Build and Deploy a Docker 10x Package for
the IR1101 ARM Architecture

Contents

Introduction

Prerequisites

Requirements

Components Used

Background Information

Configure

Part 1. Build the IOx Package for IR1101

1. Install and Prepare |10x Client on the Linux Host

2. Install and Prepare the Docker Environment on the Linux Build Machine
3. Install the QEMU User Emulation Packages

4. Test if an aarch64/ARV64v8 Container Runs on x86 Linux Machine
5. Prepare Files to Build the Docker Webserver Container

6. Build the Docker Container

7. Build the 10x Package

Part 2. Configure the IR1101 for 10x

1. Enable the Webinterface, IOx and Local Manager

2. Configure 10x Networking

Part 3. Access Local Manager and Deploy the 10x Application

Verify

Troubleshoot

Introduction

This document describes how to prepare, build and deploy a Docker based I0x package for the
IR1101 ARM-based Internet of Things (IoT) gateway.

Prerequisites

Requirements
Cisco recommends that you have knowledge of these topics:
- Linux

. Containers
. |Ox

Components Used

The information in this document is based on these software and hardware versions:

- IR1101 that is reachable over Secure Shell (SSH)
IP address configuredAccess to the device with a privilege 15 user
- Linux host (a minimal Debian 9 (stretch) installation is used for this article)
- 10x client installation files which can be downloaded
from: https://software.cisco.com/download/release.htm|?mdfid=286306005&softwareid=28630
6762
The information in this document was created from the devices in a specific lab environment. All of

the devices used in this document started with a cleared (default) configuration. If your network is
live, make sure that you understand the potential impact of any command.

Background Information

The IR1101 is a bit different in comparison with most other 10x platforms as these are mainly x86
based. The IR1101 is based on the ARM64v8 architecture so you cannot deploy containers or I0x
packages built for x86 on the platform directly. This document starts from scratch and prepares the
environment for building ARM64v8-based Docker containers and explains how to build, package
and deploy them on the IR1101 with the use of an x86 PC.

As an example, a very small Python script that is a simple webserver is used and a Docker
container is built around to eventually package it to run on the IR1101. The only thing the
webserver will do is to listen on a predefined port (9000) and to return a simple pagev when it
receives a GET request. This allows you to test the capability to run your own code and allows to
test the network access to the I0x application once it starts to run.

The package will be built by the Docker tools, with the use of Alpine Linux. Alpine Linux is a small
Linux image (around 5MB), which is often used as a base for Docker containers.

As most of the Desktop/Laptop/VMs around are all x86 based, you need to emulate the ARM64v8
architecture on the x86 based machine where the container is built. You can do this easily with the
use of Quick Emulator (QEMU) user emulation. This allows execution of executables in a non-
native architecture just as it would run on it's native architecture.

Configure
Part 1. Build the 10x Package for IR1101

1. Install and Prepare 10x Client on the Linux Host

You need ioxclient in order to package the Docker container as an 10x package once it's built, so
let's prepare this first.

First copy or download the ioxclient package. It is available
from: https://software.cisco.com/download/release.htm|?mdfid=286306005&softwareid=28630676
2.

j edepuyd@eb9: ~$ scp j edepuyd@92. 168. 56. 101: / hone/ j edepuyd/ioxclient_1.7.0.0_linux_and64.tar.gz

j edepuyd@92. 168. 56. 101' s password:
ioxclient_1.7.0.0_linux_and64.tar. gz 100% 4798KB 75. 2MB/ s 00: 00

https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762
https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762
https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762
https://software.cisco.com/download/release.html?mdfid=286306005&softwareid=286306762

Extract the package:

j edepuyd@eb9: ~$ tar -xvzf ioxclient_1.7.0.0_linux_aml64.tar.gz
ioxclient_1.7.0.0_linux_and64/ioxclient
ioxclient_1.7.0.0_linux_and64/ README. nd

Add the path to the PATH variable in order to have it available without the use of the full location.
If you reboot the machine or switch users, then don't forget to repeat this step:

j edepuyd@eb9: ~$ export PATH=$PATH: / home/j edepuyd/i oxclient_1.7.0.0_linux_anmd64/

Launch ioxclient for the first time in order to create a mandatory profile. As you will only use
ioxclient to package the Docker container, the values can be left as default:

j edepuyd@leb9: ~$ ioxclient -v

ioxclient version 1.7.0.0

j edepuyd@leb9: ~/ i ox_aarch64_webserver$ ioxclient profiles reset
Active Profile : default

Your current config details will be lost. Continue (y/N ? : vy
Current config backed up at /tnp/ioxclient731611124
Config data del eted.

j edepuyd@eb9: ~/ i ox_aar ch64_webserver$ ioxclient -v

Config file not found : /hone/jedepuyd/.ioxclientcfg.yam
Creating one time configuration..

