Configure ASR1000 Encryption over OTV Unicast

Contents

Introduction Prerequisites Requirements Components Used Background Information Configure Network Diagram Configurations Verify Troubleshoot

Introduction

This document describes the basic set of configurations that are used to bring up Overlay Transport Virtualization (OTV) with IPSec encryption. Encryption over OTV does not require any additional configurations from the OTV end. You just need to understand how OTV and IPSEC co-exists.

In order to add encryption over OTV, you need to add an Encapsulating Security Payload (ESP) header on top of OTV PDU. You can achieve encryption on the ASR1000 Edge Devices (ED) through two ways: (i) IPSec (ii) GETVPN.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

The information in this document is based on these software and hardware versions:

- ASR1000 routers for Edge Devices (ED)
- Core (ISP Cloud)
- Catalyst 2960 switches as the access switch on either site

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background Information

Basic functionality and configurations of OTV are presumed to be known by the users of this document.

You can also follow these documents for the same:

- OTV Unicast Configuration
- OTV Multicast Configuration

Configure

Network Diagram

Configurations

Site A: ED Configurations:

Site_A_1#show run	Site_A_2#show run
Building configuration	Building configuration
otv site bridge-domain 99	otv site bridge-domain 99
!	!
otv site-identifier 0000.0000.0001	otv site-identifier 0000.0000.0001
crypto isakmp policy 10	crypto isakmp policy 10
hash md5	hash md5
authentication pre-share	authentication pre-share

```
crypto isakmp key cisco address 30.0.0.1
                                            crypto isakmp key cisco address 30.0.0.1
crypto isakmp key cisco address 40.0.0.1
                                            crypto isakmp key cisco address 40.0.0.1
!
                                             !
crypto ipsec transform-set tset esp-aes
                                            crypto ipsec transform-set tset esp-aes
esp-md5-hmac
                                            esp-md5-hmac
mode tunnel
                                             mode tunnel
                                             1
!
crypto map cmap 1 ipsec-isakmp
                                            crypto map cmap 2 ipsec-isakmp
set peer 30.0.0.1
                                             set peer 30.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl
                                             match address cryptoacl2
crypto map cmap 3 ipsec-isakmp
                                            crypto map cmap 3 ipsec-isakmp
set peer 40.0.0.1
                                             set peer 40.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl3
                                             match address cryptoacl3
!
                                             !
interface Overlay99
                                            interface Overlay99
no ip address
                                             no ip address
otv join-interface GigabitEthernet0/0/1
                                             otv join-interface GigabitEthernet0/0/1
otv adjacency-server unicast-only
                                             otv use-adjacency-server 10.0.0.1 30.0.0.1
                                            unicast-only
service instance 100 ethernet
                                             service instance 100 ethernet
encapsulation dot1q 100
                                             encapsulation dotlg 100
bridge-domain 100
                                             bridge-domain 100
 1
                                             1
 service instance 101 ethernet
                                             service instance 101 ethernet
encapsulation dotlg 101
                                             encapsulation dotlg 101
bridge-domain 101
                                             bridge-domain 101
1
                                             1
!
                                             Ţ
interface GigabitEthernet0/0/0
                                            interface GigabitEthernet0/0/0
no ip address
                                             no ip address
service instance 99 ethernet
                                            service instance 99 ethernet
encapsulation dot1g 99
```

```
bridge-domain 99
 Т
service instance 100 ethernet
 encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dot1q 101
bridge-domain 101
 !
!
interface GigabitEthernet0/0/1
ip address 10.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl
permit gre host 10.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 10.0.0.1 host 40.0.0.1
```

```
bridge-domain 99
 !
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dotlq 101
bridge-domain 101
!
Т
interface GigabitEthernet0/0/1
ip address 20.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl2
permit gre host 20.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 20.0.0.1 host 40.0.0.1
```

encapsulation dot1q 99

Site B: ED Configurations:

```
Site_B_1#sh run
                                           Site_B_2#sh run
Building configuration...
                                            Building configuration...
otv site bridge-domain 99
                                           otv site bridge-domain 99
!
                                            !
otv site-identifier 0000.0000.0002
                                            otv site-identifier 0000.0000.0002
crypto isakmp policy 10
                                            crypto isakmp policy 10
hash md5
                                            hash md5
authentication pre-share
                                            authentication pre-share
crypto isakmp key cisco address 10.0.0.1
                                           crypto isakmp key cisco address 10.0.0.1
crypto isakmp key cisco address 20.0.0.1
                                           crypto isakmp key cisco address 20.0.0.1
```

!

