cisco.

Guide d'installation de la carte de ligne Ethernet des routeurs à services d'agrégation Cisco ASR 9000

Première publication : 2 mars 2009 **Dernière modification :** 30 mars 2021

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2016–2021 Cisco Systems, Inc. Tous droits réservés.

TABLE DES MATIÈRES

PRÉFACE :	Préface ix
	Modifications apportées à ce document ix
	Public xi
	Objectif xi
	Organisation xii
	Conventions xii
	Obtenir de la documentation et envoyer une demande de service xiii
CHAPITRE 1	Présentation 1
	Cartes de ligne Ethernet et adaptateurs MPA 1
	Versions du matériel et des logiciels Cisco IOS XR requises 7
	Comparaison des cartes de ligne Ethernet et des adaptateurs MPA 13
	Cartes de ligne 10 Gigabit Ethernet 18
	Carte de ligne Ethernet combinée à 2 ports 10 Gigabit + 20 ports Gigabit Ethernet 18
	Carte de ligne 10 Gigabit Ethernet à 8 ports avec surabonnement 2:1 et module XFP 20
	Carte de ligne 10 Gigabit Ethernet à 4 ports avec module XFP 21
	Carte de ligne 10 Gigabit Ethernet à 8 ports 80 Gbit/s avec module XFP 23
	Carte de ligne Ethernet combinée à 4 ports 10 Gigabit + 16 ports GE avec modules SFP et SFP+ 24
	Carte de ligne 10 Gigabit Ethernet à 16 ports avec surabonnement et module SFP+ 26
	Carte de ligne 10 Gigabit Ethernet à 24 ports avec module SFP+ 27
	Carte de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 24 ports avec module SFP+ ou SFP 29
	Carte de ligne 10 Gigabit Ethernet à 36 ports avec module SFP+ 30
	Carte de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 48 ports avec module SFP+ ou SFP 32
	Carte de ligne Gigabit Ethernet à 40 ports avec module SFP 33
	Cartes de ligne 100 Gigabit Ethernet 34
	Carte de ligne 100 Gigabit Ethernet à 1 port avec module CFP 35

Carte de ligne 100 Gigabit Ethernet à 2 ports avec module CFP 36
Carte de ligne 100 Gigabit Ethernet à 4 ports avec CPAK 38
Carte de ligne 100 Gigabit Ethernet à 8 ports avec CPAK 38
Carte de ligne 100 Gigabit Ethernet à 16 ports avec QSFP28/QSFP+ 40
Carte de ligne 100 Gigabit Ethernet à 32 ports avec module QSFP28/QSFP+ 41
Carte de ligne 100 Gigabit Ethernet à 4 ports avec module QSFP28 42
Carte de ligne 100 Gigabit Ethernet à 12 ports avec module QSFP28 43
Carte de ligne 100 Gigabit Ethernet à 32 ports avec module QSFP28/QSFP+ 44
Carte de ligne 100 Gigabit Ethernet à 20 ports avec QSFP28/QSFPDD 45
Carte de ligne 100 Gigabit Ethernet à 8 ports avec QSFP28/QSFPDD 46
Cartes de ligne 400 Gigabit Ethernet 48
Cartes de ligne 400 Gigabit Ethernet à 10 ports avec QSFPDD 48
Cartes de ligne Ethernet IPoDWDM 50
Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10 Gigabit Ethernet avec modules CFP2 et SFP+ 50
Cartes de ligne multidébit 50
Carte de ligne multidébit 400G combinée 50
Cartes de ligne modulaires et adaptateurs MPA 52
Adaptateur MPA 100 Gigabit Ethernet à 1 port avec module CFP2 53
Adaptateur MPA 200 Gigabit Ethernet à 1 port avec CFP2-DCO 55
Adaptateur MPA 100 Gigabit Ethernet à 2 ports avec module CFP2 57
Adaptateur MPA Gigabit Ethernet à 20 ports avec module SFP 60
Adaptateur MPA 10 Gigabit Ethernet à 2 ports avec module XFP 62
Adaptateur MPA 10 Gigabit Ethernet à 4 ports avec module XFP 63
Adaptateur MPA 10 Gigabit Ethernet à 8 ports avec module SFP+ 64
Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+ 65
Adaptateur MPA 40 Gigabit Ethernet à 1 port avec module QSFP+ 66
Adaptateur MPA 40 Gigabit Ethernet à 2 ports avec module QSFP+ 67
Adaptateur MPA Gigabit Ethernet à 32 ports avec MACsec 69
Matrice de compatibilité pour les cartes de ligne MOD200 et MOD400 71
Installation et retrait des cartes de ligne et des modules émetteurs-récepteurs 73

Sécurité 73

Consignes relatives aux équipements électriques 74

CHAPITRE 2

Sécurité des appareils à laser 74 Consignes de sécurité relatives aux lasers/voyants pour les adaptateurs MPA 74 Prévention des décharges électrostatiques 75 Équipements et outils requis **76** Retrait et installation d'une carte de ligne 76 Consignes d'installation 76 Retrait d'une carte de ligne **78** Installation d'une carte de ligne **81** Étapes de la procédure de retrait et d'installation à chaud d'une carte de ligne 83 Installation et retrait d'une carte de ligne modulaire 83 Équipements et outils requis 83 Manipulation d'une carte de ligne modulaire 83 Instructions relatives à l'installation et au retrait d'une carte de ligne modulaire 84 Retrait d'une carte de ligne modulaire **85** Installation d'une carte de ligne modulaire 87 Installer et retirer des adaptateurs MPA 89 Manipuler des adaptateurs MPA 89 Insertion et retrait à chaud 90 Installer et retirer un adaptateur MPA 91 Installation et retrait des équipements optiques 92 Nettoyage des équipements optiques 92 Retrait en toute sécurité des modules CFP2-DCO 92 Contrôle de l'installation 94 Vérifier l'installation 94 Utilisation des commandes show pour vérifier l'état de la carte de ligne modulaire et de l'adaptateur MPA 96 Utilisation des commandes show pour consulter des informations sur l'adaptateur MPA 96 Vérification de la connectivité réseau à l'aide de la commande ping 100 Installation et retrait des modules SFP 100 Module SFP ou SFP+ à boucle de verrouillage 101 Installation d'un module SFP ou SFP+ à boucle de verrouillage 102 Retrait d'un module SFP ou SFP+ à boucle de verrouillage 102 Module SFP ou SFP+ à languette de verrouillage Mylar 103 Installation d'un module SFP ou SFP+ à languette de verrouillage Mylar 104

