
RP/0/RP0/CPU0:router(config-bgp)# timers bgp 60 180
RP/0/RP0/CPU0:router(config-bgp)# exit

Sample XML Client Request to Set Timers and Disable Neighbor Change Logging for a BGP Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <Global>
 <DefaultMetric>10</DefaultMetric>
 <GlobalTimers>
 <Keepalive>60</Keepalive>
 <HoldTime>180</HoldTime>
2-20
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
 </GlobalTimers>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Set>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <ResultSummary ErrorCount="0"/>
</Response>

To replace a portion of the configuration, the client application should use a <Delete> operation to
remove the unwanted portion of the configuration followed by a <Set> operation to add the new
configuration. An explicit “replace” option is not supported.

For more information on replacing the configuration, see the “Replacing the Current Running
Configuration” section on page 2-44.

Saving the Target Configuration
The client application uses the <Save> operation along with the <File> tag to save the contents of the
target configuration to a binary file on the router.

Use the <File> tag to name the file to which the configuration is to be saved. You must specify the
complete path of the file to be saved when you use the <File> tag. If the file already exists on the router,
then an error is returned, unless the optional Boolean attribute Overwrite is included on the <File> tag
with a value of “true”.

Note No mechanism is provided by the XML interface for “browsing” through the file directory structure.

If the save operation is successful, the response contains both the <Save> and <File> tags. If the save
operation fails, the response also contains the ErrorCode and ErrorMsg attributes that indicate the cause
of the failure.

This example shows a request to save the contents of the target configuration to the file named
my_bgp.cfg on the router:

Sample XML Client Request to Save the Target Configuration to a File
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Save>
 <File Overwrite=”true”>disk0:/my_bgp.cfg</File>
 </Save>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
2-21
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
 <Save>
 <File Overwrite=”true”>disk0:/my_bgp.cfg</File>
 </Save>
 <ResultSummary ErrorCount="0"/>
</Response>

Committing the Target Configuration
In order for the configuration in the target area to become part of the running configuration, the target
configuration must be explicitly committed by the client application using the <Commit> operation.

Commit Operation

Table 2-2 describes the six optional attributes that are specified with the <Commit> operation.

Table 2-2 Commit Operation Attributes

Attribute Description

Mode Use the Mode attribute to specify whether the target configuration should be
committed on an Atomic or a BestEffort basis. In the case of a commit with the
Atomic option, the entire configuration in the target area is committed only if
the application of all of the configuration in the target area to the running
configuration succeeds. If any errors occur, the commit operation is rolled back
and the errors are returned to the client application. In the case of commit with
the BestEffort option, the configuration is committed even if some
configuration items fail during the commit operation. In this case too, the errors
are returned to the client application. By default, the commit operation is
performed on an Atomic basis.

KeepFailedConfig Use this Boolean attribute to specify whether any configuration that fails
during the commit operation should remain in the target configuration buffer.
The default value for KeepFailedConfig is false. That is, by default the target
configuration buffer is cleared after each commit. If a commit operation is
performed with a KeepFailedConfig value of false, the user can then use the
<Load> operation to load the failed configuration back into the target
configuration buffer. The use of the KeepFailedConfig attribute makes sense
only for the BestEffort commit mode. In the case of an Atomic commit, if
something fails, the entire target configuration is kept intact (because nothing
is committed).

Label Use the Label attribute instead of the commit identifier wherever a commit
identifier is expected, such as in the <Rollback> operation. The Label attribute
is a unique user-specified label that is associated with the commit in the
commit database. If specified, the label must begin with an alphabetic character
and cannot match any existing label in the commit database.

Comment Use the Comment attribute as a user-specified comment to be associated with
the commit in the router commit database.
2-22
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
If the commit operation is successful, the response contains only the <Commit/> tag, along with a unique
CommitID and any other attributes specified in the request. If the commit operation fails, the failed
configuration is returned in the response.

This example shows a request to commit the target configuration using the Atomic option. The request
corresponds to the commit label BGPUpdate1 comment BGP config update CLI command.

Sample XML Client Request to Commit the Target Configuration Using the Atomic Option
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Commit Mode=”Atomic” Label=”BGPUpdate1” Comment=”BGP config update”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Commit Mode=”Atomic” Label=”BGPUpdate1”
 Comment=”BGP config update”
 CommitID=”1000000075”/>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows a request to commit for a 50-second period. The request corresponds to the commit
confirmed 50 CLI command.

Confirmed Use the Confirmed attribute as a commit request, which sends the target
configuration to a trial commit. The confirmed request has a value of 30 to 300
seconds. If the user sends a commit request without the Confirmed attribute
within the specified period, the changes are committed; otherwise, the changes
are rolled back after the specified period is over. If the user sends a commit
request again with the Confirmed attribute, the target configuration is sent to
the trial commit.

Replace Use this boolean attribute to specify whether the commit operation should
replace the entire configuration running on the router with the contents of the
target configuration buffer. The default value for Replace is false. The Replace
attribute should be used with caution.

Caution The new configuration must contain the necessary configuration to
maintain the XML session, for example, “xml agent” or “xml agent
tty” along with the configuration for the management interface.
Otherwise, the XML session is terminated.

IgnoreOtherSessions Use this boolean attribute to specify whether the commit operation should be
allowed to go through without an error when one or more commits have
occurred from other configuration sessions since the current session started or
since the last commit was made from this session. The default value for
IgnoreOtherSessions is false.

Table 2-2 Commit Operation Attributes (continued)

Attribute Description
2-23
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
Sample XML Client Request to Commit for a 50-second Period
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Commit Confirmed=”50”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Commit Confirmed=”50”
 CommitID=”1000000075”/>
 <ResultSummary ErrorCount="0"/>
</Response>

These points should be noted with regard to committing the target configuration:

 • After each successful commit operation, a commit record is created in the router commit database.
The router maintains up to 100 entries in the commit database corresponding to the last 100
commits. Each commit is assigned a unique identifier, such as “1000000075,” which is saved with
the commit information in the database. The commit identifier is used in subsequent operations such
as <Get> commit changes or <Rollback> to a previous commit (using the <CommitID> tag).

 • Configuration changes in the target configuration are merged with the running configuration when
committed. If a client application is to perform a replace of the configuration, the client must first
remove the unwanted configuration using a <Delete> operation and then add the new configuration
using a <Set> operation. An explicit replace option is not supported. For more information on
replacing the configuration, see the “Replacing the Current Running Configuration” section on
page 2-44.

 • Applying the configuration for a trial period (“try-and-apply”) is not supported for this release.

 • If the client application never commits, the target configuration is automatically destroyed when the
client session is terminated. No other timeouts are supported.

 • To confirm the commit with the Confirmed attribute, the user has to send an explicit <Commit/>
without the Confirmed attribute or send a <Commit/> without the “Confirmed” attribute along with
any other configurations.

Commit Errors

If any configuration entered into the target configuration fails to makes its way to the running
configuration as the result of a <Commit> operation (for example, the configuration contains a semantic
error and is therefore rejected by a back-end application’s verifier function), all of the failed
configuration is returned in the <Commit> response along with the appropriate ErrorCode and
ErrrorMsg attributes indicating the cause of each failure.

The OperationType attribute is used to indicate whether the failure was a result of a requested <Set> or
<Delete> operation. In the case of a <Set> operation failure, the value to be set is included in the commit
response.

This example shows <Set> and <Delete> operations to modify the BGP configuration followed by a
<Commit> request resulting in failures for both requested operations. This request corresponds to these
CLI commands:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 4
RP/0/RP0/CPU0:router(config-bgp)# default-metric 10
RP/0/RP0/CPU0:router(config-bgp)# exit
RP/0/RP0/CPU0:router(config)# commit best-effort
2-24
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
Sample XML Client Request to Modify the Target Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>4</AS>
 </Naming>
 <DefaultVRF>
 <Global>
 <DefaultMetric>10</DefaultMetric>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Set>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <ResultSummary ErrorCount="0"/>
</Response>

Sample Request to Commit the Target Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Commit Mode=”BestEffort”/>
</Request>

Sample XML Response from the Router Showing Failures for Both Requested Operations
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Commit Mode=”BestEffort” ErrorCode="0x40819c00"
ErrorMsg="'sysdb' detected the ' warning' condition 'One or more
sub-operations failed during a best effort complex operation'">
 <Configuration OperationType=”Set”>
 <BGP MajorVersion=”30” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>4</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>4</AS>
 </Naming>
 <DefaultVRF>
 <Global>
<DefaultMetric ErrorCode="0x409f8c00" ErrorMsg="AS number is wrong – BGP is already
running with AS number 3">
2-25
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Configuration Operations
 10
 </DefaultMetric>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Commit>
 <ResultSummary ErrorCount="1"/>
</Response>

For more information, see the “Loading a Failed Configuration” section on page 2-26.

Loading a Failed Configuration

The client application uses the <Load> operation along with the <FailedConfig> tag to populate the
target configuration with the failed configuration from the most recent <Commit> operation. Loading
the failed configuration in this way is equivalent to specifying a “true” value for the KeepFailedConfig
attribute in the <Commit> operation.

If the load operation is successful, the response contains both the <Load> and <FailedConfig> tags. If
the load fails, the response can also contain the ErrorCode and ErrorMsg attributes that indicate the
cause of the load failure.

This example shows a request to load and display the failed configuration from the last <Commit>
operation. This request corresponds to the show configuration failed CLI command.

Sample XML Client Request to Load the Failed Configuration from the Last <Commit> Operation
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <FailedConfig/>
 </Load>
 <Get>
 <Configuration Source=”ChangedConfig”/>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <FailedConfig/>
 </Load>
 <Get>
 <Configuration Source="ChangedConfig" OperationType=”Set”>
 <BGP MajorVersion=”30” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>4</AS>
 </Naming>
 <BGPRunning>
 true
 </BGPRunning>
 <DefaultVRF>
2-26
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
 <Global>
 <DefaultMetric>
 10
 </DefaultMetric>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Unlocking the Running Configuration
The client application must use the <Unlock> operation to release the exclusive lock on the running
configuration for the current session prior to terminating the session.

If the unlock operation is successful, the response contains only the <Unlock/> tag. If the unlock
operation fails, the response can also contain the ErrorCode and ErrorMsg attributes that indicate the
cause of the unlock failure.

This example shows a request to unlock the running configuration. This request corresponds to the exit
CLI command when it is used after the configuration mode is entered through the configure exclusive
CLI command.

Sample XML Client Request to Unlock the Running Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Unlock/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Unlock/>
 <ResultSummary ErrorCount="0"/>
</Response>

Additional Router Configuration and Management Options
Using XML

These sections describe the optional configuration and router management tasks available to the client
application:

 • Getting Commit Changes, page 2-28

 • Loading Commit Changes, page 2-29

 • Clearing a Target Session, page 2-31

 • Rolling Back Configuration Changes to a Specified Commit Identifier, page 2-32

 • Rolling Back the Trial Configuration Changes Before the Trial Time Expires, page 2-32

 • Rolling Back Configuration Changes to a Specified Number of Commits, page 2-33
2-27
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
 • Getting Rollback Changes, page 2-34

 • Loading Rollback Changes, page 2-35

 • Getting Configuration History, page 2-37

 • Getting Configuration Commit List, page 2-40

 • Getting Configuration Session Information, page 2-42

 • Clear Configuration Session, page 2-43

 • Replacing the Current Running Configuration, page 2-44

 • Clear Configuration Inconsistency Alarm, page 2-45

Getting Commit Changes
When a client application successfully commits the target configuration to the running configuration,
the configuration manager writes a single configuration change event to the system message logging
(syslog). As a result, an event notification is written to the Alarm Channel and subsequently forwarded
to any registered configuration agents.

Table 2-3 describes the event notification.

This example shows a configuration change notification:

RP/0/1/CPU0:Jul 25 18:23:21.810 : config[65725]: %MGBL-CONFIG-6-DB_COMMIT :
Configuration committed by user 'lab'. Use 'show configuration commit changes
1000000001' to view the changes

Upon receiving the configuration change notification, a client application can then use the <Get>
operation to load and browse the changed configuration.

The client application can read a set of commit changes using the <Get> operation along with the
<Configuration> request type tag when it includes the Source attribute option CommitChanges. One of
the additional attributes, either ForCommitID or SinceCommitID, must also be used to specify the
commit identifier or commit label for which the commit changes should be retrieved.

This example shows the use of the ForCommitID attribute to show the commit changes for a specific
commit. This request corresponds to the show configuration commit changes 1000000075 CLI
command.

Sample XML Request to Show Specified Commit Changes Using the ForCommitID Attribute
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”CommitChanges” ForCommitID=”1000000075”/>
 </Get>
</Request>

Table 2-3 Event Notification

Notification Description

userid Name of the user who performed the commit operation.

timestamp Date and time of the commit.

commit Unique ID associated with the commit.
2-28
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”CommitChanges” ForCommitID=”1000000075”
 OperationType=”....>
 .
 .
 changed config returned here
 .
 .
 .
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows the use of the SinceCommitID attribute to show the commit changes made since a
specific commit. This request corresponds to the show configuration commit changes since
1000000072 CLI command.

Sample XML Request to Show Specified Commit Changes Using the SinceCommitID Attribute
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”CommitChanges” SinceCommitID=”1000000072”/>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”CommitChanges” SinceCommitID=”1000000072”>
 OperationType=”....>
 .
 .
 changed config returned here
 .
 .
 .
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Loading Commit Changes
The client application can load a set of commit changes into the target configuration buffer using the
Load operation and CommitChanges tag along with one of the additional tags ForCommitID,
SinceCommitID, or Previous. After the completion of the Load operation, the client application can then
modify and commit the commit changes like any other configuration.

If the load succeeds, the response contains both the Load and CommitChanges tags. If the load fails, the
response also contains the ErrorCode and ErrorMsg attributes indicating the cause of the load failure.
2-29
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
This example shows the use of the Load operation and CommitChanges tag along with the ForCommitID
tag to load the commit changes for a specific commit into the target configuration buffer. This request
corresponds to the load commit changes 1000000072 CLI command.

Sample XML Request to Load Commit Changes with the ForCommitID tag

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <CommitChanges>
 <ForCommitID>1000000072</ForCommitID>
 </CommitChanges>
 </Load>
</Request>

Sample XML Response from the Router

<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <CommitChanges>
 <ForCommitID>1000000072</ForCommitID>
 </CommitChanges>
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows the use of the Load operation and CommitChanges tag along with the
SinceCommitID tag to load the commit changes since (and including) a specific commit into the target
configuration buffer. This request corresponds to the load commit changes since 1000000072 CLI
command.

Sample XML Request to Load Commit Changes with the SinceCommitID tag

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <CommitChanges>
 <SinceCommitID>1000000072</SinceCommitID>
 </CommitChanges>
 </Load>
</Request>

Sample XML Response from the Router

<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <CommitChanges>
 <SinceCommitID>1000000072</SinceCommitID>
 </CommitChanges>
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>
2-30
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
This example shows the use of the Load operation and CommitChanges tag along with the Previous tag
to load the commit changes for the most recent four commits into the target configuration buffer. This
request corresponds to the load commit changes last 4 CLI command.

Sample XML Request to Load Commit Changes with the Previous tag

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <CommitChanges>
 <Previous>4</Previous>
 </CommitChanges>
 </Load>
</Request>

Sample XML Response from the Router

<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <CommitChanges/>
 <Previous>4</Previous>
 </CommitChanges>
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>

Clearing a Target Session
Prior to committing the target configuration to the active running configuration, the client application
can use the <Clear> operation to clear the target configuration session. This operation has the effect of
clearing the contents of the target configuration, thus removing any changes made to the target
configuration since the last commit. The clear operation does not end the target configuration session,
but results in the discarding of any uncommitted changes from the target configuration.

If the clear operation is successful, the response contains just the <Clear/> tag. If the clear operation
fails, the response can also contain the ErrorCode and ErrorMsg attributes that indicate the cause of the
clear failure.

This example shows a request to clear the current target configuration session. This request corresponds
to the clear CLI command.

Sample XML Request to Clear the Current Target Configuration Session
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Clear/>
</Request>

Sample XML Response from a Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Clear/>
 <ResultSummary ErrorCount="0"/>
</Response>
2-31
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Rolling Back Configuration Changes to a Specified Commit Identifier
The client application uses the <Rollback> operation with the <CommitID> tag to roll back the
configuration changes made since (and including) the commit by specifying a commit identifier or
commit label.

If the roll back operation is successful, the response contains both the <Rollback> and <CommitID>
tags. If the roll back operation fails, the response can also contain the ErrorCode and ErrorMsg attributes
that indicate the cause of the roll back failure.

Table 2-4 describes the optional attributes that are specified with the <Rollback> operation by the client
application when rolling back to a commit identifier.

This example shows a request to roll back the configuration changes to a specified commit identifier.
This request corresponds to the rollback configuration to 1000000072 CLI command.

Sample XML Request to Roll Back the Configuration Changes to a Specified Commit Identifier
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Rollback Label=”BGPRollback1” Comment=”My BGP rollback”>
 <CommitID>1000000072</CommitID>
 </Rollback>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Rollback Label=”BGPRollback1” Comment=”My BGP rollback”>
 <CommitID>1000000072</CommitID>
 </Rollback>
 <ResultSummary ErrorCount="0"/>
</Response>

Note The commit identifier can also be obtained by using the <GetConfigurationHistory> operation described
in the section “Getting Configuration History” section on page 2-37.

Rolling Back the Trial Configuration Changes Before the Trial Time Expires
When the user sends a commit request with the Confirmed attribute, a trial configuration session is
created. If the user then sends a confirmed commit, the trial configuration changes are committed. If the
user wants to roll back the trial configuration changes before the trial time expires, the user can use the
<Rollback> operation.

Table 2-4 Optional Attributes for Rollback Operation (Commit Identifier)

Attribute Description

Label Unique user-specified label to be associated with the rollback in the router commit
database. If specified, the label must begin with an alphabetic character and cannot
match any existing label in the router commit database.

Comment User-specified comment to be associated with the rollback in the router commit
database.
2-32
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Note No optional attributes can be used when <Trial Configuration> is specified.

This example shows a request to roll back the trial configuration changes:

Sample XML Request to Roll Back the Trial Configuration Before the Trial Time Expires
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Rollback>
 <TrialConfiguration/>
 </Rollback>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Rollback>
 <TrialConfiguration/>
 </Rollback>
 <ResultSummary ErrorCount="0"/>
</Response>

Rolling Back Configuration Changes to a Specified Number of Commits
The client application uses the <Rollback> operation with the <Previous> tag to roll back the
configuration changes made during the most recent [x] commits, where [x] is a number ranging from 0
to the number of saved commits in the commit database. If the <Previous> value is specified as “0”,
nothing is rolled back. The target configuration must be unlocked at the time the <Rollback> operation
is requested.

If the roll back operation is successful, the response contains both the <Rollback> and <Previous> tags.
If the roll back operation fails, the response can also contain the ErrorCode and ErrorMsg attributes that
indicate the cause of the rollback failure.

Table 2-5 describes the optional attributes that are specified with the <Rollback> operation by the client
application when rolling back a specified number of commits.

This example shows a request to roll back the configuration changes made during the previous three
commits. This request corresponds to the rollback configuration last 3 CLI command.

Table 2-5 Optional Attributes for Rollback Operation (Number of Commits)

Attribute Description

Label Unique user-specified label to be associated with the rollback in the router commit
database. If specified, the label must begin with an alphabetic character and cannot
match any existing label in the router commit database.

Comment User-specified comment to be associated with the rollback in the router commit
database.
2-33
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Request to Roll Back Configuration Changes to a Specified Number of Commits
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Rollback>
 <Previous>3</Previous>
 </Rollback>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Rollback>
 <Previous>3</Previous>
 </Rollback>
 <ResultSummary ErrorCount="0"/>
</Response>

Getting Rollback Changes
The client application can read a set of rollback changes using the <Get> operation along with the
<Configuration> request type tag when it includes both the Source attribute option RollbackChanges and
one of the additional attributes ToCommitID or PreviousCommits.

The set of roll back changes are the changes that are applied when the <Rollback> operation is
performed using the same parameters. It is recommended that the client application read or verify the
set of roll back changes before performing the roll back.

This example shows the use of the ToCommitID attribute to get the rollback changes for rolling back to
a specific commit. This request corresponds to the show configuration rollback-changes to
1000000072 CLI command.

Sample XML Client Request to Get Rollback Changes Using the ToCommitID Attribute
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”RollbackChanges” ToCommitID=”1000000072”/>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”RollbackChanges” ToCommitID=”1000000072”>
 OperationType=”....>
 .
 .
 rollback changes returned here
 .
 .
 .
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>
2-34
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
This example shows the use of the PreviousCommits attribute to get the roll back changes for rolling
back a specified number of commits. This request corresponds to the show configuration
rollback-changes last 4 CLI command.

Sample XML Client Request to Get Roll Back Changes Using the PreviousCommits Attribute
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”RollbackChanges” PreviousCommits=”4”/>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source=”RollbackChanges” PreviousCommits=”4”>
 OperationType=”....>
 .
 .
 rollback changes returned here
 .
 .
 .
 </Configuration>
 </Get>
< ResultSummary ErrorCount="0"/>
</Response>

Loading Rollback Changes
The client application can load a set of rollback changes into the target configuration buffer using the
Load operation and RollbackChanges tag along with one of the additional tags ForCommitID,
ToCommidID, or Previous. After the completion of the Load operation, the client application can then
modify and commit the rollback changes like with any other configuration.

If the load succeeds, the response contains both the Load and RollbackChanges tags. If the load fails,
the response also contains the ErrorCode and ErrorMsg attributes indicating the cause of the load failure.

This example shows the use of the Load operation and RollbackChanges tag along with the
ForCommitID tag to load the rollback changes for a specific commit into the target configuration buffer.
This request corresponds to the load rollback changes 1000000072 CLI command.

Sample XML Client to Load Rollback Changes with the ForCommitID tag

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <RollbackChanges>
 <ForCommitID>1000000072</ForCommitID>
 </RollbackChanges>
 </Load>
</Request>
2-35
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Response from the Router

<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <RollbackChanges/
 <ForCommitID>1000000072</ForCommitID>
 </RollbackChanges>
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows the use of the Load operation and RollbackChanges tag along with the ToCommitID
tag to load the rollback changes up to (and including) a specific commit into the target configuration
buffer. This request corresponds to the load rollback changes to 1000000072 CLI command.

Sample XML Client to Load Rollback Changes with the ToCommitID tag

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <RollbackChanges>
 <ToCommitID>1000000072</ToCommitID>
 </RollbackChanges>
 </Load>
</Request>

Sample XML Response from the Router

<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <RollbackChanges>
 <ToCommitID>1000000072</ToCommitID>
 </RollbackChanges>
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows the use of the Load operation and RollbackChanges tag along with the Previous tag
to load the rollback changes for the most recent four commits into the target configuration buffer. This
request corresponds to the load rollback changes last 4 CLI command.

Sample XML Client to Load Rollback Changes with the Previous tag

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Load>
 <RollbackChanges>
 <Previous>4</Previous>
 </RollbackChanges>
 </Load>
</Request>
2-36
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Load>
 <RollbackChanges>
 <Previous>4</Previous>
 </RollbackChanges>
 </Load>
 <ResultSummary ErrorCount="0"/>
</Response>

Getting Configuration History
The client application uses the <GetConfigurationHistory> operation to get information regarding these
configuration events:

 • Commit

 • Online insertion and removal (OIR) events, also known as remove and replace

 • Router shutdown synchronization

 • cfs check rebuild of persistent configuration from running configuration

 • Startup application of admin and SDR configuration, noting alternate configuration fallback
specification

 • Configuration inconsistency including failed configuration or other similar reasons

Table 2-6 describes the optional attributes available with the <GetConfigurationHistory> operation.

The <GetConfigurationHistory> operation corresponds to the show configuration history CLI
command.

This example shows a request to list the information associated with the previous three commits. This
request corresponds to the show configuration commit history first 6 detail CLI command.

Table 2-6 Optional Attributes to Get Configuration History

Attribute Description

Maximum Maximum number of entries to be returned from the commit history file. The range
of entries that can be returned are from 0 to 1500. If the Maximum attribute is not
included in the request, or if the value of the Maximum attribute is greater than the
actual number of entries in the commit history file, all entries in the commit history
files are returned. The commit entries are returned with the most recent commit
history information appearing first in the list.

EventType Type of event records to be displayed from the configuration history file. If this
attribute is not included in the request, all types of event records are returned. The
EventType attribute expects one of these values: All, Alarm, CFS-Check, Commit,
OIR, Shutdown, or Startup.

Reverse Reverse attribute has a value of true. If it is specified, the most recent records are
displayed first; otherwise, the oldest records are displayed first.

Details Used to display detailed information. The Detail attribute has a value of either true
or false and the default is false.
2-37
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Request to List Configuration History Information for the Previous Three Commits
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetConfigurationHistory EventType=”All” Detail=”true” Maximum=”6”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetConfigurationHistory EventType=”All” Detail=”true” Maximum=”6”>
 <EventEntry>
 <Naming>
 <EventName>
 CFS-Check
 </EventName>
 </Naming>
 <Timestamp>
 1300262221
 </Timestamp>
 <Detail>
 <UserID>
 lab
 </UserID>
 <Line>
 vty2
 </Line>
 </Detail>
 </Event Entry>
 <Event Entry>
 <Naming>
 <EventName>
 Commit
 </EventName>
 </Naming>
 <Timestamp>
 1300262224
 </Timestamp>
 <Detail>
 <CommitID>
 1000000627
 </CommitID>
 <UserID>
 lab
 </UserID>
 <Line>
 vty2
 </Line>
 <ClientName>
 CLI
 </ClientName>
 </Detail>
 </Event Entry>
 <Event Entry>
 <Naming>
 <EventName>
 Commit
 </EventName>
 </Naming>
 <Timestamp>
 1300262231
 </Timestamp>
 <Detail>
2-38
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
 <CommitID>
 1000000628
 </CommitID>
 <UserID>
 lab
 </UserID>
 <Line>
 vty0
 </Line>
 <Client>CLI
 </Client>
 </Detail>
 </EventEntry>
 <EventEntry>
 <Naming>
 <EventName>
 Commit
 </EventName>
 </Naming>
 <Timestamp>
 1300262239
 </Timestamp>
 <Detail>
 <CommitID>
 1000000629
 </CommitID>
 <UserID>
 lab
 </UserID>
 <Line>
 vty0
 </Line>
 <ClientName>
 CLI
 </ClientName>
 </Detail>
 </EventEntry>
 <EventEntry>
 <Naming>
 <EventName>
 Commit
 </EventName>
 </Naming>
 <Timestamp>
 1300262246
 </Timestamp>
 <Detail>
 <CommitID>
 1000000630
 </CommitID>
 <UserID>
 lab
 </UserID>
 <Line>
 vty0
 </Line>
 <ClientName>
 CLI
 </ClientName>
 </Detail>
 </EventEntry>
 <EventEntry>
 <Naming>
 <EventName>
2-39
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
 Commit
 </EventName>
 <Naming>
 <Timestamp>
 1300262255
 </Timestamp>
 <Detail>
 <CommitID>
 1000000631
 </CommitID>
 <UserID>
 lab
 </UserID>
 <Line>
 vty0
 </Line>
 <ClientName>
 CLI
 </ClientName>
 </Detail>
 </EventEntry>
 </GetConfigurationHistory>
 <ResultSummary ErrorCount="0"/>
</Response>

Getting Configuration Commit List
The client application can use the <GetConfigurationCommitList> operation to get information
regarding the most recent commits to the running configuration.

Table 2-7 describes the information that is returned for each configuration commit session.

Table 2-7 Returned Session Information

Name Description

<CommitID> Unique ID associated with the commit.

<Label> (Optional) Label associated with the commit.

<User> Name of the user who created the configuration session within
which the commit was performed.

<Line> Line used to connect to the router for the configuration session.

<Client> Name of the client application that performed the commit.

<Timestamp> Period of time, in seconds, of the commit.

<Comment> (Optional) Comment associated with the commit.

<Maximum> (Optional) Maximum number of entries to return from the commit
database. If the Maximum attribute is not included in the request or
if the Maximum attribute value is greater than the actual number of
entries in the commit history file, all entries are returned. The
commit entries are returned with the most recent commit entries
appearing first in the list.

<Detail> (Optional) Used to get the detailed information about the commit
entry. The Detail attribute has the value of true or false and the
default value is false.
2-40
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
The <GetConfigurationCommitList> operation corresponds to the show configuration commit list CLI
command.

This example shows a request to list the information associated with the previous two commits. This
request corresponds to the show configuration commit list 2 CLI command.

Sample XML Request to List Configuration History Information for the Previous Three Commits
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetConfigurationCommitList Maximum=”2”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetConfigurationHistory Maximum=”2”>
 <CommitEntry>
 <Naming>
 <CommitID>
 1000000462
 </CommitID>
 </Naming>
 <UserID>
 lab
 </UserID>
 <Line>
 /dev/vty0:node0_0_CPU0
 </Line>
 <ClientName>Rollback
 </Client>
 <Timestamp>
 1303319582
 </Timestamp>
 </CommitEntry>
 <CommitENtry>
 <Naming>
 <CommitID>
 1000000461
 </CommitID>
 </Naming>
 <User>
 lab
 </User>
 <Line>
 /dev/vty0:node0_0_CPU0
 </Line>
 <ClientName>
 XML TTY Agent
 </Client>
 <Timestamp>
 1303318704
 </Timestamp>
 </CommitEntry>
 </GetConfigurationCommitList>
 <ResultSummary ErrorCount="0"/>
</Response><
2-41
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Getting Configuration Session Information
The client application uses the <GetConfigurationSessions> operation to get the list of all users
configuring the router. In the case where the configuration is locked, the list identifies the user holding
the lock.

Table 2-8 describes the information that is returned for each configuration session.

The Detail attribute can be specified with <GetConfigurationSessions>. This attribute specifies whether
the detailed information is required. False is the default value.

Table 2-9 describes the additional information that is returned when the Detail attribute is used.

This example shows a request to get the list of users currently configuring the router. This request
corresponds to the show configuration sessions detail CLI command.

Sample XML Request to Get List of Users Configuring the Router
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetConfigurationSessions Detail=”true”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetConfigurationSessions Detail="true">
 <Session>
 <Naming>
 <SessionID>
 00000000-0005f109-00000000

Table 2-8 Returned Session Information

Returned Session Information Session Information Description

<SessionID> Unique autogenerated ID for the configuration session.

<UserID> Name of the user who created the configuration session.

<Line> Line used to connect to the router.

<ClientName> User-friendly name of the client application that created the
configuration session.

<Since> Date and time of the creation of the configuration session.

<LockHeld> Boolean operation indicating whether the session has an exclusive
lock on the running configuration.