!

crypto ipsec transform-set tset esp-aes crypto ipsec transform-set tset esp-aes esp-md5-hmac esp-md5-hmac mode tunnel mode tunnel ! ! crypto map cmap 1 ipsec-isakmp crypto map cmap 1 ipsec-isakmp set peer 10.0.0.1 set peer 10.0.0.1 set transform-set tset set transform-set tset match address cryptoacl match address cryptoacl crypto map cmap 2 ipsec-isakmp crypto map cmap 2 ipsec-isakmp set peer 20.0.0.1 set peer 20.0.0.1 set transform-set tset set transform-set tset match address cryptoacl2 match address cryptoacl2 ! 1 interface Overlay99 interface Overlay99 no ip address no ip address otv join-interface GigabitEthernet1/0/2 otv join-interface GigabitEthernet2/2/0 otv use-adjacency-server 10.0.0.1 unicast- otv use-adjacency-server 10.0.0.1 30.0.0.1 only unicast-only service instance 100 ethernet otv adjacency-server unicast-only service instance 100 ethernet encapsulation dotlq 100 encapsulation dotlq 100 bridge-domain 100 bridge-domain 100 1 1 service instance 101 ethernet service instance 101 ethernet encapsulation dotlg 101 encapsulation dotlg 101 bridge-domain 101 bridge-domain 101 1 1 Ţ interface GigabitEthernet2/2/1 1 interface GigabitEthernet1/0/3 no ip address no ip address service instance 99 ethernet service instance 99 ethernet encapsulation dotlg 99 encapsulation dot1q 99 bridge-domain 99

```
bridge-domain 99
```

```
Т
                                              service instance 100 ethernet
 service instance 100 ethernet
                                              encapsulation dotlg 100
encapsulation dotlq 100
                                              bridge-domain 100
bridge-domain 100
                                              !
 !
                                              service instance 101 ethernet
service instance 101 ethernet
                                              encapsulation dot1q 101
encapsulation dot1q 101
                                              bridge-domain 101
bridge-domain 101
                                              !
 !
                                             !
!
                                             interface GigabitEthernet2/2/0
interface GigabitEthernet1/0/2
                                              ip address 40.0.0.1 255.255.255.0
ip address 30.0.0.1 255.255.255.0
                                              crypto map cmap
crypto map cmap
!
                                             ip access-list extended cryptoacl
ip access-list extended cryptoacl
                                              permit gre host 40.0.0.1 host 10.0.0.1
permit gre host 30.0.0.1 host 10.0.0.1
                                             ip access-list extended cryptoacl2
ip access-list extended cryptoacl2
                                              permit gre host 40.0.0.1 host 20.0.0.1
permit gre host 30.0.0.1 host 20.0.0.1
```

!

Verify

Use this section in order to confirm that your configuration works properly.

1. Check if the MAC address of the internal VLAN host (in this case the SVI on the 2960 catalyst switch's) have been learnt on the OTV route tables.

2. Check if the crypto encap's and decap's are performed for the Overlay (OTV traffic) traffic. Once the OTV comes up after you configure the crypto map on the join interface, check the active forwarder for the local VLAN's (in this case VLAN 100 and 101). This shows that Site_A_1 and Site_B_2 are the active forwarders for the even VLAN's since you will test the traffic encryption for pings initiated from VLAN 100 on Site A to VLAN 100 on Site B:

Site_A_1#show otv vlan
Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.
Overlay 99 VLAN Configuration Information

