
Process Single Stream Large Session
(Elephant Flow) by Firepower Services

Contents

Introduction
Background Information
Process Traffic by Snort
2-Tuple Algorithm in ASA with Firepower Services and NGIPS Virtual
3-Tuple Algorithm in Software Version 5.3 or Lower on Firepower and FTD Appliances
5-Tuple Algorithm in Software Version 5.4, 6.0, and Greater on Firepower and FTD Appliances
Total Throughput
Third Party Tool Test Result
Observed Symptoms
Observed High CPU
Remediations
Intelligent Application Bypass (IAB)
Identify and Trust Large Flows
Related Information

Introduction

This document describes why a single flow cannot consume the entire rated throughput of a Cisco
Firepower appliance.

Background Information

The result of any bandwidth speed testing website, or the output of any bandwidth measurement
tool (for example, iperf) might not exhibit the advertised throughput rating of the Cisco Firepower
appliances. Similarly, the transfer of a very large file over any transport protocol does not
demonstrate the advertised throughput rating of a Firepower appliance. It occurs because the
Firepower service does not use a single network flow in order to determine its maximum
throughput.

Process Traffic by Snort

The underlying detection technology of the Firepower service is Snort. The implementation of
Snort on the Cisco Firepower appliance is a single thread process in order to process traffic. An
appliance is rated for a specific rating based on the total throughput of all flows that goes through
the appliance. It is expected that the appliances are deployed on a Corporate network, usually
near the border edge and works with thousands of connections.

Firepower Services use load balancing of traffic to a number of different Snort process with one
Snort process that runs on each CPU on the appliance. Ideally, the system load balances traffic
evenly across all of the Snort processes. Snort needs to be able to provide proper contextual

analysis for Next-Generation Firewall (NGFW), Intrusion Prevention System (IPS) and Advanced
Malware Protection (AMP) inspection. In order to ensure Snort is most effective, all the traffic from
a single flow is load balanced to one snort instance. If all the traffic from a single flow was not
balanced to a single snort instance, the system could be evaded and the traffic would spilt in such
a way that a Snort rule might be less likely to match or pieces of a file are not contiguous for AMP
inspection. Therefore, the load balancing algorithm is based on the connection information that
can uniquely identify a given connection.

2-Tuple Algorithm in ASA with Firepower Services and NGIPS Virtual

On the Adaptive Security Appliance (ASA) with Firepower Service platform and Next Generation
Intrusion Prevention System (NGIPS) virtual, traffic is load balanced in order to Snort with the use
of a 2-tuple algorithm. The datapoints for this algorithm are:

Source IP●

Destination IP●

3-Tuple Algorithm in Software Version 5.3 or Lower on Firepower and FTD
Appliances

On all prior Versions (5.3 or lower), traffic is load balanced to Snort that uses a 3-tuple algorithm.
The datapoints for this algorithm are:

Source IP●

Destination IP●

IP Protocol●

Any traffic with the same source, destination, and IP Protocol are load balanced to the same
instance of Snort.

5-Tuple Algorithm in Software Version 5.4, 6.0, and Greater on Firepower and
FTD Appliances

On Version 5.4, 6.0 or greater, traffic is load balaned to Snort with a 5-tuple algorithm. The
datapoints that are taken into account are:

Source IP●

Source Port●

Destination IP●

Destination Port●

IP Protocol●

The purpose to add ports to the algorithm is to balance traffic more evenly when there are specific
source and destination pairs that account for large portions of the traffic. By addition of the ports,
the high order ephemeral source ports must be different per flow, and must add additional entropy
more evenly that balances the traffic to different snort instances.

Total Throughput

The total throughput of an appliance is measured based on the aggregate throughput of all the
snort instances that works to their fullest potential. Industry standard practices in order to measure

the throughput are for multiple HTTP connections with various object sizes. For example, the NSS
NGFW test methodology measures total throughput of the device with 44k, 21k, 10k, 4.4k, and
1.7k objects. These translate to a range of average packet sizes from around 1k & bytes to 128
bytes because of the other packets involved in the HTTP connection.