Your / your organization's nane :

Your / your organization's URL :

Your 1 Ox platformis | P address[127.0.0. 1]

Your 1 Ox platforms port numnber[8443]

Aut hori zed user nane[root]

Password for root

Local repository path on |1 Ox platforni/software/ downl oads]:
URL Scheme (http/https) [https]:

APl Prefix[/iox/api/v2/ hosting/]:

Your 1 Ox platformis SSH Port[2222]:

Your RSA key, for signing packages, in PEMformat[]:

Your x.509 certificate in PEMformat[]:

Activating Profile default

Savi ng current configuration

ioxclient version 1.7.0.0

2. Install and Prepare the Docker Environment on the Linux Build Machine

This Docker is used to build a container from the Alpine base image and to include the necessary
files for the use case. The given steps are based on the official installation guides from Docker
Community Edition (CE) for Debian: https://docs.docker.com/install/linux/docker-ce/debian/

Update the package lists on your machine:

j edepuyd@leb9: ~$ sudo apt-get update

Readi ng package lists... Done
Install the dependencies in order to use the Docker repo:

j edepuyd@leb9: ~$ sudo apt-get install apt-transport-https ca-certificates curl gnupg2 software-
properties-common
Readi ng package lists... Done

https://docs.docker.com/install/linux/docker-ce/debian/

Bui | di ng dependency tree

béacessing triggers for dbus (1.10.26-0+deb9ul)
Add the Docker GNU Privacy Guard (GPG) key as a valid GPG key:

j edepuyd@eb9: ~$ curl -fsSL https://downl oad. docker. coni | i nux/ debi an/ gpg | sudo apt-key add -
(01¢

Verify the fingerprint of the installed GPG key:

j edepuyd@eb9: ~$ sudo apt-key fingerprint OEBFCD88
pub rsa4096 2017-02-22 [SCEA]
9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C OEBF CD88
uid [unknown] Docker Rel ease (CE deb) <docker @ocker. com>
sub rsa4096 2017-02-22 [9]

Add the Docker stable repo:

j edepuyd@leb9: ~$ sudo add-apt-repository "deb [arch=and64]
htt ps:// downl oad. docker. conl | i nux/ debi an $(I sb_rel ease -cs) stable"

Update the package lists again as you add the Docker repo:

j edepuyd@eb9: ~$ sudo apt-get update

Readi ng package lists... Done
Install Docker:

j edepuyd@eb9: ~$ sudo apt-get install docker-ce docker-ce-cli containerd.io
Readi ng package |ists... Done
Bui | di ng dependency tree

Processing triggers for systend (232-25+deb9u9)
In order to be able to access/run Docker as a regular user, add this user to the Docker group and
refresh group membership:

j edepuyd@leb9: ~$ sudo usernod -a -G docker jedepuyd
j edepuyd@eb9: ~$ newgrp docker

3. Install the QEMU User Emulation Packages

After you have installed Docker, you need to install the QEMU user emulators. Use the statically
linked QEMU emulator from within the Docker container so you can run the container for
ARM®64v8 on our x86-based Linux machine, although the target container will be designed for the
ARMG64v8 architecture.

Install the packages:

j edepuyd@leb9: ~$ sudo apt-get install qgenu-user genu-user-static
Readi ng package lists... Done
Bui | di ng dependency tree

Processing triggers for man-db (2.7.6.1-2)

After the installation, here are the statically linked QEMU emulators available in /usr/bin:

j edepuyd@leb9: ~$ |s -al /usr/bin/genu-*static

-rwxr-xr-x 1 root root 3468784 Nov 8 16:41 /usr/bin/qgemu-aarch64-static
-rwxr-xr-x 1 root root 2791408 Nov 8 16:41 /usr/bin/qgemnu-al pha-static
-rwxr-xr-x 1 root root 3399344 Nov 8 16:41 /usr/bin/qgemu-arneb-static
-rwxr-xr-x 1 root root 3391152 Nov 8 16:41 /usr/bin/genu-armstatic
-rwxr-xr-x 1 root root 2800400 Nov 8 16:41 /usr/bin/gemu-cris-static

The first one in the list, is the one you need: aarch64 is the arch-name for ARM64v8 for Linux.