Retrait d'un module SFP ou SFP+ à languette de verrouillage Mylar 104 Module SFP ou SFP+ à bouton de verrouillage 105 Installation d'un module SFP à bouton de verrouillage 105 Retrait d'un module SFP ou SFP+ à bouton de verrouillage 106 Module SFP ou SFP+ à languette à glissière 107 Installation d'un module SFP ou SFP+ à languette à glissière 108 Retrait d'un module SFP ou SFP+ à languette à glissière 108 Installation et retrait des modules XFP 110 Installation d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet 111 Retrait d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet 112 Câblage d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet 113 Installation et retrait d'un module d'émetteur-récepteur CFP 100 Gigabit Ethernet 114 Présentation 114 **Outils** requis 115 Installation d'un module d'émetteur-récepteur CFP 115 Retrait d'un module d'émetteur-récepteur CFP 117 Installer et retirer les modules émetteurs-récepteurs QSFP+/QSFP28 118 Présentation 119 Équipements et outils requis 119 Installer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits **119** Fixation du câble réseau optique 121 Retirer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits **122** Installation et retrait des modules d'adaptateur ou d'émetteur-récepteur CPAK 123 Vue d'ensemble du module CPAK 123 Installation et retrait du module CPAK 125 Équipements et outils requis 125 Installation des modules d'adaptateur ou d'émetteur-récepteur CPAK 126 Fixation du câble réseau optique 126 Retrait des modules d'adaptateur ou d'émetteur-récepteur CPAK 127 Gestion des câbles pour carte de ligne 127 Plateau de gestion des câbles 128 Supports de gestion des câbles pour routeur 128 Support de gestion des câbles pour carte de ligne 129 Installation d'un support de gestion des câbles pour carte de ligne 130

	Retrait d'un support de gestion des câbles pour carte de ligne 131
	Connecteurs et câbles 132
	Interfaces Gigabit Ethernet 132
	Modules SFP Gigabit Ethernet 132
	Modules XFP 10 Gigabit Ethernet 133
	Câbles d'interface à fibre optique 133
	Installation et retrait des câbles d'interface à fibre optique 134
	Installation des câbles d'interface à fibre optique 134
	Retrait des câbles d'interface à fibre optique 135
	Nettoyage des connecteurs à fibre optique 136
	Câbles en cuivre type RJ-45 10/100/1000BASE-T 137
	Retrait et installation des câbles en cuivre type RJ-45 10/100/1000BASE-T 137
	Installation des câbles RJ-45 138
	Retrait des câbles RJ-45 138
CHAPITRE 3	Vérification et dépannage de l'installation de la carte de ligne 139
	Vérification et dépannage de l'installation de la carte de ligne 139
	Processus de démarrage initial 139
	Voyants des cartes de ligne 140
	Voyants de l'adaptateur MPA 140
	Résolution des problèmes d'installation 141
	Configuration et dépannage des interfaces de carte de ligne 142
	Paramètres de configuration 142
	Adresse de l'interface de la carte de ligne 142
	Utilisation des commandes de configuration 143
	Configuration de base des cartes de ligne 143
	Configuration des cartes de ligne double débit 145
	Contrôle des modules d'émetteurs-récepteurs 146
	Dépannage avancé de la carte de ligne 148
ANNEXE A:	
	Valeurs relatives à la consommation électrique de la carte de ligne Ethernet 149
	Dimensions physiques de la carte de ligne Ethernet 152
	Caractéristiques des modules émetteurs-récepteurs 152

I

I

Caractéristiques des connecteurs à 38 broches des modules QSFP 40 Gigabit et QSFP28 100 Gigabit 152

Caractéristiques des broches des connecteurs MPO-12 153

Types de connecteurs CPAK **154**

Caractéristiques des broches des connecteurs MPO-24 154

Câbles de dérivation CPAK 155

Dérivation 2X40G CPAK-100G-SR10 155

Dérivation 2X40 CPAK-10x10G-LR 158

Préface

Elle contient les sections suivantes :

- Modifications apportées à ce document, à la page ix
- Public, à la page xi
- Objectif, à la page xi
- Organisation, à la page xii
- Conventions, à la page xii
- Obtenir de la documentation et envoyer une demande de service, à la page xiii

Modifications apportées à ce document

Le tableau suivant répertorie les modifications techniques apportées à ce document depuis sa première publication.

Date	Résumé des changements
Avril 2021	Ajout de la prise en charge des cartes de ligne A99-10X400GE-X-SE et A99-10X400GE-X-TR. Également appelée carte de ligne 400 Gigabit Ethernet à 10 ports de 5e génération Cisco ASR 9900.
Avril 2020	Ajout d'informations relatives à la prise en charge des :
	• Cartes de ligne A99-32X100GE-X-SE et A99-32X100GE-X-TR. Également appelée carte de ligne 100 Gigabit Ethernet à 32 ports de 5e génération Cisco ASR 9900.
	• Cartes de ligne A9K-20HG-FLEX-SE, A9K-20HG-FLEX-TR, A9K-8HG-FLEX-SE et A9K-8HG-FLEX-TR. Également appelées cartes de ligne à haut débit et haute densité Cisco ASR 9000 de 5e génération.
- Août 2019	Ajout de la prise en charge de la technologie Staircase FEC pour l'adaptateur MPA A9K-MPA-1X200GE avec module CFP2-DCO, l'adaptateur MPA A9K-MPA-1X100GE avec module CFP2 et l'adaptateur MPA A9K-MPA-2X100GE avec module CFP2.
	Ajout d'étapes pour le retrait en toute sécurité des modules CFP2-DCO.
Mai 2019	Ajout de la prise en charge de l'adaptateur MPA A9K-MPA-1X200GE avec CFP2-DCO.