You can estimate the performance rating of an individual Snort instance. Take the rated
throughput of the appliance and divide that by the number of Snort instances that run. For
example, if an appliance is rated at 10Gbps for IPS with an average packet size of 1k bytes, and
that appliance has 20 instances of Snort, the approximate maximum throughput for a single
instance would be 500 Mbps per Snort. Different types of traffic, network protocols, sizes of the
packets along with differences in the overall security policy can all impact the observed throughput
of the device.

Third Party Tool Test Result

When you test with any speed testing website, or any bandwidth measurement tool, such as, iperf,
one large single stream TCP flow is generated. This type of large TCP flow is called an Elephant
Flow. An Elephant Flow is a single session, relatively long running network connection that
consumes a large or disproportionate amount of bandwidth. This type of flow is assigned to one
Snort instance, therefore the test result displays the throughput of single snort instance, not the
aggregate throughput rating of the appliance.

Observed Symptoms

Observed High CPU

Another visible effect of Elephant Flows can be snort instance high cpu. This can be seen via
"show asp inspect-dp snort", or with the shell "top" tool.

> show asp inspect-dp snort

SNORT Inspect Instance Status Info

Id Pid Cpu-Usage Conns Segs/Pkts Status tot (usr | sys)

-- ---- --------- ----- -------- ----------

0 48500 30% (28%| 1%) 12.4 K 0 READY

1 48474 24% (22%| 1%) 12.4 K 0 READY

2 48475 34% (33%| 1%) 12.5 K 1 READY

3 48476 29% (28%| 0%) 12.4 K 0 READY

4 48477 32% (30%| 1%) 12.5 K 0 READY

5 48478 31% (29%| 1%) 12.3 K 0 READY

6 48479 29% (27%| 1%) 12.3 K 0 READY

7 48480 23% (23%| 0%) 12.2 K 0 READY

8 48501 27% (26%| 0%) 12.6 K 1 READY

9 48497 28% (27%| 0%) 12.6 K 0 READY

10 48482 28% (27%| 1%) 12.3 K 0 READY

11 48481 31% (30%| 1%) 12.5 K 0 READY

12 48483 36% (36%| 1%) 12.6 K 0 READY

13 48484 30% (29%| 1%) 12.4 K 0 READY

14 48485 33% (31%| 1%) 12.6 K 0 READY

15 48486 38% (37%| 0%) 12.4 K 0 READY

16 48487 31% (30%| 1%) 12.4 K 1 READY

17 48488 37% (35%| 1%) 12.7 K 0 READY

18 48489 34% (33%| 1%) 12.6 K 0 READY

19 48490 27% (26%| 1%) 12.7 K 0 READY

20 48491 24% (23%| 0%) 12.6 K 0 READY

21 48492 24% (23%| 0%) 12.6 K 0 READY

22 48493 28% (27%| 1%) 12.4 K 1 READY

23 48494 27% (27%| 0%) 12.2 K 0 READY

24 48495 29% (28%| 0%) 12.5 K 0 READY

25 48496 30% (30%| 0%) 12.4 K 0 READY

26 48498 29% (27%| 1%) 12.6 K 0 READY

27 48517 24% (23%| 1%) 12.6 K 0 READY

28 48499 22% (21%| 0%) 12.3 K 1 READY

29 48518 31% (29%| 1%) 12.4 K 2 READY

30 48502 33% (32%| 0%) 12.5 K 0 READY

31 48514 80% (80%| 0%) 12.7 K 0 READY <<< CPU 31 is much busier than the rest, and will stay

busy for while with elephant flow.