4. Test if an aarch64/ARV64v8 Container Runs on x86 Linux Machine

Now that you have Docker and the necessary QEMU binaries installed, you can test if you are
able to run a Docker container built for ARM64v8 on the x86 machine:

j edepuyd@eb9: ~$ docker run -v /usr/bin/genu-aarch64-static:/usr/bin/genu-aarch64-static --rm -
ti arnb4v8/ al pine:3.7

Unabl e to find image 'arnb4v8/alpine: 3.7 locally

3.7: Pulling from arnb4v8/ al pi ne

40223db5366f: Pull conpl ete

Di gest: sha256: a50c0cd3b41129046184591963a7a76822777736258e5ade8445b07c88bf dcc3

St atus: Downl oaded newer inmge for arnb4v8/al pine: 3.7

/ # unane -a

Li nux 1dbba69b60c5 4. 9. 0- 8- and64 #1 SMP Debi an 4.9.144-3.1 (2019-02-19) aarch64 Linux

As you can see in the output, arm64v8 Alpine container is obtained and made to run with access
to the emulator.

If you request the architecture of the container, you can see that the code is compiled for aarch64.
Exactly as the target arch for the container should be for IR1101.

5. Prepare Files to Build the Docker Webserver Container

Now that all preparation is done, you can go ahead and create the necessary files for the
webserver container that needs to be run on IR1101.

First file is webserver.py, the Python script which you want to run in the container. As this is just
an example, obviously, you will replace this with the actual code in order to run in your 10X
application:

j edepuyd@leb9: ~$ nkdir iox_aarch64_webserver
j edepuyd@leb9: ~$ cd i ox_aarch64_webserver

j edepuyd@eb9: ~/ i ox_aarch64_webserver$ vi webserver. py

j edepuyd@eb9: ~/ i ox_aarch64_webserver$ cat webserver. py
#!/usr/ bi n/env python

from BaseHTTPServer inport BaseHTTPRequest Handl er, HTTPServer
i mport Socket Server

i mport os

cl ass S(BaseHTTPRequest Handl er):
def _set_headers(self):
sel f.send_r esponse(200)
sel f.send_header (' Content-type', 'text/htm")

sel f. end_headers()

def do_GET(self):
sel f. _set _headers()
self.wfile.wite("<htm ><body><h1>] OX pyt hon webserver on arnb4v8</ hl></body></htm >")
logf.wite(' Got GET\n')
I ogf. flush()

def run(server_cl ass=HTTPServer, handl er_cl ass=S, port=9000):
server _address = ('', port)
httpd = server_cl ass(server_address, handl er_cl ass)
print 'Starting webserver...'
logf.wite('Starting webserver....\n'")
I ogf. flush()
htt pd. serve_forever ()

if _pame__ =="__muin__"
log file_dir = os.getenv("CAF_APP_LOG DIR', "/tmp")
log file_path = os.path.join(log file_dir, "webserver.log")
| ogf = open(log_file_path, 'w)
run()
I ogf. cl ose()

This code contains the logic in order to write to a logfile, which will be available for consultation
from Local Manager.

Second file that is needed is the Dockerfile. This defines how the container is built:

j edepuyd@leh9: ~/ i ox_aar ch64_webserver$ vi Dockerfile
j edepuyd@leb9: ~/ i ox_aar ch64_webserver$ cat Dockerfile
FROM ar n64v8/ al pi ne: 3.7

COPY qgenu-aarch64-static /usr/bin

RUN apk add --no-cache python
COPY webserver. py /webserver. py

The Dockerfile defines how the container will be built. Start from the Apline base image for
ARMG64v8, copy the emulator in the container, run the apk in order to add the Python package and
copy the webserver script into the container.