Table 2-9 Returned Session Information with the Detail Attribute

Returned Session Information Session Information Description

<Process> Process name

<ProcessID> Process ID

<Node> Node ID

<Elapsed> Session time elapsed, in seconds.
2-42
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
 </SessionID>
 </Naming>
 <UserID>
 lab
 </UserID>
 <Line>
 con0_0_CPU0
 </Line>
 <Since>
 1303317929
 </Since>
 <LockHeld>
 false
 </LockHeld>
 <TrialSession>
 false
 </TrialSession>
 <Detail>
 <ClientName>
 CLI
 </ClientName>
 <ProcessID>
 389385
 </ProcessID>
 <Process>
 config
 </Process>
 <Node>
 <Rack>
 0
 </Rack>
 <Slot>
 0
 </Slot>
 <Instance>
 CPU0
 </Instance>
 </Node>
 <ElapsedTime>
 2183
 </ElapsedTime>
 </Detail>
 </Session>
 </GetConfigurationSessions>
 <ResultSummary ErrorCount="0"/>
</Response>

Clear Configuration Session
The client application can use the <ClearConfigurationSession> operation to clear a particular
configuration session. The SessionID attribute specifies the session to be cleared.

This example shows a request to clear a configuration session. This request corresponds to the clear
configuration sessions 00000000-000a00c9-00000000 CLI command.
2-43
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Request to Get List of Users Configuring the Router
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <ClearConfigurationSession SessionID=”00000000-000a00c9-00000000”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <ClearConfigurationSession SessionID="00000000-000a00c9-00000000"/>

 <ResultSummary ErrorCount="0"/>
</Response>

Replacing the Current Running Configuration
A client application replaces the current running configuration on the router with a users configuration
file. Performg these operations in sequence:

1. Lock the configuration.

2. Load the desired off-the-box configuration into the target configuration using one or more <Set>
operations (assuming that the entire desired configuration is available in XML format, perhaps from
a previous <Get> of the entire configuration). As an alternative, use an appropriate copy command
enclosed within <CLI> tags.

3. Commit the target configuration specifying the Replace attribute with a value of true.

These examples illustrate these steps:

Sample XML Request to Lock the Current Running Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Lock/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Lock/>
 <ResultSummary ErrorCount="0"/>
</Response>
2-44
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Request to Set the Current Running Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration>
 .
 .
 .
 configuration data goes here
 .
 .
 .
 </Configuration>
 </Set>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <ResultSummary ErrorCount="0"/>
</Response>

Sample XML Request to Commit the Target Configuration
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Commit Replace=”true”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Commit CommitID="1000000075"/>
 <ResultSummary ErrorCount="0"/>
</Response>

Clear Configuration Inconsistency Alarm
The client application uses the <ClearConfigurationInconsistency> operation to clear a bi-state
configuration inconsistency alarm.

If the clear operation is successful, the response contains only the <ClearConfigurationInconsistency/>
tag. If the clear operation fails, the response also contains the ErrorCode and ErrorMsg attributes,
indicating the cause of the clear failure.

This example shows a request to clear the configuration inconsistency alarm in user mode. This request
corresponds to the clear configuration inconsistency CLI command.

Sample XML Request to Clear the Configuration Inconsistency Alarm
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <ClearConfigurationInconsistency/>
</Request>
2-45
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 2 Cisco XML Router Configuration and Management
Additional Router Configuration and Management Options Using XML
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <ClearConfigurationInconsistency/>
 <ResultSummary ErrorCount="0"/>
</Response>
2-46
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 3

Cisco XML Operational Requests and Fault
Management

A client application can send an XML request to get router operational information using either a native
data <Get> request along with the <Operational> tag, or the equivalent CLI command. Although the CLI
is more familiar to users, the advantage of using the <Get> request is that the response data is encoded
in XML format instead of being only uninterpreted text enclosed within <CLI> tags.

This chapter contains these sections:

 • Operational Get Requests, page 3-49

 • Action Requests, page 3-50

Operational Get Requests
The content and format of operational <Get> requests are described in additional detail in Chapter 4,
“Cisco XML and Native Data Operations.”

This example shows a <Get> request to retrieve the global Border Gateway Protocol (BGP) process
information. This request returns BGP process information similar to that displayed by the show ip bgp
process detail CLI command.

Sample XML Client Request to Get BGP Information
<?xml version=”1.0” encoding=”UTF-8”?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Operational>
 <BGP>
 <Active>
 <DefaultVRF>
 <ProcessInfoTable/>
 </DefaultVRF>
 </Active>
 </BGP>
 </Operational>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
3-49
Cisco IOS XR XML API Guide

Chapter 3 Cisco XML Operational Requests and Fault Management
Action Requests
 <Operational>
 <BGP MajorVersion=”22” MinorVersion=”2”>
 <Active>
 <ProcessInfoTable>
 <ProcessInfo>
 <Naming>
 <ProcessID>0</ProcessID>
 </Naming>
 <ProcessInstance>
 0
 </ProcessInstance>

 more response content here
 ...
 </ProcessInfo>
 </ProcessInfoTable>
 </Active>
 </BGP>
 </Operational>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Action Requests
A client application can send a <Set> request along with the <Action> tag to trigger unique actions on
the router. For example, an object may be set with an action request to inform the router to clear a
particular counter or reset some functionality. Most often this operation involves setting the value of a
Boolean object to “true”.

This example shows an action request to clear the BGP performance statistics information. This request
is equivalent to the clear bgp performance-statistics CLI command.

Sample XML Request to Clear BGP Performance Statistics Information
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Action>
 <BGP>
 <DefaultVRF>
 <ClearPerformanceStats>true</ClearPerformanceStats>
 </DefaultVRF>
 </BGP>
 </Action>
 </Set>
</Request>
3-50
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 3 Cisco XML Operational Requests and Fault Management
Action Requests
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Action/>
 </Set>
 <ResultSummary ErrorCount="0"/>
</Response>

In addition, this example shows an action request to clear the peer drop information for all BGP
neighbors. This request is equivalent to the clear bgp peer-drops * CLI command.

Sample XML Request to Clear Peer Drop Information for All BGP Neighbors
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Action>
 <BGP>
 <DefaultVRF>
 <ClearDrops>
 <All>true</All>
 </ClearDrops>
 </DefaultVRF>
 </BGP>
 </Action>
 </Set>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Action/>
 </Set>
 <ResultSummary ErrorCount="0"/>
</Response>

Cisco XML and Fault Management
When a client application successfully commits the target configuration to the router’s running
configuration, the configuration manager writes a single configuration change event to system message
logging (syslog). As a result, a fault management event notification is written to the Alarm Channel and
subsequently forwarded to any registered configuration agents.

Configuration Change Notification

Table 3-1 provides event notification for configuration changes information.

Table 3-1 Event Notifications for Configuration Changes

Event Notification Description

userid Name of the user who performed the commit operation.
3-51
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 3 Cisco XML Operational Requests and Fault Management
Action Requests
This example shows a configuration change notification:

RP/0/RP0/CPU0:Sep 18 09:43:42.747 : %CLIENTLIBCFGMGR-6-CONFIG_CHANGE : A configuration
commit by user root occurred at ’Wed Sep 18 09:43:42 2004 ’. The configuration changes are
saved on the router in file: 010208180943.0

Upon receiving the configuration change notification, a client application can then use the <Load> and
<Get> operations to load and browse the changed configuration.

timestamp Date and time of the commit.

commit Unique ID associated with the commit.

Table 3-1 Event Notifications for Configuration Changes (continued)

Event Notification Description
3-52
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 4

Cisco XML and Native Data Operations

Native data operations <Get>, <Set>, and <Delete> provide basic access to configuration and
operational data residing on the router.

This chapter describes the content of native data operations and provides an example of each operation
type.

Native Data Operation Content
The content of native data operations includes the request type and relevant object class hierarchy as
described in these sections:

 • Request Type Tag and Namespaces, page 4-54

 • Object Hierarchy, page 4-54

 • Dependencies Between Configuration Items, page 4-58

 • Null Value Representations, page 4-58

 • Operation Triggering, page 4-58

 • Native Data Operation Examples, page 4-59

This example shows a native data operation request:

Sample XML Client Native Data Operation Request
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Operation>
 <Request Type>
 .
 .
 .
 object hierarchy goes here
 .
 .
 .
 </Request Type>
 </Operation>
</Request>
4-53
Cisco IOS XR XML API Guide

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Operation>
 <Request Type>
 .
 .
 .
 response content returned here
 .
 .
 .
 </Request Type>
 </Operation>
 <ResultSummary ErrorCount="0"/>
</Response>

Request Type Tag and Namespaces
The request type tag must follow the operation type tag within a native data operation request.

Table 4-1 describes the type of request that must be specified as applying to one of the namespaces.

Object Hierarchy
A hierarchy of elements is included to specify the items to get, set, or delete, and so on, after the request
type tag is specified. The precise hierarchy is defined by the XML component schemas.

Note You should use only the supported XML schema objects; therefore, do not attempt to write a request for
other objects.

The XML schema information is mapped to the XML instance.

Table 4-1 Namespace Descriptions

Namespace Description

<Configuration> Provides access to the router configuration data analogous to CLI
configuration commands. The allowed operations on configuration data are
<Get>, <Set>, and <Delete>.

<Operational> Provides access to the router operational data and is analogous to CLI show
commands. The only operation allowed on operational data is <Get>.

<Action> Provides access to the action data, for example, the clear commands. The
only allowed operation on action data is <Set>.

<AdminOperational> Provides access to the router administration operational data. The only
operation allowed on administration operational data is <Get>.

<AdminAction> Provides access to the router administration action data; for example, the
clear commands. The only allowed operation on administration action data
is <Set>.
4-54
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Main Hierarchy Structure

The main structure of the hierarchy consists of the native data model organized as a tree of nodes, where
related data items appear in the same branch of the tree. At each level of the tree, a node is a container
of further, more specific, sets of related data, or a leaf that holds an actual value.

For example, the first element in the configuration data model is <Configuration>, which contains all
possible configuration items. The children of this element are more specific groups of configuration,
such as <BGP> for Border Gateway Protocol (BGP) configuration and <ISIS> for Intermediate
System-to-Intermediate System (ISIS) configuration. Beneath the <BGP> element, data is further
compartmentalized with the <Global> element for global BGP configuration and <BGPEntity> element
for per-entity BGP configuration. This compartmentalization continues down to the elements that hold
the values, the values being the character data of the element.

This example shows the main hierarchy structure:

<Configuration>
 <BGP>
 .
 .
 .
 <Global>
 .
 .
 .
 <DefaultMetric>10</DefaultMetric>
 .
 .
 .
 </Global>
 <BGPEntity>
 .
 .
 .
 </BGPEntity>
 .
 .
 .
 </BGP>
 <ISIS>
 .
 .
 .
 </ISIS>
</Configuration>

Data can be retrieved at any level in the hierarchy. One particular data item can be examined, or all of
the data items in a branch of the tree can be returned in one request.

Similarly, configuration data can be deleted at any granularity—one item can be deleted, or a whole
branch of related configuration can be deleted. So, for example, all BGP configuration can be deleted in
one request, or just the value of the default metric.

Hierarchy Tables

One special type of container element is a table. Tables can hold any number of keyed entries, and are
used when there can be multiple instances of an entity. For example, BGP has a table of multiple
neighbors, each of which has a unique IP address "key" to identify it. In this case, the table element is
4-55
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
<NeighborTable>, and its child element signifying a particular neighbor is <Neighbor>. To specify the
key, an extension to the basic parent-child hierarchy is used, where a <Naming> element appears under
the child element, containing the key to the table entry.

This example shows hierarchy tables:

<Configuration>
 <BGP>
 .
 .
 .
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>
 <AS_XX>
 0
 </AS_XX>
 <AS_YY>
 6
 </AS_YY>
 </RemoteAS>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.7</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>
 <AS_XX>
 0
 </AS_XX>
 <AS_YY>
 6
 </AS_YY>
 </RemoteAS>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 .
 .
 .
 </BGP>
 <ISIS>
 .
 .
 .
 </ISIS>
</Configuration>

Use tables to access a specific data item for an entry (for example, getting the remote autonomous system
number for neighbor 10.0.101.6), or all data for an entry, or even all data for all entries.

Tables also provide the extra feature of allowing the list of entries in the table to be returned.

Returned entries from tables can be used to show all neighbors configured; for example, without
showing all their data.
4-56
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Tables in the operational data model often have a further feature when retrieving their entries. The tables
can be filtered on particular criteria to return just the set of entries that fulfill those criteria. For instance,
the table of BGP neighbors can be filtered on address family or autonomous system number or update
group, or all three. To apply a filter to a table, use another extension to the basic parent-child hierarchy,
where a <Filter> element appears under the table element, containing the criteria to filter on.

This example shows table filtering:

<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Operational>
 <BGP>
 <Active>
 <VRFTable>
 <VRF>
 <Naming>
 <VRFName>one<VRFName>
 </Naming>
 <NeighborTable>
 <Filter>
 <BGP_AFFilter>
 <AFName>IPv4Unicast</AFName>
 </BGP_AFFilter>
 </Filter>
 </NeighborTable>
 </VRF>
 </VRFTable>
 </Active>
 </BGP>
 </Operational>
 </Get>
</Request>

Leaf Nodes

The leaf nodes hold values and are generally simple one-value items where the element representing the
leaf node uses character data to specify the value (as in <DefaultMetric>10</DefaultMetric> in the
example in the “Main Hierarchy Structure” section on page 4-55. In some cases there may be more than
one value to specify—for example, when you configure the administrative distance for an address family
(the <Distance> element), three values must be given together. Specifying more than one value is
achieved by adding further child elements to the leaf, each of which indicates the particular value being
configured.

This example shows leaf nodes:

<Configuration>
 <BGP>
 .
 .
 .
 <Distance>
 <ExternalRoutes>20</ExternalRoutes>
 <InternalRoutes>250</InternalRoutes>
 <LocalRoutes>200</LocalRoutes>
 </Distance>
 .
 .
 .
 </BGP>
</Configuration>
4-57
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Sometimes there may be even more structure to the values (with additional levels in the hierarchy
beneath the <Distance> tag as a means for grouping the related parts of the data together), although they
are still only “setable” or “getable” as one entity. The extreme example of this is that in some of the
information returned from the operational data model, all the values pertaining to the status of a
particular object may be grouped as one leaf. For example, a request to retrieve a particular BGP path
status returns all the values associated with that path.

Dependencies Between Configuration Items
Dependencies between configuration items are not articulated in the XML schema nor are they enforced
by the XML infrastructure; for example, if item A is this value, then item B must be one of these values,
and so forth. The back-end for the Cisco IOS XR applications is responsible for preventing inconsistent
configuration from being set. In addition, the management agents are responsible for carrying out the
appropriate operations on dependent configuration items through the XML interface.

Null Value Representations
The standard attribute “xsi:nil” is used with a value of “true” when a null value is specified for an
element in an XML request or response document.

This example shows how to specify a null value for the element <HoldTime>:

<Neighbor>
 <Timers>
 <KeepAliveInterval>60</KeepAliveInterval>
 <HoldTime xsi:nil=”true”/>
 </Timers>
</Neighbor>

Any element that can be set to “nil” in an XML instance has the attribute “nillable” set to “true” in the
XML schema definition for that element. For example:

<xsd:element name=”HoldTime” type=”xsd:unsignedInt” nillable=”true”/>

Any XML instance document that uses the nil mechanism must declare the “XML Schema for Instance
Documents” namespace, which contains the “xsi:nil” definition. Responses to native data operations
returned from the router declares the namespace in the operation tag. For example:

<Get xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

Operation Triggering
When structuring an XML request, the user should remember the general rule regarding what to specify
in the XML for an operation to take place: As a client XML request is parsed by the router, the specified
operation takes place whenever a closing tag is encountered after a series of one or more opening tags
(but only when the closing tag is not the </Naming> tag).

This example shows a request to get the confederation peer information for a particular BGP autonomous
system. In this example, the <Get> operation is triggered when the <ConfederationPeerASTable/> tag
is encountered.

Sample XML Client Request to Trigger a <Get> Operation for BGP Timer Values
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
4-58
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
 <Get>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <Global>
 <ConfederationPeerASTable/>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="30" MinorVersion="0">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <Global>
 <ConfederationPeerASTable>
 <ConfederationPeerAS>
 <Naming>
 <AS_XX>0</AS_XX>
 <AS_YY>10</AS_YY>
 </Naming>
 <Enable>true</Enable>
 </ConfederationPeerAS>
 </ConfederationPeerASTable>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>
4-59
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Native Data Operation Examples
These sections provide examples of the basic <Set>, <Get>, and <Delete> operations:

 • Set Configuration Data Request: Example, page 4-60

 • Get Request: Example, page 4-62

 • Get Request of Nonexistent Data: Example, page 4-63

 • Delete Request: Example, page 4-65

 • GetDataSpaceInfo Request Example, page 4-66

Set Configuration Data Request: Example

This example shows a native data request to set several configuration values for a particular BGP
neighbor. Because the <Set> operation in this example is successful, the response contains only the
<Set> operation and <Configuration> request type tags.

This request is equivalent to these CLI commands:

router bgp 3
 address-family ipv4 unicast!
 address-family ipv4 multicast!
 neighbor 10.0.101.6
 remote-as 6
 ebgp-multihop 255
 address-family ipv4 unicast
 orf route-policy BGP_pass all
 capability orf prefix both
 !
 address-family ipv4 multicast
 orf route-policy BGP_pass all
 !
 !
!

Sample XML Client Request to <Set> Configuration Values for a BGP Neighbor
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <BGPRunning>true</BGPRunning>
 <DefaultVRF>
 <Global>
 <GlobalAFTable>
 <GlobalAF>
 <Naming>
 <AFName>IPv4Unicast</AFName>
 </Naming>
 <Enable>true</Enable>
 </GlobalAF>
4-60
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
 <GlobalAF>
 <Naming>
 <AFName>IPv4Multicast</AFName>
 </Naming>
 <Enable>true</Enable>
 </GlobalAF>
 </GlobalAFTable>
 </Global>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>
 <AS_XX>0</AS_XX>
 <AS_YY>6</AS_YY>
 </RemoteAS>
 <EBGPMultihop>
 <MaxHopCount>255</MaxHopCount>
 <MPLSDeactivation> false </MPLSDeactivation>
 </EBGPMultihop>
 <NeighborAFTable>
 <NeighborAF>
 <Naming>
 <AFName>IPv4Unicast</AFName>
 </Naming>
 <Activate>true</Activate>
 <PrefixORFPolicy>BGP_pass_all</PrefixORFPolicy>
 <AdvertiseORF> Both </AdvertiseORF>
 </NeighborAF>
 <NeighborAF>
 <Naming>
 <AFName>IPv4Multicast</AFName>
 </Naming>
 <Activate>true</Activate>
 <PrefixORFPolicy>BGP_pass_all</PrefixORFPolicy>
 </NeighborAF>
 </NeighborAFTable>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Set>
 <Commit/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <Commit CommitID="1000000029"/>
 <ResultSummary ErrorCount="0"/>
</Response>
4-61
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Get Request: Example

This example shows a native data request to get the address independent configuration values for a
specified BGP neighbor (using the same values set in the previous example).

Sample XML Client Request to <Get> Configuration Values for a BGP Neighbor
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</as>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
4-62
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
 </Naming>
 <RemoteAS>
 <AS XX>0</AS XX>
 <AS YY>6</AS YY>
 </RemoteAS>
 <EBGPMultihop>
 <MaxHopCount>255</MaxHopCount>
 <MPLSDeactivation>false</MPLSDeactivation>
 <EBGPMultihop>
 <NeighborAFTable>
 <NeighborAF>
 <Naming>
 <AFName>IPv4Unicast</AFName>
 </Naming>
 <Activate>true</Activate>
 <PrefixORFPolicy>BGP_pass_all</PrefixORFPolicy>
 <AdvertiseORF>Both</AdvertiseORF>
 </NeighborAF>
 <NeighborAF>
 <Naming>
 <AFName>IPv4Multicast</AFName>
 </Naming>
 <Activate>true</Activate>
 <PrefixORFPolicy>BGP_pass_all</PrefixORFPolicy>
 </NeighborAF>
 </NeighborAFTable>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Get Request of Nonexistent Data: Example

This example shows a native data request to get the configuration values for a particular BGP neighbor;
this is similar to the previous example. However, in this example the client application is requesting the
configuration for a nonexistent neighbor. Instead of returning an error, the router returns the requested
object class hierarchy, but without any data.

Note Whenever an application attempts to get nonexistent data, the router does not treat this as an error and
returns the empty object hierarchy in the response.

Sample XML Client Request to <Get> Configuration Data for a Nonexistent BGP Neighbor
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
4-63
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.99</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get ItemNotFound ="true">
 <Configuration>
 <BGP MajorVersion=”35” MinorVersion=”2”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3<AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor NotFound=”true”>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.99</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0" ItemNotFound="true"/>
</Response>
4-64
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
Delete Request: Example

This example shows a native data request to delete the address-independent configuration for a particular
BGP neighbor. Note that if a request is made to delete an item that does not exist in the current
configuration, an error is not returned to the client application. So in this example, the returned result is
the same as in the previous example: the empty <Delete/> tag, whether or not the specified BGP
neighbor exists.

This request is equivalent to these CLI commands:

router bgp 3
 no neighbor 10.0.101.9
exit

Sample XML Client Request to <Delete> the Address-Independent Configuration Data for a BGP Neighbor
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Delete>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Delete>
 <Commit/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Delete>
 <Configuration/>
 </Delete>
 <Commit CommitID=”1000000030”/>
 <ResultSummary ErrorCount="0"/>
</Response>
4-65
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 4 Cisco XML and Native Data Operations
Native Data Operation Content
GetDataSpaceInfo Request Example

This example shows a <GetDataSpaceInfo> operation used to retrieve the native data branch names
dynamically. This is useful, for example, for writing a client application that can issue a
<GetVersionInfo> operation without having to hardcode the branch names. The <GetDataSpaceInfo>
operation can be invoked instead to retrieve the branch names. The returned branch names can then be
included in a subsequent <GetVersionInfo> request.

Sample XML Client Request to Retrieve Native Data
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetDataSpaceInfo/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1"
 MinorVersion="0">
 <GetDataSpaceInfo>
 <Configuration/>
 <Operational/>
 <Action/>
 <AdminOperational/>
 <AdminAction/>
 </GetDataSpaceInfo>
 <ResultSummary ErrorCount="0"/>
</Response>
4-66
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 5

Cisco XML and Native Data Access Techniques

This chapter describes the various techniques or strategies you can use to structure native data operation
requests to access the information needed within the XML schema object class hierarchy.

Available Set of Native Data Access Techniques
The available native data access techniques are:

 • Request all data in the configuration hierarchy. See the “XML Request for All Configuration Data”
section on page 5-68.

 • Request all configuration data for a component. See the “XML Request for All Configuration Data
per Component” section on page 5-68.

 • Request all data within a container. See the “XML Request for Specific Data Items” section on
page 5-71.

 • Combine object class hierarchies within a request. See the “XML Request with Combined Object
Class Hierarchies” section on page 5-72.

 • Use wildcards in order to apply an operation to a set of entries within a table (Match attribute). See
the “XML Request Using Wildcarding (Match Attribute)” section on page 5-75.

 • Repeat naming information in order to apply an operation to multiple instances of an object. See the
“XML Request for Specific Object Instances (Repeated Naming Information)” section on
page 5-80.

 • Perform a one-level <Get> in order to “list” the naming information for each entry within a table
(Content attribute). See the “XML Request Using Operation Scope (Content Attribute)” section on
page 5-82.

 • Specify the maximum number of table entries to be returned in a response (Count attribute). See the
“Limiting the Number of Table Entries Returned (Count Attribute)” section on page 5-83.

 • Use custom filters to filter table entries (Filter element). See the “Custom Filtering (Filter Element)”
section on page 5-85.

 • Use the Mode attribute. See the “XML Request Using the Mode Attribute” section on page 5-86

The actual data returned in a <Get> request depends on the value of the Source attribute.

Note The term “container” is used in this document as a general reference to any grouping of related data, for
example, all of the configuration data for a particular Border Gateway Protocol (BGP) neighbor. The
term “table” is used more specifically to denote a type of container that holds a list of named
5-67
Cisco IOS XR XML API Guide

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
homogeneous objects. For example, the BGP neighbor address table contains a list of neighbor
addresses, each of which is identified by its IP address. All table entries in the XML API are identified
by the unique value of their <Naming> element.

XML Request for All Configuration Data
Use the empty <Configuration/> tag to retrieve the entire configuration object class hierarchy.

This example shows how to get the entire configuration hierarchy by specifying the empty
<Configuration/> tag:

Sample XML Client Request to <Get> the Entire Configuration Object Class Hierarchy
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration/>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 .
 .
 .
 response data goes here
 .
 .
 .
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request for All Configuration Data per Component
All the configuration data for a component is retrieved by specifying the highest level tag for the
component.

In this example, all the configuration data for BGP is retrieved by specifying the empty <BGP/> tag:

Sample XML Client Request for All BGP Configuration Data
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”/>
 </Configuration>
 </Get>
</Request>
5-68
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 .
 .
 .
 response data goes here
 .
 .
 .
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request for All Data Within a Container
All data within a container is retrieved by specifying the configuration or operational object class
hierarchy down to the containers of interest, including any naming information as appropriate.

This example shows how to retrieve the configuration for the BGP neighbor with address 10.0.101.6:

Sample XML Client Request to Get All Address Family-Independent Configuration Data Within a BGP Neighbor
Container
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="24" MinorVersion="0">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
5-69
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 </Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>
 <AS XX>0</AS XX>
 <AS YY>6</AS YY>
 </RemoteAS>
 <EBGPMultihop>
 <MaxHopCount>255</MaxHopCount>
 <MPLSDeactivation>false</MPLSDeactivation>
 </EBGPMultihop>
 <NeighborAFTable>
 <NeighborAF>
 <Naming>
 <AFName>IPv4Unicast</AFName>
 </Naming>
 <Activate>true</Activate>
 <PrefixORFPolicy>oBGP_pass_all</PrefixORFPolicy>
 <AdvertiseORF>Both</AdvertiseORF>
 </NeighborAF>
 <NeighborAF>
 <Naming>
 <AFName>IPv4Multicast</AFName>
 </Naming>
 <Activate>true</Activate>
 <PrefixORFPolicy>BGP_pass_all</PrefixORFPolicy>
 </NeighborAF>
 </NeighborAFTable>
 </Neighbor>
5-70
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request for Specific Data Items
The value of a specific data item (leaf object) can be retrieved by specifying the configuration or
operational object class hierarchy down to the item of interest, including any naming information as
appropriate.

This example shows how to retrieve the values of the two data items <RemoteAS> and <EBGPMultihop>
for the BGP neighbor with address 10.0.101.6:

Sample XML Client Request for Two Specific Data Items: RemoteAS and EBGPMultihop
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS/>
 <EBGPMultihop/>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
5-71
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <EBGPMultihop>
 <MaxHopCount>255</MaxHopCount>
 </EBGPMultihop>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request with Combined Object Class Hierarchies
Multiple object class hierarchies can be specified in a request. For example, a portion of the hierarchy
can be repeated, and multiple instances of a child object class can be included under a parent.

The object class hierarchy may also be compressed into the most “efficient” XML. In other words, it is
not necessary to repeat hierarchies within a request.

Before combining multiple operations inside one <Get> tag, these limitations should be noted for
Release 3.0. Any operations that request multiple items of data must be sent in a separate XML request.
They include:

 • An operation to retrieve all data beneath a container. For more information, See the“XML Request
for All Data Within a Container” section on page 5-69.

 • An operation to retrieve the list of entries in a table. For more information, See the “XML Request
Using Operation Scope (Content Attribute)” section on page 5-82.

 • An operation which includes a wildcard. For more information, See the “XML Request Using
Wildcarding (Match Attribute)” section on page 5-75.

If an attempt is made to make such an operation followed by another operation within the same request,
this error is returned:

XML Service Library detected the ‘fatal’ condition. The XML document which led to this
response contained a request for a potentially large amount of data, which could return a
set of iterators. The document also contained further requests for data, but these must be
sent in a separate XML document, in order to ensure that they are serviced.

The error indicates that the operations must be separated out into separate XML requests.
5-72
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
These two examples illustrate two different object class hierarchies that retrieve the same data: the value
of the leaf object <RemoteAS> and <EBGPMultihop> for the BGP neighbor with the address 10.0.101.6
and all of the configuration data for the BGP neighbor with the address 10.0.101.7:

Example 1: Verbose Form of a Request Using Duplicated Object Class Hierarchies

Sample XML Client Request for Specific Configuration Data Values
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <!-- Gets the following two leaf objects for this neighbor -->
 <RemoteAS/>
 <EBGPMultihopMaxHopCount/>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
</Get>
<Get>
 <Configuration>
 <BGP>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming>AS>3</AS</Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.7</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
5-73
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </Configuration>
 </Get>
 </Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 .
 .
 .
 response data returned here for
 neighbor 10.0.101.6
 .
 .
 .
 </Configuration>
 </Get>
 <Get>
 <Configuration>
 .
 .
 .
 response data returned here
 neighbor 10.0.101.7
 .
 .
 .
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Example 2: Compact Form of a Request Using Compressed Object Class Hierarchies

Sample XML Client Request
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 <!-- Gets the following two leaf objects for this neighbor -->
 <RemoteAS/>
 <EBGPMultihop/>
 </Neighbor>
 <Neighbor>
 <Naming>
5-74
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <NeighborAddress>
 <!-- Gets all configuration data for this neighbor -->
 <IPV4Address>10.0.101.7</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 .
 .
 .
 response data returned here for both
 neighbors
 .
 .
 .
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request Using Wildcarding (Match Attribute)
Wildcarding of naming information is provided by means of the Match attribute. Match=“*” can be used
on any Naming attribute within a <Get> or <Delete> operation to effectively specify a wildcarded value
for that attribute. The operation applies to all instances of the requested objects.

If no match is found, the response message contains MatchFoundBelow=”false” in the <Get> class, and
MatchFound=”false” in the class that specified Match=”*” and no match found. These attributes are not
added (with a value of true) in the response if a match is found.

Note Although partial wildcarding of NodeIDs is not available in XML, each element of the NodeID has to
be wildcarded, similar to the support on the CLI of */*/* as the only wildcards supported for locations.

This example shows how to use the Match attribute to get the <RemoteAS> value for all configured BGP
neighbors:

Sample XML Client Request Using the Match Attribute Wildcarding
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
5-75
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress Match=”*”/>
 </Naming>
 <RemoteAS/>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.1</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>1</RemoteAS>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.2</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>2</RemoteAS>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.3</IPV4Address>
 </NeighborAddress>
 </Naming>
 <RemoteAS>3</RemoteAS>
 </Neighbor>
 ...
 data for more neighbors
 returned here
 ...
5-76
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows the response message when there is no match found for the request with
wildcarding:

Sample XML Client Request for No Match Found with Wildcarding
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”35” MinorVersion=”2”>
 <AS>
 <Naming><AS>3</AS>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress Match=”*”/>
 </Naming>
 <RemoteAS/>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get VersionMismatchExistsBelow="true" MatchFoundBelow="false" \ ItemNotFound="true">
 <Configuration>
 <BGP MajorVersion=”35” MinorVersion=”2”>
 <AS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <FourByteAS>
 <Naming>
 <AS>3</AS>
 </Naming>
 <DefaultVRF>
 <BGPEntity>
5-77
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <Address Match=”*” MatchFound=”false”/>
 <NeighborAddress>
 </Naming>
 <RemoteAS NotFound="true"/>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVrF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0" ItemNotFound=”true”/>
</Response>

Regular expression matching of naming information is provided by means of the Match attribute.
Match=“<regular expression>” can be used on any Naming attribute within a <Get> operation to specify
a filtering criteria to filter table entries.

