cisco.

Multitopology Routing Configuration Guide, Cisco IOS XE Gibraltar 16.11.x

First Published: 2013-03-29 **Last Modified:** 2019-04-17

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com go trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2013 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1 Read Me First 1

CHAPTER 2 BGP Support for MTR 3

Finding Feature Information 3
Prerequisites for BGP Support for MTR 3
Restrictions for BGP Support for MTR 4
Information About BGP Support for MTR 4
Routing Protocol Support for MTR 4
BGP Network Scope 5
MTR CLI Hierarchy Under BGP 5
BGP Sessions for Class-Specific Topologies 6
Topology Translation Using BGP 6
Topology Import Using BGP 6
How to Configure BGP Support for MTR 6
Activating an MTR Topology by Using BGP 6
What to Do Next 10
Importing Routes from an MTR Topology by Using BGP 10
Configuration Examples for BGP Support for MTR 12
Example: BGP Topology Translation Configuration 12
Example: BGP Global Scope and VRF Configuration 13
Examples: BGP Topology Verification 13
Example: Importing Routes from an MTR Topology by Using BGP 14
Additional References 15
Feature Information for BGP Support for MTR 15

CHAPTER 3 IS-IS Support for MTR 17

Finding Feature Information 17
Prerequisites for IS-IS Support for MTR 17
Restrictions for IS-IS Support for MTR 18
Information About IS-IS Support for MTR 18
Routing Protocol Support for MTR 18
Interface Configuration Support for MTR 19
How to Configure IS-IS Support for MTR 19
Activating an MTR Topology by Using IS-IS 19
What to Do Next 21
Activating an MTR Topology in Interface Configuration Mode by Using IS-IS 21
Monitoring Interface and Topology IP Traffic Statistics for MTR 22
Configuration Examples for IS-IS Support for MTR 24
Example: Activating an MTR Topology by Using IS-IS 24
Example: MTR IS-IS Topology in Interface Configuration Mode 25
Additional References 26
Feature Information for IS-IS Support for MTR 26

CHAPTER 4

MTR in VRF 29

	Finding Feature Information 29
	Information About MTR in VRF 29
	MTR in VRF Overview 29
	How to Configure VRF in MTR 30
	Configuring MTR in VRF 30
	Configuring Examples for MTR in VRF 32
	Example for MTR in VRF 32
	Additional References for MTR in VRF 33
	Feature Information for MTR in VRF 33
CHAPTER 5	Knob for Ping and Traceroute with VRF to Choose Global DNS Server 35
	Finding Feature Information 35

Prerequisites for Knob for Ping and Traceroute with VRF to Choose Global DNS Server 35
Information About Knob for Ping and Traceroute with VRF to Choose Global DNS Server 36
Overview of Knob for Ping and Traceroute with VRF to Choose Global DNS Server 36
How to Configure Knob for Ping and Traceroute with VRF to Choose Global DNS Server 36

Configuring a Knob for Ping and Traceroute with VRF to Choose Global DNS Server 36

Configuration Examples for Knob for Ping and Traceroute with VRF to Choose Global DNS Server **37**

Example: Knob for Ping and Traceroute with VRF to Choose Global DNS Server 37

Additional References for Knob for Ping and Traceroute with VRF to Choose Global DNS Server 37

Feature Information for Knob for Ping and Traceroute with VRF to Choose Global DNS Server 38

Contents

Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E for Catalyst Switching and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

I

BGP Support for MTR

The BGP Support for MTR feature provides Border Gateway Protocol (BGP) support for multiple logical topologies over a single physical network. This module describes how to configure BGP for Multitopology Routing (MTR).

- Finding Feature Information, on page 3
- Prerequisites for BGP Support for MTR, on page 3
- Restrictions for BGP Support for MTR, on page 4
- Information About BGP Support for MTR, on page 4
- How to Configure BGP Support for MTR, on page 6
- Configuration Examples for BGP Support for MTR, on page 12
- Additional References, on page 15
- Feature Information for BGP Support for MTR, on page 15

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see **Bug Search** Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for BGP Support for MTR

- Be familiar with all the concepts in the "Information About BGP Support for MTR" section.
- Configure and activate a global Multitopology Routing (MTR) topology configuration.

Restrictions for BGP Support for MTR

- Redistribution within a topology is permitted. Redistribution from one topology to another is not permitted. This restriction is designed to prevent routing loops. You can use topology translation or topology import functionality to move routes from one topology to another.
- Only a single multicast topology can be configured, and only the base topology can be specified if a multicast topology is created.

Information About BGP Support for MTR

Routing Protocol Support for MTR

You must enable IP routing on the device for Multitopology Routing (MTR) to operate. MTR supports static and dynamic routing in Cisco software. You can enable dynamic routing per topology to support interdomain and intradomain routing. Route calculation and forwarding are independent for each topology. MTR support is integrated into Cisco software for the following protocols:

- Border Gateway Protocol (BGP)
- Integrated Intermediate System-to-Intermediate System (IS-IS)

You apply the per-topology configuration in router address family configuration mode of the global routing process (router configuration mode). The address family and subaddress family are specified when the device enters address family configuration mode. You specify the topology name and topology ID by entering the **topology** command in address family configuration mode.

You configure each topology with a unique topology ID under the routing protocol. The topology ID is used to identify and group Network Layer Reachability Information (NLRI) for each topology in updates for a given protocol. In OSPF, EIGRP, and IS-IS, you enter the topology ID during the first configuration of the **topology** command for a class-specific topology. In BGP, you configure the topology ID by entering the **bgp** tid command under the topology configuration.

You can configure class-specific topologies with different metrics than the base topology. Interface metrics configured on the base topology can be inherited by the class-specific topology. Inheritance occurs if no explicit inheritance metric is configured in the class-specific topology.

You configure BGP support only in router configuration mode. You configure Interior Gateway Protocol (IGP) support in router configuration mode and in interface configuration mode.

By default, interfaces are not included in nonbase topologies. For routing protocol support for EIGRP, IS-IS, and OSPF, you must explicitly configure a nonbase topology on an interface. You can override the default behavior by using the **all-interfaces** command in address family topology configuration mode. The **all-interfaces** command causes the nonbase topology to be configured on all interfaces of the device that are part of the default address space or the virtual routing and forwarding (VRF) instance in which the topology is configured.