32 48503 49% (48%| 0%) 12.4 K 0 READY

33 48507 27% (25%| 1%) 12.5 K 0 READY

34 48513 27% (25%| 1%) 12.5 K 0 READY

35 48508 32% (31%| 1%) 12.4 K 0 READY

36 48512 31% (29%| 1%) 12.4 K 0 READY

$ top

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

69470 root 1 -19 9088m 1.0g 96m R 80 0.4 135:33.51 snort <<<< one snort very busy,

rest below 50%

69468 root 1 -19 9089m 1.0g 99m R 49 0.4 116:08.69 snort

69467 root 1 -19 9078m 1.0g 97m S 47 0.4 118:30.02 snort

69492 root 1 -19 9118m 1.1g 97m R 47 0.4 116:40.15 snort

69469 root 1 -19 9083m 1.0g 96m S 39 0.4 117:13.27 snort

69459 root 1 -19 9228m 1.2g 97m R 37 0.5 107:13.00 snort

69473 root 1 -19 9087m 1.0g 96m R 37 0.4 108:48.32 snort

69475 root 1 -19 9076m 1.0g 96m R 37 0.4 109:01.31 snort

69488 root 1 -19 9089m 1.0g 97m R 37 0.4 105:41.73 snort

69474 root 1 -19 9123m 1.1g 96m S 35 0.4 107:29.65 snort

69462 root 1 -19 9065m 1.0g 99m R 34 0.4 103:09.42 snort

69484 root 1 -19 9050m 1.0g 96m S 34 0.4 104:15.79 snort

69457 root 1 -19 9067m 1.0g 96m S 32 0.4 104:12.92 snort

69460 root 1 -19 9085m 1.0g 97m R 32 0.4 104:16.34 snort

With 5-Tuple algorithm described above, a long lived flow will always be sent to the same snort
instance. If there are extensive AVC, IPS, File, etc policies active in snort, the CPU can be seen
high (>80%) on a snort instance for some period of time. Adding SSL policy will further increase
CPU usage do to the computationally expensive nature of SSL Decryption.

High CPU on few of the many snort CPUs is not a cause for critical alarm. It is the behavior of the
NGFW system in performing deep packet inspection into a flow, and this can naturally use large
portions of a CPU. As a general guideline, the NGFW is not in a critical CPU starvation situation
until most of the snort CPUs are over 95% and remain over 95% and packet drops are being seen.

The Remediations below will help with high CPU situation due to Elephant flows.

Remediations

Intelligent Application Bypass (IAB)

The software version 6.0 introduces a new feature called IAB. When a Firepower appliance
reaches a pre-defined performance threshold, the IAB feature looks for flows that meet specific
criteria in order to intelligently bypass that alleviates pressure on the detection engines.

Tip: More information on the configuration of the IAB can be found here.

Identify and Trust Large Flows

Large flows are often related to high use low inspection value traffic for example, backups,
database replication, etc. Many of these applications can not be benefited from inspection. In
order to avoid issues with large flows, you can identify the large flows and create Access Control
trust rules for them. These rules are able to uniquely identify large flows, allow those flows to pass
uninspected, and not to be limited by the single snort instance behavior.

Note: In order to identify large flows for trust rules, contact the Cisco Firepower TAC.

Related Information

Access Control Using Intelligent Application Bypass●

Technical Support & Documentation - Cisco Systems●

http://www.cisco.com/c/en/us/td/docs/security/firepower/60/configuration/guide/fpmc-config-guide-v60/Access_Control_Using_Intelligent_Application_Bypass.html
http://www.cisco.com/c/en/us/td/docs/security/firepower/60/configuration/guide/fpmc-config-guide-v60/Access_Control_Using_Intelligent_Application_Bypass.html
https://www.cisco.com/c/en/us/support/index.html

	Process Single Stream Large Session (Elephant Flow) by Firepower Services
	Contents
	Introduction
	Background Information
	Process Traffic by Snort
	2-Tuple Algorithm in ASA with Firepower Services and NGIPS Virtual
	3-Tuple Algorithm in Software Version 5.3 or Lower on Firepower and FTD Appliances
	5-Tuple Algorithm in Software Version 5.4, 6.0, and Greater on Firepower and FTD Appliances

	Total Throughput
	Third Party Tool Test Result

	Observed Symptoms
	Observed High CPU

	Remediations
	Intelligent Application Bypass (IAB)
	Identify and Trust Large Flows

	Related Information