Tableau 1 : Nouveautés et mises à jour

I

Date	Résumé des changements	
Janvier 2019	Ajout de la prise en charge des cartes de ligne A9K-16X100GE-CM, A99-32X100GE-CM et A99-16X100GE-X-SE.	
Décembre 2018	Ajout de la prise en charge des cartes de ligne A9K-16X100GE-TR et A99-32X100GE-TR.	
	Ajout de la prise en charge de l'adaptateur MPA GE à 32 ports avec MACsec.	
Mars 2018	Ajout de la prise en charge des cartes de ligne A9K-24X10GE-1G-CM et A9K-48X10GE-1G-CM.	
Décembre 2017	Ajout de la prise en charge de la carte de ligne A9K-4X100GE.	
Juillet 2017• La carte de ligne modulaire MOD-400 (A9K-MOD400-TR, A9K-MOD400-SE) sur la plate-forme IOS XR 64 bits avec l'adaptateur MPA A9K-MPA-2x100GE optiques CPAK-100G-SR10, CPAK-10x10G-LR et CPAK-100G-LR4.		
	• Les composants optiques GLC-LH-SMD, GLC-ZX-SMD et GLC-TE sont pris en charge sur la carte de ligne 10GE/1GE double débit à 24 ports Cisco ASR 9000 et sur la carte de ligne 10GE/1GE double débit à 48 ports Cisco ASR 9000 (sur IOS XR 32 bits).	
Mars 2017	Ajout d'informations sur les nouvelles cartes de ligne (A9K-24X10GE-1G-TR, A9K-24X10GE-1G-SE, A9K-48X10GE-1G-TR, A9K-48X10GE-1G-SE, A9K-MOD200-CM).	
	Ajout des nouveaux composants optiques pris en charge dans IOS XR version 6.2.1.	
Août 2016	Ajout d'informations sur les cartes de ligne, modèle de consommation, et les autres :	
	A99-8X100GE-CM (carte de ligne 100GE à 8 ports ASR 9000, modèle de consommation)	
	A99-8X100GE	
	A99-12X100GE-CM (carte de ligne 100GE à 12 ports ASR 9000, modèle de consommation)	
Juillet 2016	Ajout d'informations sur le modèle de consommation MOD-400 (A9K-MOD400-CM).	
Mai 2016	Ajout d'informations sur les nouvelles cartes de ligne (A99-12X100GE, A9K-MOD200-SE, A9K-MOD200-TR) et l'adaptateur MPA (A9K-MPA-1X100GE, A9K-MPA-2X100GE).	
Décembre 2015	Ajout de la prise en charge de l'adaptateur MPA 2X100GE et de la carte OTN/WAN 8x100GE avec 7 fabrics.	
Septembre 2015	Ajout des nouvelles cartes de ligne (A9K-MOD400-SE, A9K-MOD400-TR, A9K-8X100GE-CM et A9K-400GE-DWDM-TR), de l'adaptateur MPA (A9K-MPA-20x10GE) et de l'adaptateur CPAK (CVR-CPAK-QSFP40).	
Avril 2015	Ajout des nouvelles cartes de ligne de nouvelle génération 4x100GE (A9K-4X100GE-TR et A9K-4X100GE-SE), 8X100GE (A9K-8X100GE-TR et A9K-8X100GE-SE) et de la prise en charge de la dérivation CPAK 40GE.	
Janvier 2015	Ajout de la nouvelle carte de ligne de nouvelle génération 8X100GE (A9K-8X100GE-L-SE), des cartes de ligne combinées (A9K-4T16GE-TR/A9K-4T16GE-SE) et des nouveaux composants optiques pris en charge dans Cisco IOS XR version 5.3.0.	
Octobre 2014	Ajout des nouveaux composants optiques pris en charge dans IOS XR version 5.2.2 et des nouvelles cartes de ligne 40x1G à faible coût A9K-40GE-TR et A9K-40GE-SE.	

Date	Résumé des changements
Septembre 2014	Ajout des nouveaux composants optiques pris en charge dans IOS XR version 5.1.2.
Juin 2014	Ajout des nouveaux composants optiques pris en charge dans IOS XR version 5.2.0.
Janvier 2014	Ajout d'informations concernant les nouveaux modules SFP Fast Ethernet, les émetteurs-récepteurs SFP+ 10GE, les émetteurs-récepteurs SFP+ DWDM et les modules XFP 10GE.
Mai 2013	Ajout d'informations à propos du nouvel adaptateur MPA 10GE à 8 ports.
Décembre 2012	Ajout d'informations à propos du nouveau module d'émetteur-récepteur XFP-10GER-192IR multidébit 10GBASE-ER et OC-192/STM-64 IR-2 XFP, à faible puissance (2,5 W).
Septembre 2012	Ajout d'informations à propos du nouvel adaptateur MPA 40GE à 1 port, de la nouvelle carte de ligne 10 Gigabit Ethernet à 36 ports et de la nouvelle carte de ligne 100 Gigabit Ethernet à 1 port ainsi que mise à jour des informations concernant le module d'émetteur-récepteur.
Mai 2012	Ajout d'informations à propos de la nouvelle carte de ligne modulaire 160G, du nouvel adaptateur MPA 10GE à 2 ports, du nouvel adaptateur MPA 40GE à 2 ports et des modules optiques CFP-40G, CFP-100G et QSFP+.
Décembre 2011	Ajout d'informations sur la nouvelle carte de ligne fixe 10GE à 24 ports, la carte de ligne fixe 100GE à 2 ports et la carte de ligne modulaire qui prend en charge l'adaptateur MPA 1GE à 20 ports, l'adaptateur MPA 10GE à 4 ports et l'adaptateur MPA 10GE à 2 ports.
Mai 2010	Ajout d'informations à propos de la nouvelle carte de ligne 16x10GE SFP+ et des modules émetteurs-récepteurs SFP+. Également ajout d'informations sur les versions supplémentaires des cartes existantes et sur les nouveaux modules émetteurs-récepteurs pris en charge.
Décembre 2009	Ajout d'informations à propos de la nouvelle carte à débit de ligne $8x10GE 80$ Gbit/s et la carte de ligne combinée $2x10GE + 20x1GE$.
Mars 2009	Version initiale de ce document.

Public

Ce guide est destiné aux installateurs de matériel et aux administrateurs système travaillant avec des routeurs Cisco.

Cette publication suppose que les utilisateurs possèdent des connaissances poussées sur l'installation et la configuration des routeurs et des équipements basés sur les commutateurs. Par ailleurs, le lecteur doit connaître les circuits électroniques et les pratiques de câblage et avoir de l'expérience en tant que technicien en électronique ou en électromécanique.

Objectif

Ce guide d'installation explique comment installer des cartes de ligne sur le routeur, vérifier l'installation et créer un fichier de configuration initiale de base.

Organisation

Ce guide se compose des sections suivantes :

Section	Titre	Description
1	Présentation, à la page 1	Explique l'installation du matériel et la connexion des câbles d'interface réseau externes.
2	Installation et retrait des cartes de ligne et des modules émetteurs-récepteurs, à la page 73	Explique l'installation et le retrait des cartes de ligne et des modules émetteurs-récepteurs.
3	Vérification et dépannage de l'installation de la carte de ligne, à la page 139	Présente les procédures de vérification de l'installation de la carte de ligne.
A	Spécifications techniques, à la page 149	Répertorie les caractéristiques des cartes de ligne Ethernet pour le routeur à services d'agrégation Cisco ASR 9000.

Conventions

Sont utilisées dans le présent document les conventions suivantes :

• Ctrl correspond à la touche *Contrôle*. Par exemple, la combinaison des touches *Ctrl*- Z signifie que vous devez appuyer simultanément sur les touches Contrôle et Z.

Les conventions suivantes sont utilisées dans les descriptions de commandes :

• Les exemples qui contiennent des messages système font référence à des sessions interactives, qui indiquent que les commandes doivent être saisies dans l'invite. Par exemple :

RP/0/RSP0/CPU0:router#

- Les commandes et les mots clés sont indiqués en **bold**.
- Les arguments pour lesquels vous pouvez définir une valeur s'affichent en *italique*.
- Les éléments entre crochets droits ([]) sont facultatifs.
- Les mots clés alternatifs mais requis sont regroupés entre accolades ({ }) et séparés par des traits verticaux ().