BGP Network Scope

To implement Border Gateway Protocol (BGP) support for Multitopology Routing (MTR), the scope hierarchy is required, but the scope hierarchy is not limited to MTR use. The scope hierarchy introduces new configuration modes such as router scope configuration mode. The device enters router scope configuration mode when you configure the **scope** command in router configuration mode. When this command is entered, a collection of routing tables is created.

You configure BGP commands under the scope hierarchy for a single network (globally), or on a per-virtual routing and forwarding (VRF) basis; these configurations are referred to as scoped commands. The scope hierarchy can contain one or more address families.

MTR CLI Hierarchy Under BGP

The Border Gateway Protocol (BGP) CLI provides backward compatibility for pre-Multitopology Routing (MTR) BGP configuration and provides a hierarchical implementation of MTR. Router configuration mode is backward compatible with the pre-address family and pre-MTR configuration CLI. Global commands that affect all networks are configured in this configuration mode. For address family and topology configuration, you configure general session commands and peer templates to be used in address family configuration mode or in topology configuration mode.

After configuring any global commands, you define the scope either globally or for a specific virtual routing and forwarding (VRF) instance. The device enters address family configuration mode when you configure the **address-family** command in router scope configuration mode or in router configuration mode. Unicast is the default address family if no subaddress family identifier (SAFI) is specified. MTR supports only the IPv4 address family with a SAFI of unicast or multicast.

When the device enters address family configuration mode from router configuration mode, the software configures BGP to use pre-MTR-based CLI. This configuration mode is backward compatible with pre-existing address family configurations. Entering address family configuration mode from router scope configuration mode configures the device to use the hierarchical CLI that supports MTR. Address family configuration parameters that are not specific to a topology are entered in this address family configuration mode.

The device enters BGP topology configuration mode when you configure the **topology** command in address family configuration mode. You can configure up to 32 topologies (including the base topology) on a device. You configure the topology ID by entering the **bgp tid** command. All address family and subaddress family configuration parameters for the topology are configured here.

Note

Configuring a scope for a BGP routing process removes CLI support for pre-MTR-based configuration.

The following example shows the hierarchy levels that are used when you configure BGP for MTR implementation:

```
router bgp <autonomous-system-number>
! Global commands
scope {global | vrf <vrf-name>}
! Scoped commands
address-family {<afi>} [<safi>]
! Address family specific commands
```

topology {<topology-name> | base}
 topology specific commands

BGP Sessions for Class-Specific Topologies

Multitopology Routing (MTR) is configured under the Border Gateway Protocol (BGP) on a per-session basis. The base unicast and multicast topologies are carried in the global (default) session. A separate session is created for each class-specific topology that is configured under a BGP routing process. Each session is identified by its topology ID. BGP performs a best-path calculation individually for each class-specific topology. A separate Routing Information Base (RIB) and Forwarding Information Base (FIB) are maintained for each session.

Topology Translation Using BGP

Depending on the design and policy requirements for your network, you might need to install routes from a class-specific topology on one device in a class-specific topology on a neighboring device. Topology translation functionality using the Border Gateway Protocol (BGP) provides support for this operation. Topology translation is BGP neighbor-session based. You configure the **neighbor translate-topology** command by using the IP address and topology ID from the neighbor.

The topology ID identifies the class-specific topology of the neighbor. The routes in the class-specific topology of the neighbor are installed in the local class-specific Routing Information Base (RIB). BGP performs a best-path calculation on all installed routes and installs these routes into the local class-specific RIB. If a duplicate route is translated, BGP selects and installs only one instance of the route per standard BGP best-path calculation behavior.

Topology Import Using BGP

Importing topologies using the Border Gateway Protocol (BGP) is similar to topology translation. The difference is that routes are moved between class-specific topologies on the same device. You configure this function by entering the **import topology** command and specify the name of the class-specific topology or base topology. Best-path calculations are run on the imported routes before they are installed into the topology Routing Information Base (RIB). This **import topology** command also includes a **route-map** keyword to allow you to filter routes that are moved between class-specific topologies.

How to Configure BGP Support for MTR

Activating an MTR Topology by Using BGP

Perform this task to activate a Multitopology Routing (MTR) topology inside an address family by using the Border Gateway Protocol (BGP). This task is configured on Device B in the figure below and must also be configured on Device D and Device E. In this task, a scope hierarchy is configured to apply globally, and a neighbor is configured in router scope configuration mode. Under the IPv4 unicast address family, an MTR topology that applies to video traffic is activated for the specified neighbor. There is no interface configuration mode for BGP topologies.

Figure 1: BGP Network Diagram

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. router bgp** *autonomous-system-number*
- 4. scope {global | vrf vrf-name}
- 5. neighbor {ip-address | peer-group-name} remote-as autonomous-system-number
- 6. neighbor {*ip-address* | *peer-group-name*} transport {connection-mode {active | passive} | path-mtu-discovery | multi-session | single-session}
- 7. address-family ipv4 [mdt | multicast | unicast]
- **8. topology** {**base** | *topology-name*}
- **9. bgp tid** *number*
- **10.** neighbor *ip-address* activate
- 11. neighbor {ip-address | peer-group-name} translate-topology number
- 12. end
- **13.** clear ip bgp topology {* | topology-name} {as-number | dampening [network-address [network-mask]] | flap-statistics [network-address [network-mask]] | peer-group peer-group-name | table-map | update-group [number | ip-address]} [in [prefix-filter] | out | soft [in [prefix-filter] | out]]
- **14.** show ip bgp topology {* | topology} summary