These rules apply to the filtering criteria:

 • The character, ‘*’ , is treated same as the ‘.*’ character. (matches everything)

 • Meta character ‘^’ (beginning of line) and ‘$’ (end of line) are always attached to the regular
expression string specified by ‘Match’ attribute.

 • A regular expression string without any meta characters is treated as an exact match.

Sample Request of the Configured ACL Entries That End With ‘SAA’:
<Get>
 <Configuration>
 <IPV4_ACLAndPrefixList>
 <AccessListTable>
 <AccessList>
 <Naming>
 <AccessListName Match=".*SAA"/>
 </Naming>
 </AccessList>
 </AccessListTable>
 </IPV4_ACLAndPrefixList>
 </Configuration>
 </Get>

ACL entries that match this request: TCLSAA, 100SAA, SAA

ACL entries that do NOT match this request: TCLSAA1

Sample Request That Returns all of the Configured GigabitEthernet Ports in Slot 5:
<Get>
 <Configuration>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName Match=”GigabitEthernet0/5/[0-9]+/[0-9]+”/>
 </Naming>
 </InterfaceConfiguration>
5-78
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </InterfaceConfigurationTable>
 </Configuration>
 </Get>

Interface names that match this request: GigabitEthernet0/5/0/0, GigabitEthernet0/5/0/1, and so
forth.

Interface names that do not match this request: GigabitEthernet0/4/0/0

Sample Request That Returns the Configured Loopback Interfaces Between Loopback100 and Loopback199:
<Get>
 <Configuration>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName Match=”Loopback1[0-9][0-9]”/>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </Get>

Interface names that match this request: Loopback100,…,Loopback199

Interface names that do not match this request: Loopback1000, Loopback1990

Sample Request That Returns Only Loopback1 (if it is configured):
<Get>
 <Configuration>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName Match=”Loopback1”/>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </Get>

Interface names that match this request: Loopback1

Interface names that do not match this request: Loopback10, Loopback100, and so forth

The request above, thus, is equivalent to this request:

<Get>
 <Configuration>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName>Loopback1</InterfaceName>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </Get>
5-79
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
Limitation: Regular expression matching can only be specified in the first table of an XML request.

XML Request for Specific Object Instances (Repeated Naming Information)
Wildcarding allows the client application to effectively specify all instances of a particular object.
Similarly, the client application might have a need to specify only a limited set of instances of an object.
Specifying object instances can be done by simply repeating the naming information in the request.

This example shows how to retrieve the address independent configuration for three different BGP
neighbors; that is, the neighbors with addresses 10.0.101.1, 10.0.101.6, and 10.0.101.8, by repeating the
naming information, once for each desired instance:

Sample XML Client Request Using Repeated Naming Information for BGP <NeighborAddress> Instances
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.1</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.8</IPV4Address>
 </NeighborAddress>
 </Naming>
5-80
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.1</IPV4Address>
 </NeighborAddress>
 </Naming>
 ...
 data returned for 1st neighbor
 ...
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 ...
 data returned for 2nd neighbor
 ...
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.6</IPV4Address>
 </NeighborAddress>
 </Naming>
 ...
 data returned for 3rd neighbor
 ...
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
5-81
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request Using Operation Scope (Content Attribute)
The Content attribute is used on any table element in order to specify the scope of a <Get> operation.
Table 5-1 describes the content attribute values are supported.

If the Content attribute is specified on a nontable element, it is ignored. Also, note that the Content and
Count attributes can be used together on the same table element.

This example displays the Content attribute that is used to list all configured BGP neighbors:

Sample XML Client Request Using the All Content Attribute
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable Content=”Entries”/>
 </BGPEntity>
 </DefaultVRF>
 <FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>

Table 5-1 Content Attributes

Content Attribute Description

All Used to get all leaf items and their values. All is the default when the Content
attribute is not specified on a table element.

Entries Used to get the Naming information for each entry within a specified table object
class. Entries provides a one-level get capability.
5-82
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable Content=”Entries”>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.1</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.2</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.3</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.4</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 ...
 more neighbors returned here
 ...
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Request>

Limiting the Number of Table Entries Returned (Count Attribute)
The Count attribute is used on any table element within a <Get> operation to specify the maximum
number of table entries to be returned in a response. When the Count attribute is specified, the naming
information within the request is used to identify the starting point within the table, that is, the first table
entry of interest. If no naming information is specified, the response starts at the beginning of the table.

For a table whose entries are containers, the Count attribute can be used only if the Content attribute is
also specified with a value of Entries. This restriction does not apply to a table whose children are leaf
nodes.

As an alternative to the use of the Count attribute, the XML interface supports the retrieval of large XML
responses in blocks through iterators.
5-83
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
This example shows how to use the Count attribute to retrieve the configuration information for the first
five BGP neighbors starting with the address 10.0.101.1:

Sample XML Client Request Using the Count Attribute
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="35" MinorVersion="2">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable Count=”5”>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>10.0.101.1</IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 <FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion="24" MinorVersion="0">
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <BGPEntity>
 <NeighborTable Count=”5”>
 <Neighbor>
 <Naming>
 <NeighborAddress>
 <IPV4Address>
 10.0.101.1
 </IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 <Neighbor>
 <Naming>
 <NeighborAddress>
5-84
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <IPV4Address>
 10.0.101.2
 </IPV4Address>
 </NeighborAddress>
 </Naming>
 </Neighbor>
 ...
 data returned for remaining
 neighbors here
 ...
 </NeighborTable>
 </BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Custom Filtering (Filter Element)
Some of the tables from the operational namespace support the selection of rows of interest based on
predefined filtering criteria. Filters can be applied to such tables in order to reduce the number of table
entries retrieved in a request.

Client applications specify filtering criteria for such tables by using the <Filter> tag and including the
filter specific parameters as defined in the XML schema definition for that table. If no table entries
match the specified filter criteria, the response contains the object class hierarchy down to the specified
table, but does not include any table entries. The Content attribute can be used with a filter to specify
the scope of a <Get> request.

In this example, the filter <BGP_ASFilter> is used to retrieve operational information for all neighbors
in autonomous system 6:

Sample XML Client Request Using Filtering
<?xml version=”1.0” encoding=”UTF-8”?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Operational>
 <BGP>
 <Active>
 <VRFTable>
 <VRF>
 <Naming>
 <VRFName>one<VRFName>
 </Naming>
 <NeighborTable>
 <Filter>
 <BGP_ASFilter>
 <AS>6</AS>
 </BGP_ASFilter>
 <Filter>
 </NeighborTable>
 </VRF>
 </VRFTable>
 </Active>
 </BGP>
 </Operational>
5-85
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 </Get>
</Request>

Sample Filtered XML Response from the Router
<?xml version=”1.0” encoding=”UTF-8”?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Operational>
 <BGP MajorVersion=”23” MinorVersion=”7”>
 <Active>
 <VRFTable>
 <VRF>
 <Naming>
 <VRFName>one</VRFName>
 </Naming>
 <NeighborTable>
 <Filter>
 <BGP_ASFilter>
 <AS>6</AS>
 </BGP_ASFilter>
 </Filter>
 <Neighbor>
 ...
 data for 1st neighbor returned here
 ...
 </Neighbor>
 <Neighbor>
 ...
 data for 2nd neighbor returned here
 returned here
 ...
 </Neighbor>
 ...
 data for remaining neighbors
 returned here
 ...
 </NeighborTable>
 </VRF>
 </VRFTable>
 </Active>
 </BGP>
 </Operational>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

XML Request Using the Mode Attribute
The client application modifies the target configuration as needed using the <Delete> and <Set>
operations. The XML interface supports the combining of several operations into a single request. When
multiple configuring operations are specified in a single request, they are performed on a “best effort”
basis by default. For example, in a case where configuring operations 1 through 3 are in the request and
even if operation 2 fails, operation 3 is attempted and operation 1 result remains in the target
configuration.

To perform the request on an atomic basis, use the Mode attribute with the value Atomic in the
<Request>. If any errors occur, the target configuration is cleared and the errors are returned to the client
application.
5-86
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
Sample XML Client Request with the Attribute Mode=”Atomic”
<?xml version='1.0' encoding='UTF-8'?>
<Request Version="1.0" Mode="Atomic">
 <Set>
 <Configuration>
 <SNMP>
 <Timeouts>
 <Subagent> 20 </Subagent>
 </Timeouts>
 </SNMP>
 </Configuration>
 </Set>
 <Commit/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <Commit CommitID="1000000441"/>
 <ResultSummary ErrorCount="0"/>
</Response>

Sample XML Client Request with an Invalid Set Operation (Best-Effort)
<?xml version="1.0" encoding="UTF-8"?>
<Request Version="1.0">
 <Set>
 <Configuration>
 <SNMP>
 <Timeouts>
 <Subagent> 20 </Subagent>
 </Timeouts>
 </SNMP>
 </Configuration>
 </Set>
 <Set>
 <Configuration>
 <SNMP>
 <System>
 <Contact> </Contact> <--- This is an invalid XML set operation
 </System>
 </SNMP>
 </Configuration>
 </Set>
 <Commit/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <Set ErrorCode="0x43679000" ErrorMsg="'XML Service Library' detected the
'warning' condition 'An error was encountered in the XML beneath this
operation tag'">
 <Configuration>
5-87
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <SNMP MajorVersion="7" MinorVersion="3">
 <System>
 <Contact ErrorCode="0x4368b000" ErrorMsg="'XMLMDA' detected
the 'warning' condition 'The XML request does not conform to the schema.
The XML below the element on which this error appears is missing a required piece of data.
Please check the request against the schema.'"/>
 </System>
 </SNMP>
 </Configuration>
 </Set>
 <Commit CommitID="1000000443"/>
<ResultSummary ErrorCount="1"/>
</Response>

Note This request is performed on a best effort basis. The SNMP timeout configuration has no error and is
committed.

Sample XML Request and Response of Commit Change for ForCommitID="1000000443"
<?xml version="1.0" encoding="UTF-8"?>
 <Request>
 <Get>
 <Configuration Source="CommitChanges" ForCommitID="1000000443"/>
 </Get>
</Request>

<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration Source="CommitChanges" ForCommitID="1000000443"
OperationType="Set">
 <SNMP MajorVersion="7" MinorVersion="3">
 <Timeouts>
 <Subagent>
 20
 </Subagent>
 </Timeouts>
 </SNMP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Sample XML Client Request with the Attribute Mode=”Atomic” and with an Invalid Set Operation
<?xml version="1.0" encoding="UTF-8"?>
<Request Version="1.0" Mode="Atomic">
 <Set>
 <Configuration>
 <SNMP>
 <Timeouts>
 <Subagent> 20 </Subagent>
 </Timeouts>
 </SNMP>
 </Configuration>
 </Set>
 <Set>
 <Configuration>
 <SNMP>
 <System>
5-88
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
 <Contact> </Contact> <--- This is an invalid XML set operation
 </System>
 </SNMP>
 </Configuration>
</Set>
 <Commit/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration/>
 </Set>
 <Set ErrorCode="0x43679000" ErrorMsg="'XML Service Library' detected the
'warning' condition 'An error was encountered in the XML beneath this
operation tag'">
 <Configuration>
 <SNMP MajorVersion="7" MinorVersion="3">
 <System>
 <Contact ErrorCode="0x4368b000" ErrorMsg="'XMLMDA' detected
the 'warning' condition 'The XML request does not conform to the schema.
The XML below the element on which this error appears is missing a required piece of data.
Please check the request against the schema.'"/>
 </System>
 </SNMP>
 </Configuration>
 </Set>
 <Commit ErrorCode="0x41864e00" ErrorMsg="'CfgMgr' detected the
'warning' condition 'The target configuration buffer is empty.'"/>
 <ResultSummary ErrorCount="1"/>
</Response>

Note The target configuration buffer is cleared and no configuration is committed.
5-89
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 5 Cisco XML and Native Data Access Techniques
Available Set of Native Data Access Techniques
5-90
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 6

Cisco XML and Encapsulated CLI Operations

XML interface for the router provides support for XML encapsulated CLI commands and responses.

This chapter provides information on XML CLI command tags.

XML CLI Command Tags
A client application can request a CLI command by encoding the text for the command within a pair of
<CLI> start and </CLI> end tags, <Configuration> tags, and <EXEC> tags. The router responds with
the uninterpreted CLI text result.

Note XML encapsulated CLI commands use the same target configuration as the corresponding XML
operations <Get>, <Set>, and <Delete>.

When used for CLI operations, the <Configuration> tag supports the optional Operation attribute, which
can take one of the values listed in Table 6-1.

This example uses the <CLI> operation tag:

Sample XML Client Request for CLI Command Using CLI Tags
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <CLI>
 <Configuration>
 router bgp 3

Table 6-1 Operational Attribute Values

Operational Attribute Value Operational Attribute Value Description

Apply Specifies that the commands should be executed or applied (default).

Help Gets help on the last command in the list of commands sent in the
request. There should not be any empty lines after the last command
(because the last command is considered to be the one on the last line).

CommandCompletion Completes the last keyword of the last command. Apart from not
allowing empty lines at the end of the list of commands sent in the
request, when this option is used, there should not be any white spaces
after the partial keyword to be completed.
6-91
Cisco IOS XR XML API Guide

Chapter 6 Cisco XML and Encapsulated CLI Operations
XML CLI Command Tags
 default-metric 10
 timers bgp 80 160
 exit
 commit
 </Configuration>
 <Exec>
 sh config commit changes last 1
 </Exec>
 </CLI>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <CLI>
 <Configuration>
 <EXEC>
 Building configuration...
 router bgp 3
 timers bgp 80 160
 default-metric 10
 end
 <EXEC>
 </CLI>
 <ResultSummary ErrorCount="0"/>
</Response>

CLI Command Limitations
The CLI commands, which are supported through XML, are limited to CLI configuration commands and
EXEC mode show commands (and responses) that are wrapped in <CLI> tags.

These commands and conditions are not supported:

 • The do configuration mode command.

 • EXEC mode commands other than show commands except for these items:

 – show history

 – show user

 – show users

 – show terminal

 • Administration EXEC mode commands

 • Iterators for responses to <CLI> commands issued through XML. For example, iterators are not
supported for the output of the show run and show configuration commands.

 • Sending a request in <CLI> format and getting back an XML encoded response.

 • Sending an XML encoded request and getting back a response in <CLI> format.

 • Only one XML <CLI> request can be issued at a time across all client sessions on the router.
6-92
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 7

Cisco XML and Large Data Retrieval

XML for the router supports the retrieval of large XML responses in blocks (for example, chunks or
sections).

These sections provide information about large data retrieval:

 • Iterators, page 7-93

 • Throttling, page 7-98

 • Streaming, page 7-99

Iterators
When a client application makes a request, the resulting response data size is checked to determine
whether it is larger than a predetermined block size.

If the response data is not larger than the predetermined block size, the complete data is returned in a
normal response.

If the response data is larger than the block size, the first set of data is returned according to the block
size along with a decremented iterator ID included as the value of the IteratorID attribute. The client
must then send <GetNext> requests including the iterator ID until all data is retrieved. The client
application knows that all data is retrieved when it receives a response that does not contain an IteratorID
attribute.

Usage Guidelines
These points should be noted by the client application when iterators are used:

 • The block size is a configurable value specific to each transport mechanism on the router; that is,
the XML agent for the dedicated TCP connection and Secure Shell (SSH), Telnet, or Secure Sockets
Layer (SSL) dedicated TCP connection.

Use this command to configure the iteration size:

xml agent [tty | ssl] iteration on size <1-100000>

Specify the iteration size in KB. The default is 48 KB.
7-93
Cisco IOS XR XML API Guide

Chapter 7 Cisco XML and Large Data Retrieval
Iterators
Note The iteration command includes the option to turn off the XML response iterator. However,
we do not recommend turning off the iterator because of the large memory usage that occurs
temporarily.

 • The block size refers to the entire XML response, not just the payload portion of the response.

 • Large responses are divided based on the requested block size, not the contents. However, each
response is always a complete XML document.

 • Requests containing multiple operations are treated as a single entity when the block size and
IteratorID are applied. As a result, the IteratorID is an attribute of the <Response> tag, never of an
individual operation.

 • If the client application sends a request that includes an operation resulting in the need for an iterator
to return all the response data, any further operations contained within that request are rejected. The
rejected operations are resent in another request.

 • The IteratorID is an unsigned 32-bit value that should be treated as opaque data by the client
application. Furthermore, the client application should not assume that the IteratorID is constant
between <GetNext> operations.

To reduce memory overhead and avoid memory starvation of the router, these limitations are placed on
the number of allowed iterators:

 • The maximum number of iterators allowed at any one time on a given client session is 10.

 • The maximum number of iterators allowed at any one time for all client sessions is 100.

If a <Get> request is issued that results in an iterated response, it is counted as one iterator,
regardless of the number of <GetNext> operations required to retrieve all of the response data.

For example, a <Get> request may require 10, 100, or more <GetNext> operations to retrieve all the
associated data, but during this process only one iterator is being used.

Also, an iterator is considered to be in use until all of the response data associated with that iterator
(the original <Get> request) is retrieved or the iterator is terminated with the Abort attribute.

Examples Using Iterators to Retrieve Data
This example shows a client request that utilizes an iterator to retrieve all global Border Gateway
Protocol (BGP) configuration data for a specified autonomous system:

Sample XML Client Request to Retrieve All BGP Configuration Data
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”35” MinorVersion=”2”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF/>
 </FourByteAS>
 </AS>
 </BGP>
7-94
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 7 Cisco XML and Large Data Retrieval
Iterators
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router Containing the First Block of Retrieved Data
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”1”>
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 ...
 1st block of data returned here
 ...
 </DefaultVRF>
 </FourByteAS>
 <AS>
 </BGP>
 </Configuration>
 <Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Second XML Client Request Using the <GetNext> Iterator to Retrieve the Next Block of BGP Configuration Data
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetNext IteratorID=”1”/>
</Request>

Sample XML Response from the Router Containing the Second Block of Retrieved Data
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”1”>
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF
 ...
 2nd block of data returned here
 ...
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 <Get>
 <ResultSummary ErrorCount="0"/>
</Response>
7-95
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 7 Cisco XML and Large Data Retrieval
Iterators
Third XML Client Request Using the <GetNext> Iterator to Retrieve the Next Block of BGP Configuration Data
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetNext IteratorID=”1”/>
</Request>

Sample XML Response from the Router Containing Third Block of Retrieved Data
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”1”>
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 ...
 3rd block of data returned here
 ...
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Final XML Client Request Using the <GetNext> Iterator to Retrieve the Last Block of BGP Configuration Data
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetNext IteratorID=”1”/>
</Request>

Final XML Response from the Router Containing the Final Block of Retrieved Data
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 ...
 Final block of data returned here
 ...
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>
7-96
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 7 Cisco XML and Large Data Retrieval
Iterators
Large Response Division
The default behavior for large response division is that large responses are divided based on the
requested block size.

To specify a different basis for the division, use the IterateAtFirstTableGet attribute in the <Get> tag.

Sample XML Request with attribute IterateAtFirstTable
<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Get IterateAtFirstTable="true">
 <Operational>
 <BGP>
 <Active>
 <DefaultVRF>
 <AFTable>
 <AF>
 <Naming>
 <AFName Match="*"/>
 </Naming>
 <PathTable>
 <Path>
 <Naming>
 <RD Match="*"/>
 <Network Match="*"/>
 <NeighborAddress Match="*"/>
 <RouteType Match="*"/>
 <SourceRD Match="*"/>
 </Naming>
 </Path>
 </PathTable>
 </AF>
 </AFTable>
 </DefaultVRF>
 </Active>
 </BGP>
 </Operational>
 </Get>
</Request>

Terminating an Iterator
A client application may terminate an iterator without retrieving all of the response data by including an
Abort attribute with a value of “true” on the <GetNext> operation. A client application that does not
complete or terminate its requests risks running out of iterators.

This example shows a client request using the Abort attribute to terminate an iterator:

Sample XML Request
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
7-97
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 7 Cisco XML and Large Data Retrieval
Throttling
 <Naming><AS>3</AS></Naming>
 <DefaultVRF/>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”2”>
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 ...
 1st block of data returned here
 ...
 </DefaultVRF>
 </FourByteAS>
 <AS>
 </BGP>
 </Configuration>
 <Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Sample XML Request Using the Abort Attribute to Terminate an Iterator
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetNext IteratorID=”2” Abort=”true”/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetNext IteratorID=”2” Abort=”true”/>
</Response>

Throttling
XML response data could be large resulting in high CPU utilization or high memory usage when
constructing the XML response. Throttling mechanisms in the XML agent provide a means for external
users or an NMS to control the impact to the system.
7-98
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 7 Cisco XML and Large Data Retrieval
Streaming
CPU Throttle Mechanism
The CPU throttle mechanism in the XML agent controls the number of tags to process per second. The
higher the number of tags that are specified, the higher the CPU utilization and faster response. The
lower number of tags means less CPU utilization and slower response.

To configure the number of tags, use this command:

xml agent [tty | ssl] throttle process-rate <1000-30000>

Memory Throttle Mechanism
The memory throttle mechanism in the XML agent controls the maximum XML response size in MB. If
this size is exceeded, this error message is returned in the XML response.

> XML> <?xml version="1.0" encoding="UTF-8"?>
> <Response MajorVersion="1" MinorVersion="0"><Get ErrorCode="0xa367a600"
ErrorMsg="'XML Service Library' detected the 'fatal' condition
'The throttle on the memory usage has been reached. Please optimize the request to
query smaller data.'"/></Response>

To configure the size of the memory usage per session, use this command:

xml agent [tty | ssl] throttle memory <100-600>

The default is 300 MB.

Streaming
As the XML agent retrieves the data from the source, the output of a response is streamed. This process
is similar to iterators, but the XML client does not run the GetNext IteratorID to handle large response
data size.

Usage Guidelines
Use these guidelines when streaming is used by the client application:

 • Iteration must be off.

xml agent [tty | ssl] iteration off

 • The sub-response block size is a configurable value specific to each transport mechanisms on the
router: the XML agent for the dedicated TCP connection and Secure Shell (SSH), Telnet, or Secure
Sockets Layer (SSL) dedicated TCP connection.

Use this command to configure the streaming size. Specify the streaming size in KB. The default is
48 KB.

xml agent [tty | ssl] streaming on size <1-100000>
7-99
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 7 Cisco XML and Large Data Retrieval
Streaming
7-100
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 8

Cisco XML Security

Specific security privileges are required for a client application requesting information from the router.

This chapter contains these sections:

 • Authentication, page 8-101

 • Authorization, page 8-101

 • Retrieving Task Permissions, page 8-102

 • Task Privileges, page 8-102

 • Task Names, page 8-103

 • Authorization Failure, page 8-104

 • Management Plane Protection, page 8-104

 • VRF, page 8-105

 • Access Control List, page 8-105

Authentication
User authentication through authentication, authorization, and accounting (AAA) is handled on the
router by the transport-specific XML agent and is not exposed through the XML interface.

Authorization
Every operation request by a client application is authorized. If the client is not authorized to perform an
operation, the operation is not performed by the router and an error is returned.

Authorization of client requests is handled through the standard AAA “task permissions” mechanism.
The XML agent caches the AAA user credentials obtained from the user authentication process, and then
each client provides these to the XML infrastructure on the router. As a result, no AAA information
needs to be passed in the XML request from the client application.

Each object class in the schema has a task ID associated with it. A client application’s capabilities and
privileges in terms of task IDs are exposed by AAA through a show command. A client application can
use the XML interface to retrieve the capabilities prior to sending configuration requests to the router.

A client application requesting an operation through the XML interface must have the appropriate task
privileges enabled or assigned for any objects accessed in the operation:
8-101
Cisco IOS XR XML API Guide

Chapter 8 Cisco XML Security
Retrieving Task Permissions
 • <Get> operations require AAA “read” privileges.

 • <Set> and <Delete> operations require AAA “write” privileges.

The “configuration services” operations through configuration manager can also require the appropriate
predefined task privileges.

If an operation requested by a client application fails authorization, an appropriate <Error> element is
returned in the response sent to the client. For “native data” operations, the <Error> element is associated
with the specific element or object classes where the authorization error occurred.

Retrieving Task Permissions
A client application’s capabilities and privileges in terms of task permissions are exposed by AAA
through CLI show commands. A client application can also use the XML interface to programatically
retrieve the current AAA capabilities from the router. This retrieval can be done by issuing the
appropriate <Get> request to the <AAA> component.

This example shows a request to retrieve all of the AAA configuration from the router:

Sample XLM Request to Retrieve AAA Configuration Information
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <AAA MajorVersion=”2” MinorVersion=”0”/>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <AAA MajorVersion=”2” MinorVersion=”0”>
 .
 .
 .
 AAA configuration returned here
 .
 .
 .
 </AAA>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Task Privileges
A client application requesting a native data operation through the XML interface must have the
appropriate task privileges enabled or assigned for any items accessed in the operation:

 • <Get>, <GetNext>, and <GetVersionInfo> operations require AAA “read” privileges.

 • <Set> and <Delete> operations require AAA “write” privileges.
8-102
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 8 Cisco XML Security
Task Names
The “configuration services” operations through the configuration manager can also require the
appropriate predefined task privileges.

Task Names
Each object (that is, data item or table) exposed through the XML interface and accessible to the client
application has one or more task names associated with it. The task names are published in the XML
schema documents as <appinfo> annotations.

For example, the complex type definition for the top-level element in the Border Gateway Protocol
(BGP) configuration schema contains this annotation:

<xsd:appinfo>
 <ObjectType>Container</ObjectType>
 <MajorVersion>18</MajorVersion>
 <MinorVersion>0</MinorVersion>
 <TaskIDInfo TaskGrouping="Single">
 <TaskName>bgp</TaskName>
 </TaskIDInfo>
 <Parents>
 <Parent>
 <Schema>native_data_operations</Schema>
 <Name>Configuration</Name>
 </Parent>
 </Parents>
</xsd:appinfo>

Here is another example from a different component schema. This annotation includes a list of task
names.

<xsd:appinfo>
 <MajorVersion>1</MajorVersion>
 <MinorVersion>0</MinorVersion>
 <TaskIdInfo TaskGrouping="And">
 <TaskName>ouni</TaskName>
 <TaskName>mpls-te</TaskName>
 </TaskIdInfo>
</xsd:appinfo>

Task names indicate what permissions are required to access the data below the object. In the example,
the task names ouni and mpls-te are specified for the object. The task names apply to the object and are
inherited by all the descendants of the object in the schema. In other words, the task names that apply to
a particular object are the task names specified for the object and the task names of all ancestors for
which there is a task name specified in the schema.

The TaskGrouping attribute specifies the logical relationship among the task names when multiple task
names are specified for a particular object. For example, for a client application to issue a <Get> request
for the object containing the preceding annotation, the corresponding AAA user credentials must have
read permissions set for both the ouni and mpls-te tasks (and any tasks inherited by the object). The
possible values for the TaskGrouping attribute are And, Or, and Single. The value Single is used when
there is only a single task name specified for the object.
8-103
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 8 Cisco XML Security
Authorization Failure
Authorization Failure
If an operation requested by a client application fails authorization, an appropriate <Error> element is
returned in the response sent to the client. For “native data” operations, the <Error> element is associated
with the specific element or object where the authorization error occurred.

If a client application issues a <Get> request to retrieve all data below a container object, and if any
subsections of that data require permissions that the user does not have, then an error is not returned.
Instead, the subsection of data is not included in the <Get> response.

Management Plane Protection
Management Plane Protection (MPP) provides a mechanism for securing management traffic on the
router. Without MPP, a management service’s traffic can come through any interface with a network
address, which could be a security risk.

MPP is effective when XML is configured.

Inband Traffic
To configure the MPP for inband traffic, use the command in this example:

RP/0/0/CPU0:router(config)#control-plane management-plane inband interface [interface
type] allow [protocol|all]

where the protocol is XML.

RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$Ethernet 0/0/0/0 allow XML ?
 peer Configure peer address on this interface
 <cr>
RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$Ethernet 0/0/0/0 allow XML peer ?
 address Configure peer address on this interface
 <cr>
RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$Ethernet 0/0/0/0 allow XML peer address ?
 ipv4 Configure peer IPv4 address on this interface
 ipv6 Configure peer IPv6 address on this interface
RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$Ethernet 0/0/0/0 allow XML peer address

Out-of-Band Traffic
To configure the MPP for out-of-band traffic, use the command in this example:

RP/0/0/CPU0:router(config)#control-plane management-plane out-of-band interface
[interface type] allow [protocol|all]

where the protocol is XML.

RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$gabitEthernet 0/0/0/1 allow XML ?
 peer Configure peer address on this interface
 <cr>
RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$gabitEthernet 0/0/0/1 allow XML peer ?
 address Configure peer address on this interface
 <cr>
8-104
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 8 Cisco XML Security
VRF
RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$ XML peer address ?
 ipv4 Configure peer IPv4 address on this interface
 ipv6 Configure peer IPv6 address on this interface
RP/0/RSP0/CPU0:PE44_ASR-9010(config)#$ XML peer address

VRF
XML agents can be configured to virtual route forwarding (VRF) aware.

 • To configure the dedicated agent [ssl] to receive or send messages through VRF, use this command:

RP/0/0/CPU0:router(config)#xml agent [ssl] vrf <vrf name>

 • To configure the dedicated [ssl] agent NOT to receive or send messages through the default VRF,
use this command:

RP/0/0/CPU0:Router(config)#xml agent [ssl] vrf default shutdown

Access Control List
To configure an access control list (ACL) for XML agents, use this command:

RP/0/0/CPU0:router(config)#xml agent [ssl] vrf <vrf name> access-list <access-list
name>

IPv6 Access List Example
xml agent [ssl]
 vrf <vrf name>
 ipv6 access-list <ipv6 access-list name>

IPv4 and IPv6 Access Lists Example
xml agent [ssl]
 vrf <vrf name>
 ipv4 access-list <ipv4 access-list name>
 ipv6 access-list <ipv6 access-list name>
 !
!

Note This method to configure an IPv4 access-list is still supported (for backward compatibility) but
hidden from CLI help.

xml agent [ssl]
 vrf <vrf name>
 access-list <ipv4 access-list name>
 !
!

8-105
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 8 Cisco XML Security
Access Control List
8-106
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 9

Cisco XML Schema Versioning

Before the router can carry out a client application request, it must verify version compatibility between
the client request and router component versions.

Major and minor version numbers are included on the <Request> and <Response> elements to indicate
the overall XML application programming interface (API) version in use by the client application and
router. In addition, each component XML schema exposed through the XML API has a major and minor
version number associated with it.

This chapter describes the format of the version information exchanged between the client application
and the router, and how the router uses this information at run time to check version compatibility.

This chapter contains these sections:

 • Major and Minor Version Numbers, page 9-107

 • Run-Time Use of Version Information, page 9-108

 • Retrieving Version Information, page 9-113

 • Retrieving Schema Detail, page 9-115

Major and Minor Version Numbers
The top-level or root object (that is, element) in each component XML schema carries the major and
minor version numbers for that schema. A minor version change is defined as an addition to the XML
schema. All other changes, including deletions and semantic changes, are considered major version
changes.