Last preparation which is needed before you can build the container is to copy gemu-aarch64-
static to the directory from where you will build the container:

j edepuyd@eb9: ~/ i ox_aarch64_webserver$ cp /usr/bin/gemnmu-aarch64-static

6. Build the Docker Container

Now that all the preparation is done, you can build the container with the use of the Dockerfile:

j edepuyd@eb9: ~/ i ox_aarch64_webserver$ docker build -t iox_aarch64_webserver
Sendi ng build context to Docker daenon 3.473MB
Step 1/4 : FROM arn64v8/ al pine: 3.7
---> e013d5426294
Step 2/4 : COPY qgenu-aarch64-static /usr/bin
---> addf 4elcc965
Step 3/4 : RUN apk add --no-cache python
---> Running in ff3768926645
fetch http://dl-cdn. al pi nelinux.org/al pi ne/v3. 7/ mai n/ aar ch64/ APKI NDEX. t ar . gz

fetch http://dl-cdn. al pi nelinux. org/al pi ne/v3. 7/ communi ty/ aarch64/ APKI NDEX. t ar . gz
(1/10) Installing libbz2 (1.0.6-r6)
(2/10) Installing expat (2.2.5-r0)
(3/10) Installing libffi (3.2.1-r4)
(4/10) Installing gdbm (1.13-r1)
(5/10) Installing ncurses-term nfo-base (6.0_p20171125-r1)
(6/10) Installing ncurses-ternminfo (6.0_p20171125-r1)
(7/10) Installing ncurses-libs (6.0_p20171125-r1)
(8/10) Installing readline (7.0.003-r0)
(9/10) Installing sqglite-libs (3.25.3-r0)
(10/10) Installing python2 (2.7.15-r2)
Executi ng busybox-1.27.2-r11.trigger
OK: 51 M B in 23 packages
Rermovi ng i nternedi ate contai ner ff3768926645
---> edad469dab9c6
Step 4/4 : COPY webserver.py /webserver. py
---> ccf7ee7227c9
Successfully built ccf7ee7227c9
Successful |y tagged i ox_aarch64_webserver:| at est

As a test, run the container which you just built and check if the script works:

j edepuyd@eb9: ~/ i ox_aarch64_webserver$ docker run -ti iox_aarch64_webserver

/ # unane -a

Li nux dae047f 1labb2 4.9.0-8-and64 #1 SMP Debi an 4.9.144-3.1 (2019-02-19) aarch64 Linux
/ # python webserver.py &

/| # Starting webserver. ..

/| # netstat -tlpn
Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Forei gn Address State Pl D/ Pr ogr am nane
tcp 0 0 0.0.0.0:9000 0.0.0.0: * LI STEN 13/ genu- aar ch64-
sta

| # exit

As you can see in this output, the architecture of the container is the targetted aarch64. And after
you start the script, you see it's listening for requests on port 9000.

7. Build the 10x Package

The container is ready to be packaged. Before you can ask ioxclient to do this, you first need to
create the package descriptor: package.yaml.

This file describes how the package should look like, how many resources it needs to run and
what to start.

j edepuyd@leb9: ~/ i ox_aar ch64_webserver$ vi package. yan
j edepuyd@leb9: ~/ i ox_aar ch64_webserver$ cat package. yani
descri ptor-schema-version: "2.7"

i nfo:
name: "iox_aarch64_webserver"
description: "sinple docker webserver for arn64v8"
version: "1.0"
author-1link: "http://ww.cisco.conf
aut hor-nane: "Jens Depuydt”

app:
cpuarch: "aarch64"
type: "docker™

resour ces:
profile: cl.tiny
net wor k:
interface-nane: ethO
ports:
tcp: ["9000"]

startup:
rootfs: rootfs.tar
target: ["python","/webserver.py"]

As you can see, the CPU architecture is set to aarch64. In order to gain access to TCP port 9000,
use rootfs.tar as the rootfs and on start, you can run python/webserver.py.

Last thing to do before you can package is to extract the rootfs.tar from the Docker container:

j edepuyd@eb9: ~/ i ox_aarch64_webserver$ docker save -0 rootfs.tar iox_aarch64_webserver
At this point, you can use ioxclient in order to build the 10x package for IR1101:

j edepuyd@eb9: ~/ i ox_aar ch64_webserver$ i oxclient package .

Currently active profile : default

Conmand Nanme: package

No rsa key and/or certificate files provided to sign the package
Checking if package descriptor file is present..

Val i dating descriptor file /home/jedepuyd/iox_aarch64_webserver/package.yam w th package schema
definitions

Parsi ng descriptor file..

Found schema version 2.7

Loadi ng schema file for version 2.7

Val i dati ng package descriptor file..