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	

	Command or Action	Purpose
	Device> enable	
Step 2	<pre>configure terminal Example: Device# configure terminal</pre>	Enters global configuration mode.
Step 3	router bgp autonomous-system-number Example: Device (config) # router bgp 45000	Enters router configuration mode to create or configure a BGP routing process.
Step 4	<pre>scope {global vrf vrf-name} Example: Device(config-router)# scope global</pre>	 Defines the scope for the BGP routing process and enters router scope configuration mode. BGP general session commands that apply to a single network, or a specified virtual and routing forwarding (VRF) instance, are entered in this configuration mode. Use the global keyword to specify that BGP uses the global routing table. Use the vrf vrf-name keyword and argument to specify that BGP uses a specific VRF routing table. The VRF must already exist.
Step 5	neighbor {ip-address peer-group-name} remote-as autonomous-system-number Example: Device(config-router-scope)# neighbor 172.16.1.2 remote-as 45000	Adds the IP address of the neighbor in the specified autonomous system to the multiprotocol BGP neighbor table of the local device.
Step 6	<pre>neighbor {ip-address peer-group-name} transport {connection-mode {active passive} path-mtu-discovery multi-session single-session} Example: Device (config-router-scope) # neighbor 172.16.1.2 transport multi-session</pre>	 Enables a TCP transport session option for a BGP session. Use the connection-mode keyword to specify the type of connection, either active or passive. Use the path-mtu-discovery keyword to enable the TCP transport path maximum transmission unit (MTU) discovery. Use the multi-session keyword to specify a separate TCP transport session for each address family. Use the single-session keyword to specify that all address families use a single TCP transport session.
Step 7	address-family ipv4 [mdt multicast unicast] Example:	Specifies the IPv4 address family and enters router scope address family configuration mode.

I

	Command or Action	Purpose	
	Device(config-router-scope)# address-family ipv4	• Use the mdt keyword to specify IPv4 multicast distribution tree (MDT) address prefixes.	
		• Use the multicast keyword to specify IPv4 multicast address prefixes.	
		• Use the unicast keyword to specify the IPv4 unicast address family. By default, the device is placed in address family configuration mode for the IPv4 unicast address family if the unicast keyword is not specified with the address-family ipv4 command.	
		• Nontopology-specific configuration parameters are configured in this configuration mode.	
Step 8	topology {base topology-name} Example:	Configures the topology instance in which BGP routes class-specific or base topology traffic, and enters router scope address family topology configuration mode.	
	<pre>Device(config-router-scope-af)# topology VIDEO</pre>		
Step 9	bgp tid number	Associates a BGP routing process with the specified topology ID.	
	Device(config-router-scope-af-topo)# bgp tid 100	• Each topology must be configured with a unique topology ID.	
Step 10	neighbor <i>ip-address</i> activate Example:	Enables the BGP neighbor to exchange prefixes for the network service access point (NSAP) address family with the local device.	
	Device(config-router-scope-af-topo)# neighbor 172.16.1.2 activate	Note If you have configured a peer group as a BGP neighbor, do not use this command because peer groups are automatically activated when any peer group parameter is configured.	
Step 11	<pre>neighbor {ip-address peer-group-name} translate-topology number Example: Device(config-router-scope-af-topo)# neighbor 172.16.1.2 translate-topology 200</pre>	 (Optional) Configures BGP to install routes from a topology on another device to a topology on the local device. The topology ID is entered for the <i>number</i> argument to identify the topology on the device. 	
Step 12	end Example:	(Optional) Exits router scope address family topology configuration mode and returns to privileged EXEC mode.	
	Device(config-router-scope-af-topo)# end		
Step 13	clear ip bgp topology {* topology-name} {as-number dampening [network-address [network-mask]] flap-statistics [network-address [network-mask]]	Resets BGP neighbor sessions under a specified topology or all topologies.	

	Command or Action	Purpose
	<pre>peer-group peer-group-name table-map update-group [number ip-address]} [in [prefix-filter] out soft [in [prefix-filter] out]]</pre>	
	Example:	
	Device# clear ip bgp topology VIDEO 45000	
Step 14	<pre>show ip bgp topology {* topology} summary</pre>	(Optional) Displays BGP information about a topology.
	Example:	• Most standard BGP keywords and arguments can be entered following the topology keyword.
	Device# show ip bgp topology VIDEO summary	
		Note Only the syntax required for this task is shown. For more details, see the <i>Cisco IOS IP Routing:</i> <i>BGP Command Reference.</i>

What to Do Next

Repeat this task for every topology that you want to enable, and repeat this configuration on all neighbor devices that are to use the topologies.

If you want to import routes from one Multitopology Routing (MTR) topology to another on the same device, see the "Importing Routes from an MTR Topology by Using BGP" section.

Importing Routes from an MTR Topology by Using BGP

Perform this task to import routes from one Multitopology Routing (MTR) topology to another on the same device, when multiple topologies are configured on the same device. In this task, a prefix list is defined to permit prefixes from the 10.2.2.0 network, and this prefix list is used with a route map to filter routes moved from the imported topology. A global scope is configured, address family IPv4 is entered, the VIDEO topology is specified, the VOICE topology is imported, and the routes are filtered using the route map named 10NET.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** ip prefix-list list-name [seq number] {deny | permit} network/length [ge ge-length] [le le-length]
- 4. route-map map-name [permit | deny] [sequence-number]
- **5.** match ip address {access-list-number [access-list-number ... | access-list-name...] | access-list-name [access-list-number ... | access-list-name] | prefix-list prefix-list-name [prefix-list-name...]}
- 6. exit
- 7. router bgp autonomous-system-number
- **8.** scope {global | vrf vrf-name}
- 9. address-family ipv4 [mdt | multicast | unicast]
- **10.** topology {base | topology-name}
- **11. import topology** {**base** | *topology-name*} [**route-map** *map-name*]
- 12. end

DETAILED STEPS

I

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	ip prefix-list <i>list-name</i> [seq <i>number</i>] { deny permit }	Configures an IP prefix list.
	Example:	• In this example, prefix list TEN permits advertising of the 10.2.2.0/24 prefix depending on a match set by the match in address command
	Device(config)# ip prefix-list TEN permit 10.2.2.0/24	by the match ip address command.
Step 4	<pre>route-map map-name [permit deny] [sequence-number]</pre>	Creates a route map and enters route-map configuration
	Example:	• In this example, the route map named 10NET is
	Device(config)# route-map 10NET	created.
Step 5	match ip address {access-list-number [access-list-number access-list-name] access-list-name [access-list-number access-list-name] prefix-list prefix-list-name [prefix-list-name]} Example:	 Configures the route map to match a prefix that is permitted by a standard access list, an extended access list, or a prefix list. In this example, the route map is configured to match prefixes permitted by prefix list TEN.
	Device(config-route-map)# match ip address prefix-list TEN	
Step 6	exit	Exits route-map configuration mode and returns to global
	Example:	configuration mode.
	<pre>Device(config-route-map)# exit</pre>	
Step 7	router bgp autonomous-system-number	Enters router configuration mode to create or configure a
	Example:	Border Gateway Protocol (BGP) routing process.
	Device(config)# router bgp 50000	
Step 8	<pre>scope {global vrf vrf-name}</pre>	Defines the scope to the BGP routing process and enters
	Example: Device(config-router)# scope global	 BGP general session commands that apply to a single network, or a specified virtual routing and forwarding