Invite le lecteur à être prudent. Vous êtes susceptible d'effectuer une action pouvant endommager l'équipement ou occasionner une perte de données.

Remarque

Signifie que *le lecteur doit tenir compte d'une remarque particulière*. Les remarques contiennent des suggestions utiles ou renvoient à des informations complémentaires à celles qui sont fournies dans le guide.

Obtenir de la documentation et envoyer une demande de service

Pour savoir comment se procurer de la documentation, faire une demande de service et obtenir des informations complémentaires, consultez le bulletin mensuel *What's New in Cisco Product Documentation*, qui présente par ailleurs toute la documentation technique récente et révisée disponible sur les produits Cisco, à l'adresse suivante :

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Abonnez-vous au flux RSS *What's New in Cisco Product Documentation* et programmez l'envoi direct de contenus vers votre bureau, à l'aide d'une application de type lecteur. Le service de flux RSS est gratuit et Cisco prend actuellement en charge la syndication RSS version 2.0.

011/111

Présentation

Ce chapitre présente les cartes de ligne Ethernet des routeurs Cisco ASR 9000 et comprend les sections suivantes :

- Cartes de ligne Ethernet et adaptateurs MPA, à la page 1
- Versions du matériel et des logiciels Cisco IOS XR requises, à la page 7
- Comparaison des cartes de ligne Ethernet et des adaptateurs MPA, à la page 13
- Cartes de ligne 10 Gigabit Ethernet, à la page 18
- Cartes de ligne 100 Gigabit Ethernet, à la page 34
- Cartes de ligne 400 Gigabit Ethernet, à la page 48
- Cartes de ligne Ethernet IPoDWDM, à la page 50
- Cartes de ligne multidébit, à la page 50
- Cartes de ligne modulaires et adaptateurs MPA, à la page 52

Cartes de ligne Ethernet et adaptateurs MPA

Les tableaux suivants répertorient les cartes de ligne Ethernet Cisco ASR 9000 et les adaptateurs MPA ainsi que leurs ID de produit Cisco correspondants, classés par génération.

Remarque

Le codage RS-FEC consiste à utiliser un groupe de codes correcteurs d'erreurs dans les systèmes de stockage de masse pour corriger les salves d'erreurs associées aux défauts du support. Toutes les cartes de ligne et tous les adaptateurs MPA qui prennent en charge le mode OTN prennent en charge le codage RS-FEC. En mode LAN, par défaut, les modules optiques SR4, CWDM4 et PSM4 sont activés avec le codage RS-FEC (conformément au standard IEEE).

Tableau 2 : Cartes de ligne Ethernet Cisco ASR 9000 : 1re génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne Ethernet combinée à 2 ports 10GE + 20 ports GE	A9K-2T20GE-B
Carte de ligne Ethernet combinée étendue à 2 ports 10GE + 20 ports GE	A9K-2T20GE-E
Carte de ligne Ethernet combinée à petite file d'attente à 2 ports 10GE + 20 ports GE avec modules XFP et SFP	A9K-2T20GE-L

I

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 10GE à 4 ports avec module XFP	А9К-4Т-В
Carte de ligne étendue 10GE à 4 ports avec module XFP	А9К-4Т-Е
Carte de ligne à petite file d'attente 10GE à 4 ports avec module XFP	A9K-4T-L
Carte de ligne à petite file d'attente DX 10GE à 8 ports avec module XFP	A9K-8T/4-L
Carte de ligne DX 10GE à 8 ports avec module XFP	A9K-8T/4-B
Carte de ligne étendue DX 10GE à 8 ports avec module XFP	А9К-8Т/4-Е
Carte de ligne 10GE à 8 ports avec module XFP	А9К-8Т-В
Carte de ligne étendue 10GE à 8 ports avec module XFP	А9К-8Т-Е
Carte de ligne à petite file d'attente 10GE à 8 ports 80G avec module XFP	A9K-8T-L
Carte de ligne GE à 40 ports avec module SFP	A9K-40GE-B
Carte de ligne étendue GE à 40 ports avec module SFP	A9K-40GE-E
Carte de ligne à petite file d'attente GE à 40 ports avec module SFP	A9K-40GE-L

Tableau 3 : Cartes de ligne Ethernet Cisco ASR 9000 : 2e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne DX 100GE à 1 port, optimisation du service de périphérie avec module CFP	A9K-1X100GE-SE
Carte de ligne DX 100GE à 1 port, optimisation du transport de paquets avec module CFP	A9K-1X100GE-TR
Carte de ligne combinée 4 ports 10GE + 16 ports GE, optimisation du transport de paquets avec modules SFP et SFP+	A9K-4T16GE-TR
Carte de ligne combinée étendue 4 ports 10GE + 16 ports GE, optimisation du service de périphérie avec modules SFP et SFP+	A9K-4T16GE-SE
Carte de ligne DX 10GE à 24 ports, optimisation du transport de paquets avec module SFP+	A9K-24X10GE-TR
Carte de ligne 10GE à 24 ports, optimisation du service de périphérie avec module SFP+	A9K-24X10GE-SE
Carte de ligne 10GE à 36 ports, optimisation du transport de paquets avec module SFP+	A9K-36X10GE-TR
Carte de ligne 10GE à 36 ports, optimisation du service de périphérie avec module SFP+	A9K-36X10GE-SE
Carte de ligne GE à 40 ports, optimisation du transport de paquets avec module SFP	A9K-40GE-TR
Carte de ligne GE à 40 ports, optimisation du service de périphérie avec module SFP	A9K-40GE-SE
Carte de ligne DX 100GE à 2 ports, optimisation du transport de paquets avec module CFP	A9K-2X100GE-TR

Carte de ligne Ethernet	Référence Cisco
Carte de ligne DX 100GE à 2 ports, optimisation du service de périphérie avec module CFP	A9K-2X100GE-SE
Adaptateur MPA 40GE à 1 port avec module QSFP+	A9K-MPA-1X40GE
Adaptateur MPA 40GE à 2 ports avec module QSFP+	A9K-MPA-2X40GE
Adaptateur MPA 10GE à 2 ports avec module XFP	A9K-MPA-2X10GE
Adaptateur MPA 10GE à 4 ports avec module XFP	A9K-MPA-4X10GE
Adaptateur MPA 10GE à 8 ports avec module SFP+	A9K-MPA-8X10GE
Adaptateur MPA GE à 20 ports avec module SFP	A9K-MPA-20X1GE
Carte de ligne modulaire 80 gigaoctets, optimisation du transport de paquets	A9K-MOD80-TR
Carte de ligne modulaire 80 gigaoctets, optimisation du service de périphérie	A9K-MOD80-SE
Carte de ligne modulaire 160 gigaoctets, optimisation du transport de paquets	A9K-MOD160-TR
Carte de ligne modulaire 160 gigaoctets, optimisation du service de périphérie	A9K-MOD160-SE