Inst	t VLAN	BD	Auth ED	State	Site If(s)	
0	100	100	*Site_A_1	active	Gi0/0/0:SI100	
0	101	101	Site_A_2	inactive(NA)	Gi0/0/0:SI101	
0	200	200	*Site_A_1	active	Gi0/0/0:SI200	
0	201	201	Site_A_2	inactive(NA)	Gi0/0/0:SI201	
Total VLAN(s): 4						
Site_B_2#show otv vlan						
Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.						
Overlay 99 VLAN Configuration Information						
Ins	t VLAN	BD	Auth ED	State	Site If(s)	
0	100	100	*Site_B_2	active	Gi2/2/1:SI100	
0	101	101	Site_B_1	inactive(NA)	Gi2/2/1:SI101	
0	200	200	*Site_B_2	active	Gi2/2/1:SI200	
0	201	201	Site_B_1	inactive(NA)	Gi2/2/1:SI201	

Total VLAN(s): 4

In order to check if the packets indeed get encapsulated and decapsulated on either ED, you should check if the IPSec session is active and the counter values in the crypto sessions in order to confirm that the packets are indeed getting encrypted and decrypted. In order to check if the IPSec session is active, since it becomes active only if any traffic flows through, check the output of **show crypto isakmp sa**. Here, only the outputs for the active forwarders are checked, but this should show the active status on all the ED's for OTV over encryption to work.

Site_B_2#show otv vlan						
Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.						
Overlay 99 VLAN Configuration Information						
Ins	st VLAN	I BD	Auth ED	State	Site If(s)	
0	100	100	*Site_B_2	active	Gi2/2/1:SI100	
0	101	101	Site_B_1	inactive(NA)	Gi2/2/1:SI101	
0	200	200	*Site_B_2	active	Gi2/2/1:SI200	
0	201	201	Site_B_1	inactive(NA)	Gi2/2/1:SI201	

Total VLAN(s): 4

Now, in order to confirm if the packets get encrypted and decrypted, you first need to know what to expect in the outputs of **show crypto session detail**. So, when you initiate the ICMP echo packet from the Sw_A switch towards the Sw_B, this is expected:

- While the ICMP echo leaves from the Site_A_1 ED which is the active forwarder for the VLAN 100, it will have to encapsulate the OTV payload (ICMP Echo + MPLS + GRE)
- Then once the ICMP echo reaches the Site_B_2 ED which is the active forwarder for VLAN 100, it would have to decapsulate the OTV payload (ICMP Echo + MPLS + GRE)
- Now, once the Site_B_2 ED receives the ICMP Echo Reply from Sw_B, it would have to again encapsulate the OTV payload (ICMP Echo + MPLS + GRE)
- And once the ICMP Echo Reply reaches the Site_A_1 ED, I would again have to again decapsulate the OTV payload (ICMP Echo + MPLS + GRE)

After the successful pings from Sw_A to Sw_B, expect to see an increment of 5 counters under "enc" and "dec" section of the **show crypto session detail** output on both the active forwarder ED's.

Now, check the same from the ED's:

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3345

Outbound: #pkts enc'ed 10 drop 0 life (KB/Sec) 4607998/3291 <<<< 10 counter before ping

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3343

Inbound: #pkts dec'ed 18 drop 0 life (KB/Sec) 4607997/3289 <<<< 18 counter before ping

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 18 drop 0 life (KB/Sec) 4607997/3295 <<<< 18 counter before ping Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3295

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 10 drop 0 life (KB/Sec) 4607998/3293 <<<< 10 counter before ping

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3293

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 10 drop 0 life (KB/Sec) 4607998/3293 <<<< 10 counter before ping
Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3293</pre>

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3339

Outbound: #pkts enc'ed 15 drop 0 life (KB/Sec) 4607997/3284 <<<< 15 counter after ping (After ICMP Echo)

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3338

Inbound: #pkts dec'ed 23 drop 0 life (KB/Sec) 4607997/3283 <<<< 23 counter after ping
(After ICMP Echo Reply)</pre>

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 23 drop 0 life (KB/Sec) 4607997/3282 <<<< 23 counter after ping (After ICMP Echo Reply)

Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3282

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 15 drop 0 life (KB/Sec) 4607997/3281 <<<< 15 counter after ping
(After ICMP Echo)</pre>

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3281 This configuration guide is able to convey the required configuration details with the use of IPSec for the Unicast core dual homed setup.

Troubleshoot

There is currently no specific troubleshooting information available for this configuration.