	Command or Action	Purpose
		 (VRF) instance, are entered in this configuration mode. Use the global keyword to specify that BGP uses the global routing table. Use the vrf <i>vrf-name</i> keyword and argument to specify that BGP uses a specific VRF routing table. The VRF must already exist.
Step 9	<pre>address-family ipv4 [mdt multicast unicast] Example: Device(config-router-scope)# address-family ipv4</pre>	 Enters router scope address family configuration mode to configure an address family session under BGP. Nontopology-specific configuration parameters are configured in this configuration mode.
Step 10	<pre>topology {base topology-name} Example: Device(config-router-scope-af)# topology VIDEO</pre>	Configures the topology instance in which BGP routes class-specific or base topology traffic, and enters router scope address family topology configuration mode.
Step 11	<pre>import topology {base topology-name} [route-map map-name] Example: Device (config-router-scope-af-topo) # import topology VOICE route-map 10NET</pre>	 (Optional) Configures BGP to move routes from one topology to another on the same device. The route-map keyword can be used to filter routes that moved between topologies.
Step 12	end Example: Device(config-router-scope-af-topo)# end	(Optional) Exits router scope address family topology configuration mode and returns to privileged EXEC mode.

Configuration Examples for BGP Support for MTR

Example: BGP Topology Translation Configuration

The following example shows how to configure the Border Gateway Protocol (BGP) in the VIDEO topology and how to configure topology translation with the 192.168.2.2 neighbor:

```
router bgp 45000
scope global
neighbor 172.16.1.1 remote-as 50000
neighbor 192.168.2.2 remote-as 55000
neighbor 172.16.1.1 transport multi-session
neighbor 192.168.2.2 transport multi-session
address-family ipv4
topology VIDEO
```

```
bgp tid 100
neighbor 172.16.1.1 activate
neighbor 192.168.2.2 activate
neighbor 192.168.2.2 translate-topology 200
end
clear ip bgp topology VIDEO 50000
```

Example: BGP Global Scope and VRF Configuration

The following example shows how to configure a global scope for a unicast topology and also for a multicast topology. After the device exits the router scope configuration mode, a scope is configured for the virtual routing and forwarding (VRF) instance named DATA.

```
router bgp 45000
scope global
 bgp default ipv4-unicast
 neighbor 172.16.1.2 remote-as 45000
 neighbor 192.168.3.2 remote-as 50000
 address-family ipv4 unicast
  topology VOICE
  bgp tid 100
  neighbor 172.16.1.2 activate
  exit
 address-family ipv4 multicast
  topology base
   neighbor 192.168.3.2 activate
   exit
  exit.
 exit
scope vrf DATA
 neighbor 192.168.1.2 remote-as 40000
 address-family ipv4
  neighbor 192.168.1.2 activate
  end
```

Examples: BGP Topology Verification

The following example shows summary output for the **show ip bgp topology** command. Information is displayed about Border Gateway Protocol (BGP) neighbors configured to use the Multitopology Routing (MTR) topology named VIDEO.

Device# show ip bgp topology VIDEO summary BGP router identifier 192.168.3.1, local AS number 45000 BGP table version is 1, main routing table version 1 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 289 4 45000 289 1 0 0 04:48:44 172.16.1.2 0 4 50000 3 1 0 0 00:00:27 0 192.168.3.2 3

The following partial output displays BGP neighbor information under the VIDEO topology:

Device# show ip bgp topology VIDEO neighbors 172.16.1.2

```
BGP neighbor is 172.16.1.2, remote AS 45000, internal link
BGP version 4, remote router ID 192.168.2.1
BGP state = Established, up for 04:56:30
Last read 00:00:23, last write 00:00:21, hold time is 180, keepalive interval is 60
seconds
```

```
Neighbor sessions:
   1 active, is multisession capable
  Neighbor capabilities:
   Route refresh: advertised and received (new)
  Message statistics, state Established:
   InQ depth is 0
   OutQ depth is 0
                       Sent
                                  Rcvd
   Opens:
                         1
                                   1
                                     0
                          0
0
   Notifications:
   Updates:
Keepalives:
Route Refresh:
                                     0
                       296
                                    296
                         0
                                    0
                                  297
                        297
   Total:
 Default minimum time between advertisement runs is 0 seconds
 For address family: IPv4 Unicast topology VIDEO
  Session: 172.16.1.2 session 1
  BGP table version 1, neighbor version 1/0
  Output queue size : 0
  Index 1, Offset 0, Mask 0x2
1 update-group member
  Topology identifier: 100
 Address tracking is enabled, the RIB does have a route to 172.16.1.2
 Address tracking requires at least a /24 route to the peer
  Connections established 1; dropped 0
  Last reset never
 Transport(tcp) path-mtu-discovery is enabled
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Minimum incoming TTL 0, Outgoing TTL 255
Local host: 172.16.1.1, Local port: 11113
Foreign host: 172.16.1.2, Foreign port: 179
```

Example: Importing Routes from an MTR Topology by Using BGP

The following example shows how to configure an access list to be used by a route map named VOICE to filter routes imported from the Multitopology Routing (MTR) topology named VOICE. Only routes with the prefix 192.168.1.0 are imported.

```
access-list 1 permit 192.168.1.0 0.0.0.255
route-map BLUE
match ip address 1
exit
router bgp 50000
scope global
 neighbor 10.1.1.2 remote-as 50000
  neighbor 172.16.1.1 remote-as 60000
  address-family ipv4
   topology VIDEO
    bgp tid 100
    neighbor 10.1.1.2 activate
     neighbor 172.16.1.1 activate
     import topology VOICE route-map VOICE
    end
clear ip bgp topology VIDEO 50000
```

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
Multitopology Routing (MTR) commands	Cisco IOS Multitopology Routing Command Reference
Border Gateway Protocol (BGP) commands	Cisco IOS IP Routing: BGP Command Reference
BGP concepts and tasks	<i>IP Routing: BGP Configuration Guide</i>

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for BGP Support for MTR

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

I

Feature Name	Releases	Feature Information
BGP Support for MTR	12.2(33)SRB 15.0(1)S	This feature provides Border Gateway Protocol (BGP) support for multiple logical topologies over a single physical network.
		In Cisco IOS XE Release 2.5, support was added for the Cisco ASR 1000 Series Routers.
		The following commands were introduced or modified: address-family ipv4, bgp tid, clear ip bgp topology, import topology, neighbor translate-topology, neighbor transport, scope, show ip bgp topology, topology.