The version numbers are documented in the header comment contained in the XML schema file. They
are also available as <xsd:appinfo> annotations included as part of the complex type definition for the
top-level schema element. This enables you to programmatically extract the version numbers from the
XML schema file to include in XML request instances sent to the router. The version numbers are carried
in the XML instances using the MajorVersion and MinorVersion attributes.

This example shows the relevant portion of the complex type definition for an element that carries
version information:

<xsd:complexType name="ipv4_bgp_cfg_BGP_type">
 <xsd:annotation>
 <xsd:documentation>BGP Configuration Commands</xsd:documentation>
 <xsd:appinfo>
 <ObjectType>Container</ObjectType>
 <MajorVersion>24</MajorVersion>
 <MinorVersion>0</MinorVersion>
 <TaskIdInfo TaskGrouping="Single">
9-107
Cisco IOS XR XML API Guide

Chapter 9 Cisco XML Schema Versioning
Run-Time Use of Version Information
 <TaskName>bgp</TaskName>
 </TaskIdInfo>
 <Parents>
 <Parent>
 <Schema>native_data_operations</Schema>
 <Name>Configuration</Name>
 </Parent>
 </Parents>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .
 .
 <xsd:attributeGroup ref="VersionAttributeGroup"/>
 .
 .
 ..
</xsd:complexType>

The attribute group VersionAttributeGroup is defined as:

<xsd:attributeGroup name="VersionAttributeGroup">
 <xsd:annotation>
 <xsd:documentation>
 Common version information attributes
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="MajorVersion" type="xsd:unsignedInt" use="required"/>
 <xsd:attribute name="MinorVersion" type="xsd:unsignedInt" use="required"/>
</xsd:attributeGroup>

Run-Time Use of Version Information
Each XML request must contain the major and minor version numbers of the client at the appropriate
locations in the XML. These version numbers are compared to the version numbers running on the
router.

The behavior of the router, whether the request is accepted or rejected, depends on the value set for the
AllowVersion MisMatch attribute.

All requests are accepted when the AllowVersionMismatch attribute is set as TRUE. The request is then
accepted or rejected based on these rules when the AllowVersionMismatch attribute is set as FALSE:

 • If there is a major version discrepancy, then the request fails.

 • If there is a minor version lag, that is, the client minor version is behind that of the router, then the
request is attempted.

 • If there is a minor version creep, that is, the client minor version is ahead of that of the router, then
the request fails.

 • If the version information has not been included in the request, then the request fails.

 • The default value is used when the request does not specify the AllowVersionMismatch attribute.
The default value is currently set as TRUE.

Each XML response can also contain the version numbers at the appropriate locations in the XML.
9-108
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Run-Time Use of Version Information
Note If the client minor version is behind that of the router, then the response may contain elements that are
not recognized by the client application. The client application must be able to handle these additional
elements.

Placement of Version Information
This example shows the placement of the MajorVersion and MinorVersion attributes within a client
request to retrieve the global BGP configuration data for a specified autonomous system:

Sample Client Request Showing Placement of Version Information
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF/>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 ...
 data returned here
 ...
 </DefaultVRF>
 </FourByteAS>
 <AS>
 </BGP>
 </Configuration>
 <Get>
 <ResultSummary ErrorCount="0"/>
</Response>
9-109
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Run-Time Use of Version Information
Version Lag with the AllowVersionMisMatch Attribute Set as TRUE
The example shows a request and response with a version mismatch. In this case, because the
AllowVersionMismatch attribute is set as TRUE, the request is attempted. This is also the default
behavior when AllowVersionMismatch attribute is not specified in the request. The router attempts the
request and if the request is successful returns a VersionMismatchExists attribute at the appropriate
point within the response along with a VersionMismatchExistsBelow attribute on the <Get> operation
tag.

Note The version number, which is returned in the response, is the version running on the router. The versions
in this example are hypothetical.

Sample XML Client Request with a Version Mismatch
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get AllowVersionMismatch=”true”>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global/>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”1”>
 <Get AllowVersionMismatch=”true” VersionMismatchExistsBelow=”true”>
 <Configuration>
 <BGP MajorVersion=”24”
 MinorVersion=”1”>
 VersionMismatchExists=”true”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global>
 ...
 data returned here
 ...
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>
9-110
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Run-Time Use of Version Information
Version Lag with the AllowVersionMismatch Attribute Set as FALSE
The example shows a request and response with a version mismatch, but the request specifies the
AllowVersionMisMatch attribute as FALSE.

In this case, the client minor version is behind the router, so the request is still attempted, but
VersionMismatchExists and VersionMismatchExistsBelow attributes are not returned in the response.

Note The version number returned is the response is the version number running on the router. The versions
in this example are hypothetical.

Sample XML Client Request with the AllowVersionMismatch Attribute Set as False
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get AllowVersionMismatch=”false”>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global/>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”1”>
 <Get AllowVersionMismatch=”false”>
 <Configuration>
 <BGP MajorVersion=”24”
 MinorVersion=”1”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global>
 ...
 data returned here
 ...
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>
9-111
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Run-Time Use of Version Information
Version Creep with the AllowVersionMisMatch Attribute Set as TRUE
The example shows a request and response with a version mismatch. In this case, the client is the
AllowVersionMismatch attribute and is set as TRUE. The request is attempted.

Note The version number returned is the response is the version number running on the router. The versions
in this example are hypothetical.

Sample XML Request with an AllowVersion Mismatch Attribute Set as TRUE
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get AllowVersionMismatch=”true”>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”1”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global/>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”1”>
 <Get AllowVersionMismatch=”true” VersionMismatchExistsBelow="true">
 <Configuration>
 <BGP MajorVersion=”24”
 MinorVersion=”0”>
 VersionMismatchExists=”true”>
 <AS>
 <Naming><AS>0</AS></Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global>
 ...
 data returned here
 ...
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>
9-112
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Retrieving Version Information
Version Creep with the AllowVersionMisMatch Attribute Set as FALSE
The example shows a request and response with a version mismatch. In this case, the client minor
version is ahead of the router minor version, which results in an error response.

Sample XML Request with an AllowVersion Mismatch Attribute Set as FALSE
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get AllowVersionMismatch=”false”>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”1”>
 </Configuration>
 </Get>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" IteratorID=”12345678”>
 <Get ErrorCode=”0x43679000”>
 ErrorMsg="'XML Service Library' detected the 'warning'
 condition 'An error was encountered in the XML beneath this operation
 tag'" >
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0” ErrorCode="0x4368ac00"
 ErrorMsg="'XMLMDA' detected the 'warning' condition
 ' The XML version specified in the XML request is not compatible
 with the version running on the router'"/>
 </Configuration>
 </Get>
 <ResultSummary ErrorCount="0"/>
</Response>

Retrieving Version Information
The version of the XML schemas running on the router can be retrieved using the <GetVersionInfo> tag
followed by the appropriate tags identifying the names of the desired components.

In this example, the <GetVersionInfo> tag is used to retrieve the major and minor version numbers for
the BGP component configuration schema:

Sample XML Request to Retrieve Major and Minor Version Numbers
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
<GetVersionInfo>
 <Configuration>
 <BGP/>
 </Configuration>
 </GetVersionInfo>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetVersionInfo>
 <Configuration>
 <BGP MajorVersion=”18” MinorVersion=”0”/>
 </Configuration>
9-113
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Retrieving Version Information
 </GetVersionInfo>
 <ResultSummary ErrorCount="0"/>
</Response>

This example shows how to retrieve the version information for all configuration schemas available on
the router:

Sample XML Request to Retrieve Version Information for All Configuration Schemas
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetVersionInfo>
 <Configuration/>
 </GetVersionInfo>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetVersionInfo>
 <Configuration>
 <AAA MajorVersion="2" MinorVersion="0">
 <ServerGroups MajorVersion="2" MinorVersion="3">
 <RADIUSServerGroupTable MajorVersion="2" MinorVersion="0"/>
 <TACACSServerGroupTable MajorVersion="5" MinorVersion="1"/>
 </ServerGroups>
 <TaskgroupTable MajorVersion="2" MinorVersion="3"/>
 <UsergroupTable MajorVersion="2" MinorVersion="3"/>
 <UsernameTable MajorVersion="2" MinorVersion="3"/>
 <DefaultTaskgroup MajorVersion="2"MinorVersion="3"/>
 <RADIUS MajorVersion="2" MinorVersion="0"/>
 <TACACS MajorVersion="5" MinorVersion="1"/>
 </AAA>

 <PPP MajorVersion="1" MinorVersion="0">
 <FSM MajorVersion="1" MinorVersion="0"/>
 <Authentication MajorVersion="1" MinorVersion="0"/>
 <CHAP MajorVersion="1" MinorVersion="0"/>
 <MS-CHAP MajorVersion="1" MinorVersion="0"/>
 <PAP MajorVersion="1" MinorVersion="0"/>
 </PPP>

 <QOS MajorVersion="4" MinorVersion="0"/>
 <IntfVRF MajorVersion="1" MinorVersion="1"/>
 <SONET MajorVersion="3" MinorVersion="0"/>
 <BGP MajorVersion="18" MinorVersion="0"/>
 <OSPF MajorVersion="7" MinorVersion="0"/>
 <IPV4_ACLAndPrefixList MajorVersion="5" MinorVersion="0"/>
 <IPV4Network MajorVersion="4" MinorVersion="0"/>
 <IPV4NetworkGlobal MajorVersion="4" MinorVersion="0"/>
 <NTP MajorVersion="2" MinorVersion="1"/>
 <ISIS MajorVersion="15" MinorVersion="0"/>
 <VRFTable MajorVersion="1" MinorVersion="1">
 <VRF><IPARM MajorVersion="3" MinorVersion="0"/>
 <AFI_SAFI_Table>
 <AFI_SAFI>
 <BGP MajorVersion="18"MinorVersion="0"/>
 </AFI_SAFI>
 </AFI_SAFI_Table>
 </VRF>
 </VRFTable>
 ...
 </Configuration>
9-114
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Retrieving Schema Detail
 </GetVersionInfo>
 <ResultSummary ErrorCount="0"/>
</Response>

Retrieving Schema Detail
The SchemaDetail boolean attribute can now be specified on the <GetVersionInfo> operation to instruct
the router to return additional schema detail in the response. If the SchemaDetail attribute is specified
in the request, each schema entity in the <GetVersionInfo> response contains three additional boolean
attributes listed in Table 9-1.

This example shows a request and response with the SchemaDetail attribute:

Sample XML Client Request for Schema Detail
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetVersionInfo SchemaDetail="true">
 <Configuration/>
 </GetVersionInfo>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <GetVersionInfo SchemaDetail="true">
 <Configuration/>
 ...
 <BGP MajorVersion="10" MinorVersion="1" ContainsNaming="false" Getable="true"
 Setable="true" Supported="true"/>
 <LACP MajorVersion="1" MinorVersion="0" ContainsNaming="false" Getable="true"
 Setable="true" Supported="true"/>
 <CDP MajorVersion="1" MinorVersion="1" ContainsNaming="false" Getable="true"
 Setable="true" Supported="true"/>
 <LR MajorVersion="0" MinorVersion="0" ContainsNaming="false" Getable="true"
 Setable="true" Supported="false"/>
 <InterfaceConfigurationTable MajorVersion="2" MinorVersion="0"
 ContainsNaming="false" Getable="true" Setable="true" Supported="true">
 <InterfaceConfiguration ContainsNaming="true" Getable="true" Setable="true">
 <Bundle MajorVersion="1" MinorVersion="0" ContainsNaming="false" Getable="true"
 Setable="true" Supported="true"/>
 <LACP MajorVersion="1" MinorVersion="0" ContainsNaming="false" Getable="true"
 Setable="true" Supported="true"/>
. ..

Table 9-1 Content Attributes

Content Attribute Description

ContainsNaming Indicates whether or not the schema entity contains naming information.

Getable Indicates whether or not <Get> operations are supported for this schema.

Setable Indicates whether or not <Set> operations are supported for this schema.
9-115
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 9 Cisco XML Schema Versioning
Retrieving Schema Detail
 </InterfaceConfiguration>
 </InterfaceConfigurationTable
 ...
 </Configuration>
 </GetVersionInfo>
 <ResultSummary ErrorCount="0"/>
</Response>
9-116
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 10

Alarms

The Cisco IOS XR XML API supports the registration and receipt of notifications; for example,
asynchronous responses such as alarms, over any transport. The system supports alarms and event
notifications over XML/SSH.

An asynchronous registration request is followed by a synchronous response and any number of
asynchronous responses. If a client wants to stop receiving a particular set of asynchronous responses at
a later stage, the client sends a deregistration request.

One type of notification that is supported by the Cisco IOS XR XML API is alarms; for example, syslog
messages. The alarms that are received are restricted by a filter, which is specified in the registration
request. An alarm registration request is followed by a synchronous response. If successful, the
synchronous response contains a RegistrationID, which is used by the client to uniquely identify the
applicable registration. A client can make many alarm registrations. If a client wants to stop receiving a
particular set of alarms at a later stage, the client can send a deregistration request for the relevant
RegistrationID or all Registration IDs for the session.

When an asynchronous response is received that contains an alarm, the registration that resulted in the
alarm is determined from the RegistrationID.

These sections describe the XML used for every operation:

 • Alarm Registration, page 10-117

 • Alarm Deregistration, page 10-118

 • Alarm Notification, page 10-119

Alarm Registration
Alarm registration and deregistration requests and responses and alarm notifications use the <Alarm>
operation tag to distinguish them from other types of XML operations. A registration request contains
the <Register> tag, which is followed by several tags that specify the filter requirement. If registration
for all alarms is required, no filter is specified. These filter criteria are listed:

 • SourceID

 • Category

 • Group

 • Context

 • Code
10-117
Cisco IOS XR XML API Guide

Chapter 10 Alarms
Alarm Deregistration
 • Severity

 • BiStateOnly

If it succeeds, the response contains a <Register> tag with a RegistrationID attribute. If it fails, the filter
tag that caused the error appears with an error message attribute. This example shows a registration
request to receive all alarms for configuration change; for example, commit notifications:

Sample XML Request from the Client Application
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Alarm>
 <Register>
 <Group>CONFIG</Group>
 <Code>DB_COMMIT</Code>
 </Register>
 </Alarm>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
Response MajorVersion="1" MinorVersion="0">
 <Alarm>
 <Register RegistrationID=”123”/>
 </Alarm>
 <ResultSummary ErrorCount="0"/>
</Response>

Note If a second registration is made with the same filter, or if the filters with two registrations overlap, these
alarms that match both registrations are received twice. In general, each alarm is received once for each
registration that it matches.

If a session ends (for example, the connection is dropped), all registrations are automatically canceled.

Alarm Deregistration
An alarm deregistration request consists of the <Alarm> operation tag followed by the <Deregister> tag,
with the optional attribute RegistrationID. If RegistrationID is specified, the value must be that returned
from a previous registration request. The registration with that ID must not have already been
deregistered or an error is returned. If it is not specified, the request results in all alarm registrations for
that session being deregistered.

This example shows a deregistration request for the RegistrationID returned from the registration
request example:

Sample XML Request from the Client Application
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Alarm>
 <Deregister RegistrationID=”123”/>
 </Alarm>
</Request>
10-118
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 10 Alarms
Alarm Notification
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Alarm>
 <Deregister RegistrationID=”123”/>
 </Alarm>
 <ResultSummary ErrorCount="0"/>
</Response>

Alarm Notification
Alarm notifications are contained within a pair of <Notification> tags to distinguish them from normal
responses. Each notification contains one or more alarms, each of which is contained within a pair of
<Alarm> tags. The tags have an attribute RegistrationID, where the value is the RegistrationID returned
in the registration that resulted in the alarm.

The tags contain these fields for the alarm:

 • SourceID

 • EventID

 • Timestamp

 • Category

 • Group

 • Code

 • Severity

 • State

 • CorrelationID

 • AdditionalText

This example shows the configuration commit alarm notification:

<?xml version= "1.0" encoding= "UTF-8"?>
<Notification MajorVersion=”1” MinorVersion=”0>
 <Alarm RegistrationID=”123”>
 <SourceID>RP/0/0/CPU0</SourceID>
 <EventID>84</EventID>
 <Timestamp>1077270612</Timestamp>
 <Category>MGBL</Category>
 <Group>CONFIG</Group>
 <Code>DB_COMMIT</Code>
 <Severity>Informational</Severity>
 <State>NotAvailable</State>
 <CorrelationID>0</CorrelationID>
 <AdditionalText>config[65704]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed
by user 'admin'. Use 'show commit changes 1000000490' to view
the changes.</AdditionalText>
 </Alarm>
</Notification>
10-119
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 10 Alarms
Alarm Notification
10-120
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 11

Error Reporting in Cisco XML Responses

The XML responses returned by the router contains error information as appropriate, including the
operation, object, and cause of the error when possible. The error codes and messages returned from the
router may originate in the XML agent or in one of the other infrastructure layers; for example, the XML
Service Library, XML Parser Library, or Configuration Manager.

Types of Reported Errors
Table 11-1 lists the types of potential errors in XML Responses.

These error categories are described in these sections:

 • Error Attributes, page 11-122

 • Transport Errors, page 11-122

 • XML Parse Errors, page 11-122

 • XML Schema Errors, page 11-123

Table 11-1 Reported Error Types

Error Type Description

Transport errors Transport-specific errors are detected within the XML agent (and
include failed authentication attempts).

XML parse errors XML format or syntax errors are detected by the XML Parser
Library (and include errors resulting from malformed XML,
mismatched XML tags, and so on).

XML schema errors XML schema errors are detected by the XML operation provider
within the infrastructure (and include errors resulting from invalid
operation types, invalid object hierarchies, values out of range, and
so on).

Operation processing errors Operation processing errors are errors encountered during the
processing of an operation, typically as a result of committing the
target configuration (and include errors returned from
Configuration Manager and the infrastructure such as failed
authorization attempts, and “invalid configuration errors” returned
from the back-end Cisco IOS XR applications).
11-121
Cisco IOS XR XML API Guide

Chapter 11 Error Reporting in Cisco XML Responses
Types of Reported Errors
 • Operation Processing Errors, page 11-125

 • Error Codes and Messages, page 11-126

Error Attributes
If one or more errors occur during the processing of a requested operation, the corresponding XML
response includes error information for each element or object class in error. The error information is
included in the form of ErrorCode and ErrorMsg attributes providing a relevant error code and error
message respectively.

If one or more errors occur during the processing of an operation, error information is included for each
error at the appropriate point in the response. In addition, error attributes are added at the operation
element level. As a result, the client application does not have to search through the entire response to
determine if an error has occurred. However, the client can still search through the response to identify
each of the specific error conditions.

Transport Errors
Transport-specific errors, including failed authentication attempts, are handled by the appropriate XML
agent.

XML Parse Errors
This general category of errors includes those resulting from malformed XML and mismatched XML
tags.

The router checks each XML request, but does not validate the request against an XML schema. If the
XML contains invalid syntax and thus fails the well-formedness check, the error indication is returned
in the form of error attributes placed at the appropriate point in the response. In such cases, the response
may not contain the same XML as was received in the request, but just the portions to the point where
the syntax error was encountered.

In this example, the client application sends a request to the router that contains mismatched tags, that
is, the opening <BGPEntity> tag is not paired with a closing </BGPEntity> tag. This example illustrates
the format and placement of the error attributes.

Note The actual error codes and messages might be different than what is shown in this example. Also, the
actual error attributes does not contain new line characters.

Sample XML Client Request Containing Mismatched Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
11-122
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 11 Error Reporting in Cisco XML Responses
Types of Reported Errors
 <DefaultVRF>
 <BGPEntity>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Set>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Get xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ErrorCode="0x43679000"
 ErrorMsg="'XML Service Library' detected the 'warning'
 condition 'An error was encountered in the XML beneath this operation tag
 '">
 <Configuration ErrorCode="0xa240da00" ErrorMsg="'XML Infrastructure '
 detected the 'fatal' condition 'Opening and ending tag does not
 match'"/>
 </Get>
 <ResultSummary ErrorCount="1"/>
</Response>

XML Schema Errors
XML schema errors are detected by the XML operation providers. This general category of errors
includes those resulting from invalid operation types, invalid object hierarchies, and invalid naming or
value elements. However, some schema errors may go undetected because, as previously noted, the
router does not validate the request against an XML schema.

In this example, the client application has requested a <Set> operation specifying an object
<ExternalRoutes> that does not exist at this location in the Border Gateway Protocol (BGP) component
hierarchy. This example illustrates the format and placement of the error attributes.

Note The actual error codes and messages may be different than those shown in the example.

Sample XML Client Request Specifying an Invalid Object Hierarchy
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Get>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global>
 <ExternalRoutes>10</ExternalRoutes>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
11-123
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 11 Error Reporting in Cisco XML Responses
Types of Reported Errors
 </BGP>
 </Configuration>
 </Set>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ErrorCode="0x4368a400"
 ErrorMsg="'XML Service Library' detected the 'warning'
 condition 'An error was encountered in the XML beneath this operation
 tag'">
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global ErrorCode="0x4368a400" ErrorMsg="'XMLMDA' detected the
 'warning' condition '
 The XML request does not conform to the schema. A child element of
 the element on which this error appears is invalid. No such child
 element name exists at this location in the schema. Please check
 the request against the schema.'"/>
 </DefaultVRF>
 </AS>
 </BGP>
 </Configuration>
 </Set>
 <ResultSummary ErrorCount="0"/>
</Response>

This example also illustrates a schema error. In this case, the client application has requested a <Set>
operation specifying a value for the <GracefulRestartTime> object that is not within the range of valid
values for this item.

Sample XML Request Specifying an Invalid Object Value Range
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <Set>
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global>
 <GracefulRestartTime>6000</GracefulRestartTime>
 </Global>
 </DefaultVRF>
 </FourByteAS>
 </AS>
 </BGP>
 </Configuration>
 </Set>
</Request>
11-124
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 11 Error Reporting in Cisco XML Responses
Types of Reported Errors
Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0">
 <Set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ErrorCode="0x4368a800"
 ErrorMsg="'XML Service Library' detected the 'warning'
 condition 'An error was encountered in the XML beneath this operation
 tag'">
 <Configuration>
 <BGP MajorVersion=”24” MinorVersion=”0”>
 <AS>
 <Naming>
 <AS>0</AS>
 </Naming>
 <FourByteAS>
 <Naming><AS>3</AS></Naming>
 <DefaultVRF>
 <Global>
 <GracefulRestartTime ErrorCode="0x4368a800" ErrorMsg='
 XMLMDA' detected the 'warning' condition '
 The XML request does not conform to the schema. The character data
 contained in the element on which this error appears (or one of its
 child elements) does not conform to the XML schema for its datatype.
 Please check the request against the schema.'"/>
 </Global>
 </DefaultVRF>
 </AS>
 </BGP>
 </Configuration>
 </Set>
 <ResultSummary ErrorCount="1"/>
</Response>

Operation Processing Errors
Operation processing errors include errors encountered during the processing of an operation, typically
as a result of committing the target configuration after previous <Set> or <Delete> operations. While
processing an operation, errors are returned from Configuration Manager and the infrastructure, failed
authorization attempts occur, and “invalid configuration errors” are returned from the back-end Cisco
IOS XR applications.

This example illustrates an operation processing error resulting from a <GetNext> request specifying an
unrecognized iterator ID:

Sample XML Client Request and Processing Error
<?xml version="1.0" encoding="UTF-8"?>
<Request MajorVersion="1" MinorVersion="0">
 <GetNext IteratorID="1" Abort="true"/>
</Request>

Sample XML Response from the Router
<?xml version="1.0" encoding="UTF-8"?>
<Response MajorVersion="1" MinorVersion="0" ErrorCode="0xa367a800" ErrorMsg="'
 XML Service Library' detected the 'fatal' condition 'The XML
 Infrastructure has been provided with an iterator ID which is not recognized. The
 iterator is either invalid or has timed out.'"/>
11-125
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 11 Error Reporting in Cisco XML Responses
Types of Reported Errors
Error Codes and Messages
The error codes and messages returned from the router may originate in any one of several components.

The error codes (cerrnos) returned from these layers are 32-bit integer values. In general, for a given
error condition, the error message returned in the XML is the same as the error message displayed on
the CLI.
11-126
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 12

Summary of Cisco XML API Configuration Tags

Table 12-1 provides the CLI to XML application programming interface (API) tag mapping for the
router target configuration.

Table 12-1 CLI Command or Operation to XML Tag Mapping

CLI Command or Operation XML Tag

To end, abort, or exit1 (from top
config mode)

<Unlock>2

clear <Clear>

show config <Get> with <Configuration Source=“ChangedConfig”>

show config running <Get> with <Configuration Source=“CurrentConfig”>

show config merge <Get> with <Configuration Source=“MergedConfig”>

show config failed <Load> with <FailedConfig> followed by <Get> with
<Configuration Source=”ChangedConfig”>

configure exclusive3 <Lock>4

To change the selected config <Set> with <Configuration>

To delete the selected config <Delete> with <Configuration>

commit best-effort <Commit Mode=“BestEffort”>

commit <Commit Mode=“Atomic”>

show config failed <Load> with <FailedConfig>

show commit changes commitid <Get> with <Configuration Source=“CommitChanges”
ForCommitID=“commitid”>

show commit changes since commitid <Get> with <Configuration Source=“CommitChanges”
SinceCommitID=“commitid”>

rollback configuration to commitid <Rollback> with <CommitID>

rollback configuration last number <Rollback> with <Previous>

show rollback changes to commitid <Get> with <Configuration Source=“RollbackChanges”
ToCommitID=“commitid”>

show rollback changes last number <Get> with <Configuration Source=“RollbackChanges”
PreviousCommits=“number”>
12-127
Cisco IOS XR XML API Guide

Chapter 12 Summary of Cisco XML API Configuration Tags
show rollback points <GetConfigurationHistory RollbackOnly=“true”>

show configuration sessions <GetConfigurationSessions>

1. These CLI operations end the configuration session and unlock the running configuration session if it is locked.

2. This XML tag releases the lock on a running configuration but does not end the configuration session.

3. This CLI command starts a new configuration session and locks the running configuration.

4. This XML tag locks the running configuration from a configuration session that is already in progress.

Table 12-1 CLI Command or Operation to XML Tag Mapping (continued)

CLI Command or Operation XML Tag
12-128
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 13

XML Transport and Event Notifications

This chapter contains these sections:

 • TTY-Based Transports, page 13-129

 • Dedicated Connection Based Transports, page 13-131

 • SSL Dedicated Connection based Transports, page 13-133

TTY-Based Transports
These sections describe how to use the TTY-based transports:

 • Enabling the TTY XML Agent, page 13-129

 • Enabling a Session from a Client, page 13-130

 • Sending XML Requests and Receiving Responses, page 13-130

 • Configuring Idle Session Timeout, page 13-132

 • Ending a Session, page 13-130

 • Errors That Result in No XML Response Being Produced, page 13-131

Enabling the TTY XML Agent
To enable the TTY agent on the router, which is ready to handle incoming XML sessions over Telnet
and Secured Shell (SSH), enter the xml agent tty command, as shown in this example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# xml agent tty
RP/0/RP0/CPU0:router(config)# commit
RP/0/RP0/CPU0:router(config)# exit

For more information about the xml agent tty command, see Cisco IOS XR System Management
Configuration Guide.

TTY (SSH) agent is telnet based, so IPv6 addressing is supported.
13-129
Cisco IOS XR XML API Guide

Chapter 13 XML Transport and Event Notifications
TTY-Based Transports
Enabling a Session from a Client
To enable a session from a remote client, invoke SSH or Telnet to establish a connection with the
management port on the router. When prompted by the transport protocol, enter a valid username and
password. After you have successfully logged on, enter xml at the router prompt to be in XML mode.

A maximum of 50 XML sessions total can be started over a dedicated port, TTY, SSH, and Secure
Sockets Layer (SSL) dedicated port.

Note You should use, if configured, either the management port or any of the external interfaces rather than
a connection to the console or auxiliary port. The management port can have a significantly higher
bandwidth and offer better performance.

Sending XML Requests and Receiving Responses
To send an XML request, write the request to the Telnet/SSH session. The session can be used
interactively; for example, typing or pasting the XML at the XML> prompt from a window.

Note The XML request must be followed by a new-line character; for example, press Return, before the
request is processed.

Any responses, either synchronous or asynchronous, are also displayed in the session window. The end
of a synchronous response is always represented with </Response> and asynchronous responses (for
example), notifications, end with </Notification>.

The client application is single threaded in the context of one session and sends requests synchronously;
for example, requests must not be sent until the response to the previous request is received.

Configuring Idle Session Timeout
When a session times out, the resource from that session is reclaimed. By default, XML agents do not
have an idle session timeout.

To configure the idle session timeout in minutes for the XML agents, use this command:

xml agent [tty | ssl] session timeout <1-1440>

Ending a Session
If you are using a session interactively from a terminal window, you can close the window. To manually
exit the session, at the prompt:

1. Enter the exit command to end XML mode.

2. Enter the exit command to end the Telnet/SSH session.
13-130
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 13 XML Transport and Event Notifications
Dedicated Connection Based Transports
Errors That Result in No XML Response Being Produced
If the XML infrastructure is unable to return an XML response, the TTY agent returns an error code and
message in the this format:

ERROR: 0x%x %s\n

Dedicated Connection Based Transports
These sections describe how to use the dedicated connection-based transports:

 • Enabling the Dedicated XML Agent, page 13-131

 • Enabling a Session from a Client, page 13-132

 • Sending XML Requests and Receiving Responses, page 13-132

 • Configuring Idle Session Timeout, page 13-132

 • Ending a Session, page 13-132

 • Errors That Result in No XML Response Being Produced, page 13-132

Enabling the Dedicated XML Agent
To enable the dedicated agent on the router, which is ready to handle incoming XML sessions over a
dedicated TCP port (38751), enter the xml agent command, as shown in the following example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# xml agent
RP/0/RP0/CPU0:router(config)# aaa authorization exec default local
RP/0/RP0/CPU0:router(config)# commit
RP/0/RP0/CPU0:router(config)# exit

For more information about the xml agent command, see Cisco IOS XR System Management
Configuration Guide.

The default addressing protocol for the XML dedicated agent is

 • IPv4 enabled

 • IPv6 disabled

To configure a dedicated agent to receive and send messages through IPv6 protocol:

xml agent ipv6 enable

To configure dedicated agent to disable IPv4 protocol

xml agent ipv4 disable

To receive and send messages only through IPv6 protocol:

xml agent ipv4 disable

xml agent ipv6 enable
13-131
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 13 XML Transport and Event Notifications
Dedicated Connection Based Transports
Enabling a Session from a Client
To enable a session from a remote client, establish a TCP connection with the dedicated port (38751) on
the router. When prompted, enter a valid username and password. After you have successfully logged
on, the session is in XML mode and is ready to receive XML requests.

A maximum of 50 XML sessions total can be started over dedicated port, TTY, SSH, and SSL dedicated
port.

Sending XML Requests and Receiving Responses
To send an XML request, write the request to the established session. The session can be used
interactively; for example, typing or pasting the XML at the XML> prompt from a window.

Note The XML request must be followed by a new-line character; for example, press Return, before the
request is processed.

Any responses, either synchronous or asynchronous, are also displayed in the session window. The end
of a synchronous response is always represented with </Response> and asynchronous responses (for
example), notifications, end with </Notification>.

The client application is single threaded in the context of one session and sends requests synchronously;
for example, requests must not be sent until the response to the previous request is received.