File /home/jedepuyd/i ox_aarch64_webserver/package.yam is valid under schema version 2.7
Created Staging directory at : /tnp/ 017226485

Copying contents to staging directory

Creating an inner envel ope for application artifacts

Generated /tnp/ 017226485/ artifacts.tar.gz

Cal cul ati ng SHA1 checksum for package contents..

Updat ed package netadata file : /tnp/017226485/. package. net adat a
Root Directory : /tnp/ 017226485

Qutput file: /tnp/ 475248592

Pat h: . package. net adat a

SHA1l : 95abe28f c05395f c5f 71f 7c28f 59eceb1495bf 9b

Path: artifacts.tar.gz

SHA1l : bdf 5596a0747eae51bb0ald2870f d09a5a16a098

Pat h: package. yanl

SHA1l : e65a6fchbe96725dd5a09b60036448106acc0c138

Gener at ed package mani fest at package. nf

Generating | Ox Package. .

Package generated at /hone/jedepuyd/iox_aarch64_webserver/package.tar

Right now, there is a package in order to deploy on the IR1101 ready as package.tar. The next
part explains how to prepare the device for deployment.

Part 2. Configure the IR1101 for 10x

1. Enable the Webinterface, IOx and Local Manager

Local Manager is a GUI in order to deploy, activate, start, manage and troubleshoot 10x
applications. For IR1101, it is embedded in the regular management web interface. So, you need

to enable that first.

Perform these steps on the IR1101 in order to enable 10x and the web interface.

BRU | R1101_20#conf t

Enter configuration conmands, one per line. End with CNTL/Z

BRU_| R1101_20(confi g) #i ox

BRU | R1101_20(config)#ip http server

BRU | R1101_20(config)#ip http secure-server

BRU | R1101_20(config)#i p http authentication |ocal

BRU | R1101_20(confi g) #usernane admin privilege 15 password O cisco

The last line adds a user with privilege 15 permissions. This user will have access to the web

interface and 10x local manager.

2. Configure 10x Networking

Before you access the web interface, let's add the required configuration for the 10x networking.
Background information can be found in the IR1101 documentation for

IOx: https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/quide/b_IR
1101config/b _IR1101config _chapter 010001.html

In short, the 10x applications can communicate with the outside world with the use of the
VirtualPortGroupO interface (comparable with the Gi2 on IR809 and Gi5 on IR829 interfaces).

BRU_| R1101_20(confi g) #i nterface Virtual Port G oup0

BRU_I R1101_20(config-if)# i p address 192.168.1.1 255.255. 255.0

BRU | R1101_20(config-if)# ip nat inside

BRU | R1101_20(config-if)# ip virtual -reassenbly

BRU_| R1101_20(config-if)#exit

As you configure the VirtualPortGroupO interface as Network Address Translation (NAT) inside,
you need to add the ip nat outside statement on the Gi 0/0/0 interface in order to allow

communication to and from the 10x applications with the use of NAT:

BRU_| R1101_20(confi g) #i nterface gi gabitEthernet 0/0/0
BRU_ | R1101_20(config-if)#i p nat outside
BRU | R1101_20(config-if)#ip virtual -reassenbly

In order to allow access to port 9000 for the container, which you can give 192.168.1.15, you need
to add a port forward:

BRU_| R1101_20(confi g)#$i p nat inside source static tcp 192.168.1.15 9000 interface
G gabi t Et hernet 0/ 0/ 0 9000

For this guide, use statically configured IPs per I0x application. If you want to dynamically assign
IP addresses to the applications, you will need to add the configuration for a DHCP server in the
subnet of VirtualPortGroupO.

Part 3. Access Local Manager and Deploy the IOx Application

After you add these lines to the configuration, you can access the IR1101 with the use of the web
interface. Navigate to the Gi 0/0/0 IP address with the use of your browser as shown in the image.

https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/b_IR1101config_chapter_010001.html
https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/b_IR1101config_chapter_010001.html

I
CISCO

LOGIN

‘ [Username ‘

‘ Password ‘

Language: English H#EE

LOGIN NOW

© 2005-2018 - Cisco Systems, Inc. All rights reserved. Cisco, the Cisco logo, and Cisco Systems are registered trademarks or trademarks of Cisco Systems, Inc. and/or itz
affiliates in the United States and certain other countries. All third party trademarks are the property of their respective owners.