Table 1: Feature Information for BGP Support for MTR

IS-IS Support for MTR

The IS-IS Support for MTR feature provides Intermediate System-to-Intermediate System (IS-IS) support for multiple logical topologies over a single physical network. This module describes how to configure IS-IS for Multitopology Routing (MTR) for both unicast and multicast topologies.

- Finding Feature Information, on page 17
- Prerequisites for IS-IS Support for MTR, on page 17
- Restrictions for IS-IS Support for MTR, on page 18
- Information About IS-IS Support for MTR, on page 18
- How to Configure IS-IS Support for MTR, on page 19
- Configuration Examples for IS-IS Support for MTR, on page 24
- Additional References, on page 26
- Feature Information for IS-IS Support for MTR, on page 26

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see **Bug Search** Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IS-IS Support for MTR

- Be familiar with the concepts in the "Routing Protocol Support for MTR" section.
- Configure and activate a global topology configuration.
- You must configure a multicast topology before activating the Intermediate System-to-Intermediate System (IS-IS) protocol in the multicast topology. For details, see the "MTR support for Multicast" feature module.
- Activate a Multitopology Routing (MTR) topology on an IS-IS device.

• Configure the MTR topology to globally configure all interfaces by using the **all-interfaces** address family topology configuration command, or configure the IS-IS topology in interface configuration mode to configure only IS-IS interfaces. The order in which you perform the two tasks does not matter.

Restrictions for IS-IS Support for MTR

Only the IPv4 address family (multicast and unicast) and IPv6 address family unicast are supported. For information about configuring Multitopology IS-IS for IPv6, see the *IS-IS Configuration Guide*.

Information About IS-IS Support for MTR

Routing Protocol Support for MTR

You must enable IP routing on the device for Multitopology Routing (MTR) to operate. MTR supports static and dynamic routing in Cisco software. You can enable dynamic routing per topology to support interdomain and intradomain routing. Route calculation and forwarding are independent for each topology. MTR support is integrated into Cisco software for the following protocols:

- Border Gateway Protocol (BGP)
- Integrated Intermediate System-to-Intermediate System (IS-IS)

You apply the per-topology configuration in router address family configuration mode of the global routing process (router configuration mode). The address family and subaddress family are specified when the device enters address family configuration mode. You specify the topology name and topology ID by entering the **topology** command in address family configuration mode.

You configure each topology with a unique topology ID under the routing protocol. The topology ID is used to identify and group Network Layer Reachability Information (NLRI) for each topology in updates for a given protocol. In OSPF, EIGRP, and IS-IS, you enter the topology ID during the first configuration of the **topology** command for a class-specific topology. In BGP, you configure the topology ID by entering the **bgp** tid command under the topology configuration.

You can configure class-specific topologies with different metrics than the base topology. Interface metrics configured on the base topology can be inherited by the class-specific topology. Inheritance occurs if no explicit inheritance metric is configured in the class-specific topology.

You configure BGP support only in router configuration mode. You configure Interior Gateway Protocol (IGP) support in router configuration mode and in interface configuration mode.

By default, interfaces are not included in nonbase topologies. For routing protocol support for EIGRP, IS-IS, and OSPF, you must explicitly configure a nonbase topology on an interface. You can override the default behavior by using the **all-interfaces** command in address family topology configuration mode. The **all-interfaces** command causes the nonbase topology to be configured on all interfaces of the device that are part of the default address space or the virtual routing and forwarding (VRF) instance in which the topology is configured.

Interface Configuration Support for MTR

The configuration of a Multitopology Routing (MTR) topology in interface configuration mode allows you to enable or disable MTR on a per-interface basis. By default, a class-specific topology does not include any interfaces.

You can include or exclude individual interfaces by configuring the **topology** interface configuration command. You specify the address family and the topology (base or class-specific) when entering this command. The subaddress family can be specified. If no subaddress family is specified, the unicast subaddress family is used by default.

You can include globally all interfaces on a device in a topology by entering the **all-interfaces** command in routing topology configuration mode. Per-interface topology configuration applied with the **topology** command overrides global interface configuration.

The interface configuration support for MTR has these characteristics:

- Per-interface routing configuration: Interior Gateway Protocol (IGP) routing and metric configurations can be applied in interface topology configuration mode. Per-interface metrics and routing behaviors can be configured for each IGP.
- Open Shortest Path First (OSPF) interface topology configuration: Interface mode OSPF configurations for a class-specific topology are applied in interface topology configuration mode. In this mode, you can configure an interface cost or disable OSPF routing without removing the interface from the global topology configuration.
- Enhanced Interior Gateway Routing Protocol (EIGRP) interface topology configuration: Interface mode EIGRP configurations for a class-specific topology are applied in interface topology configuration mode. In this mode, you can configure various EIGRP features.
- Intermediate System-to-Intermediate System (IS-IS) interface topology configuration: Interface mode IS-IS configurations for a class-specific topology are applied in interface topology configuration mode. In this mode, you can configure an interface cost or disable IS-IS routing without removing the interface from the global topology configuration.