Configuring Idle Session Timeout
When a session times out, the resource from that session is reclaimed. By default, XML agents do not
have an idle session timeout.

To configure the idle session timeout in minutes for the XML agents, use this command:

xml agent [tty | ssl] session timeout <1-1440>

Ending a Session
If you are using a session interactively from a terminal window, you can close the window. To manually
exit the session, at the prompt:

1. Enter the exit command to end XML mode.

2. Enter the exit command to end the Telnet/SSH session.

Errors That Result in No XML Response Being Produced
If the XML infrastructure is unable to return an XML response, the TTY agent returns an error code and
message in this format:

ERROR: 0x%x %s\n
13-132
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 13 XML Transport and Event Notifications
SSL Dedicated Connection based Transports
SSL Dedicated Connection based Transports
These sections describe how to use the dedicated connection based transports:

 • Enabling the SSL Dedicated XML Agent, page 13-133

 • Enabling a Session from a Client, page 13-133

 • Sending XML Requests and Receiving Responses, page 13-133

 • Configuring Idle Session Timeout, page 13-134

 • Ending a Session, page 13-134

 • Errors That Result in No XML Response Being Produced, page 13-134

Enabling the SSL Dedicated XML Agent
To enable the SSL dedicated agent on the router, which is ready to handle incoming XML sessions over
dedicated TCP port (38752), enter the xml agent command, as shown in this example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# xml agent ssl
RP/0/RP0/CPU0:router(config)# aaa authorization exec default local
RP/0/RP0/CPU0:router(config)# commit
RP/0/RP0/CPU0:router(config)# exit

Note The k9sec package is required to use the SSL agent. The configuration is rejected during a commit when
the k9sec package is not active on the system. When the k9sec package is deactivated after configuring
the SSL agent, the agent is not available.

The SSL dedicated agent uses IPSec, so IPv6 addressing is supported.

Enabling a Session from a Client
To enable a session from a remote client, establish a TCP connection with the dedicated port (38752) on
the router. When prompted, enter a valid username and password. After you have successfully logged
on, the session is in XML mode and is ready to receive XML requests.

A maximum of 50 XML sessions can be started over a dedicated port, TTY, SSH, and a SSL dedicated
port.

Sending XML Requests and Receiving Responses
To send an XML request, write the request to the established session. The session can be used
interactively; for example, typing or pasting the XML at the XML> prompt from a window.

The XML request must be followed by a new-line character. For example, press Return before the
request is processed.

Any responses, either synchronous or asynchronous, are also displayed in the session window. The end
of a synchronous response is always represented with </Response>. Asynchronous responses end with
</Notification>.
13-133
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 13 XML Transport and Event Notifications
SSL Dedicated Connection based Transports
The client application is single threaded in the context of one session and sends requests synchronously.
Requests must not be sent until the response to the previous request is received.

Configuring Idle Session Timeout
When a session times out, the resource from that session is reclaimed. By default, XML agents do not
have an idle session timeout.

To configure the idle session timeout in minutes for the XML agents, use this command:

xml agent [tty | ssl] session timeout <1-1440>

Ending a Session
If you are using a session interactively from a terminal window, you can close the window. To manually
exit the session, at the prompt:

1. Enter the exit command to end XML mode.

2. Enter the exit command to end the Telnet/SSH session.

Errors That Result in No XML Response Being Produced
If the XML infrastructure is unable to return an XML response, the SSL dedicated agent returns an error
code and message in this format:

ERROR: 0x%x %s\n
13-134
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 14

Cisco XML Schemas

This chapter contains information about common XML schemas. The structure and allowable content of
the XML request and response instances supported by the Cisco IOS XR XML application programming
interface (API) are documented by means of XML schemas (.xsd files).

The XML schemas are documented using the standard World Wide Web Consortium (W3C) XML
schema language, which provides a much more powerful and flexible mechanism for describing schemas
than can be achieved using Document Type Definitions (DTDs). The set of XML schemas consists of a
small set of common high-level schemas and a larger number of component-specific schemas as
described in this chapter.

For more information on the W3C XML Schema standard, see this URL:

http://www.w3.org/XML/Schema

This chapter contains these sections:

 • XML Schema Retrieval, page 14-135

 • Common XML Schemas, page 14-136

 • Component XML Schemas, page 14-136

XML Schema Retrieval
The XML schemas that belong to the features in a particular package are obtained as a .tar file from
cisco.com. To retrieve the XML schemas, you must:

1. Click this URL to display the Downloads page:

http://tools.cisco.com/support/downloads/go/Redirect.x?mdfid=268437899

Note Select Downloads. Only customer or partner viewers can access the Download Software page.
Guest users will get an error.

2. Select Cisco IOS XR Software.

3. Select IOS XR XML Schemas.

4. Select the XML schema for your platform.

Once untarred, all the XML schema files appear as a flat directory of .xsd files and can be opened with
any XML schema viewing application, such as XMLSpy.
14-135
Cisco IOS XR XML API Guide

http://tools.cisco.com/support/downloads/go/Redirect.x?mdfid=268437899
http://www.w3.org/XML/Schema

Chapter 14 Cisco XML Schemas
Common XML Schemas
Common XML Schemas
Among the .xsd files that belong to a BASE package are the common Cisco IOS XR XML schemas that
include definitions of the high-level XML request and response instances, operations, and common
datatypes. These common XML schemas are listed:

 • alarm_operations.xsd

 • config_services_operations.xsd

 • cli_operations.xsd

 • common_datatypes.xsd

 • xml_api_common.xsd

 • xml_api_protocol.xsd

 • native_data_common.xsd

 • native_data_operations.xsd

Component XML Schemas
In addition to the common XML schemas, component XML schemas (such as native data) are provided
and contain the data model for each feature. There is typically one component XML schema for each
major type of data supported by the component—configuration, operational, action, administration
operational, and administration action data—plus any complex data type definitions in the operational
space.

Note Sometimes common schema files exist for a component that contain resources used by the component’s
other schema files (for example, the data types to be used by both configuration data and operational
data).

You should use only the XML objects that are defined in the XML schema files. You should not use any
unpublished objects that may be shown in the XML returned from the router.

Schema File Organization
There is no hard link from the high-level XML request schemas (namespace_types.xsd) and the
component schemas. Instead, links appear in the component schemas in the form of include elements
that specify the file in which the parent element exists. The name of the component .xsd file also
indicates where in the hierarchy the file’s contents reside. If the file ends with _cfg.xsd, it appears as a
child of “Configuration”; if it ends with _if_cfg.xsd, it appears as a child of “InterfaceConfiguration”,
and so on. In addition, the comment header in each .xsd file names the parent object of each top level
object in the schema.
14-136
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 14 Cisco XML Schemas
Component XML Schemas
Schema File Upgrades
If a new version of a schema file becomes available (or has to be uploaded to the router as part of an
upgrade), the new version of the file can replace the old version of the file in a straight swap. All other
files are unaffected. Therefore, if a component is replaced, only the .xsd files pertaining to that
component is replaced.
14-137
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 14 Cisco XML Schemas
Component XML Schemas
14-138
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 15

Network Configuration Protocol

Network Configuration Protocol (NETCONF) defines an XML-based interface between a network
device and a network management system to provide a mechanism to manage, configure, and monitor a
network device.

In Cisco IOS-XR, NMS applications use defined XML schemas to manage network devices from
multiple vendors. These capabilities are supported from a Cisco IOS XR agent to a client:

 • TTY NETCONF session—Logon through telnet and then enter the netconf command.

 • SSH NETCONF session—Logon through SSH and then enter the netconf command.

This example shows a <hello> message that the agent sends to a client:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 </capabilities>
 <session-id>4</session-id>
</hello>

These sections about NETCONF are covered:

 • Starting a NETCONF Session, page 15-139

 • Ending a NETCONF Agent Session, page 15-140

 • Starting an SSH NETCONF Session, page 15-140

 • Ending an SSH NETCONF Agent Session, page 15-141

 • Configuring a NETCONF agent, page 15-141

 • Limitations of NETCONF in Cisco IOS XR, page 15-142

Starting a NETCONF Session
To start a NETCONF session, enter the netconf command from the exec prompt (through telnet or SSH).

This example shows how to start a TTY NETCONF agent session:

client(/users/ore)> telnet 1.66.32.82
Trying 1.66.32.82...
Connected to 1.66.32.82.
15-139
Cisco IOS XR XML API Guide

Chapter 15 Network Configuration Protocol
Ending a NETCONF Agent Session
Escape character is '^]'.

User Access Verification

Username:
Password:
RP/0/1/CPU0:Router# netconf echo format
 <?xml version="1.0" encoding="UTF-8" ?>
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 </capabilities>
 <session-id>4</session-id>
 </hello>]]>]]>

When a new session is created, the NETCONF agent immediately sends out a <hello> message with
capabilities. At the end of each message transmission, the NETCONF agent sends the EOD marker
‘]]>]]>’

The NETCONF agent does not display a prompt like the XML agent does (XML>).

The NETCONF TTY agent does not echo back the received messages and does not format returning
messages by default. These capabilities can be added by using the ‘echo’ and ‘format’ options.

The client is also required to send a <hello> message with capabilities.

Ending a NETCONF Agent Session
Unlike the XML agent, the client ends the session by sending a <close-session> request.

<?xml version="1.0" encoding="UTF-8" ?>
<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>]]>]]>

The agent replies with an <ok> tag and then closes the session.

<?xml version="1.0" encoding="UTF-8" ?>
<rpc-reply message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc>]]>]]>

Starting an SSH NETCONF Session
This example shows how to start an SSH NETCONF agent session:

client(/users/ore)> ssh lab@1.66.32.82
lab@1.66.32.82's password:
RP/0/1/CPU0:gsrb#netconf echo format
 <?xml version="1.0" encoding="UTF-8" ?>
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
15-140
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 15 Network Configuration Protocol
Ending an SSH NETCONF Agent Session
 <capability>
 urn:ietf:params:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 </capabilities>
 <session-id>4</session-id>
 </hello>]]>]]>

The client can also directly start a NETCONF session by specifying the netconf command on the ssh
command line:

client(/users/ore)> ssh lab@1.66.32.82 netconf echo format
lab@1.66.32.82's password:
 <?xml version="1.0" encoding="UTF-8" ?>
 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:candidate:1.0
 </capability>
 </capabilities>
 <session-id>4</session-id>
 </hello>]]>]]>

Ending an SSH NETCONF Agent Session
This example shows how to end an SSH NETCONF agent session:

<?xml version="1.0" encoding="UTF-8" ?>
<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>]]>]]>

The agent replies with an <ok> tag and then closes the session.

<?xml version="1.0" encoding="UTF-8" ?>
<rpc-reply message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc>]]>]]>

Configuring a NETCONF agent
To configure a NETCONF TTY agent, use the netconf agent tty command.

Use the throttle and session timeout parameters as you would with the XML TTY agent.

netconf agent tty
 throttle (memory | process-rate)
 session timeout

To enable the NETCONF SSH agent, use this command:

ssh server v2
netconf agent tty
15-141
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 15 Network Configuration Protocol
Limitations of NETCONF in Cisco IOS XR
Limitations of NETCONF in Cisco IOS XR
This sections identifies the limitations of NETCONF in Cisco IOS XR Software.

Configuration Datastores
Cisco IOS XR supports these configuration datastores:

 • <running>

 • <candidate>

Cisco IOS XR does not support the <startup> configuration datastore.

Configuration Capabilities
Cisco IOS XR supports these configuration capabilities:

 • Candidate Configuration Capability

urn:ietf:params:netconf:capability:candidate:1.0

Cisco IOS XR does not support these configuration capabilities:

 • Writable-Running Capability

urn:ietf:params:netconf:capability:writable-running:1.0

 • Confirmed Commit Capability

urn:ietf:params:netconf:capability:confirmed-commit:1.0

Transport (RFC4741 and RFC4742)
These transport operations are supported:

 • Connection-oriented operation

 • Authentication

 • SSH Transport—Shell based SSH. IANA-assigned TCP port <830> for NETCONF SSH is not
supported.

 • Other transport

Subtree Filtering (RFC4741)
NETCONF has these subtree filtering limitations in Cisco IOS XR:

 • Namespace Selection—Filtering based on specified namespace. This is not supported because Cisco
IOS XR does not publish schema name spaces.

 • Attribute Match Expressions—Filtering is done by matching a specified attribute value. This
filtering with the “Match” attribute can be specified only in Table classes. See this example:

<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
15-142
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 15 Network Configuration Protocol
Limitations of NETCONF in Cisco IOS XR
 <running/>
 </source>
 <filter>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName Match=”GigabitEthernet.*”/>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </filter>
 </get-config>
</rpc>

 • Containment Nodes—Filtering is done by specifying nodes (classes) that have child nodes (classes).
This filtering is by specifying container classes. See this example:

<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <Configuration>
 <InterfaceConfigurationTable/>
 </Configuration>
 </filter>
 </get-config>
</rpc>

 • Selection Nodes—Filtering is done by specifying leaf nodes. This filtering specifies leaf classes.
See this example:

<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName>GigabitEthernet0/3/0/1</InterfaceName>
 </Naming>
 <Shutdown/>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </filter>
 </get-config>
</rpc>

 • Content Match Nodes—Filtering is done by exactly matching the content of a leaf node. This
filtering is done by specifying naming the class value for table classes. See this example:

<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
15-143
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 15 Network Configuration Protocol
Limitations of NETCONF in Cisco IOS XR
 </source>
 <filter>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming>
 <Active>act</Active>
 <InterfaceName>Loopback0</InterfaceName>
 </Naming>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </filter>
 </get-config>
</rpc>

According to the RFC, a request using an empty content match node should return all <Naming>
elements of all entries of the table.

For example, for this request, the response should return <Naming> elements of all the entries of
<InterfaceConfigrationTable>:

 <rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <Configuration>
 <InterfaceConfigurationTable>
 <InterfaceConfiguration>
 <Naming/>
 </InterfaceConfiguration>
 </InterfaceConfigurationTable>
 </Configuration>
 </filter>
 </get-config>
 </rpc>

In Cisco IOS XR, this request is not supported and is errored out.

Protocol Operations (RFC4741)
These protocol operations are supported in Cisco IOS XR:

 • get—Root level query that returns both the entire configuration and state data is not supported

 • get-config

 • edit-config

 • lock

 • unlock

 • close-session

 • commit (by the Candidate Configuration Capability)

 • discard-change (by the Candidate Configuration Capability)
15-144
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 15 Network Configuration Protocol
Limitations of NETCONF in Cisco IOS XR
Event Notifications (RFC5277)
Event notifications are not supported in Cisco IOS XR.
15-145
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 15 Network Configuration Protocol
Limitations of NETCONF in Cisco IOS XR
15-146
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 16

Cisco IOS XR Perl Scripting Toolkit

This chapter describes the Cisco IOS XR Perl Scripting Toolkit as an alternative method to existing
router management methods. This method enables the router to be managed by a Perl script running on
a separate machine. Management commands and data are sent to, and from, the router in the form of
XML over either a Telnet or an SSH connection. The well-defined and consistent structure of XML,
which is used for both commands and data, makes it easy to write scripts that can interactively manage
the router, display information returned from the router in the format required, or manage multiple
routers at once.

These sections describe how to use the Cisco IOS XR Perl Scripting Toolkit:

 • Cisco IOS XR Perl Scripting Toolkit Concepts, page 16-148

 • Security Implications for the Cisco IOS XR Perl Scripting Toolkit, page 16-148

 • Prerequisites for Installing the Cisco IOS XR Perl Scripting Toolkit, page 16-148

 • Installing the Cisco IOS XR Perl Scripting Toolkit, page 16-149

 • Using the Cisco IOS XR Perl XML API in a Perl Script, page 16-150

 • Handling Types of Errors for the Cisco IOS XR Perl XML API, page 16-150

 • Starting a Management Session on a Router, page 16-150

 • Closing a Management Session on a Router, page 16-152

 • Sending an XML Request to the Router, page 16-152

 • Using Response Objects, page 16-153

 • Using the Error Objects, page 16-154

 • Using the Configuration Services Methods, page 16-154

 • Using the Cisco IOS XR Perl Data Object Interface, page 16-157

 • Cisco IOS XR Perl Notification and Alarm API, page 16-166

 • Examples of Using the Cisco IOS XR Perl XML API, page 16-170
16-147
Cisco IOS XR XML API Guide

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Cisco IOS XR Perl Scripting Toolkit Concepts
Cisco IOS XR Perl Scripting Toolkit Concepts
Table 16-1 describes the toolkit concepts. Some sample scripts are modified and show how to use the
API in your own scripts.

Security Implications for the Cisco IOS XR Perl Scripting Toolkit
Similar to using the CLI over a Telnet or Secured Shell (SSH) connection, all authentication and
authorization are handled by authentication, authorization, and accounting (AAA) on the router. A script
prompts you to enter a password at run time, which ensures that passwords never get stored on the client
machine. Therefore, the security implications for using the toolkit are identical to the CLI over the same
transport.

Prerequisites for Installing the Cisco IOS XR Perl Scripting
Toolkit

To use the toolkit, you must have installed Perl version 5.6 on the client machine that runs UNIX and
Linux. To use the SSH transport option, you must have the SSH client executable installed on the
machine and in your path.

You need to install these specific standard Perl modules to use various functions:

 • XML::LibXML—This module is essential for using the Perl XML API and requires that the libxml2
library be installed on the system first. This must be the version that is compatible with the version
of XML::LibXML. The toolkit is tested to work with XML::LibXML version 1.58 and libxml2
version 2.6.6. If you are installing libxml2 from a source, you must apply the included patch file
before compiling.

 • Term::ReadKey (optional but recommended)—This module reads passwords without displaying
them on the screen.

 • Net::Telnet—This module is needed if you are using the Telnet or SSH transport modules.

If one of the modules is not available in the current version, you are warned during the installation
process. Before installing the toolkit, you should install the current versions of the modules. You can
obtain all modules from this location: http://www.cpan.org/

Table 16-1 List of Concepts for the IOS XR Perl Scripting Toolkit

Concept Definition

Cisco IOS XR Perl XML API Consists of the core of the toolkit and provides the ability to create
management sessions, send management requests, and receive
responses by using Perl objects and methods.

Cisco IOS XR Perl Data Object
API

Allows management requests to be sent and responses received
entirely using Perl objects and data structures without any
knowledge of the underlying XML.

Cisco IOS XR Perl
Notification/Alarm API

Allows a script to register for notifications (for example, alarms),
on a management session and receive the notifications
asynchronously as Perl objects.
16-148
Cisco IOS XR XML API Guide

OL-24657-01

http://www.cpan.org/

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Installing the Cisco IOS XR Perl Scripting Toolkit
These modules are not necessary for using the API, but are required to run some sample scripts:

 • XML::LibXSLT—This module is needed for the sample scripts that use XSLT to produce HTML
pages. The module also requires that the libxslt library be installed on the system first. The toolkit
is tested to work with XML::LibXSLT version 1.57 and libxslt version 1.1.3.

 • Mail::Send—This module is needed only for the notifications sample script.

Installing the Cisco IOS XR Perl Scripting Toolkit
The Cisco IOS XR Perl Scripting Toolkit is distributed in a file named:
Cisco-IOS_XR-Perl-Scripting-Toolkit-<version>.tar.gz.

To install the Cisco IOS XR Perl Scripting Toolkit, perform these steps:

Step 1 Extract the contents from the directory in which the file resides by entering this command:

tar -f Cisco-IOS_XR-Perl-Scripting-Toolkit-<version>.tar.gz -xzC <destination>

Table 16-2 defines the parameters.

Step 2 Use the cd command to change to the toolkit installation directory and enter this command:

perl Makefile.PL

If the command gives a warning that one of the prerequisite modules is not found, download and install
the applicable module from the Comprehensive Perl Archive Network (CPAN) before using the API.

Step 3 Use the make command to maintain a set of programs, as shown in this example:

make

Step 4 Use the make install command, as shown in this example:

make install

Ensure that you have the applicable permission requirements for the installation. You may need to have
root privileges.

If you do not encounter any errors, the toolkit is installed successfully. The Perl modules are copied into
the appropriate directory, and you can use your own Perl scripts.

Table 16-2 Toolkit Installation Directory Parameters

Parameter Description

<version> Defines the version of the toolkit to install, for example, version 1.0.

<destination> Specifies the existing directory in which to create the toolkit installation directory. A
directory called Cisco-IOS_XR-Perl-Scripting-Toolkit-<version> is created within the
<destination> directory along with the extracted contents.
16-149
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl XML API in a Perl Script
Using the Cisco IOS XR Perl XML API in a Perl Script
To use the Cisco IOS XR Perl XML API in a Perl application, import the module by including this
statement at the top of the script:

use Cisco::IOS_XR;

If you are using the Data Object interface, you can specify extra import options in the statement. For
more information about the objects, see the “Creating Data Objects” section on page 16-159.

Handling Types of Errors for the Cisco IOS XR Perl XML API
These types of errors can occur when using the Cisco IOS XR Perl XML API:

 • Errors returned from the router—Specify that the errors are produced during the processing of an
XML request and are returned to you in an XML response document. For more information about
how these errors are handled, see the “Using the Error Objects” section on page 16-154.

 • Errors produced within the Perl XML API modules—Specify that the script cannot continue. The
module causes the script to be terminated with the appropriate error message. If the script writer
wants the script to handle these error types, the writer must write the die handlers (for example,
enclose the call to the API function within an eval{} block).

Starting a Management Session on a Router
Before any requests are sent, a management session must be started on the router, which is done by
creating a new object of type named Cisco::IOS_XR. The new object is used for all further requests
during the session, and the session is ended when the object is destroyed. A Cisco::IOS_XR object is
created by calling Cisco::IOS_XR::new.

Table 16-3 lists the optional parameters specified as arguments.

Table 16-3 Argument Definitions

Name Description

use_command_line Controls whether or not the new() method parses the command-line options
given when the script was invoked. If the value of the argument is true, which
is the default, the command-line options specify or override any of the
subsequent arguments and control debug and logging options. The value of 0
defines the value as false.

interactive If the value of the argument is true, the script prompts you for the username
and password if they have not been specified either in the script or on the
command line. The Term::ReadKey module must be installed.

The most secure way of using the toolkit is not to have the input echoed to
the screen, which avoids hard coding or any record of passwords being used.
The default value is false, which means that the script does not ask for user
input. As a command-line option, the interactive argument does not take any
arguments. You can specify -interactive to turn on the interactive mode.
16-150
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Starting a Management Session on a Router
This example shows the arguments given using the standard Perl hash notation:

use Cisco::IOS_XR;
my $session = new Cisco::IOS_XR(transport => 'telnet',
 host => 'router1',
 port => 7000,
 username => 'john',
 password => 'smith',
 connection_timeout => 3);

Alternatively, the arguments can be specified in a file. For example:

The contents of ‘/usrs/trice/perlxml.cfg’:

[myrouter]
transport = telnet
host = router1
username = john
password = smith
connection_timeout = 3

In the script, the file and profile name are specified:

use Cisco : : IOS_XR;
my $session = new Cisco: :IOS_XR(config_file =>
 ‘/usrs/trice/perlxml.cfg’,
 profile => ‘myrouter’);

transport Means by which the Perl application should connect to the router, which
defaults to Telnet. If a different value is specified, the new() method searches
for a package called Cisco::IOS_XR::Transport::<transport_name>. If found,
the Perl application uses that package to connect to the router.

ssh_version If the chosen transport option is SSH and the SSH executable on your system
supports SSH v2, specifies which version of SSH you want to use for the
connection. The valid values are 1 and 2. If the SSH executable supports only
version 1, an error is caused by specifying the ssh_version argument.

host Specifies the name or IP address of the router to connect. The router console
or auxiliary ports should not be used because they are likely to cause
problems for the script when logging in and offer significantly lower
performance than a management port.

port Specifies the TCP port for the connection. The default value depends on the
transport being used.

username Specifies the username to log in to the router.

password Specifies the corresponding password.

connection_timeout Specifies the timeout value that is used to connect and log in to the session.
If not specified, the default value is 5 seconds.

response_timeout Specifies the timeout value that is used when waiting for a response to an
XML request. If not specified, the default value is 10 seconds.

prompt Specifies the prompt that is displayed on the router after a successful log in.
The default is <host>#.

Table 16-3 Argument Definitions (continued)

Name Description
16-151
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Closing a Management Session on a Router
Table 16-4 describes the additional command-line options that can be specified.

To use the command-line options when invoking a script, use the -option value (assuming the option
has a value). The option name does not need to be given in full, but must be long enough to be
distinguished from other options. This is displayed:

perl my_script.pl -host my_router -user john -interactive -debug xml

Closing a Management Session on a Router
When an object of type Cisco::IOS_XR is created, the transport connection to the router and any
associated resources on the router are maintained until the object is destroyed and automatically cleaned.
For most scripts, the process should occur automatically when the script ends.

To close a particular session during the course of the script, use the close() method. You can perform
an operation on a large set of routers sequentially, and not keep all sessions open for the duration of the
script, as displayed in this example:

my $session1 = new Cisco::IOS_XR(host => ‘router1’, ...);
#do some stuff
$session1->close;
my $session2 = new Cisco::IOS_XR(host => ‘router2’, ...);
do some stuff
...

Sending an XML Request to the Router
Requests and responses pass between the client and router in the form of XML. Depending on whether
the XML is stored in a string or file, you can construct an XML request that is sent to the router using
either the send_req or send_req_file method. Some requests are sent without specifying any XML by
using the configuration services methods; for example, commit and lock or the Data Object interface.

This example shows how to send an XML request in the form of a string:

my $xml_req_string = ‘<?xml...><Request>...</Request>’;
my $response = $session->send_req($xml_req_string);

This example shows how to send a request stored in a file:

my $response = $session->send_req_file('request.xml');

Table 16-4 Command-Line Options

Name Description

debug Turns on the specified debug type and can be repeated to turn on more
than one type.

logging Turns on the specified logging type and can be repeated to turn on more
than one type.

log_file Specifies the name of the log file to use.

telnet_input_log Specifies the file used for the Telnet input log, if you are using Telnet.

telnet_dump_log Specifies the file used for the Telnet dump log, if you are using Telnet.
16-152
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using Response Objects
Using Response Objects
Both of the send_req and send_req_file methods return a Cisco::IOS_XR::Response object, which
contains the XML response returned by the router.

Note Both send methods handle iterators in the background; so if a response consists of many parts, the
response object returned is the result of merging them back together.

Retrieving the Response XML as a String

This example shows how to use the to_string method:

$xml_response_string = $response->to_string;

Writing the Response XML Directly to a File

This example shows how to use the write_file method by specifying the name of the file to be written:

$response->write_file('response.xml');

Retrieving the Data Object Model Tree Representation of the Response

This example shows how to retrieve a Data Object Model (DOM) tree representation for the response:

my $document = $response->get_dom_tree;

You should be familiar with the DOM, which an XML document is represented in an object tree
structure. For more information, see this URL:

http://www.w3.org/DOM/

Note The returned DOM tree type will be of type XML::LibXML::Document, because this is the form in
which the response is held internally. The method is quick, because it does not perform extra parsing
and should be used in preference to retrieving the string form of the XML and parsing it again (unless a
different DOM library is used).

Determining if an Error Occurred While Processing a Request

This example shows how to determine whether an error has occurred while processing a request:

my $error = $response->get_error;
if (defined($error)) {

die $error;
}

Use the get_error method to return one error from the response. This returns an error object that
represents the first error found or is undefined if none are found.

Retrieving a List of All Errors Found in the Response XML

This example shows how to list all errors that occur, rather than just one, by using the get_errors method:

my @errors = $response->get_errors;

The get_errors method returns an array of error objects that represents all errors that were found in the
response XML. For more information, see the “Using the Error Objects” section on page 16-154.
16-153
Cisco IOS XR XML API Guide

OL-24657-01

http://www.w3.org/DOM/

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Error Objects
Using the Error Objects
Error objects are returned when calling the get_error and get_errors methods on a response object, and
are used to represent an error encountered in an XML response. Table 16-5 lists the methods for the
object.

Using the Configuration Services Methods
Methods are provided to enable the standard configuration services operations to be performed without
knowledge of the underlying XML. These are the operations that are usually performed at the start or
end of a configuration session, such as locking the running configuration or saving the configuration to
a file.

Committing the Target Configuration

The config_commit() function takes these optional arguments:

 • mode

 • label

 • comment

 • Replace

 • KeepFailedConfig

 • IgnoreOtherSessions

 • Confirmed

This example shows how to use the config_commit function:

$response = $session->config_commit(Label => 'Example1', Comment => 'Just an example');

A response object is returned from which any errors can be extracted, if desired. To retrieve the commit
ID that was assigned to the commit upon success, you can call the get_commit_id() method on the
response object, as shown in this example:

$commit_id = $response->get_commit_id();

Table 16-5 List of Methods for the Object

Method Description

get_message Returns the error message string that was found in the XML.

get_code Returns the corresponding error code.

get_element Returns the tag name of the XML element in which the error was found.

get_dom_node Returns a reference to the element node in the response DOM1 tree.

1. DOM = Data Object Model.

to_string Returns a string that contains the error message, code, and element name. If the error
object is used in a scalar context, the method is used automatically to convert it to a
string. This example displays all information in an error:

Error encountered in object ConfederationPeerASTable: 'XMLMDA' detected
the 'warning' condition 'The XML request does not conform to the schema.
A child element of the element on which this error appears includes a
non-existent naming, filter, or value element. Please check the request
against the schema.' Error code: 0x4368a000
16-154
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Configuration Services Methods
Locking and Unlocking the Running Configuration

This example shows how to use the config_lock and config_unlock functions, which takes no arguments:

$error = $session->config_lock;
$error = $session->config_unlock;

Loading a Configuration from a File

This example shows how to contain a filename as an argument:

$error = $session->config_load(Filename => 'test_config.cfg');

Loading a Failed Configuration

This example shows how to use the config_load_failed function, which takes no arguments:

$error = $session->config_load_failed;

Saving a Configuration to a File

This example shows how to use two arguments for the config_save() function:

$error = $session->config_save(Filename => 'disk0:/my_config.cfg’, Overwrite => 'true');

The first argument shows how to use the filename to which to write and the Boolean overwrite setting.
The filename must be given with a full path. The second argument is optional.

Clearing the Target Configuration

This example shows how to use the config_clear function, which takes no arguments:

$error = $session->config_clear;

Getting a List of Recent Configuration Events

This example shows how to use the config_get_history function that uses the optional arguments
Maximum, EventType, Reverse, and Detail:

$response = $session->config_get_history(EventType => ‘All’, Maximum =>10, Detail =>
‘true’);

It returns a Response object, on which the method get entries can be called.