Tableau 4 : Cartes de ligne Ethernet Cisco ASR 9000 : 3e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 10GE/1GE à 24 ports, optimisation du transport de paquets avec module SFP+ ou SFP	A9K-24X10GE-1G-TR
Carte de ligne 10GE/1GE à 24 ports, optimisation du service de périphérie avec module SFP+ ou SFP	A9K-24X10GE-1G-SE
Carte de ligne 10GE/1GE à 24 ports, modèle de consommation avec module SFP+ ou SFP	A9K-24X10GE-1G-CM
Carte de ligne 10GE/1GE à 48 ports, optimisation du transport de paquets avec module SFP+ ou SFP	A9K-48X10GE-1G-TR
Carte de ligne 10GE/1GE à 48 ports, optimisation du service de périphérie avec module SFP+ ou SFP	A9K-48X10GE-1G-SE
Carte de ligne 10GE/1GE à 48 ports, modèle de consommation avec module SFP+ ou SFP	A9K-48X10GE-1G-CM
Carte de ligne 100GE à 4 ports, optimisation du transport de paquets avec module CPAK	A9K-4X100GE-TR
Carte de ligne 100GE à 4 ports, optimisation du service de périphérie avec module CPAK	A9K-4X100GE-SE
Carte de ligne 100GE à 8 ports, optimisation du transport de paquets avec module CPAK	A9K-8X100GE-TR
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie avec module CPAK	A9K-8X100GE-SE
Carte de ligne 100GE à 8 ports, modèle de consommation optimisé avec module CPAK	A9K-8X100GE-CM

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie avec module CPAK (version LAN)	A9K-8X100G-LB-SE
Carte de ligne 100GE à 8 ports, optimisation du transport de paquets avec module CPAK (version LAN)	A9K-8X100G-LB-TR
Carte de ligne 100GE à 4 ports avec module QSFP28	A9K-4X100GE
Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10GE avec modules CFP2 et SFP+, optimisation du transport de paquets	A9K-400GE-DWDM-TR
Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+	A9K-MPA-20x10GE
Adaptateur MPA 10 Gigabit Ethernet à 20 ports, modèle de consommation	A9K-MPA-20x10GE-CM
Adaptateur MPA 100GE à 1 port	A9K-MPA-1x100GE
Adaptateur MPA 200GE à 1 port	A9K-MPA-1X200GE
Adaptateur MPA 100GE à 2 ports	A9K-MPA-2x100GE
Adaptateur MPA 100GE à 2 ports, modèle de consommation	A9K-MPA-2x100GE-CM
Adaptateur MPA GE à 32 ports avec MACsec	A9K-MPA-32X1GE
Carte de ligne modulaire 200 gigaoctets, optimisation du transport de paquets	A9K-MOD200-TR
Carte de ligne modulaire 200 gigaoctets, optimisation du service de périphérie	A9K-MOD200-SE
Carte de ligne modulaire 400 gigaoctets, optimisation du transport de paquets	A9K-MOD400-TR
Carte de ligne modulaire 400 gigaoctets, optimisation du service de périphérie	A9K-MOD400-SE
Carte de ligne modulaire 400 gigaoctets, optimisation du modèle de consommation	A9K-MOD400-CM

Tableau 5 : Cartes de ligne Ethernet Cisco ASR 9900 : 3e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 100GE à 8 ports, optimisation du transport de paquets avec module CPAK	A99-8X100GE-TR
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie avec module CPAK	A99-8X100GE-SE
Carte de ligne 100GE à 8 ports, modèle de consommation avec module CPAK	A99-8X100GE-CM
Carte de ligne 100GE à 12 ports avec module QSFP28	A99-12X100GE
Carte de ligne 100GE à 12 ports, modèle de consommation avec module QSFP28	A99-12X100GE-CM
Carte de ligne 10GE/1GE double débit à 48 ports et 7 fabrics, optimisation du service de périphérie	A99-48X10GE-1G-SE
Carte de ligne 10GE/1GE double débit à 48 ports et 7 fabrics, optimisation du transport de paquets	A99-48X10GE-1G-TR

Tableau 6 : Cartes de ligne Ethernet Cisco ASR 9000 : 4e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 100GE à 16 ports, optimisation du transport de paquets avec module QSFP28/QSFP+	A9K-16X100GE-TR
Carte de ligne 100GE à 16 ports, modèle de consommation avec module QSFP28/QSFP+	A9K-16X100GE-CM
Carte de ligne 100GE à 16 ports, optimisation du service de périphérie avec module QSFP28/QSFP+	A99-16X100GE-X-SE

Tableau 7 : Cartes de ligne Ethernet Cisco ASR 9900 : 4e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 100GE à 32 ports, optimisation du transport de paquets avec module QSFP28/QSFP+	A99-32X100GE-TR
Carte de ligne 100GE à 32 ports, modèle de consommation avec module QSFP28	A99-32X100GE-CM

Tableau 8 : Cartes de ligne Ethernet Cisco ASR 9000 : 5e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 2T combinée, optimisation du service de périphérie	A9K-20HG-FLEX-SE
Carte de ligne 2T combinée, optimisation du transport	A9K-20HG-FLEX-TR
Carte de ligne 800G combinée, optimisation du service de périphérie	A9K-8HG-FLEX-SE
Carte de ligne 800G combinée, optimisation du transport	A9K-8HG-FLEX-TR
Carte de ligne 400G combinée, optimisation du service de périphérie	A9K-4HG-FLEX-SE
Carte de ligne 400G combinée, optimisation du transport	A9K-4HG-FLEX-TR

Tableau 9 : Cartes de ligne Ethernet Cisco ASR 9900 : 5e génération

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 100GE à 32 ports avec module QSFP28/QSFP+, optimisation du service de périphérie	A99-32X100GE-X-SE
Carte de ligne 100GE à 32 ports avec module QSFP28/QSFP+, optimisation du transport	A99-32X100GE-X-TR

Carte de ligne Ethernet	Référence Cisco
Carte de ligne 400GE à 10 ports avec QSFP-DD, optimisation du service de périphérie	A99-10X400GE-X-SE
Carte de ligne 400GE à 10 ports avec QSFP-DD, optimisation du transport	A99-10X400GE-X-TR
Carte de ligne 400G combinée, optimisation du service de périphérie	A99-4HG-FLEX-SE
Carte de ligne 400G combinée, optimisation du transport	A99-4HG-FLEX-TR

Le tableau suivant répertorie les châssis Cisco ASR 9000 ainsi que les cartes de ligne Ethernet et les adaptateurs MPA pris en charge.