How to Configure IS-IS Support for MTR

Activating an MTR Topology by Using IS-IS

Only Multitopology Routing (MTR) commands are shown in this task.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. router isis [area-tag]
- 4. net network-entity-title
- 5. metric-style wide [transition] [level-1 | level-2 | level-1-2]

- 6. address-family ipv4 [multicast | unicast]
- 7. topology topology-name tid number
- 8. end
- 9. show isis neighbors detail

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router isis [area-tag]	Enables the Intermediate System-to-Intermediate System
	Example:	(IS-IS) routing protocol and optionally specifies an IS-IS process.
	Device(config)# router isis	• Enters router configuration mode.
Step 4	net network-entity-title	Configures an IS-IS network entity title (NET) for a
	Example:	Connectionless Network Service (CLNS) routing process.
	Device(config-router)# net 31.3131.3131.3131.00	
Step 5	metric-style wide [transition] [level-1 level-2 level-1-2]	Globally changes the metric value for all IS-IS interfaces.
	Example:	Note Wide style metrics are required for prefix
	Device(config-router)# metric-style wide	tagging.
Step 6	address-family ipv4 [multicast unicast]	Enters router address family configuration mode.
	Example:	
	<pre>Device(config-router)# address-family ipv4</pre>	
Step 7	topology topology-name tid number	Configures IS-IS support for the topology and assigns a
	Example:	Topology Identifier (TID) number for each topology.
	Device(config-router-af)# topology DATA tid 100	• In this example, IS-IS support for the DATA topology is configured.
Step 8	end	Exits router address family configuration mode and returns
	Example:	to privileged EXEC mode.
	Device(config-router-af)# end	

	Command or Action	Purpose
Step 9	show isis neighbors detail	(Optional) Displays information about IS-IS neighbors,
	Example:	including MTR information for the TID values for the device and its IS-IS neighbors.
	Device# show isis neighbors detail	

What to Do Next

If a Border Gateway Protocol (BGP) topology configuration is required, see the "BGP Support for MTR" feature module.

Activating an MTR Topology in Interface Configuration Mode by Using IS-IS

Before you begin

Define a topology globally before performing the per-interface topology configuration.

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3.** interface *type number*
- 4. ip address *ip-address mask* [secondary]
- **5.** ip router isis [area-tag]
- 6. topology ipv4 [multicast | unicast] {topology-name [disable | base]}
- 7. isis topology disable
- 8. topology ipv4 [multicast | unicast] {topology-name [disable | base]}
- **9**. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	interface type number	Specifies the interface type and number, and enters interface
	Example:	configuration mode.
	<pre>Device(config)# interface Ethernet 2/0</pre>	

	Command or Action	Purpose
Step 4	ip address ip-address mask [secondary]	Sets a primary or secondary IP address for an interface.
	Example:	
	Device(config-if)# ip address 192.168.7.17 255.255.255.0	
Step 5	ip router isis [area-tag]	Configures an Intermediate System-to-Intermediate System
	Example:	an area designator to the routing process.
	Device(config-if)# ip router isis	Note If a tag is not specified, a null tag is assumed and the process is referenced with a null tag.
Step 6	topology ipv4 [multicast unicast] {topology-name [disable base]}	Configures a Multitopology Routing (MTR) topology instance on an interface and enters interface topology
	Example:	
	Device(config-if)# topology ipv4 DATA	Note In this example, the topology instance DATA is configured for an MTR network that has a global topology named DATA.
Step 7	isis topology disable	(Optional) Prevents an IS-IS process from advertising the
	Example:	interface as part of the topology.
	Device(config-if-topology)# isis topology disable	Note In this example, the topology instance DATA will not advertise the interface as part of the topology.
Step 8	topology ipv4 [multicast unicast] {topology-name	Configures an MTR topology instance on an interface.
		Note In this example, the topology instance VOICE
	Example:	is configured for an MTR network that has a global topology named VOICE
	Device(config-if-topology)# topology ipv4 VOICE	giotal topology handa + orell.
Step 9	end	Exits interface topology configuration mode and returns to
	Example:	privileged EXEC mode.
	Device(config-if-topology)# end	

Monitoring Interface and Topology IP Traffic Statistics for MTR

Use any of the following commands in any order to monitor interface and topology IP traffic statistics for Multitopology Routing (MTR).

SUMMARY STEPS

- 1. enable
- 2. show ip interface [type number] [topology {name | all | base}] [stats]

- **3.** show ip traffic [topology {*name* | all | base}]
- 4. clear ip interface type number [topology {name | all | base}] [stats]
- 5. clear ip traffic [topology {name | all | base}]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	<pre>show ip interface [type number] [topology {name all base}] [stats]</pre>	(Optional) Displays IP traffic statistics for all interfaces or statistics related to the specified interface.
	Example: Device# show ip interface FastEthernet 1/10 stats	• If you specify an interface type and number, information for that specific interface is displayed. If you specify no optional arguments, information for all the interfaces is displayed.
		• If the topology <i>name</i> keyword and argument are used, statistics are limited to the IP traffic for that specific topology.
		• The base keyword displays the IPv4 unicast base topology.
Step 3	show ip traffic [topology {name all base}] Example:	(Optional) Displays global IP traffic statistics (an aggregation of all the topologies when MTR is enabled) or statistics related to a particular topology.
	Device# show ip traffic topology VOICE	• The base keyword is reserved for the IPv4 unicast base topology.
Step 4	clear ip interface <i>type number</i> [topology { <i>name</i> all base}] [stats]	(Optional) Resets interface-level IP traffic statistics.
	Example:	• If the topology keyword and a related keyword are not used, only the interface-level aggregate statistics are reset
	Device# clear ip interface FastEthernet 1/10 topology all	 If all topologies need to be reset, use the all keyword as the topology name.
Step 5	clear ip traffic [topology {name all base}]	(Optional) Resets IP traffic statistics.
	Example:	• If no topology name is specified, global statistics are cleared.
	Device# clear ip traffic topology all	

Configuration Examples for IS-IS Support for MTR

Example: Activating an MTR Topology by Using IS-IS

The following example shows how to configure both the Multitopology Routing (MTR) topologies DATA and VIDEO and Intermediate System-to-Intermediate System (IS-IS) support for MTR. The DATA and VIDEO topologies are enabled on three IS-IS neighbors in a network.