Getting a List of Recent Configuration Commits That Can Be Rolled Back

This example shows how to use the config_get_commitlist function that uses the optional arguments
Maximum and Detail:

$response = $session->config_get_commitlist (Maximum => 10, Detail => ‘true’);

It returns a Response object, on which the method get entries can be called. This returns an array of Entry
objects, on which the method get key can be called to retrieve the CommitID, and get data to retrieve
the rest of the fields.
16-155
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Configuration Services Methods
Loading Changes Associated with a Set of Commits

This example shows how to use the config_load_commit_changes function to load into the target
configuration the changes that were made during one or more commits, and it uses one of three possible
arguments: ForCommitID, SinceCommitID, or Previous:

$error = $session ->config_load_commit_changes (ForCommitID => 1000000072);
#Loads the changes that were made in commit 1000000072

$error = $session ->config_load_commit_changes (SinceCommitID => 1000000072);
#Loads the changes made in commits 1000000072, 1000000073...up to latest

$error = $session ->config_load_commit_changes (Previous => 4);
#Loads the changes made in the last 4 commits

Rolling Back to a Previous Configuration

This example shows how to use the config_rollback() function that uses the optional arguments Label
and Comment, and exactly one of the two arguments CommitID or Previous or takes only
TrialConfiguration:

$error = $session->config_rollback(Label => ‘Rollback test’, CommitID => 1000000072);

Loading Changes Associated with Rolling Back Configuration

This example shows how to use the config_load_rollback_changes function to load into the target
configuration the changes that would be made if you were to roll back one or more commits. The
function uses one of three arguments: ForCommitID, ToCommitID and Previous. For example:

$error = $session->config_load_rollback_changes (ForCommitID => 1000000072)
Loads the changes that would be made to rollback commit 1000000072

$error = $session->config_load_rollback_changes (ToCommitID => 1000000072);
Loads the changes that would be made to rollback all commits up to and including commit
1000000072

Getting a List of Current Configuration Sessions

This example shows how to use the config_get_sessions function that uses the optional argument Detail
to return detailed information about configuration sessions. For example:

$response = $session->config_get_sessions (Detail => ‘true’);

It returns a response object in which the method get_entries can be called. This returns an array of entry
objects in which the method get_key can be called to retrieve the session ID, and get_data method to
retrieve the rest of the fields.

Clearing Configuration Session

This example shows how to use config_clear_session function that accepts a configuration session ID
SessionID as argument and clears that configuration session:

$error=$session->config_clear_sessions (SessionID => ‘00000000-000a00c9-00000000’);Sending
a Command-Line Interface Configuration Command

This example shows how to use the config_cli() function, which takes a string argument containing the
CLI format configuration that you want to apply to the router:

$response = $session->config_cli($cli_command);

To retrieve the textual CLI response from the response object returned, use the get_cli_response()
method, as shown in this example:

$response_text = $response->get_cli_response();
16-156
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
Note Apart from the config_commit, config_get_history, config_get_commitlist, config_get_sessions and
config_cli methods, each of the other methods return a reference to an error object if an error occurs or
is undefined. For more information, see the “Using the Error Objects” section on page 16-154.

Using the Cisco IOS XR Perl Data Object Interface
Instead of having to specify the XML requests explicitly, the interface allows access to management data
using a Perl notation. The Data Object interface is a Perl representation of the management data
hierarchy stored on the router. It consists of objects of type Cisco::IOS_XR::Data, which corresponds to
items in the IOS_XR management data hierarchy, and a set of methods for performing data operations
on them.

To use the Data Object interface, knowledge of the underlying management data hierarchy is required.
The management data on an Cisco IOS XR router are under one of six root objects, namely
Configuration, Operational, Action, AdminConfiguration, AdminOperational, and AdminAction. The
objects that lie below these objects in the hierarchy, along with definitions of any datatypes or filters that
are used by them, are documented in the Perl Data Object Documentation.

A hash structure is defined to be a scalar (that is, basic) type; for example, string or number, a reference
to a hash whose values are hash structures, or a reference to an array whose values are hash structures.
This standard Perl data structure corresponds naturally to the structure of management data on an Cisco
IOS XR router. This example shows how to use a hash structure:

basic type
my $struct1 = ‘john’;
reference to a hash of basic types
my $struct2 = {Forename => $struct1, Surname => ‘smith’};
reference to an array of basic types
my $struct3 = (‘dog’, ‘budgie’, ‘cat’);
reference to a hash of references and basic types
my $struct4 = {Name => $struct2, Age => ‘30’, Pets => $struct3};

These sections describe how to use the Perl Data Object Documentation:

 • Understanding the Perl Data Object Documentation, page 16-158

 • Generating the Perl Data Object Documentation, page 16-158

 • Creating Data Objects, page 16-159

 • Specifying the Schema Version to Use When Creating a Data Object, page 16-161

 • Using Data Operation Methods on a Data Object, page 16-161

 • Using the Batching API, page 16-164

 • Displaying Data and Keys Returned by the Data Operation Methods, page 16-165

 • Specifying the Session to Use for the Data Operation Methods, page 16-166
16-157
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
Understanding the Perl Data Object Documentation
The Perl Data Object Documentation consists of many files, each containing a subtree of the total
management data hierarchy. The main part of each filename tells you the area of management data to
which that file refers, and the suffix usually tells you below which root object that file’s data lies. For
example, a file containing configuration data usually ends in _cfg.html. Some files may not contain any
object definitions, but just some datatypes or filter definitions and usually end in _common.html.

For leaf objects, the object definition describes the data that the object contains. For nonleaf objects, the
definition provides a list of the object’s children within the tree. More precisely, the object definition
consists of these items:

 • Name of the object.

 • Brief description of what data is contained in the object or in the subtree below.

 • List of the required task IDs that are required to access the data in the object and subtree.

 • List of parent objects and the files in which they are defined, if the object is the top-level object in
that file.

 • If the object is a leaf object (for example, data is contained without child objects), and its name is
not unique within that file, parent objects are listed.

 • If the object is a table entry, a list of the keys that are needed to identify a particular item in that
table. For each key, a name, description, and datatype are given.

 • If the object is a table, a list of the filters that can be applied to that table.

 • If the object is a leaf object, a list of the value items that are contained. For each value item, a name,
description, and datatype are given.

 • If the object is a leaf object, its default value (for example, the values for each of its value items that
would be assumed if the object did not exist), if there is one.

 • List of the data operation methods, get_data, set_data, and so forth that are applicable to the object.
For more information, see the “Specifying the Schema Version to Use When Creating a Data
Object” section on page 16-161

Generating the Perl Data Object Documentation
The Perl Data Object Documentation must be generated from the schema distribution tar file
“All-schemas-CRS-1-”release”.tar.gz”, where “release” is the release of the Cisco IOS XR software that
you have installed on the router.

To generate the Perl Data Object Documentation:

Step 1 From the perl subdirectory under the extracted contents of the previously mentioned Schema tarball,
copy all *.dat files into the toolkit installation directory
Cisco-IOS_XR-Perl-Scripting-Toolkit-”version”/dat (default) or a selected directory for the .dat files.
These .dat files are the XML files that are used to generate the HTML documentation.

Step 2 From the perl subdirectory under the extracted contents of the previously mentioned Schema tarball,
copy all the *.html files into the toolkit installation directory
Cisco-IOS_XR-Perl-Scripting-Toolkit-”version”/html(default) or a selected directory for the .html.

(The default .html subdirectory already contains two files that were extracted with the toolkit
distribution: root_objects.html and common_datatypes.html. These files are automatically copied to the
selected .html directory, if a non-default directory is selected, upon performing this step).
16-158
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
Step 3 Run the script generate_html_documentation.pl, which is available in the distribution
Cisco-IOS_XR-Perl-Scripting-Toolkit-”version”/scripts directory, giving the appropriate directories for
the .dat and .html files, when prompted.

Step 4 If the script fails, indicating any error .dat files, evaluate the .dat file to confirm that it is not of “0” size
and that it has a header as in this example:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright (c) 2004-2005 by cisco Systems, Inc.
All rights reserved.

If not, then remove the .dat file and rerun the script.

Linked HTML files are created in the selected (or default) html directory. The Perl Data Object API
documentation can be traversed using the links starting at root_objects.html.

Creating Data Objects
Data objects form a tree corresponding to a section of the data hierarchy. The first object to be created
is one of the root data objects, and is created by a call to Cisco::IOS_XR::Data::<object_name>. For
example, <object_name> is one of these objects:

 • Configuration

 • Operational

 • Action

 • AdminOperational

 • AdminAction

This example shows how to create the Operational object:

my $oper = Cisco::IOS_XR::Data::Operational;

Because the syntax is rather lengthy for a task that is relatively common, there is a shorter way of
creating a data object, which eliminates the need for the Cisco::IOS_XR::Data:: at the front of the
function name. This is achieved by importing the symbols for the root data object functions when using
the Cisco::IOS_XR package at the top of the script. This example shows how to import the Configuration
and Operational functions:

use Cisco::IOS_XR qw(Configuration Operational);

This example shows how to import all the root data objects without listing them explicitly:

use Cisco::IOS_XR qw(:root_objects);

Note If there is a function in the script's name space with a name that is one of Configuration, Operational,
and so forth, the root data objects cannot be imported with the use of Cisco::IOS_XR qw(Configuration
Operational) and refer to the objects simply as Configuration. This may not have the desired effect due
to the ambiguity. Instead, you have to refer to them with the more lengthy (that is, fully qualified) syntax,
Cisco::IOS_XR::Data::Configuration.
16-159
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
If the root data object is Configuration, additional arguments can be specified that are given as name and
value pairs. The Source argument can have values such as ChangedConfig, CurrentConfig,
MergedConfig (the default value if the Source argument is not specified), and CommitChanges. If
CommitChanges is specified, one of the two arguments ForCommitID and SinceCommitID must also be
specified, as shown in this example:

my $config = Configuration(Source => ‘CommitChanges’, ForCommitID => 1000083);

Data objects can be created from existing ones by calling a method on the existing object for which the
name is that of the new object that you want to create. The object from which the new object is created
is known as its parent, as shown in this example:

my $config = Configuration;
my $bgp = $config->BGP;

If references to the intermediate objects are not required, the syntax allows a very compact way of
creating objects as the methods can be strung together. This example shows how to create a BGP object
whose parent is Configuration:

my $bgp = Configuration->BGP;

If an object is an item in a table, its keys can be specified as arguments when the object is created by
using the standard Perl hash notation. This example shows how to create an object corresponding to the
interface configuration for interface Ethernet 0/0/0/0:

my $if_conf = Configuration->InterfaceConfigurationTable->

 InterfaceConfiguration(‘Active’ => ‘act’, ‘Name’ => ‘Ethernet0/0/0/0’);

Some table keys have a child object and use brackets {} to indicate the child objects of the key. For
example, use this CLI to create an object that corresponds to a router static entry:

 router static
 address-family ipv4 unicast
 0.0.0.0/0.12.25.0.1
 !
 !

my $router_static = Configuration->RouterStatic->DefaultVRF;
my $static_ipv4 = $router_static>AddressFamily->VRFIPV4->VRFUnicast;
my $static_prefix - $static_ipv4->VRFPrefixTable->VRFPrefix(Prefix => {IPV4Address
=> ‘0.0.0.0’}, Length => ‘0’);
my $route = $static_prefix ->VRFRouteTable;
my $nexthop = $route->VRFNexthopInfoTable->VRFNexthopInfo(Address => {IPV4Address =>
‘12.25.0.1’});

Keys can also be specified by passing a hash structure as an argument. The hash structure would usually
be returned as a key from one of the data operation methods; for example, get_keys, but can be defined
explicitly, as in this alternative to the previous example:

my $key = {‘Active’ => ‘act’, ‘Name’ => ‘Ethernet0/0/0/0’};
my $if_conf = Configuration->InterfaceConfigurationTable->InterfaceConfiguration($key);

There may be some occasions when it is better to keep references to the intermediate data objects, such
as when you want to refer to more than one item in a table. This example shows how to refer to more
than one interface in the interface configuration table:

my $if_1_key = {‘Active’ => ‘act’, ‘Name’ => ‘Ethernet0/0/0/0’};
my $if_2_key = {‘Active’ => ‘act’, ‘Name’ => ‘POS0/4/0/0’};
my $if_conf_table = Configuration->InterfaceConfigurationTable;
my $if_conf_1 = $if_conf_table->InterfaceConfiguration($if_1_key);
my $if_conf_2 = $if_conf_table->InterfaceConfiguration($if_2_key);
16-160
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
Currently, there is no checking within the library that the object names specified are valid. However,
when a data operation is performed on a data object, and if the object hierarchy is invalid, the response
from the router should contain an error to this effect. For information on the valid object names in the
data hierarchy, see the “Understanding the Perl Data Object Documentation” section on page 16-158.

Specifying the Schema Version to Use When Creating a Data Object
To specify which version of a particular schema you are using, pass this information as arguments when
creating the relevant data object. The router checks this information against its own schema versions
when it receives a request, and rejects the request if the versions are not compatible.

The object in which this information should be specified is the top-level object within the schema whose
version you want to specify. This information is found at the top of the page of the schema. For example,
you may want to specify that using BGP schema version 1.4. This example shows how to create a BGP
object. (The version numbers shown are hypothetical. Substitute the actual version numbers when using
this command.)

my $bgp = Configuration->BGP(MajorVersion => 1, MinorVersion => 4);

The object can then be used in the normal way to create child objects. Whenever any data operation
request is sent using one of these objects, the specified version information is always included.

Using Data Operation Methods on a Data Object
To access management data on the router, data operation methods, which can be called on data objects,
are provided for the getting, setting, and deletion of corresponding data. The management session in
which they act is the current session, and usually the most recent Cisco::IOS_XR object to be created.

The types of data operation methods that are allowed depend on what the root data object is for the data
object in question. For example, if the root object is Configuration, getting, setting, and deletion are
allowed. If it is Operational, only getting is allowed. The get methods that can be used also depend on
whether the data object in question is a leaf object or a table object.

Each of the data operation methods returns a response object from which any errors can be extracted.
For more information, see the “Using Response Objects” section on page 16-153. For the methods that
return values of some sort, a method of the same name is used to actually extract the information required
from the response object.

get_data Method

The get_data method can be called on a leaf object and is used to retrieve the data contained in that
object. It returns a response object from which the desired data can be extracted by calling the method
of the same name, get_data.

This example shows how to get the data for the interface configuration:

my $response = $if_conf->get_data;
if (defined($response->get_error)) {
 die $response->get_error;
} else {
 my $data = $response->get_data;
 ...
}

16-161
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
find_data Method

The find_data method performs a get request on a leaf object, but with the option of specifying key
values for any table entries that occur within the hierarchy as a wildcard rather than as explicit values.

The XML response then contains every occurrence of the required object that matches the combination
of key values and wildcards specified in the hierarchy.

Note Wildcards are supported only for configuration data.

Currently, the function does not interpret the XML response in any way, due to the potentially complex
structure of the returned data, and so the returned response object can be used only to extract the XML
and other errors in the usual way.

When specifying the keys for a table entry object, if you want one of the keys to be a wildcard rather
than specified explicitly, pass an argument called wildcard value, where the value is the name of the key.
If access control lists (ACLs) have been configured, this example shows how to get the inbound ACLs
of all interfaces on the router:

my $response = $if_conf_table->
 InterfaceConfiguration(Active => ‘act’, wildcard => ‘Name’)->
 IPV4PacketFilter->Inbound->find_data;

If you want one or more of the keys for a particular table entry to be wildcards, the value of the wildcard
can be a reference to an array containing the names of those keys. For example, to include any nonactive
interface configuration in the above example, use this syntax:

my $response = $if_conf_table->
 InterfaceConfiguration(wildcard => [‘Name’, ‘Active’])->
 IPV4PacketFilter->Inbound->find_data;

get_keys Method

The get_keys method must be called only on a table object and is used to retrieve a list of the keys for
each item in the table. It returns a response object from which the keys can be extracted by calling the
method of the same name, get_keys. This returns an array of hash structures containing the key values.
A returned key can also be used as the parameter to a new data object.

This example shows how to get the keys for each item in the configuration table, and then for each key,
how to create a data object and perform some operations with it:

my $response = $if_conf_table->get_keys;
if (defined($response->get_error)) {
 die $response->get_error;
} else {
 foreach my $key ($response->get_keys) {
 my $interface = $if_conf_table->InterfaceConfiguration($key);
 # do something with this object such as get_data...
 }
}

16-162
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
These two optional arguments can be specified as name and value pairs:

 • Count—Determines the maximum number of table entries that will be returned.

 • Filter—Specifies a reference to a hash whose elements are the arguments to the filter plus an
element Filtername that specifies the filter to use, as shown in this example:

my $table = Operational->BGP->VRFTable->VRF(VrfName=’VRF1’)->NeighborTable;
my $filter = {FilterName => ‘BGP_ASFilter’, AS => 6};
my $response = $table->get_keys(Count => 10, Filter => $filter);

get_entries Method

Similarly, the get_entries method must be called only on a table object, and is used to retrieve a list of
the keys and data for each entry in the table.

It returns a response object from which the entries can be extracted by calling the method of the same
name, get_entries. This method returns an array of entry objects. The get_key and get_data methods can
then be called on an entry object to extract the key and data for that entry.

This example shows how to get an array of the keys and data for each item in the interface configuration
table and perform some operations with each:

my $response = $if_conf_table->get_entries;
if (defined($response->get_error)) {
 die $response->get_error;
} else {
 foreach my $entry ($response->get_entries) {
 my $key = $entry->get_key;
 my $data = $entry->get_data;
 # do something with these values...
 }
}

The same optional arguments, Count and Filter, can be specified in the get_keys method.

set_data Method

The set_data method is called only on leaf objects, and sets the data for the object in the specified
argument. The argument must be a hash structure; for example, the data is returned by a previous call of
get_data or get_entries.

The returned value is a response object from which the entries are extracted. Unless batching is enabled,
the returned value is undefined.

This example shows how to add an IPv4Multicast object to the GlobalAFTable of BGP AS 1 object:

my $data = {‘Enabled’ => ‘true’};
my $bgp_af = Configuration->BGP->AS(‘AS’ => 0)->FourByteAS(‘AS’=>1);
my $global_af = $bgp_as ->DefaultVRF->Global->GlobalAFTable->GlobalAF (‘AF’ =>
‘IPv4Multicast’);

GlobalAFTable->GlobalAF(‘AF’ => ‘IPv4Multicast’);
my $error = $global_af->set_data($data);
16-163
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
Note • If not all items in a leaf object are specified when setting data, the remaining items are set to null
(overwrites any value that may have been there previously).

 • If the data is passed to set_data as a hash or basic type (not an array), it can also be provided
explicitly rather than by reference, in the same way as keys can be specified.

This example shows how data is passed to set_data as a hash or basic type:

my $error = $global_af->set_data(‘Enabled’ => ‘true’);

If the data to be set is an array, it must be provided by references because if it were given explicitly it
would be incorrectly interpreted as a hash.

delete_data Method

The delete_data method can be used on any object and deletes all data below that object in the hierarchy,
as shown in this example:

my $bgp as = Configuration->BGP->AS(‘AS’ => 0)->FourByteAS(‘AS’ => 1);
my $error = $bgp_as->DefaultVRF->Global->delete_data;

The returned value is a response object from which any errors can be extracted. Unless batching is
enabled, the returned value is undefined.

Using the Batching API
By default, whenever the set_data or delete_data methods are called on a data object, the resulting XML
request is sent immediately. The script is enabled to verify immediately whether the operation was
successful or not. However, if a script wants to set or delete many items at once, this can be a very
inefficient method.

By using the batching API, a script can specify that it wants a group of set or delete operations all to be
sent together in one XML request. This reduces the overhead of the router having to process multiple
requests and reduces the amount of data that needs to be sent. Due to the way two XML requests with
overlapping hierarchies are merged, the resulting XML is not as long as the sum of the original two. The
common hierarchy is not repeated.

Note A commit operation cannot be performed within a batch. To enforce this, the config_commit() function
dies with an error if it is called while batching is in progress.

batch_start Method

When the batch_start method is called on the session object in question, all subsequent calls of set_data
or delete_data are not performed immediately but are stored locally until the batch_send method is
called. This example shows how to enable batching on the session $session:

$session->batch_start;
16-164
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Cisco IOS XR Perl Data Object Interface
Note Any calls to set_data or delete_data between the batch_start and the subsequent batch_send methods
return undefined rather than as a response object.

batch_send Method

The batch_send method should be called at the point in the script when you want to send all set and delete
operations that were made since the previous call to batch_start. The batch_send method sends these
operations as a single XML request and returns a single response object. If this response contains no
errors, all operations were successful. Otherwise, the details of any error returned must be analyzed to
determine which operation caused the error, as shown in this example:

my $response = $session->batch_send;
my $error = $response->get_error;
if ($error) {
 die "Error in batch_send: $error";
}

Note An error occurs in the script if batch_send is called while batching is not in progress; for example, it
must occur after a call to batch_start.

Displaying Data and Keys Returned by the Data Operation Methods
When a key or data is returned either by calling get_data or get_keys functions on a response object, or
by calling get_data or get_key functions on an entry object that was returned from the get_entries
function, it is always in the form of a value object. This object behaves identically to a hash structure;
therefore, the value object can be easily navigated using hash and array dereferencing if required. A key
value can be used when creating a new data object or as an argument to the set_data function.

However, to display the whole structure or any parts of it, use the built-in function to_string on any value
object that returns a formatted string form of the structure. In fact, you do not need to call the function
to_string on the object. Using the value object in a scalar context, automatically converts it to a formatted
string. This is the code:

my $response = Configuration->InterfaceConfigurationTable
 ->InterfaceConfiguration(Active => ‘act’, Name => ‘POS0/2/0/0’)
 ->get_data;
print $response->get_data;

This example displays that data on the screen in a readable way:

Shutdown
 true
IPV4PacketFilter
 Inbound
 HardwareCount
 Name
 myacl
Description
 my POS interface
16-165
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Cisco IOS XR Perl Notification and Alarm API
Specifying the Session to Use for the Data Operation Methods
If only one Cisco::IOS_XR object has been created, this management session is automatically used by
subsequent data operation methods. In scripts in which more than one Cisco::IOS_XR object has been
created, the data operation methods use whichever session is the current session. The session to use for
the data operation methods is whichever Cisco::IOS_XR object was the last to be created, unless, you
have since asked to change the current session by calling the method use_for_data_operations on the
Cisco::IOS_XR object that you want to use.

This example shows how to create two management sessions and then use the first one for subsequent
data operations:

my $session1 = new Cisco::IOS_XR(host => ‘router1’);
Here the current session is $session1
my $session2 = new Cisco::IOS_XR(host => ‘router2’);
Here the current session is $session2
$session1->use_for_data_operations;
Now the current session is $session1 again

Cisco IOS XR Perl Notification and Alarm API
The notification API provides functionality that enables a Perl script to register for and receive
asynchronous responses or notifications during a management session on the router. One important type
of notification is Alarms for which the specific API is provided.

The API allows a script to register, deregister, and receive alarms using Perl methods and objects. This
completely hides the underlying XML from the user in much the same way that the data object API for
normal management requests does.

These sections describe how to use the Alarm API:

 • Registering for Alarms, page 16-166

 • Deregistering an Existing Alarm Registration, page 16-167

 • Deregistering All Registration on a Particular Session, page 16-167

 • Receiving an Alarm on a Management Session, page 16-167

Registering for Alarms
To register for a receipt of alarms on a particular management session, use the alarm_register function
of the Cisco::IOS_XR object that represents the management session. The alarm_register function takes
as arguments a list of name and value pairs, which specify the set of filter criteria that you want to use
to filter the alarms that you receive. If no filter criteria are specified, all alarms are received.

This example shows how to register for receipt of all alarms of Group SYS and Code CONFIG_I:

my $response = $session->alarm_register(Group => ‘SYS’, Code => ‘CONFIG_I’);

The alarm_register function returns a response object that is checked for errors in a normal way. These
errors may be returned if a value specified for one of the filter criteria is invalid.

In addition, a successful registration response contains a registration ID, which must be used if the script
wants to deregister (cancel this registration). The registration ID can be extracted from the response
object by calling the get_registration_id method, as shown in this example:

my $registration_id = $response->get_registration_id;
16-166
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Cisco IOS XR Perl Notification and Alarm API
Deregistering an Existing Alarm Registration
To deregister a particular registration, use the alarm_deregister function on the Cisco::IOS_XR object,
by giving as an argument for the registration ID that was returned from the initial registration as follows:

my $response = $session->alarm_deregister($registration_id);

The response object that is returned is checked for errors to determine if the deregistration was
successful.

Deregistering All Registration on a Particular Session
To deregister all alarm registrations that have been made on a particular management session, use the
alarm_deregister_all function as follows:

my $response = $session->alarm_deregister_all;

The response object can be used to check for any errors. No errors should exist, even if there was no
registration to deregister on that session.

Receiving an Alarm on a Management Session
After alarms have been registered, the alarm_receive function can be called on the management session
object. The alarm_receive function attempts to pick up an alarm from the transport, which may happen
immediately if there is already an alarm waiting in the buffer. Otherwise, it waits until one is received.
An optional timeout value can be specified as the argument. If an alarm is not received within the timeout
limit, the function returns undefined. If no timeout value is specified, the default of an infinite timeout
is used, as shown in this example:

my $alarm = $session->alarm_receive(60); # Wait 60 seconds for an alarm

If an alarm is received within the timeout limit, the function returns an alarm object from which these
values can be extracted:

 • RegistrationID—Specifies the registration ID that was returned from the registration for the
matched alarm.

 • SourceID

 • EventID

 • Timestamp

 • Category

 • Group

 • Code

 • Severity

 • State

 • CorrelationID

 • AdditionalText
16-167
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Debug and Logging Facilities
These values can be extracted using the corresponding get_* functions, as shown in this example:

my $registration_id = $alarm->get_registration_id;
my $event_id = $alarm->get_event_id;
my $text = $alarm->get_additional_text;

Using the Debug and Logging Facilities
These sections describe how to control debug and logging facilities within your script:

 • Debug Facility Overview, page 16-168

 • Logging Facility Overview, page 16-169

For more information on how to control debug and logging from the command line when starting a
script, see the “Starting a Management Session on a Router” section on page 16-150.

Debug Facility Overview
The debug facility displays on the screen run-time information to aid investigation of problems. The user
is given fine control over which debug messages are displayed to the screen by allowing the user to
specify at any point in the script which types of debug messages to be displayed and which ones not to
be displayed.

Note Debug applies to the script as a whole rather than to each management session.

Table 16-6 lists the current built-in types.

To turn on debug, use the Cisco::IOS_XR::debug_on function at any point in your script, giving those
types of debug that you want to turn on as arguments. This is shown in this example:

Cisco::IOS_XR::debug_on(‘transport’, ‘xml’);

Similarly, to turn off debug for certain types, use the Cisco::IOS_XR::debug_off function. Specifying
no arguments turns off all types of debug, as shown in this example:

Cisco::IOS_XR::debug_off(‘xml’);

Table 16-6 Definitions for the Debug Types

Type Description

transport Specifies the messages relating to the state of the current transport, for example,
Telnet or SSH.

xml Displays the request and response XML for every request sent to the router that
includes those generated by the Data Object interface and configuration
services methods.

xml_response_parts Displays each part separately if an XML response has been split into multiple
parts.

user Specifies that the script writer can be used to add his or her own debug
messages.
16-168
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Using the Debug and Logging Facilities
To insert your own debug messages in a script, use the Cisco::IOS_XR::debug function, giving as
arguments the type of debug followed by the message. This is shown in this example:

Cisco::IOS_XR::debug(‘user’, ‘This is a user debug message’);

In addition to being able to use the built-in type user to add debug messages to the scripts, it is possible
to define your own debug types to give greater control over what is displayed. This is done by calling
the Cisco::IOS_XR::add_debug_types function and giving as arguments a list of name and value pairs.
The name is the name of the new type, and the value is its display name (that is, the string that appears
at the beginning of every message of that type when displayed on the screen at run time). This is shown
in this example:

Cisco::IOS_XR::add_debug_types(‘general’ => ‘General’, ‘detailed’ => ‘Detailed’);

These types can immediately be used to write debug messages, as shown in this example:

Cisco::IOS_XR::debug(‘detailed’, ‘This is a detailed debug message’);

Logging Facility Overview
The logging facility leaves an audit trail of usage or diagnoses problems after an error has occurred. The
types of logging messages that are supported include all debug types, including any user-defined debug
types.

To turn on logging, use the Cisco::IOS_XR::logging_on function at any point in your script, giving those
types of messages that you want to turn on for logging as arguments. This is shown in this example:

Cisco::IOS_XR::logging_on(‘transport’, ‘xml’);

Similarly, to turn off logging for certain types, use the Cisco::IOS_XR::logging_off function. Logging
can be turned off for all types of messages by giving no arguments, as shown in this example:

Cisco::IOS_XR::logging_off(‘xml’);

By default, the messages are written to a file, called ios_xr_log.txt, in the same directory as the running
script. You can specify which file to use with the function Cisco::IOS_XR::set_log_file that can be
called at any point in your script. For example, to specify a different log file before carrying out
operations on a different management session, see this example:

Cisco::IOS_XR::set_log_file(‘router2_log.txt’);

In addition to being able to log each of the standard message types, the Telnet module allows two types
of extra logging at a lower level. These can be turned on for the duration of a management session by
specifying one of these arguments when calling Cisco::IOS_XR::new, as listed in Table 16-7.

The value of each argument specifies the file to which the log should be written.

Table 16-7 Logging Arguments

Type Description

telnet_input_log Logs all data received from the router, which usually includes the echoes of
everything that is sent.

telnet_dump_log Logs all I/O1 through the Telnet connection in a dump format. The dump,
however, is less readable than the input log.

1. I/O = input/output.
16-169
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Note If both types of logging are specified, the filenames must be different and they both must be different
from the name of the standard log file.

Examples of Using the Cisco IOS XR Perl XML API
These sections provide examples of using the Cisco IOS XR Perl XML API to perform some of the
common router management tasks:

 • Configuration Examples, page 16-170

 • Operational Examples, page 16-177

The examples demonstrate the advantages of using the XML and Perl XML API instead of the CLI and
existing screen-scraping techniques.

They are also intended to show how simple it is to convert the most common configuration and
operational tasks to scripts using the Perl XML API, as well as how easy it is to write scripts to perform
tasks that are not possible using the existing methods.

Some of these tasks may be quite involved, so sample scripts have been provided within the toolkit,
which can be customized to suit your needs. Other tasks may require very few lines of code.

Those examples in which scripts have been provided have a line at the top of the script, which specifies
the perl executable to use to run it. By default, this line is #!/usr/bin/perl -w. If this is not the location of
Perl on your machine, you must change this line accordingly before running the script.

You may also need to give yourself execute permission on the script if it is not already set using the
chmod command:

chmod +x <script name>.pl

You should be able run the script using this command from the directory in which it resides:

./<script name>.pl

Configuration Examples
Examples are provided for setting the configuration and getting the running configuration, which are two
of the most common configuration tasks. Additional examples cover the standard router applications.
One of these examples also demonstrates in detail how you would use the Data Object documentation
to help write the necessary code to access a particular item of data.

Another example shows how to use the Cisco IOS XR Perl Notification API to perform actions whenever
particular events occur, such as getting the current configuration changes whenever a commit occurs, or
sending an e-mail to notify an administrator when an interface is down.

Note • In all basic examples of setting a configuration, the final step of committing the configuration is
omitted to avoid repetition.

 • All the examples are written as though the script begins with a use statement, which imports all root
data object functions, such as Configuration, Operational, and Action, as shown in this example:

use Cisco::IOS_XR qw(:root_objects);
16-170
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
If your script cannot import the functions due to name clashes, you must fully qualify the function names
with the Cisco::IOS_XR::Data:: prefix.