Use the privilege 15 account created in Step 1. in order to login to the web interface and navigate
to Configuration - I0x as shown in the image.

-III-III. . L
a CI1SCO E‘_%QDH?HW K9

Q, Search Menu Items Interface

Cellular

S| Dashboard Ethernet
Logical

@ Monitoring Layer2

: VLAN
% Configuration
VTP

fi:}} Administration Routing Protocols
1

EIGRP
3¢ Troubleshooting —

Static Routing

Security

AAA
ACL
NAT
VPN

Services
Application Visibility
Cetnm Annlicatinn

10

NETFIOW

In the 10x Local Manager login, use the same account to continue as shown in the image.

Monitoring

Configuration

o For best results use a supported browser w
Administration

Troubleshooting Cisco I0x Local Manager
S Version: 1.6.0.1
I Username | |
Password | |
v 3

& EYEARE Cisco Systems, Inc, Cisco, Cisco Systems and Cisco logo are registered trademarks of Cisco Systems, Inc, and/or its M m
affiliates in the U.5. and certain other countries, (4} 1]

Click Add New, select a name for the 10x application and choose the package.tar which was built
in Part 1 as shown in the image.

Deploy application x

Application Id: |i0x_web |

Select Application Archive | Choose File | package.tar
Cancel

Once the package is uploaded, you can activate it as shown in the image.

stfiai]ie Cisco Systems
CISCO (Cisco IOx Local Manager

Applications System Info System Troubleshoot System Setting

iox_web

simple docker webserver for arm64ve

TYPE VERSION PROFILE
docker 1.0 1. timy

m 6.3%
G wor

" Activate #» Upgrade M Delete

In the Resources tab, open the interface setting in order to specify the fixed IP that you want to
assign to the app as shown in the image.

Interface Setting

IPv4 Setting

® O Dynamic
Static

P/Mask 192168115 |/ [24

Gateway 192.168.1.1 Default

Ip Gateway

DHCP
Client
D

Click OK, then Activate. Once the action completes, navigate back to the main Local Manager
page (Applications button on the top menu), then start the application as shown in the image.

aiea]ie Cisco Systems
CISCO Cisco I0x Local Manager

Applications System Info System Troubleshoot System Setting iox_web

iox_web

simple docker webserver for arm&dve

TYPE VERSIONM PROFILE

dockar 1.0 c1.tiny

m 6.3%
CPU 10.0%

P Start @ Deactivate £ Manage

After you go through these steps, your application should run and be available through port 9000

with the use of the Gi 0/0/0 interface of the IR1101.

Verity

Use this section in order to confirm that your configuration works properly.

In order to verify, you can access the IP address of the Gi 0/0/0 interface on the IR1101 with the
use of port 9000.

If all goes well, you should see this as follows, as it was created in the Python script.

E BRU_IR1107_20= Cisco IR1101- [10.48.43.249:9000

& C (@ Notsecure | 10.48.43.249:9

10X python webserver on arm64v8

Troubleshoot

This section provides information you can use in order to troubleshoot your configuration.

In order to troubleshoot, you can check the logfile which you create in the Python script with the
use of a local manager.

Navigate to Applications, click Manage on the iox_web aplication, then select the Logs tab as
shown in the image.

i Cisco Systems
CISCO (Cisco I0x Local Manager

Applications System Info System Troubleshoot System Setting iox_web
Resources App-info App-Config App-DataDir | Logs
Log name Timestamp Log Size Download
watchDog.log Wed Mar 13 20:39:51 2019 97 download

webserver.log Wed Mar 13 20:41:33 2019 39 download I

container_log_iox_web.log Wed Mar 13 20:39:51 2019 1684 download

	Build and Deploy a Docker IOx Package for the IR1101 ARM Architecture
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Configure
	Part 1. Build the IOx Package for IR1101
	1. Install and Prepare IOx Client on the Linux Host
	2. Install and Prepare the Docker Environment on the Linux Build Machine
	3. Install the QEMU User Emulation Packages
	4. Test if an aarch64/ARV64v8 Container Runs on x86 Linux Machine
	5. Prepare Files to Build the Docker Webserver Container
	6. Build the Docker Container
	 7. Build the IOx Package
	Part 2. Configure the IR1101 for IOx
	1. Enable the Webinterface, IOx and Local Manager
	2. Configure IOx Networking
	Part 3. Access Local Manager and Deploy the IOx Application

	Verify
	Troubleshoot