Device 1

```
global-address-family ipv4
topology DATA
topology VOICE
end
interface Ethernet 0/0
ip address 192.168.128.2 255.255.255.0
ip router isis
 topology ipv4 DATA
isis topology disable
topology ipv4 VOICE
end
router isis
net 33.3333.3333.3333.00
metric-style wide
address-family ipv4
 topology DATA tid 100
 topology VOICE tid 200
  end
```

Device 2

```
global-address-family ipv4
topology DATA
topology VOICE
all-interfaces
 forward-base
 maximum routes 1000 warning-only
 shutdown
 end
interface Ethernet 0/0
 ip address 192.168.128.1 255.255.255.0
 ip router isis
 topology ipv4 DATA
 isis topology disable
 topology ipv4 VOICE
  end
interface Ethernet 1/0
 ip address 192.168.130.1 255.255.255.0
 ip router isis
 topology ipv4 DATA
 isis topology disable
 topology ipv4 VOICE
 end
router isis
net 32.3232.3232.3232.00
metric-style wide
```

L

```
address-family ipv4
topology DATA tid 100
topology VOICE tid 200
end
```

Device 3

```
global-address-family ipv4
topology DATA
 topology VOICE
 all-interfaces
 forward-base
 maximum routes 1000 warning-only
 shutdown
 end
interface Ethernet 1/0
ip address 192.168.131.1 255.255.255.0
ip router isis
topology ipv4 DATA
 isis topology disable
 topology ipv4 VOICE
 end
router isis
net 31.3131.3131.3131.00
metric-style wide
address-family ipv4
 topology DATA tid 100
 topology VOICE tid 200
 end
```

Entering the **show isis neighbors detail** command verifies topology translation with the IS-IS neighbor Device 1:

Device# show isis neighbors detail System Id Type Interface IP Address State Holdtime Circuit Id R1 L2 EtO/0 192.168.128.2 UP 28 R5.01 Area Address(es): 33 SNPA: aabb.cc00.1f00 State Changed: 00:07:05 LAN Priority: 64 Format: Phase V Remote TID: 100, 200 Local TID: 100, 200

Example: MTR IS-IS Topology in Interface Configuration Mode

The following example shows how to prevent the Intermediate System-to-Intermediate System (IS-IS) process from advertising interface Ethernet 1/0 as part of the DATA topology:

```
interface Ethernet 1/0
ip address 192.168.130.1 255.255.255.0
ip router isis
topology ipv4 DATA
isis topology disable
topology ipv4 VOICE
end
```

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
Multitopology Routing (MTR) commands	Cisco IOS Multitopology Routing Command Reference
Intermediate System-to-Intermediate System (IS-IS) commands	Cisco IOS IP Routing: IS-IS Command Reference
IS-IS concepts and tasks	IP Routing: IS-IS Configuration Guide
Configuring a multicast topology	"MTR Support for Multicast" feature module in the <i>Multitopology</i> <i>Routing Configuration Guide</i>
Configure Multitopology IS-IS for IPv6	IP Routing: IS-IS Configuration Guide

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for IS-IS Support for MTR

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
IS-IS Support for MTR	12.2(33)SRB Cisco IOS XE Release 2.5	 This feature provides Intermediate System-to-Intermediate System (IS-IS) support for multiple logical topologies over a single physical network. In Cisco IOS XE Release 2.5, support was added for the Cisco ASR 1000 Series Routers. The following commands were introduced or modified: address-family ipv4, isis topology disable, show isis neighbors, topology.

Table 2: Feature Information for IS-IS Support for MTR

MTR in VRF

The MTR in VRF feature extends to IPv4 VRF contexts the Cisco IOS software's capability that allows users to configure one or more non-congruent multicast topologies in global IPv4 routing context. These contexts can be used to forward unicast and multicast traffic over different links in the network, or in the case of non-base topologies to provide a Live-Live multicast service using multiple non-congruent multicast topologies mapped to different (S,G) groups.

- Finding Feature Information, on page 29
- Information About MTR in VRF, on page 29
- How to Configure VRF in MTR, on page 30
- Configuring Examples for MTR in VRF, on page 32
- Additional References for MTR in VRF, on page 33
- Feature Information for MTR in VRF, on page 33

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see **Bug Search Tool** and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About MTR in VRF

MTR in VRF Overview

The MTR in VRF feature extends to IPv4 VRF contexts, Cisco IOS software's capability that allows users to configure one or more non-congruent multicast topologies in global IPv4 routing context. These contexts can be used to forward unicast and multicast traffic over different links in the network, or in the case of non-base topologies to provide a Live-Live multicast service using multiple non-congruent multicast topologies mapped to different (S,G) groups.

The Cisco IOS Software allows a set of attributes, primarily used by BGP/MPLS L3VPNs, to be configured on a per-address family basis within a VRF. The MTR in VRF feature allows these attributes to be independently configured for the multicast sub-address families within a VRF address family.

How to Configure VRF in MTR

Configuring MTR in VRF

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- **3**. **vrf definition** *vrf-name*
- 4. rd route-distinguisher
- 5. ipv4 multicast multitoplogy
- 6. address-family ipv4
- 7. exit-address-family
- 8. address-family ipv4 multicast
- 9. topology topology-instance-name
- 10. all-interfaces
- **11.** exit
- 12. exit-address-family
- 13. exit
- **14.** interface *type number*
- **15.** interface type number
- **16.** vrf forwarding vrf-name
- **17.** ip address *ip-address mask*
- 18. ip pim sparse-dense-modeip
- 19. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	vrf definition vrf-name	Configures a VRF routing table and enters VRF
	Example:	configuration mode.

I

	Command or Action	Purpose
	Device(config)# vrf definition vd1	
Step 4	rd route-distinguisher	Creates routing and forwarding tables for a VRF.
	Example:	
	Device(config-vrf)# rd 10:1	
Step 5	ipv4 multicast multitoplogy	Enables IPv4 multicast support for multi-topology routing
	Example:	(MIR) in a VRF instance.
	<pre>Device(config-vrf)# ipv4 multicast multitoplogy</pre>	
Step 6	address-family ipv4	Specifies the IPv4 address family type and enters address
	Example:	family configuration mode.
	<pre>Device(config-vrf)# address-family ipv4</pre>	
Step 7	exit-address-family	Exits address family configuration mode and removes the
	Example:	IPv4 address family.
	<pre>Device(config-vrf-af)# exit-address-family</pre>	
Step 8	address-family ipv4 multicast	Specifies the IPv4 address family multicast type and enters
	Example:	VRF address family configuration mode.
	<pre>Device(config-vrf)# address-family ipv4 multicast</pre>	
Step 9	topology topology-instance-name	Specifies a topology instance and a name to it and enter
	Example:	VRF address family topology configuration mode.
	<pre>Device(config-vrf-af)# topology red</pre>	
Step 10	all-interfaces	Configure the topology instance to use all interfaces on
	Example:	the device.
	<pre>Device(config-vrf-af-topology)# all-interfaces</pre>	
Step 11	exit	Exits VRF address-family topology configuration mode
	Example:	and enters VRF address-family configuration mode.
	<pre>Device(config-vrf-af-topology)# exit</pre>	
Step 12	exit-address-family	Exits address family configuration mode and removes the
	Example:	IPv4 address family.
	<pre>Device(config-vrf-af)# exit-address-family</pre>	
Step 13	exit	Exits VRF configuration mode and enters global
	Example:	configuration mode.
	Device(config-vrf)# exit	
Step 14	interface type number	Selects the Ethernet interface and enters the interface
	Example:	configuration mode.