Setting the IP Address of an Interface

Setting the IP address of an interface is normally performed by a sequence of two CLI commands, as
shown in this example:

interface MgmtEth0/0/CPU0/0
ip address 1.2.3.4 255.255.255.0

To carry out this example in a Perl script using the Perl Data Object API requires only one line of code;
although, in practice you would usually break it up into smaller lines for clarity and to be able to reuse
parts of it. This is shown in this example:

my $config = Configuration;
my $if_conf_table = $config->InterfaceConfigurationTable;
my $eth0 = $if_conf_table->
 InterfaceConfiguration(Active => ‘act’, Name => ‘MgmtEth0/0/CPU0/0’);
$eth0->IPV4Network->Addresses->Primary->
 set_data(IPAddress => ‘1.2.3.4’, Mask => ‘255.255.255.0’);

If the script is needed to access some other configuration, it would not need to repeat the first line but
could use $config. Similarly, if it is needed to access some other configuration associated with
Ethernet0/0/0/0, it would not need to repeat the first three lines but could just use the $eth0 variable.
This example shows how to set the MTU of the Ethernet0/0/0/0 to 1500 interface:

$eth0->IPV4Network->MTU->set_data(1500);

Note The code, as shown in the examples, would probably be used in the middle of a large script, which
performs a more complex job. If it is a common task, it could also be wrapped in a small function for
that purpose.

For example, a function to set up the IP address of an interface could be made very easily by using the
preceding code, which is then called, as shown in this example:

set_int_ip_address(‘Ethernet0/0/0/0’, ‘1.2.3.4’, ‘255.255.255.0’);

The code could be wrapped in a small script that enabled the task to be performed from the command
line, as shown in this example:

set_int_ip_address.pl -name Ethernet0/0/0/0 -ip 1.2.3.4 -mask 255.255.255.0

Configuring a Simple BGP Neighbor

This example shows a correspondence to the CLI commands and subcommands for configuring a Border
Gateway Protocol (BGP) neighbor:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# neighbor 1.2.3.4

The equivalence of these two commands using the Data Object interface is shown in this example:

my $bgp_as = Configuration->BGP->AS(AS => 0)->FourByteAS(AS => 1);
my $bgp_entity = $bgp_as->DefaultVRF->BGPEntity
my $neighbor = $bgp_entity->NeighborTable->
16-171
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
 Neighbor(IPAddress => {IPV4Address => ‘1.2.3.4’});

This example shows how to set the remote autonomous system (AS) number for the neighbor:

$error = $neighbor->RemoteAS->set_data(44);

To set the description for this neighbor, see this example:

$error = $neighbor->Description->set_data(‘The router next door’);

Adding a List of Neighbors to a BGP Neighbor Group

This is a more complex example, which shows how a script can be used to expedite a common task. You
can perform this task using the CLI. You would have to enter a series of commands, as shown in this
example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# neighbor 1.2.3.4
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group user1
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 2.3.4.5
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group user1
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 3.4.5.6
RP/0/RP0/CPU0:router(config-bgp-nbr) use neighbor-group user1

etc...

The sample shows how to perform this task in a faster and more user-friendly way, as shown in this
example:

./add_neighbors_to_group.pl -host my_router -user john
Password:
Neighbor-group: user1
Neighbor ip addresses to add:
1.2.3.4
2.3.4.5
3.4.5.6
<cr>

The script can be found in the examples/bgp/add_neighbors_to_group.pl file within the toolkit
installation directory.

Displaying the Members of Each BGP Neighbor Group

The example shows how a script using the Cisco IOS XR Perl scripting toolkit can retrieve and display
information in ways that cannot be done using the CLI on the router. The script allows you to display
the current members of each neighbor group and, which groups oppose how the information can be
viewed using the CLI. In the same way, the previous example shows you how to add neighbors to a group
rather than to add the group to each neighbor.

The script can be found in the examples/bgp/display_neighbor_group_members.pl file.
16-172
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Setting Up ISIS on an Interface

The simplest integrated Intermediate System-to-Intermediate system (ISIS) configuration task is to set
up ISIS on an interface. In this example, CLI commands are set up as though the interface in question is
already configured:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router isis 1
RP/0/RP0/CPU0:router(config-isis)# net 49.0000.0000.3.00
RP/0/RP0/CPU0:router(config-isis)# interface POS0/2/0/0
RP/0/RP0/CPU0:router(config-isis-if)# address-family ipv4

To use the Data Object interface, you must define the ISIS instance, as shown in this example:

my $instance = Configuration->ISIS->InstanceTable->Instance(InstanceID => 1);

Enable the instance:
$instance->Running->set_data(‘True’);

This example shows how to set up a Network Entity Title (NET) for that instance:

$instance->NETTable->NET(NET => '49.0000.0000.3.00')->set_data(Enable =>'True');

This example shows how to set up the interface:

my $if = $instance->InterfaceTable->Interface(Name => 'POS0/2/0/0');
$if->Running->set_data('True');

This example shows how to set up the IPv4 address family on that interface:

$if->InterfaceAddressFamilyTable->
 InterfaceAddressFamily(AF => 'IPv4', SubAF => 'Unicast')->
 Running->set_data('True');

Finding the Circuit Type That is Currently Configured for an Interface for ISIS

The example shows how to use the Perl Data Object documentation to help you write code to access a
particular piece of data.

You may know that ISIS is configured on a particular interface, for example, POS 0/2/0/0, but you may
not know whether that interface was configured as only Level 1, only Level 2, or both. The data you are
looking for is ISIS configuration data, which should be documented in a file whose name ends with
_cfg.html. A quick browse through the Data Object documentation files reveals isis_cfg.html as a
sensible place to look.

The first object definition is ISIS. The parent object is specified as RootCfg, which is the top-level
configuration object that is accessed using the Configuration function. This example shows how to
create an object that corresponds to ISIS configuration:

my $isis = Configuration->ISIS;

The only child object of ISIS is InstanceTable, which has entries of the object instance. Under the Keys
heading, notice that Instance has only one key called InstanceID. If the ISIS instance in which you are
interested is 1, you can now create a data object corresponding to that instance by specifying the instance
ID as an argument. The creation of the data object is shown in this example:

my $instance = $isis->InstanceTable->Instance(InstanceID => ‘1’);
16-173
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Browsing at the child objects of Instance, you see an object called InterfaceTable, and you want this item
of data for a particular interface. Therefore, it is presumably somewhere under that object, as shown in
this example:

my $interface_table = $instance->InterfaceTable;

By looking at the definition of the InterfaceTable object, you see it has one child called Interface.
Looking at the definition of Interface, you see that it has one child called CircuitType, which must be
the item that you are looking for. The definition of Interface contains one key called InterfaceName,
which specifies the interface to create the corresponding data object, as shown in this example:

my $interface = $interface_table->Interface(InterfaceName => ‘POS0/2/0/0’);

The following example shows how to create a CircuitType object:

my $circuit_type = $interface->CircuitType;

Looking at the definition of CircuitType, you see that it has a value and the get_data method can be
called on it. You can now retrieve the required data, as shown in this example:

my $response = $circuit_type->get_data;

The actual value can now be accessed from the response object, as shown in the following example:

my $value = $response->get_data;

You might not want to perform as many individual steps as are shown in the previous examples, and it
is probably not necessary. In practice, you may perform some of the steps at once. This sample code does
the same thing in four lines as the above set of examples does in seven lines:

my $response = Configuration->ISIS->InstanceTable->Instance(InstanceID => ‘1’)
->InterfaceTable->Interface(InterfaceName => ‘POS0/2/0/0’)
->CircuitType->get_data;

my $value = $response->get_data;

Finally, you would have to know the type of value of CircuitType to do any comparison of the value,
which is given as ISISConfigurableLevels. The definition of ISISConfigurableLevels states what values
are valid for this item. These enumerations are included with the valid values:

 • Level1

 • Level2

 • Levels1And2

Configuring a New Instance, Area, and Interface for OSPF

The example shows how to set up OSPF on an interface.

Assuming that the POS0/2/0/0 and Loopback0 interfaces are already configured, this example shows
how to use the CLI commands:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# router ospf 1
RP/0/RP0/CPU0:router(config-ospf)# router-id 1.1.1.1
RP/0/RP0/CPU0:router(config-ospf)# area 1
RP/0/RP0/CPU0:router(config-ospf-ar)# interface POS0/2/0/0

By using the Data Object, you can define the OSPF process and instance and ensure that it is started.
This is shown in this example:

my $ospf_process = Configuration->OSPF->ProcessTable->Process(InstanceName => '1');
$ospf_process->Start->set_data('true');
16-174
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
This example shows how to set up the router ID for the process:

$ospf_process->DefaultVRF->RouterID->InterfaceID->set_data(‘1.1.1.1’);

This example shows how to set up the area of which this interface is part:

my $area = $ospf_process->DefaultVRF->AreaTable->Area(IntegerID => 1);
$area->Running->set_data('true');

This example shows how to configure the interface:

$area->NameScopeTable->NameScope(Interface => "POS0/2/0/0")->Running->
 set_data('true');

Getting a List of the Usernames That are Configured on the Router

You may want to get a list of the usernames that are configured on the router, but without all other
information that is displayed by the CLI command show aaa userdb. This example shows where you
would use the get_keys function:

my $response = Configuration->AAA->UsernameTable->get_keys;
my @keys = $response->get_keys;

You could use the resulting array however you want; for example, to display your own compact list of
usernames. This is shown in this example:

print "Usernames configured on the system:\n";
foreach my $key (@keys) {
 print "$key->{Name}\n";
}

Finding the IP Address of All Interfaces That Have IP Configured

The example shows how to use the find_data function of the Data Object interface to find every
occurrence of a particular leaf object that matches the combination of key values and wildcards that are
specified in the hierarchy.

The code that is needed is almost identical to that which would be used to get the IP address of a
particular interface, except that the Name key to the interface configuration table is specified as a
wildcard, and the function calls the find_data method rather than get_data method. This is shown in this
example:

my $if_conf_table = Configuration->InterfaceConfigurationTable;
my $response = $if_conf_table->
 InterfaceConfiguration(Active => ‘act’, wildcard => ‘Name’)->
 IPV4Network->Addresses->Primary->find_data;

The XML response can be extracted from the returned response object using the to_string method. In
addition, the XML response can be examined programmatically by extracting the DOM tree
representation from the response object using the get_dom_tree method.
16-175
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Adding an Entry to the Access Control List

These commands show how to add an entry to an access control list (ACL) to block a particular source
IP address:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# ipv4 access-list user1
RP/0/RP0/CPU0:router(config-ipv4-acl)# deny ip host 1.2.3.4 any

These commands show how to add an ACL to the inbound traffic of an interface:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# interface POS0/2/0/0
RP/0/RP0/CPU0:router(config-if)# ipv4 access-group user1 in

You can also perform the tasks using the Perl Data Object API. The code acts as though the specified
ACL already exists and the last sequence number in the list is already known. The last sequence number
for the new entry can be easily calculated. This example shows how to define the relevant tables that you
are interested in:

my $acl_table = Configuration->IPV4_ACLAndPrefixList;
my $if_conf_table = Configuration->InterfaceConfigurationTable;

This example shows how to add a new entry to the ACL. (This request sets all other items in an access
list entry to null.)

my $acl = $acl_table->AccessListTable->AccessList(Name => ‘user1’);
$error = $acl->AccessListEntryTable->
 AccessListEntry(SequenceNumber => ‘50’)->ACERule ->
 set_data(SourceAddress => ‘1.2.3.4’,
 Grant => 'Deny',
 Protocol => 'IP');

This example shows how to add the ACL to the interface:

my $interface = $if_conf_table->
 InterfaceConfiguration(Active => ‘act’, Name => ‘POS0/2/0/0’);
$error = $interface->IPV4PacketFilter->Inbound->set_data(Name => ‘user1’);

Denying Access to a Set of Interfaces from a Particular IP Address

The intended use of the script is to quickly and easily block a particular IP address from gaining access
to the router on whichever interfaces you choose; for example, a security threat. This is a good example
of a script that retrieves some existing configuration data. Based on the information, some new
configuration is applied to the router.

In practice, the set requests are all sent in one request as described in this list:

 • Interfaces in which the new ACL entry is to be applied, the IP address to block, and the name of the
new ACL (if needed) that you enter when prompted are included. If desired, all can be specified
instead of listing all interfaces on the system.

 • The router is queried to see which access control lists are defined, and what the current entries are
to find the last sequence number in each list.

 • The router is queried to see which inbound ACLs are assigned to each interface, if any.
16-176
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Note The request retrieves only the specific configuration that is desired, which can be done by using
the CLI. In addition, it makes use of a wildcard for the Name key of the interface table to get the
required data for all interfaces, which can also be done by using the CLI.

 • If any of those interfaces did not already have an ACL assigned to it, a new ACL is created and
assigns it to those interfaces.

 • New ACL entry is added to each of the existing ACLs that were assigned to one of the interfaces in
question, and to the new ACL if there is one.

Note The example could be easily extended to block more than one IP address, or to apply the new
ACL entry to multiple routers at one time. The script can be found in the
examples/acl/deny_access.pl file.

Each configuration item is set with an individual call to the set_data function of the Data Object
interface. Usually, this would result in many separate XML requests. Because the batching API is used,
the configuration is set using a single XML request to maximize efficiency.

Configuring a New Static Route Entry

This example shows how to add a new static route entry with the applicable CLI commands:

router static
 address-family ipv4 unicast
 0.0.0.0/0 12.25.0.1

This script is used for the data object interface:

my $static_route = Configuration->RouterStatic->DefaultVRF;
my $static_ipv4 = $static->AddressFamily->VRFIPV4->VRFUnicast;
my $static_prefix = $static_ipv4->VRFPrefixTable->
 VRFPrefix(Prefix => {IPV4Address => '0.0.0.0'}, Length => '0');

my $route = $static_prefix->VRFRouteTable;
my $nexthop = $route->VRFNexthopInfoTable->
 VRFNexthopInfo(Address => {IPV4Address => '12.25.0.1'});
$error = $nexthop->Description->set_data(‘sample’);

Operational Examples
Certain examples can be used to retrieve operational data from the router. These examples all make use
of the Perl Data Object API because of the ease with which requests can be formed, and the flexibility
of having access to a Perl representation of the response data and the XML form.

Some of these examples are very simple, such as retrieving all data in a particular table, and requires
only a couple lines of code. Other examples involve getting data from more than one place and
combining the data.

There are some scripts that give examples of how to display the retrieved data in different ways. There
are some examples of producing a textual output similar to the corresponding CLI command. These use
the Data Object interface because of the ease with which the desired data can be extracted from the Perl
representation of the response.
16-177
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Some examples can be used to transform an XML response into an HTML table for ease of viewing in
a web browser. These examples take full advantage of having the response data in XML format. HTML
can be produced with ease from XML using the style sheet transformation language XLST.

Retrieving the Operational Information for All Interfaces on the Router

This example shows how to retrieve a single table of data, which can be done with ease by using the Data
Object interface get_entries function. It can be done all in one line (rather than one statement that has to
be split over multiple lines). For clarity and to take advantage of error checking, however, it is best to
do the retrieval in stages.

To retrieve the operational information for all interfaces on the router, perform these steps:

Step 1 Define the key for the data node in which you are interested (for example, primary RP), as shown in this
example:

my $data_node = {RPLocation => {Rack => 0, Slot => RP0, Instance => 'CPU0'}};

Step 2 Define the table and what contents to retrieve, as shown in this example:

my $interface_table = Operational->InterfaceProperties->DataNodeTable->
 DataNode($data_node)->SystemView->InterfaceTable;

Step 3 Call the get_entries function on the table, as shown in this example:

my $result = $interface_table->get_entries;

Step 4 Check to see if an error occurred. If not, retrieve the entries, as shown in this example:

if (!defined($result->get_error)) {
 my @entries = $result->get_entries;
 # Now do something with the entries...
}

Retrieving the Link State Database for a Particular Level for ISIS

Another example is to retrieve a single table of data, which is accomplished by using the get_entries
function. The data that is retrieved corresponds roughly to that displayed by the CLI command show isis
database level <level no> and split up into three stages. The last two stages are exactly the same.

To retrieve the link state database for a particular level for ISIS, perform these steps:

Step 1 Define the table from which you want to get data from, as shown in this example:

my $table = Operational->ISIS->InstanceTable->Instance(InstanceID => 1)->
LevelTable->LevelInstance(Level => "Level1")->LSPTable;

Step 2 Call the get_entries function on the table, as shown in this example:

my $result = $table->get_entries;
16-178
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Step 3 Check to see if an error occurred. If not, retrieve the entries, as shown in this example:

if (!defined($result->get_error)) {
 my @entries = $result->get_entries;
 # Now do something with the entries...
}

Getting a List of All Interfaces on the System

The simple example shows how to use the get_keys function to get a list of the items in a table without
getting all other associated data with them; this cannot be done using the CLI show commands.

To get a list of all interfaces on the system, perform these steps:

Step 1 Define the table, as shown in this example:

my $interface_table = Operational->InterfaceProperties->DataNodeTable->
 DataNode(RPLocation => {Rack => 0, Slot => RP0, Instance => "CPU0"})->
 SystemView->InterfaceTable;

Step 2 Call the get_keys function and check for errors, as shown in this example:

my $result = $interface_table->get_keys;
if ($result->get_error) {
 die "Error in get_keys: $result->get_error";
}

The list of interfaces is returned now as an array from $response->get_keys to carry out an action for
each interface.

This example shows how to print it:

foreach my $if ($result->get_keys) {
print $if->{Name} . "\n";

}

Retrieving the Combined Interface and IP Information for Each Interface

This is a more complicated example of retrieving operational data as it gets the data from more than one
place and combines that data in some way. The get_ip_interfaces() function retrieves the operational
state for each interface and the IPv4 information for each interface that has IPv4 information.

These two sets of information are combined into one table so that the data is easily accessed by a script
that wants to display the data. This is exactly the information that is used by the show interfaces CLI
command.

The function is a good example of how the use of XML makes scripts robust to changes in the underlying
data. For example, if new data items are added to the tables, or names of items change, the function still
works. The function can be found in the examples/interfaces/get_ip_interfaces.pm file within the toolkit
installation directory.
16-179
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
Listing the Hostname and Interface for Each ISIS Neighbor

You can call the get_keys function on the ISIS neighbor table that returns the interface name and system
ID for each neighbor. The system ID is an internal value that uniquely identifies the neighbor, but it is
not very useful as a displayed value. However, a second table called the hostname table provides a
mapping from the system ID to the actual hostname. The hostname is displayed by the show isis
neighbors CLI show command, rather than by the system ID. Thus, combining the data from these
tables, you can produce a list of the hostname and interface name for each neighbor.

The list_isis_neighbors function example resides in the examples/isis/list_isis_neighbors.pm file. The
function calls the get_keys function on the NeighborTable object, which produces a list of the system
ID and interface for each neighbor. Then, it calls the get_entries function on the HostnameTable object,
and maps the resulting table into a hash, which provides a mapping from system ID to hostname. Finally,
the mapping is used to create a new array containing a list of the hostname and interface for each
neighbor.

As an example of using the list_isis_neighbors function, this piece of code prints the hostname and
interface for each neighbor for ISIS instance 1:

require ‘<toolkit inst dir>/examples/isis/list_isis_neighbors.pm’;
my @neighbors = list_isis_neighbors(1);
print "Interface: Hostname:\n";
foreach my $nbr (@neighbors) {
 printf("%-20s%s\n", $nbr->{Interface}, $nbr->{Hostname});
}

Recreating the Output of the show ip interfaces CLI Command

The example shows how to write an easily customized script for displaying information retrieved from
a router.

The script gets the required data by calling the get_ip_interfaces() function. For details, see the
“Retrieving the Combined Interface and IP Information for Each Interface” section on page 16-179. The
script goes through each entry in the table and picks particular data items and displays them in a custom
format that is the same format as the original show CLI command.

The display function easily can be customized by removing sections when data is no longer of interest,
adding sections if new data needs to be displayed, or changing the way particular data is displayed. You
can create your own version of the show interfaces CLI command.

The function is clearly more dependent on the names of the data items that are returned and their formats
than the underlying get_ip_interfaces() function. Because of XML, the function still works if extra items
are added to, or removed from, tables that are not currently being displayed.

The script can be found in the /examples/interfaces/show_ip_interfaces.pl file within the toolkit
installation directory.

Producing a Textual Output Similar to the show bgp neighbors CLI Command

This is another example of displaying data retrieved from the router in a custom format and again in the
same style as the original show CLI command. The data-retrieval part of the script is simple and uses
the get_entries function, as shown in this example:

my $response =
 Operational->VRFTable->VRF(VrfName=’VRF1’)->BGP->NeighborTable->get_entries;
16-180
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
The script goes through each of the returned entries and calls the print_neighbor_info function to display
the details of the neighbor.

The function shows how easily the required items can be accessed and displayed, and how to ignore
information in which you are not interested (for example, AF-specific information, which uses the Data
Object interface).

The script can be found in the examples/bgp/show_bgp_neighbors.pl file within the toolkit installation
directory.

Displaying Tabular XML Data in a Generic HTML Table Using XSLT

HTML is one of the useful ways to display data. The HTML format has many useful features, such as
the ease in which it can display formatted data in a platform-independent way, and the ability to add links
for easy navigation.

For data that takes the form of a list of records (for example, a table), an HTML table is a natural way
to display it. A sample function has been provided that uses XLST to transform a table of data in XML
format into an HTML table.

The function is generic. You can pass as an argument the name of the table that you want to display, and
the script automatically tries to produce the best HTML table it can. If the table is simple (for example,
each field in the table has exactly one value), the output should be a good representation of the data.

If the structure of the data is more complicated (for example, certain fields contain multiple subfields or
even subtables within the table), the contents of these subfields or subtable appears within one field and
probably will not be very useful.

The function can be found in the examples/common/xml_to_html_table.pm file within the toolkit
installation directory. The XSL file it uses to do the transformation is in:
examples/common/xml_to_html_table.xsl.

Note The XML::LibXSLT module must be installed to use the example.

To use the function, display the operational data for each interface on the router:

Step 1 Use the require statement to specify the name of the module, as shown in this example:

require "xml_to_html_table.pm"; # may need to specify a path here

Step 2 Retrieve the information in XML format. This example uses the Data Object interface to do this:

my $data_node_table = Operational->InterfaceProperties->DataNodeTable;
my $interface_table = $data_node_table->DataNode(RPLocation =>
 {Rack => 0, Slot => RP0, Instance => "CPU0"})->SystemView->InterfaceTable;
my $response_string = $interface_table->find_data->to_string;

Step 3 Transform the XML to HTML, as shown in this example:

xml_to_html_table($response_string, $html_file, "InterfaceTable");

The example can be found in the examples/interfaces/generic_interface_props_table.pl file.
16-181
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
The resulting HTML file contains a table with a row for each interface and a column for each field of
data. Clearly, the function is best suited for tables in which the number of fields is small enough that
they all fit the screen. However, the main drawback to using the generic function is that the display
format of the fields is identical to XML, which may not be desired—as is the case with the Type, State,
and Line State fields in the interface properties example. For more information, see the “Displaying the
Interface State in a Customized HTML Table” section on page 16-182.

Displaying the Interface State in a Customized HTML Table

In many cases, the generic HTML table example does not display the information exactly the way you
would want it. For example, you may want to display only some data items for each table entry and
change the display format of certain items.

The example produces an HTML containing the State and Line State for each interface and ignores all
other data in the interface table. These enhancements are provided over the generic HTML table:

 • Only the fields of interest are displayed, and they are displayed in the order desired rather than the
order that they appear in XML.

 • The State and Line State fields are converted from their numeric values to text values that are easier
to understand.

 • Color-coding is added so that important information, such as an interface being down, stands out.

 • The interfaces are sorted, so any interfaces that are down appear before those that are up; this makes
it easy to spot problems without having to scroll down a long list.

The transformation is again done using XLST. The XML::LibXSLT module must be installed to run the
example. This means that the Perl script is very short and most of the work is done in the XSL file, which
can be easily modified to customize the format of the displayed data, or extended to display more of the
information returned in the XML.

The request in the example is stored as preformed XML to demonstrate the use of the basic Perl XML
API, but the script could easily have been written using the Data Object API to form the request.

The example can be found in the examples/interfaces/interface_props_table.pl file. The XSL style sheet
can be found in the examples/interfaces/interface_props_table.xsl file.

Displaying the BGP Neighbor Operational Data in a Complex HTML Format

This is an example of displaying data that does not conform naturally to a simple table format. The data
displayed corresponds roughly to the show bgp neighbors command, for which the output has an entry
for each BGP neighbor and within each entry a subtable of information exists for each address family.
Because the intended use of the script is for monitoring, the only values shown are operational rather
than configurational.

Unlike the previous example, the script uses the Perl Data Object API to create the request that avoids
having to write to any XML, which makes it quicker to write and easier to understand and maintain.
However, the response format used is still XML and is needed to transform into HTML using XSLT.

The layout of the HTML output has a structure similar to that of the show command, with each BGP
neighbor entry consisting of a selection of items laid out in a logical way; this includes the address
family information that is displayed in a simple subtable.
16-182
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
The benefits of having the information in HTML are:

 • Format of bold headings makes the information clearer.

 • Layout is much easier to control using tables, because they automatically adjust themselves to fit
the information contained in them and the available space on the screen.

To facilitate navigation of the neighbor list, a separate HTML page is created that contains a simple
summary table, with one entry for each neighbor. Each neighbor in the table has a link, which when
clicked jumps to the neighbor’s entry in the main table.

When the script is run, a session is created on the router that repeatedly polls the router for the latest
information at regular intervals by updating the HTML files each time. Each of the two HTML files
causes the web browser to automatically refresh them at the same regular interval, so the values on
screen are automatically kept up to date. Ideally, the script would be modified to run as a CGI script on
a web server, so that you can just open the web page (from any machine that has access) and not have
to start the script first.

The script can be found in the examples/bgp/bgp_neighbor_table_html.pl file. The summary page
produced is examples/bgp/bgp_neighbor_table_summary.html, and the main page is
examples/bgp/bgp_neighbor_table.html.

Note The XML::LibXSLT module must be installed to run the example.

Performing Actions Whenever Certain Events Occur

The sample, which demonstrates how to use the Cisco IOS XR Perl Notification and Alarm API, shows
how to perform an action whenever a certain event occurs. In particular, someone is informed through
e-mail (network administrator) about the events listed in Table 16-8.

These steps for the script are described:

1. Registers for alarms for the two relevant types, which are determined by specifying the Group and
Code fields, and records the two returned registration IDs.

2. Enters an event loop in which the script calls the alarm_receive () function to get the next alarm
from the session, and calls the relevant handler determined by the registration ID of the alarm.

For change in configuration, differences are retrieved from the router using the same management
session that is used for receiving alarms. The XML response is stored in a local file with each commit
being stored in a separate file. A readable version of the differences, which is created automatically by
using the data object in a string context, is included in the e-mail.

Table 16-8 List of Events

Event Description

Interfaces going up/down When the event occurs, an e-mail is sent informing the recipient of the
interface, the router on which the interface is, and the new state.

Configuration change When the running configuration on the router is changed, an e-mail is
sent informing the recipient that the event occurred. The configuration
change event includes the commitID of the latest commit, the location
of a file that contains the commit changes in XML format, and a
readable version of the commit changes.
16-183
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 16 Cisco IOS XR Perl Scripting Toolkit
Examples of Using the Cisco IOS XR Perl XML API
An e-mail, is sent to the specified address, which can be a regular e-mail or a message sent to a pager.
This is not practical for a long message (for example, a configuration change), but can be well-suited to
a single-line message similar to the interface up or down case.

Actions taken when an event occurs are not limited to sending e-mails. A script could do just about
anything in response to an event; for example, performing actions or changing configuration on the
router. In addition, a script could register to receive notifications from more than one router, which gives
it the ability to know the state of a whole network and perform actions accordingly.

The script can be found in the examples/notification/notification.pl file.

Note The script uses the Perl module Mail::Send, which must be installed to use it.
16-184
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
C H A P T E R 17

Sample BGP Configuration

This excerpt displays the relevant portions of the CLI configuration, which is used as a basis for the
Border Gateway Protocol (BGP) examples contained within this document:

router bgp 3
 timers bgp 60 180
 bgp router-id 10.1.0.1
 bgp update-delay 55
 bgp cluster-id 10.1.0.2
 bgp graceful-restart purge-time 300
 default-information originate
 bgp graceful-restart restart-time 180
 bgp log neighbor changes disable
 default-metric 10
 bgp graceful-restart stalepath-time 300
 bgp graceful-restart
 bgp as-path-loopcheck
 socket send-buffer-size 131072
 bgp bestpath med always
 bgp bestpath compare-routerid
 bgp bestpath med missing-as-worst
 socket receive-buffer-size 131072
 address-family ipv4 unicast
 distance bgp 140 145 150
 bgp dampening 1 1400 1800 2
 bgp scan-time 30
 network 10.100.1.0/24
 network 10.100.2.0/24
 aggregate-address 10.100.0.0/16 summary-only
 redistribute connected route-map MATCH_ONE_CONNECT
 redistribute static route-map MATCH_ONE_STATIC
exit
 address-family ipv4 multicast
 distance bgp 120 125 130
 maximum-paths 6
 bgp dampening 2 2400 2800 3
 bgp scan-time 40
 network 10.10.1.0/24
 network 10.10.2.0/24
 aggregate-address 80.100.0.0/16 summary-only
 redistribute connected
exit
.
.
.
neighbor 10.0.101.1
 remote-as 1
 ebgp-multihop 255
17-185
Cisco IOS XR XML API Guide

Chapter 17 Sample BGP Configuration
 address-family ipv4 unicast
 send-community-ebgp
 route-map EBGP_IN_1 in
 exit
 address-family ipv4 multicast
 send-community-ebgp
 route-map EBGP_IN_1 in
 exit
 exit
 neighbor 10.0.101.2
 remote-as 2
 ebgp-multihop 255
 address-family ipv4 unicast
 send-community-ebgp
 capability orf prefix-list receive
 route-map EBGP_IN_1 in
 exit
 address-family ipv4 multicast
 send-community-ebgp
 route-map EBGP_IN_1 in
 exit
 exit
 neighbor 10.0.101.3
 remote-as 3
 address-family ipv4 unicast
 route-map IBGP_IN_1 in
 exit
 address-family ipv4 multicast
 route-map IBGP_IN_1 in
 exit
 exit
 neighbor 10.0.101.4
 remote-as 4
 ebgp-multihop 255
 address-family ipv4 unicast
 route-map EBGP_IN_2 in
 exit
 address-family ipv4 multicast
 route-map EBGP_IN_2 in
 exit
 exit
neighbor 10.0.101.5
 remote-as 5
 ebgp-multihop 255
 address-family ipv4 unicast
 route-map EBGP_IN_3 in
 exit
 address-family ipv4 multicast
 route-map EBGP_IN_3 in
 exit
 exit
 neighbor 10.0.101.6
 remote-as 6
 ebgp-multihop 255
 address-family ipv4 unicast
 prefix-list orf in
 capability orf prefix-list both
 exit
 address-family ipv4 multicast
 prefix-list orf in
 exit
 exit
 neighbor 10.0.101.7
 remote-as 7
17-186
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 17 Sample BGP Configuration
 ebgp-multihop 255
 address-family ipv4 unicast
 prefix-list orf in
 capability orf prefix-list send
 exit
 address-family ipv4 multicast
 prefix-list orf in
 exit
 exit
 neighbor 10.0.101.8
 remote-as 8
 ebgp-multihop 255
 address-family ipv4 multicast
 exit
 exit
.
.
.
exit
17-187
Cisco IOS XR XML API Guide

OL-24657-01

Chapter 17 Sample BGP Configuration
17-188
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
G L O S S A R Y
A

AAA authentication, authorization, and accounting. A network security service that provides the primary
framework to set up access control on a router or access server. AAA is an architectural framework and
modular means of configuring three independent, but closely related security functions in a consistent
manner.