Châssis	Carte de ligne Ethernet
Cisco ASR 9006, Cisco ASR 9010 Remarque La prise en charge des cartes de ligne de 3e génération et suivantes nécessite des unités de ventilation v2 (ASR-9006-FAN-V2 ou ASR-9010-FAN-V2)	 Tableau 2 : Cartes de ligne Ethernet Cisco ASR 9000 : lre génération Tableau 3 : Cartes de ligne Ethernet Cisco ASR 9000 : 2e génération Tableau 4 : Cartes de ligne Ethernet Cisco ASR 9000 : 3e génération Tableau 6 : Cartes de ligne Ethernet Cisco ASR 9000 : 4e génération, à la page 5 Tableau 8 : Cartes de ligne Ethernet Cisco ASR 9000 : 5e génération, à la page 5
Cisco ASR 9904, Cisco ASR 9910, Cisco ASR 9912 et Cisco ASR 9922	 Tableau 3 : Cartes de ligne Ethernet Cisco ASR 9000 : 2e génération Tableau 4 : Cartes de ligne Ethernet Cisco ASR 9000 : 3e génération Tableau 5 : Cartes de ligne Ethernet Cisco ASR 9900 : 3e génération Tableau 6 : Cartes de ligne Ethernet Cisco ASR 9000 : 4e génération, à la page 5 Tableau 7 : Cartes de ligne Ethernet Cisco ASR 9900 : 4e génération, à la page 5 Tableau 9 : Cartes de ligne Ethernet Cisco ASR 9900 : 5e génération, à la page 5

Carte de ligne Ethernet
Tableau 4 : Cartes de ligne Ethernet Cisco ASR 9000 : 3e génération
• Tableau 5 : Cartes de ligne Ethernet Cisco ASR 9900 : 3e génération
 Tableau 6 : Cartes de ligne Ethernet Cisco ASR 9000 : 4e génération, à la page 5
 Tableau 7 : Cartes de ligne Ethernet Cisco ASR 9900 : 4e génération, à la page 5
• Tableau 9 : Cartes de ligne Ethernet Cisco ASR 9900 : 5e génération, à la page 5
-

Les cartes de ligne des routeurs Cisco ASR 9000 ne prennent pas en charge la surveillance de la tension. Par conséquent, aucune alarme ne se déclenche lorsque les seuils relatifs à la tension sont dépassés.

Versions du matériel et des logiciels Cisco IOS XR requises

Les cartes de ligne Ethernet Cisco ASR 9000 et les adaptateurs MPA ont des exigences spécifiques quant au logiciel Cisco IOS XR. Pour être compatible avec le logiciel, chaque carte de ligne ou adaptateur MPA doit par ailleurs posséder un numéro de version matérielle spécifique. Ce numéro est imprimé sur l'étiquette apposée sur le côté composants de la carte ou de l'adaptateur MPA. Pour trouver ce numéro, vous pouvez également utiliser la commande **show diag**. Le tableau suivant répertorie les exigences matérielles et logicielles concernant les cartes de ligne.

Tableau 11 : Carte de ligne Ethernet et adaptateur MPA de la gamme Cisco ASR 9000

Carte de ligne Ethernet	Référence produit	Version minimale du logiciel Cisco IOS XR requise	Prise en charge initiale de la version IOS XR 64 bits	Version matérielle requise
Carte de ligne GE à 40 ports	A9K-40GE-B	3.7.2	Non prise en charge	1.0
Carte de ligne étendue GE à 40 ports	A9K-40GE-E	3.7.2	Non prise en charge	1.0
Carte de ligne à petite file d'attente GE à 40 ports	A9K-40GE-L	3.9.0	Non prise en charge	1.0
Carte de ligne DX 10GE à 8 ports	A9K-8T/4-B	3.7.2	Non prise en charge	1.0
Carte de ligne étendue DX 10GE à 8 ports	А9К-8Т/4-Е	3.7.2	Non prise en charge	1.0
Carte de ligne à petite file d'attente DX 10GE à 8 ports	A9K-8T/4-L	3.9.0	Non prise en charge	1.0

Carte de ligne Ethernet	Référence produit	Version minimale du logiciel Cisco IOS XR requise	Prise en charge initiale de la version IOS XR 64 bits	Version matérielle requise
Carte de ligne 10GE à 4 ports	А9К-4Т-В	3.7.2	Non prise en charge	1.0
Carte de ligne étendue 10GE à 4 ports	А9К-4Т-Е	3.7.2	Non prise en charge	1.0
Carte de ligne à petite file d'attente 10GE à 4 ports	A9K-4T-L	3.9.0	Non prise en charge	1.0
Carte de ligne 10GE à 8 ports à débit de ligne	А9К-8Т-В	3.9.1	Non prise en charge	1.0
Carte de ligne étendue 10GE à 8 ports à débit de ligne	А9К-8Т-Е	3.9.0	Non prise en charge	1.0
Carte de ligne à petite file d'attente 10GE à 8 ports 80G	A9K-8T-L	3.9.0	Non prise en charge	1.0
Carte de ligne Ethernet combinée à 2 ports 10GE + 20 ports GE	A9K-2T20GE-B	3.9.0	Non prise en charge	1.0
Carte de ligne Ethernet combinée étendue à 2 ports 10GE + 20 ports GE	A9K-2T20GE-E	3.9.0	Non prise en charge	1.0
Carte de ligne combinée à petite file d'attente à 2 ports 10GE + 20 ports GE	A9K-2T20GE-L	3.9.1	Non prise en charge	1.0
Carte de ligne à file d'attente moyenne DX 10GE à 16 ports	А9К-16Т/8-В	3.9.1	Non prise en charge	1.0
Carte de ligne DX 10GE à 24 ports, optimisation du transport de paquets	A9K-24X10GE-TR	4.2.0	Non prise en charge	1.0
Carte de ligne DX 10GE à 24 ports, optimisation du service de périphérie	A9K-24X10GE-SE	4.2.0	Non prise en charge	1.0
Carte de ligne DX 100GE à 2 ports, optimisation du transport de paquets	A9K-2X100GE-TR	4.2.0	Non prise en charge	1.0
Carte de ligne DX 100GE à 2 ports, optimisation du service de périphérie	A9K-2X100GE-SE	4.2.0	Non prise en charge	1.0
Carte de ligne modulaire 80 gigaoctets, optimisation du transport de paquets	A9K-MOD80G-TR	4.2.0	Non prise en charge	1.0
Carte de ligne modulaire 80 gigaoctets, optimisation du service de périphérie	A9K-MOD80G-SE	4.2.0	Non prise en charge	1.0
Carte de ligne modulaire 160 gigaoctets, optimisation du transport de paquets	A9K-MOD160G-TR	4.2.0	Non prise en charge	1.0