	Command or Action	Purpose
	Device(config)# interface ethernet 0/1	
Step 15	interface type number	Selects the Ethernet interface and enters the interface
	Example:	configuration mode.
	<pre>Device(config)# interface ethernet 0/1</pre>	
Step 16	vrf forwarding vrf-name	Associates a VRF instance with the interface.
	Example:	
	<pre>Device(config-if)# vrf forwwarding vrf1</pre>	
Step 17	ip address ip-address mask	Sets a primary or secondary IP address for an interface.
	Example:	
	Device(config-if)# ip address 10.1.10.1 255.255.255.0	
Step 18	ip pim sparse-dense-modeip	Enables Protocol Independent Multicast (PIM) on an interface.
	Example:	
	Device(config-if)# ip pim sparse-dense-mode	
Step 19	end	Exits the interface configuration mode and enters privileged
	Example:	EXEC mode.
	Device(config-if)# end	

Configuring Examples for MTR in VRF

Example for MTR in VRF

```
Device> enable
Device# configuration terminal
Device(config) # vrf definition vd1
Device(config-vrf)# rd 10:1
Device(config-vrf) # ipv4 multicast multitoplogy
Device(config-vrf) # address-family ipv4
Device(config-vrf) # exit-address-family
Device(config-vrf) # address-family ipv4 multicast
Device(config-vrf-af)# topology red
Device(config-vrf-af-topology)# all-interfaces
Device(config-vrf-af-topology)# exit
Device(config-vrf-af) # exit-address-family
Device(config-vrf)# exit
Device(config) # vrf forwarding vrf1
Device(config) # ip address 10.1.10.1 255.255.255.0
Device(config) # ip pim sparse-dense-mode
Device(config)# end
```

Additional References for MTR in VRF

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
Multitopology Routing (MTR) commands	Cisco IOS Multitopology Routing Command Reference
IP multicast commands	Cisco IOS Multicast Command Reference
IP multicast concepts and tasks	IP Multicast Configuration Guide Library

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/support
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MTR in VRF

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
MTR in VRF		The MTR in VRF feature extends to IPv4 VRF contexts the Cisco IOS software's capability that allows users to configure one or more non-congruent multicast topologies in global IPv4 routing context. These contexts can be used to forward unicast and multicast traffic over different links in the network, or in the case of non-base topologies to provide a Live-Live multicast service using multiple non-congruent multicast topologies mapped to different (S,G) groups.

Table 3: Feature Information for MTR in VRF

CHAPTER J

Knob for Ping and Traceroute with VRF to Choose Global DNS Server

This feature provides a knob for ping and trace route with VRF to choose global DNS server when no DNS servers are defined in a VRF. This module explains how to configure Knob for Ping and Traceroute with VRF to choose Global DNS Server.

- Finding Feature Information, on page 35
- Prerequisites for Knob for Ping and Traceroute with VRF to Choose Global DNS Server, on page 35
- Information About Knob for Ping and Traceroute with VRF to Choose Global DNS Server, on page 36
- How to Configure Knob for Ping and Traceroute with VRF to Choose Global DNS Server, on page 36
- Configuration Examples for Knob for Ping and Traceroute with VRF to Choose Global DNS Server, on page 37
- Additional References for Knob for Ping and Traceroute with VRF to Choose Global DNS Server, on page 37
- Feature Information for Knob for Ping and Traceroute with VRF to Choose Global DNS Server, on page 38

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Knob for Ping and Traceroute with VRF to Choose Global DNS Server

• VRF must be configured.

Information About Knob for Ping and Traceroute with VRF to Choose Global DNS Server

Overview of Knob for Ping and Traceroute with VRF to Choose Global DNS Server

Prior to the Knob for Ping and Traceroute with VRF to choose Global DNS Server feature, ping or traceroute in VRF would look up only in the specified name server to resolve the domain name. If DNS server is specified in the VRF, the DNS is used to resolve the domain name. If DNS server is not specified in the VRF, the DNS fails to resolve the domain name.

With the implementation of the Knob for Ping and Traceroute with VRF to choose Global DNS Server feature, ping and traceroute uses VRF DNS server (if the server is already configured in a VRF), otherwise global DNS server is used to resolve the domain name. The **ip global-nameserver** command acts as a knob that facilitates the ping and traceroute to use the VRF DNS server or the global DNS server when the server is not configured in a VRF.

How to Configure Knob for Ping and Traceroute with VRF to Choose Global DNS Server

Configuring a Knob for Ping and Traceroute with VRF to Choose Global DNS Server

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip global-nameserver
- 4. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	

L

	Command or Action	Purpose
	Device# configure terminal	
Step 3	ip global-nameserver	Configures a knob for ping and traceroute to use VRF DNS
	Example:	server for resolving the domain name.
	Device(config)# ip global-nameserver	
Step 4	exit	Exits global configuration mode.
	Example:	
	Device(config)# exit	

Configuration Examples for Knob for Ping and Traceroute with VRF to Choose Global DNS Server

Example: Knob for Ping and Traceroute with VRF to Choose Global DNS Server

Device> enable
Device# configure terminal
Device(config)# ip global-nameserver
Device(config)# exit

Additional References for Knob for Ping and Traceroute with VRF to Choose Global DNS Server

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
Multitopology Routing (MTR) commands	Cisco IOS Multitopology Routing Command Reference
MTR in VRF	Multitopology Routing Configuration Guide

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/support
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for Knob for Ping and Traceroute with VRF to Choose Global DNS Server

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
Knob for Ping and Traceroute with VRF to Choose Global DNS Server	Cisco IOS XE Release 3.12S	This feature provides a knob for ping and trace route with VRF to choose global DNS server when no DNS servers are defined in a VRF. The following commands were introduced or modified: ip global-nameserver .

Table 4: Feature Information for Knob for Ping and Traceroute with VRF to Choose Global DNS Se	erve
--	------