B

BGP Border Gateway Protocol. A routing protocol used between autonomous systems. It is the routing
protocol that makes the Internet work. BGP is a distance vector routing protocol that carries
connectivity information and an additional set of BGP attributes. These attributes allow for a rich set
of policies for deciding the best route to reach a given destination.

Border Gateway

Protocol

 See BGP.

C

CLI command-line interface.

E

eBGP external Border Gateway Protocol. BGP sessions are established between routers in different
autonomous systems. eBGPs communicate among different network domains.

EGP Exterior Gateway Protocol. Internet protocol for exchanging routing information between different
autonomous systems. EGP is an obsolete protocol that was replaced by BGP. See also BGP.

extensible markup

language

See XML.

G

Gbps Gigabits per second. The amount of data that can be sent in a fixed amount of time. 1 gigabit = 230 bits,
1,073,741,824 bits.
GL-189
Cisco IOS XR XML API Guide

Glossary
H

HTTP Hypertext Transfer Protocol. Used by web browsers and web servers to transfer files, such as text and
graphic files. The Hypertext Transfer Protocol (HTTP) is the set of rules for exchanging files (text,
graphic images, sound, video, and other multimedia files) on the World Wide Web. Relative to the
TCP/IP suite of protocols (which are the basis for information exchange on the Internet), HTTP is an
application protocol.

Hypertext Transfer

Protocol

See HTTP.

I

IOS XR The Cisco operating system used on the router.

L

line card See modular services card. Line cards are now referred to as MSCs in the router.

LR logical router. A routing system can be partitioned into several logical routers, each of which is
managed independently. The terms router and LR are used interchangeably in this document.

M

modular services

card

Module in which the ingress and egress packet processing and queueing functions are carried out in the
router architecture. Up to 16 MSCs are installed in a line card chassis; each MSC must have an
associated physical layer interface module (PLIM) (of which there are several types to provide a variety
of physical interfaces). The MSC and PLIM mate together on the line card chassis midplane.

MSCs are also referred to as line cards.

MPLS-TE Multiprotocol Label Switching traffic engineering.

MSC See modular services card.

N

node A card installed and running in a Cisco routing system. In the Cisco XR 12000 Series Router, nodes
are identified by slot number (for example, node 1).
GL-190
Cisco IOS XR XML API Guide

OL-24657-01

Glossary
R

router Network layer device that uses one or more routing metrics to determine the optimal path along which
network traffic should be forwarded. Routers forward packets from one network to another based on
network layer information.

running

configuration

The router configuration in effect. Although, the user can save multiple versions of the router
configuration for future reference, only one copy of the running configuration is in the router at any
given time. An explicit commit operation must be performed to make changes to or update the running
configuration on the router.

S

software

configuration

A list of packages activated for a particular node. A software configuration consists of a boot package
and additional feature packages.

SSH Secure Shell.

SSL Secure Socket Layer.

startup

configuration

The router configuration designated to be applied on next router startup.

switchover A switch between the active and standby cards; the old active card may be dead prior to switchover
(death of the active card is one of the causes for the switchover). Also known as failover.

system reload Reload of a Cisco router node.

system restart Soft reset of a Cisco router node. This involves restarting all the processes running on that node.

T

TAC Cisco Technical Assistance Center

target configuration The current Cisco IOS XR running configuration plus the autonomous changes made to that
configuration by a user. The target configuration is promoted to the running configuration by means of
the commit command.

Tbps Terabits per second = 1,000,000,000,000 (1 trillion) bits per second. The amount of data that can be
sent in a fixed amount of time.

Telnet Standard terminal emulation protocol in the TCP/IP protocol stack. Telnet is used for remote terminal
connection, enabling users to log in to remote systems and use resources as if they were connected to
a local system. Telnet is defined in RFC 854.

Terabyte A unit of computer memory or data storage capacity equal to 1,024 gigabytes (240 bytes).
Approximately 1 trillion bytes.
GL-191
Cisco IOS XR XML API Guide

OL-24657-01

Glossary
X

XML extensible markup language. A standard maintained by the World Wide Web Consortium (W3C) that
defines a syntax that lets you create markup languages to specify information structures. Information
structures define the type of information (for example, subscriber name or address), not how the
information looks (bold, italic, and so on). External processes can manipulate these information
structures and publish them in a variety of formats. XML allows you to define your own customized
markup language.

XML agent A process on the router that is sent XML requests by XML clients and is responsible for carrying out
the actions contained in the request and returning an XML response back to the client. The TTY-based
XML agent is an example of an XML agent provided on the router.

XML client An external application that sends an XML request to the router and receives XML responses to those
requests.

XML operation A portion of an XML request that specifies an operation that the XML client would like the XML agent
to perform.

XML operation

provider

The Cisco router code that carries out a particular XML operation including parsing the operation
XML, performing the operation, and assembling the operation XML response.

XML request An XML document sent to the router, containing a number of requested operations to be carried out.

XML response The response to an XML request.

XML schema An XML document specifying the structure and possible contents of XML elements that can be
contained in an XML document.
GL-192
Cisco IOS XR XML API Guide

OL-24657-01

OL-24657-01
I N D E X
Symbols

<Action> 4-54

<AdminAction> 4-54

<AdminOperational> 4-54

<Alarm> 10-117

<Clear> 1-9

<ClearConfigurationInconsistency> 1-9

<ClearConfigurationSession> 1-9

<CLI> 1-9

<CLI> tag 2-45, 3-49, 6-91

<Client> 2-41

<ClientName> 2-43

<Comment> 2-41

<Commit> 1-9, 2-22

Comment attribute 2-23

Confirmed attribute 2-23

errors 2-25

IgnoreOtherSessions attribute 2-24

KeepFailedConfig attribute 2-23

Label attribute 2-23

Mode attribute 2-23

Replace attribute 2-24

Rollback 2-33

<Commit> operation 2-27

<CommitId> 2-41

<CommitId> tag 2-25, 2-33

<Configuration> 4-54

<Configuration⁄ > tag 5-68

<Delete> 1-8, 2-25, 4-53

AAA privileges 8-102

native data operations 4-59

<Delete⁄ > tag 4-65
<destination> 16-149

<Detail> 2-41

<EBGPMultihopMaxHopCount> 5-72

<Elapsed> 2-43

<Error> element 8-102

<FailedConfig> tag 2-27

<File> 2-19

<Filter> 5-85

<Get> 1-8, 2-15, 2-17, 3-49, 4-53

AAA privileges 8-102

native data operations 4-59

triggering 4-58

<GetConfigurationCommitList> 1-9

<GetConfigurationHistory> 1-9, 2-38

maximum attribute 2-38

<GetConfigurationSession> 1-9

<GetConfigurationSessions> 2-43

<GetDataSpaceInfo⁄ > tag 4-66

<GetDataSpaceInformation> 1-8

<GetNext> 1-9

IteratorID 7-94

<GetVersionInfo⁄ > tag 4-66

<GetVersionInformation> 1-8

<HoldTime> 4-58

<Label> 2-41

<Line> 2-41, 2-43

<Load> 1-9, 2-19, 2-27, 3-52

<Lock> 1-9, 2-15

<LockHeld> 2-43

<LoopbackCheck> 5-72

<Maximum> 2-41

<Naming> tag 4-58

<Node> 2-43
IN-1
Cisco IOS XR XML API Guide

Index
<Operational> 3-49, 4-54

<Previous> 2-34

<Process> 2-43

<ProcessID> 2-43

<Register> 10-117

<RemoteAS> 5-72

<Response>

IteratorID 7-94

<Rollback> 1-9, 2-25, 2-33, 2-34

<Save> 1-9, 2-19, 2-21

<SessionId> 2-43

<Set> 1-8, 2-25, 2-45, 4-53

AAA privileges 8-102

native data operations 4-59

<Since> 2-43

<Timestamp> 2-41

<Unlock> 1-9, 2-28

<Unlock⁄ > 2-28

<User> 2-41

<UserId> 2-43

<version> 16-149

A

AAA (authentication, authorization, and accounting)

authorization 8-101

definition 1-2

security (perl scripting toolkit) 16-148

access control list

See ACL 8-105

ACL 8-105

ACL (Access Control List)

CLI commands 16-176

entry, add 16-176

inbound traffic 16-176

list 16-176

perl data object API 16-176

add_neighbors_to_group.pl file 16-173

alarm_deregister function 16-167
IN-2
Cisco IOS XR XML API Guide
alarm_operations.xsd 14-136

alarm_receive function 16-167

alarm_register function 16-166

alarms

deregistration 10-118

filter criteria, types of 10-117

notification 10-119

registration 10-117

tags, types of 10-119

API (application programming interface)

perl data object 16-148

perl notification/alarm 16-148

perl XML

concept 16-148

configuration examples 16-171

operational examples 16-177

arguments, management session

connection_timeout 16-151

host 16-151

interactive 16-150

password 16-151

port 16-151

prompt 16-151

response_timeout 16-151

ssh_version 16-151

transport 16-151

use_command_line 16-150

username 16-151

Atomic mode 2-23

B

BASE package common schemas 14-136

batch_send method 16-165

batch_start method 16-164

batch API

batch_send method 16-165

batch_start method 16-164

usage 16-164
OL-24657-01

Index
batched requests 1-10

BestEffort 2-23

BGP (Border Gateway Protocol)

CLI commands 16-172

configuration 17-185

data object interface 16-172

get request 3-49

neighbor

add list 16-172

members, display 16-173

set description 16-172

bgp_neighbor_table_html.pl file 16-183

Border Gateway Protocol

See BGP 3-49

browse, target configuration 2-15

C

cerrno 11-126

ChangedConfig 2-16

chmod command 16-170

CircuitType object 16-174

Cisco-IOS_XR-Perl-Scripting-Toolkit-.tar.gz file 16-149

ClearConfigurationInconsistency tag 1-9

ClearConfigurationSession tag 1-9

Clear tag 1-9

CLI (command-line interface)

defined 1-2

operations 1-9

cli_operations.xsd 14-136

CLI command

encapsulated 1-3, 1-9

show 4-54

show aaa userdb 16-175

show bgp neighbors 16-182

show interfaces 16-179, 16-180

show isis database level 16-178

show isis neighbors 16-180

xml agent tty 13-129
OL-24657-01
ClientID attribute 1-5

client session

commit operation 2-25

limitation 2-13

CLI tag 1-9

Comment 2-23

comment 2-33

commit 2-29

changes 2-29

database 2-25

identifier 2-33

CommitChanges 2-16

Commit tag 1-9

common_datatypes.xsd 14-136

common datatype definitions 14-136

component-specific schemas 14-135, 14-136

Comprehensive Perl Archive Network

See CPAN 16-149

config_clear_sessions function example 16-156

config_clear function example 16-155

config_cli() function example 16-156

config_commit () function 16-154

config_commit function example 16-154

config_get_commitlist function example 16-155

config_get_history function example 16-155

config_get_sessions function example 16-156

config_load_commit_changes function example 16-156

config_load_failed function example 16-155

config_load_rollback_changes function example 16-156

config_load function example 16-155

config_lock function example 16-155

config_rollback() function example 16-156

config_save() function example 16-155

config_services_operations.xsd 14-136

config_unlock function example 16-155

Configuration change event 16-183

configuration change notification 3-52

Configuration function 16-174

configuration history 2-14
IN-3
Cisco IOS XR XML API Guide

Index
Configuration Manager 1-3, 1-9, 8-102

and error reporting 11-125

Configuration services 1-3, 1-9, 8-102

configuration session information 2-14

Confirmed 2-23

connection_timeout argument 16-151

container 5-67, 5-69

Content attribute 5-67, 5-82

Count argument 16-163

Count attribute 5-67, 5-83

CurrentConfig 2-16

custom filters 5-67

D

data, display how to

example 16-165

get_data function 16-165

data objects

create 16-159

operation methods 16-161

schema version 16-161

data operation methods, management session 16-166

debug facility

definition, types of 16-168

disable 16-169

enable 16-169

insert message 16-169

overview 16-168

debug option 16-152

declaration

attributes 1-5

tag 1-4, 1-5

delete_data method

definition 16-164

example 16-164

Delete tag 1-8

deny_access.pl file 16-177

dependencies 4-58
IN-4
Cisco IOS XR XML API Guide
deregistering, alarms 10-118

Details 2-38

display_neighbor_group_members.pl file 16-173

documentation, perl data object

definition items 16-158

overview 16-158

Document Type Definition 14-135

DOM (Data Object Model)

example 16-153

tree type 16-153

DTD (Document Type Definition)

See document type definition 14-135

E

element, null value 4-58

enable the dedicated agent 13-131

encoding (UTF-8), XML 1-5

error attributes 11-122, 11-123

ErrorCode 11-122

ErrorMsg 11-122

error object, methods

get_code 16-154

get_dom_node 16-154

get_element 16-154

get_message 16-154

to_string 16-154

error reporting

nonexistent data 4-63

types of 11-121

event notification 3-51

Event Type 2-38

EventType 2-38

F

files, perl scripting toolkit

add_neighbors_to_group.pl 16-173
OL-24657-01

Index
bgp_neighbor_table_html.pl 16-183

Cisco-IOS_XR-Perl-Scripting-Toolkit-.tar.gz 16-149

deny_access.pl 16-177

display_neighbor_group_members.pl 16-173

generic_interface_props_table.pl 16-181

get_ip_interfaces.pm 16-179

interface_props_table.pl 16-182

interface_props_table.xsl 16-182

ios_xr_log.txt 16-169

list_isis_neighbors.pm 16-180

notification.pl 16-184

show_bgp_neighbors.pl 16-181

show_ip_interfaces.pl 16-180

xml_to_html_table.pm 16-181

xml_to_html_table.xsl 16-181

filter, criteria types 10-117

Filter argument 16-163

find_data function 16-175

find_data method

definition 16-162

example 16-162

G

generic_interface_props_table.pl file 16-181

get_code method 16-154

get_commit_id() method example 16-155

get_data method

definition 16-161

example 16-161

get_dom_node method 16-154

get_dom_tree method 16-176

get_element method 16-154

get_entries function 16-178, 16-180

get_entries method

definition 16-163

example 16-163

get_error method example 16-153

get_errors method example 16-153
OL-24657-01
get_ip_interfaces() function 16-179, 16-180

get_ip_interfaces.pm file 16-179

get_keys function 16-180

get_keys method

definition 16-162

example 16-162

get_message method 16-154

GetConfigurationCommitList tag 1-9

GetConfigurationHistory tag 1-9

GetConfigurationSessions tag 1-9

GetDataSpaceInfo tag 1-8

GetNext tag operation 1-8, 1-9

Get tag 1-8

GetVersionInfo tag 1-8

H

hash structure

definition 16-157

example 16-157

hierarchy

leaf nodes 4-57

structure 4-55

tables 4-55

host argument 16-151

HostnameTable object 16-180

HTML table

customize, interface state display 16-182

enhancement list 16-182

I

IgnoreOtherSessions 2-24

installation, perl scripting toolkit

directory parameters 16-149

procedure 16-149

interactive argument 16-150

interface_props_table.pl file 16-182
IN-5
Cisco IOS XR XML API Guide

Index
interface_props_table.xsl file 16-182

interfaces, get list

examples 16-179

procedure 16-179

Interfaces going up/down event 16-183

InterfaceTable object 16-174

ios_xr_log.txt file 16-169

IP address, find interfaces 16-175

IPv4 address family example 16-173

ISIS (Intermediate System-to-Intermediate System)

circuit type, find 16-173

CLI commands 16-173

hostname and interface, list 16-180

instance ID 16-173

set up 16-173

ItemNotFound 1-6

ItemNotFoundBelow 1-6

IteratorID 7-94

K

KeepFailedConfig 2-23

keys, display how to

example 16-165

get_keys function 16-165

L

Label 2-23

label 2-33

leaf nodes 4-57

leaf object 5-71

link state database, retrieval

examples 16-178

procedure 16-178

list_isis_neighbors.pm file 16-180

Load tag 1-9

lock 2-13, 2-14
IN-6
Cisco IOS XR XML API Guide
Lock tag 1-9

log_file option 16-152

logging facility

arguments, types of 16-170

disable 16-169

enable 16-169

overview 16-169

logging option 16-152

M

make command 16-149

make install command 16-149

Management Plane Protection

See MPP 8-104

management session

close

close()method 16-152

script 16-152

data operation methods 16-166

start

arguments 16-150

create, object type 16-150

Match attribute 5-75

Maximum 2-38

MergedConfig 2-16

Mode 2-23

modules, perl scripting toolkit 16-148

mpls-te task name 8-103

MPP 8-104

inband traffic 8-104

out-of-band traffic 8-104

N

namespace 4-54

native_data_common.xsd 14-136

native_data_operations.xsd 14-136
OL-24657-01

Index
native data

access techniques 5-67

model, types of 1-3

operations 4-53

request, nonexistent data 4-63

tags 1-8

native management data model 1-8

NET (Network Entity Title) example 16-173

nonexistent data 4-63

NotFound 1-6

notification.pl file 16-184

notifications

alarms 10-119

list of events 16-183

steps for script 16-183

null value 4-58

O

object class, hierarchy

combine 5-67, 5-72

compressed 5-74

content 4-53

duplicated 5-72

nonexistent data 4-63

operational 5-71

operation information, retrieval

examples 16-178

procedure 16-178

operation processing errors 11-121, 11-125

OperationType attribute 2-17

operation type tag

CLI 1-9

configuration services 1-9

definition 1-8

native data 1-8

structure, top-level 1-4

options, command-line

debug 16-152
OL-24657-01
log_file 16-152

logging 16-152

telnet_dump_log 16-152

telnet_input_log 16-152

OSPF (Open Shortest Path First)

CLI commands 16-175

configuration 16-175

router ID 16-175

ouni task name 8-103

P

password argument 16-151

perl scripting toolkit, concepts

perl data object API 16-148

perl notification/alarm API 16-148

perl XML API 16-148

port argument 16-151

privileges, security 8-101

prompt argument 16-151

R

read privileges 8-102

registering, alarms 10-117

repeat naming information 5-67, 5-79

Replace 2-24

request

<Get>

ChangedConfig 2-17

batching 1-10

definition 1-2

maximum size 1-6

minor and major version numbers 1-5

repeated naming information 5-79

tag 1-4

top level structure of 1-4

Request Type tag 4-54
IN-7
Cisco IOS XR XML API Guide

Index
response

block size 7-93

definition 1-2

error reporting 11-121

large data retrieval (using iterators) 7-93

major and minor version numbers 1-5

minimum 1-6

namespace declaration in 4-58

nonexistent data 4-63

 tag 2-24

response_timeout argument 16-151

Reverse 2-38

rollback 2-14

RollbackChanges 2-16

Rollback tag 1-9

router administration, operational data 4-54

RP 8-105, 13-129

running configuration

browse 2-15

browsing 2-14

locking 2-14

replacing 2-14, 2-45

target configuration commit 2-22

unlocking 2-14, 2-28

S

Save tag 1-9

schema file organization 14-136

schemas, XML 14-135

set_data method

definition 16-163

example 16-163

Set tag 1-8

show_bgp_neighbors.pl file 16-181

show_ip_interfaces.pl file 16-180

show aaa userdb CLI command 16-175

show bgp neighbors CLI command 16-182

show interfaces CLI command 16-179, 16-180
IN-8
Cisco IOS XR XML API Guide
show isis database level CLI command 16-178

show isis neighbors CLI command 16-180

Source attribute 2-15

SSH

definition 1-2

option 13-129

ssh_version argument 16-151

streaming 7-99

system logging message (syslog) 3-51

T

tag

configuration services operation, types of 1-9

XML 1-3

XML <Response> 1-5

XML API 1-1

XML mapping, types of 12-127

target configuration

browsing 2-14

commit 2-13, 2-14, 2-45

syslog 3-51

commit record 2-25

loading 2-14

modified, uncommitted 2-17

saving to file 2-14, 2-22

TaskGrouping attribute 8-103

task names

mpls-te 8-103

ouni 8-103

telnet_dump_log

argument 16-170

option 16-152

telnet_input_log

argument 16-170

option 16-152

Telnet option 13-129

throttle

cpu 7-99
OL-24657-01

Index
memory 7-99

timestamp 2-29

to_string method

description 16-154

example 16-153

XML response 16-176

transport argument 16-151

transport debug type 16-168

transport errors 11-121, 11-122

triggering a <Get> operation 4-58

TTY transport

enable agent, how to 13-129

enable session, how to 13-129

error code 13-130

exit, how to 13-130

options

SSH 13-129

Telnet 13-129

U

Unlock tag 1-9

upgrades, schema file 14-137

use_command_line argument 16-150

useid 2-29

user debug type 16-168

username argument 16-151

usernames, get list 16-175

V

version

major and minor 9-107

mismatch 9-111

placement in xml 9-109

retrieving 9-113

retrieving schema 9-115

run-time usage 9-108
OL-24657-01
VersionMismatchExists 9-110

version, XML 1-5

VersionMismatchExists 9-111

VersionMismatchExistsBelow 9-111

virtual route forwarding

See VRF 8-105

VRF 8-105

W

wildcards 5-67

World Wide Web Consortium (W3C) XML Schema
Language 14-135

write_file method example 16-153

write privileges 8-102

X

XLST

procedure 16-181

tabular XML data, display 16-181

XML (extensible markup language)

agent 1-2, 1-3

client 1-2

instance 4-58

operation 1-2

operation provider 1-2

parse errors 11-121, 11-122

schema 1-2

definitions for the native data operation type
tags 1-8

errors 11-121, 11-123

session 1-5

xml_api_common.xsd 14-136

xml_api_protocol.xsd 14-136

xml_response_parts debug type 16-168

xml_to_html_table.pm file 16-181

xml_to_html_table.xsl file 16-181

xml agent tty CLI command 13-129
IN-9
Cisco IOS XR XML API Guide

Index
xml debug type 16-168

XML mapping tags 12-127

XML request

receiving 13-130

sending 13-130

XML schemas 14-135
IN-10
Cisco IOS XR XML API Guide
OL-24657-01

	Cisco IOS XR XML API Guide
	Preface
	Changes to This Document
	Obtaining Documentation and Submitting a Service Request

	Cisco XML API Overview
	Introduction
	Definition of Terms

	Cisco Management XML Interface
	Cisco XML API and Router System Features
	Cisco XML API Tags
	Basic XML Request Content
	Top-Level Structure

	XML Declaration Tag
	Request and Response Tags
	ResultSummary Tag
	Maximum Request Size
	Minimum Response Content

	Operation Type Tags
	Native Data Operation Tags
	Configuration Services Operation Tags
	CLI Operation Tag
	GetNext Operation Tag
	Alarm Operation Tags

	XML Request Batching

	Cisco XML Router Configuration and Management
	Target Configuration Overview
	Configuration Operations
	Locking the Running Configuration
	Browsing the Target or Running Configuration
	Getting Configuration Data

	Browsing the Changed Configuration
	Loading the Target Configuration
	Setting the Target Configuration Explicitly
	Saving the Target Configuration
	Committing the Target Configuration
	Commit Operation
	Commit Errors
	Loading a Failed Configuration

	Unlocking the Running Configuration

	Additional Router Configuration and Management Options Using XML
	Getting Commit Changes
	Loading Commit Changes
	Clearing a Target Session
	Rolling Back Configuration Changes to a Specified Commit Identifier
	Rolling Back the Trial Configuration Changes Before the Trial Time Expires
	Rolling Back Configuration Changes to a Specified Number of Commits
	Getting Rollback Changes
	Loading Rollback Changes
	Getting Configuration History
	Getting Configuration Commit List
	Getting Configuration Session Information
	Clear Configuration Session
	Replacing the Current Running Configuration
	Clear Configuration Inconsistency Alarm

	Cisco XML Operational Requests and Fault Management
	Operational Get Requests
	Action Requests
	Cisco XML and Fault Management
	Configuration Change Notification

	Cisco XML and Native Data Operations
	Native Data Operation Content
	Request Type Tag and Namespaces
	Object Hierarchy
	Main Hierarchy Structure

	Dependencies Between Configuration Items
	Null Value Representations
	Operation Triggering
	Native Data Operation Examples
	Set Configuration Data Request: Example
	Get Request: Example
	Get Request of Nonexistent Data: Example
	Delete Request: Example
	GetDataSpaceInfo Request Example

	Cisco XML and Native Data Access Techniques
	Available Set of Native Data Access Techniques
	XML Request for All Configuration Data
	XML Request for All Configuration Data per Component
	XML Request for All Data Within a Container
	XML Request for Specific Data Items
	XML Request with Combined Object Class Hierarchies
	XML Request Using Wildcarding (Match Attribute)
	XML Request for Specific Object Instances (Repeated Naming Information)
	XML Request Using Operation Scope (Content Attribute)
	Limiting the Number of Table Entries Returned (Count Attribute)
	Custom Filtering (Filter Element)
	XML Request Using the Mode Attribute

	Cisco XML and Encapsulated CLI Operations
	XML CLI Command Tags
	CLI Command Limitations

	Cisco XML and Large Data Retrieval
	Iterators
	Usage Guidelines
	Examples Using Iterators to Retrieve Data
	Large Response Division
	Terminating an Iterator

	Throttling
	CPU Throttle Mechanism
	Memory Throttle Mechanism

	Streaming
	Usage Guidelines

	Cisco XML Security
	Authentication
	Authorization
	Retrieving Task Permissions
	Task Privileges
	Task Names
	Authorization Failure
	Management Plane Protection
	Inband Traffic
	Out-of-Band Traffic

	VRF
	Access Control List

	Cisco XML Schema Versioning
	Major and Minor Version Numbers
	Run-Time Use of Version Information
	Placement of Version Information
	Version Lag with the AllowVersionMisMatch Attribute Set as TRUE
	Version Lag with the AllowVersionMismatch Attribute Set as FALSE
	Version Creep with the AllowVersionMisMatch Attribute Set as TRUE
	Version Creep with the AllowVersionMisMatch Attribute Set as FALSE

	Retrieving Version Information
	Retrieving Schema Detail

	Alarms
	Alarm Registration
	Alarm Deregistration
	Alarm Notification

	Error Reporting in Cisco XML Responses
	Types of Reported Errors
	Error Attributes
	Transport Errors
	XML Parse Errors
	XML Schema Errors
	Operation Processing Errors
	Error Codes and Messages

	Summary of Cisco XML API Configuration Tags
	XML Transport and Event Notifications
	TTY-Based Transports
	Enabling the TTY XML Agent
	Enabling a Session from a Client
	Sending XML Requests and Receiving Responses
	Configuring Idle Session Timeout
	Ending a Session
	Errors That Result in No XML Response Being Produced

	Dedicated Connection Based Transports
	Enabling the Dedicated XML Agent
	Enabling a Session from a Client
	Sending XML Requests and Receiving Responses
	Configuring Idle Session Timeout
	Ending a Session
	Errors That Result in No XML Response Being Produced

	SSL Dedicated Connection based Transports
	Enabling the SSL Dedicated XML Agent
	Enabling a Session from a Client
	Sending XML Requests and Receiving Responses
	Configuring Idle Session Timeout
	Ending a Session
	Errors That Result in No XML Response Being Produced

	Cisco XML Schemas
	XML Schema Retrieval
	Common XML Schemas
	Component XML Schemas
	Schema File Organization
	Schema File Upgrades

	Network Configuration Protocol
	Starting a NETCONF Session
	Ending a NETCONF Agent Session
	Starting an SSH NETCONF Session
	Ending an SSH NETCONF Agent Session
	Configuring a NETCONF agent
	Limitations of NETCONF in Cisco IOS XR
	Configuration Datastores
	Configuration Capabilities
	Transport (RFC4741 and RFC4742)
	Subtree Filtering (RFC4741)
	Protocol Operations (RFC4741)
	Event Notifications (RFC5277)

	Cisco IOS XR Perl Scripting Toolkit
	Cisco IOS XR Perl Scripting Toolkit Concepts
	Security Implications for the Cisco IOS XR Perl Scripting Toolkit
	Prerequisites for Installing the Cisco IOS XR Perl Scripting Toolkit
	Installing the Cisco IOS XR Perl Scripting Toolkit
	Using the Cisco IOS XR Perl XML API in a Perl Script
	Handling Types of Errors for the Cisco IOS XR Perl XML API
	Starting a Management Session on a Router
	Closing a Management Session on a Router
	Sending an XML Request to the Router
	Using Response Objects
	Using the Error Objects
	Using the Configuration Services Methods
	Using the Cisco IOS XR Perl Data Object Interface
	Understanding the Perl Data Object Documentation
	Generating the Perl Data Object Documentation
	Creating Data Objects
	Specifying the Schema Version to Use When Creating a Data Object
	Using Data Operation Methods on a Data Object
	get_data Method
	find_data Method
	get_keys Method
	get_entries Method
	set_data Method
	delete_data Method

	Using the Batching API
	batch_start Method
	batch_send Method

	Displaying Data and Keys Returned by the Data Operation Methods
	Specifying the Session to Use for the Data Operation Methods

	Cisco IOS XR Perl Notification and Alarm API
	Registering for Alarms
	Deregistering an Existing Alarm Registration
	Deregistering All Registration on a Particular Session
	Receiving an Alarm on a Management Session

	Using the Debug and Logging Facilities
	Debug Facility Overview
	Logging Facility Overview

	Examples of Using the Cisco IOS XR Perl XML API
	Configuration Examples
	Setting the IP Address of an Interface
	Configuring a Simple BGP Neighbor
	Adding a List of Neighbors to a BGP Neighbor Group
	Displaying the Members of Each BGP Neighbor Group
	Setting Up ISIS on an Interface
	Finding the Circuit Type That is Currently Configured for an Interface for ISIS
	Configuring a New Instance, Area, and Interface for OSPF
	Getting a List of the Usernames That are Configured on the Router
	Finding the IP Address of All Interfaces That Have IP Configured
	Adding an Entry to the Access Control List
	Denying Access to a Set of Interfaces from a Particular IP Address
	Configuring a New Static Route Entry

	Operational Examples
	Retrieving the Operational Information for All Interfaces on the Router
	Retrieving the Link State Database for a Particular Level for ISIS
	Getting a List of All Interfaces on the System
	Retrieving the Combined Interface and IP Information for Each Interface
	Listing the Hostname and Interface for Each ISIS Neighbor
	Recreating the Output of the show ip interfaces CLI Command
	Producing a Textual Output Similar to the show bgp neighbors CLI Command
	Displaying Tabular XML Data in a Generic HTML Table Using XSLT
	Displaying the Interface State in a Customized HTML Table
	Displaying the BGP Neighbor Operational Data in a Complex HTML Format
	Performing Actions Whenever Certain Events Occur

	Sample BGP Configuration
	Index