Carte de ligne Ethernet	Référence produit	Version minimale du logiciel Cisco IOS XR requise	Prise en charge initiale de la version IOS XR 64 bits	Version matérielle requise
Carte de ligne modulaire 160 gigaoctets, optimisation du service de périphérie	A9K-MOD160G-SE	4.2.0	Non prise en charge	1.0
Adaptateur MPA GE à 20 ports	A9K-MPA-20X1GE	4.2.0	6.2.1	1.0
Adaptateur MPA 10GE à 2 ports	A9K-MPA-2X10GE	4.2.0	6.3.2	1.0
Adaptateur MPA 10GE à 4 ports	A9K-MPA-4X10GE	4.2.0	6.2.1	1.0
Adaptateur MPA 100GE à 1 port	A9K-MPA-1X100GE	6.0.1	6.3.1	1.0 3.0 : obligatoire pour les composants optiques numériques CFP2-DCO
Adaptateur MPA 100GE à 2 ports	A9K-MPA-2X100GE	6.0.1	6.2.2	1.0 4.0 : obligatoire pour les composants optiques numériques CFP2-DCO
Adaptateur MPA 100GE à 2 ports, modèle de consommation	A9K- MPA-2X100GE- CM	6.1.2	Non prise en charge	1.0 2.0 : obligatoire pour les composants optiques numériques CFP2-DCO
Adaptateur MPA GE à 32 ports	A9K-MPA-32X1GE	6.6.1	6.6.1	1.0
Carte de ligne modulaire 160 gigaoctets, optimisation du transport de paquets	A9K-MOD160G-TR	4.2.1	Non prise en charge	1.0
Carte de ligne modulaire 160 gigaoctets, optimisation du service de périphérie	A9K-MOD160G-SE	4.2.1	Non prise en charge	1.0
Adaptateur MPA 40GE à 2 ports	A9K-MPA-2X40GE	4.2.1	6.3.1	1.0

Carte de ligne Ethernet	Référence produit	Version minimale du logiciel Cisco IOS XR requise	Prise en charge initiale de la version IOS XR 64 bits	Version matérielle requise
Carte de ligne 10GE à 36 ports, optimisation du transport de paquets	A9K-36X10GE-TR	 4.2.2 4.2.2 est la version matérielle. La version CCO est 4.2.3. 	Non prise en charge	1.0
Carte de ligne 10GE à 36 ports, optimisation du service de périphérie	A9K-36X10GE-SE	4.2.2	Non prise en charge	1.0
Carte de ligne DX 100GE à 1 port, optimisation du transport de paquets	A9K-1X100GE-TR	4.2.2	Non prise en charge	1.0
Carte de ligne DX 100GE à 1 port, optimisation du service de périphérie	A9K-1X100GE-SE	4.2.2	Non prise en charge	1.0
Adaptateur MPA 10GE à 2 ports	А9К-ЕР-2Т	4.2.0	Non prise en charge	1.0
Adaptateur MPA 40GE à 1 port	A9K-MPA-1X40GE	4.2.3	6.3.1	1.0
Adaptateur MPA 10GE à 8 ports	A9K-MPA-8X10GE	4.3.1	6.3.2	1.0
Carte de ligne GE à 40 ports, optimisation du transport de paquets	A9K-40GE-TR	5.2.2	Non prise en charge	1.0
Carte de ligne GE à 40 ports, optimisation du service de périphérie	A9K-40GE-SE	5.2.2	Non prise en charge	1.0
Carte de ligne combinée 4 ports 10GE + 16 ports GE, optimisation du transport de paquets	A9K-4T16GE-TR	5.3.0	Non prise en charge	1.0
Carte de ligne combinée étendue 4 ports 10GE + 16 ports GE, optimisation du service de périphérie	A9K-4T16GE-SE	5.3.0	Non prise en charge	1.0
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie	A9K-8X100GE-L-SE	5.3.0	6.1.2	1.0
Carte de ligne 100GE à 8 ports, modèle de consommation	A99-8X100GE-CM	6.1.1	6.1.2	1.0
Carte de ligne 100GE à 8 ports, optimisation du transport de paquets	A99-8X100GE-TR	6.1.1	6.1.2	1.0
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie	A99-8X100GE-SE	6.1.1	6.1.2	1.0
Carte de ligne 100GE à 4 ports, optimisation du transport de paquets	A9K-4X100GE-TR	5.3.1	6.1.2	1.0

Carte de ligne Ethernet	Référence produit	Version minimale du logiciel Cisco IOS XR requise	Prise en charge initiale de la version IOS XR 64 bits	Version matérielle requise
Carte de ligne 100GE à 4 ports, optimisation du service de périphérie	A9K-4X100GE-SE	5.3.1	6.1.2	1.0
Carte de ligne 100GE à 8 ports, optimisation du transport de paquets	A9K-8X100GE-TR	5.3.1	6.1.2	1.0
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie	A9K-8X100GE-SE	5.3.1	6.1.2	1.0
Carte de ligne 100GE à 8 ports, modèle de consommation optimisé	A9K-8X100GE-CM	5.3.2	6.1.2	1.0
Carte de ligne 100GE à 4 ports	A9K-4X100GE	6.2.3	6.4.1	1.0
		6.3.2		
Carte de ligne 100GE à 12 ports	A99-12X100GE	6.0.1	6.1.2	1.0
Carte de ligne 100GE à 12 ports, modèle de consommation	A99-12X100GE-CM	6.1.1	6.1.2	1.0
Carte de ligne modulaire 400 gigaoctets, optimisation du transport de paquets	A9K-MOD400-TR	5.3.2	6.2.1	1.0
Carte de ligne modulaire 400 gigaoctets, optimisation du service de périphérie	A9K-MOD400-SE	5.3.2	6.2.1	1.0
Carte de ligne modulaire 400 gigaoctets, optimisation du modèle de consommation	A9K-MOD400-CM	6.1.1	6.2.1	1.0
Carte de ligne modulaire 200 gigaoctets, optimisation du transport de paquets	A9K-MOD200-TR	6.0.1	6.2.1	1.0
Carte de ligne modulaire 200 gigaoctets, optimisation du service de périphérie	A9K-MOD200-SE	6.0.1	6.2.1	1.0
Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10GE avec modules CFP2 et SFP+, optimisation du transport de paquets	A9K-400GE- DWDM-TR	5.3.2	6.2.1	1.0
Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+	A9K-MPA-20x10GE	5.3.2	6.2.1	1.0
Carte de ligne 10GE/1GE à 24 ports, optimisation du transport de paquets	A9K-24X10GE-1G-TR	6.2.1	6.3.2	1.0
Carte de ligne 10GE/1GE à 24 ports, optimisation du service de périphérie	A9K-24X10GE-1G-SE	6.2.1	6.3.2	1.0

Carte de ligne Ethernet	Référence produit	Version minimale du logiciel Cisco IOS XR requise	Prise en charge initiale de la version IOS XR 64 bits	Version matérielle requise
Carte de ligne 10GE/1GE à 24 ports, optimisation du service de périphérie	A9K-24X10GE-1G-CM	6.3.2	6.4.1	1.0
Carte de ligne 10GE/1GE à 48 ports, optimisation du transport de paquets	A9K-48X10GE-1G-TR	6.2.1	6.3.2	1.0
Carte de ligne 10GE/1GE à 48 ports, optimisation du service de périphérie	A9K-48X10GE-1G-SE	6.2.1	6.3.2	1.0
Carte de ligne 10GE/1GE à 48 ports, optimisation du service de périphérie	A9K-48X10GE-1G-CM	6.3.2	6.4.1	1.0
Carte de ligne 10GE/1GE double débit à 48 ports et 7 fabrics, optimisation du service de périphérie	A99-48X10GE-1G-SE	6.5.2	6.5.2	1.0
Carte de ligne 10GE/1GE double débit à 48 ports et 7 fabrics, optimisation du transport de paquets	A99-48X10GE-1G-TR	6.5.2	6.5.2	1.0
Adaptateur MPA 200GE à 1 portRemarque• Cet adaptateur MPA prend uniquement en charge les composants optiques CFP2-DCO.• Seule la version 2.0 de l'adaptateur MPA est conforme à la norme NEBS.	A9K-MPA-1X200GE	6.6.2	Non prise en charge	1.0 et 2.0
Carte de ligne 400G combinée, optimisation du transport	A9K-4HG-FLEX-TR	7.4.1	7.4.1	1.0
Carte de ligne 400G combinée, optimisation du service de périphérie	A9K-4HG-FLEX-SE	7.4.1	7.4.1	1.0
Carte de ligne 400G combinée, optimisation du transport	A99-4HG-FLEX-TR	7.4.1	7.4.1	1.0
Carte de ligne 400G combinée, optimisation du service de périphérie	A99-4HG-FLEX-SE	7.4.1	7.4.1	1.0

Les commandes **show diag** *numéro_connecteur* et **show version** permettent d'afficher la configuration matérielle actuelle du routeur, notamment la version du logiciel système qui est chargée et en cours d'exécution. Pour obtenir les descriptions complètes des commandes **show**, consultez le guide de configuration ou de référence des commandes pour la version Cisco IOS XR installée.

Si le résultat de la commande vous indique que la version de Cisco IOS XR est antérieure à la version requise, consultez le contenu de la mémoire Flash, pour déterminer si votre système possède les images nécessaires. La commande **dir** *NomAppareil* affiche la liste de tous les fichiers stockés dans la mémoire Flash. Si vous ne disposez pas de la bonne version logicielle, contactez un représentant du service clientèle de Cisco.

Pour obtenir des informations sur la configuration logicielle, consultez le guide de configuration logicielle et le guide de référence des commandes applicables à la version Cisco IOS XR installée sur votre système. Pour obtenir plus d'informations, consultez également les notes de version logicielle Cisco IOS XR.

Les images signées numériquement sont prises en charge à partir de la version 6.0.1 de Cisco IOS XR sur les cartes de ligne suivantes :

- A9K-4X100GE-SE/TR
- A99-8X100GE-SE/TR
- A9K-MOD400-SE/TR/CM
- A9K-MOD200-SE/TR/CM
- A9K-400G-DWDM-TR
- A99-12X100GE

Pour plus d'informations sur les images signées numériquement, consultez le guide de configuration de la gestion système des routeurs à services d'agrégation Cisco ASR 9000.

Comparaison des cartes de ligne Ethernet et des adaptateurs MPA

Les cartes de ligne de première génération Cisco ASR 9000 sont disponibles en versions de base, étendues et à petite file d'attente. Toutes les autres générations de cartes de ligne sont disponibles en versions Optimisation du service de périphérie et Optimisation du transport de paquets. Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration. Le tableau suivant compare les diverses cartes de ligne et les divers adaptateurs MPA. Pour en savoir plus concernant les divers modules émetteurs-récepteurs, consultez la page dédiée aux modules émetteurs-récepteurs Cisco sur le site Cisco.com.

Pour les modules émetteurs-récepteurs pris en charge, reportez-vous à la matrice de compatibilité du groupe de modules émetteurs-récepteurs (TMG) :

https://tmgmatrix.cisco.com/home

Tableau 12 : Comparaison matérielle des adaptateurs MPA ou des cartes de ligne Ethernet Cisco

Carte de ligne Ethernet ou adaptateur MPA Cisco	Référence produit	Nombre de ports	Type de module
Carte de ligne Ethernet combinée à 2 ports 10GE + 20 ports GE	A9K-2T20GE-B	2 x 10 GE 20xGE	XFP (ports 10GE) SFP (ports GE)
Carte de ligne Ethernet combinée étendue à 2 ports	A9K-2T20GE-E	2 x 10 GE	XFP (ports 10GE)
10GE + 20 ports GE		20xGE	SFP (ports GE)
Carte de ligne combinée à petite file d'attente à	A9K-2T20GE-L	2 x 10 GE	XFP (ports 10GE)
2 ports 10GE + 20 ports GE		20xGE	SFP (ports GE)

Carte de ligne Ethernet ou adaptateur MPA Cisco	Référence produit	Nombre de ports	Type de module
Carte de ligne combinée 4 ports 10GE +	A9K-4T16GE-TR	4x10GE	SFP+ (ports 10GE)
16 ports GE, optimisation du transport de paquets		16xGE	SFP (ports GE)
Carte de ligne combinée étendue 4 ports 10GE +	A9K-4T16GE-SE	4x10GE	SFP+ (ports 10GE)
16 ports GE, optimisation du service de peripherie		16xGE	SFP (ports GE)
Carte de ligne 10GE à 4 ports	А9К-4Т-В	4	XFP
Carte de ligne étendue 10GE à 4 ports	А9К-4Т-Е	4	XFP
Carte de ligne à petite file d'attente 10GE à 4 ports	A9K-4T-L	4	XFP
Carte de ligne DX 10GE à 8 ports	A9K-8T/4-B	8	XFP
Carte de ligne étendue DX 10GE à 8 ports	А9К-8Т/4-Е	8	XFP
Carte de ligne à petite file d'attente DX 10GE à 8 ports	A9K-8T/4-L	8	XFP
Carte de ligne 10GE à 8 ports à débit de ligne	А9К-8Т-В	8	XFP
Carte de ligne étendue 10GE à 8 ports à débit de ligne	А9К-8Т-Е	8	XFP
Carte de ligne à petite file d'attente 10GE à 8 ports 80G	A9K-8T-L	8	XFP
Carte de ligne à file d'attente moyenne DX 10GE à 16 ports	A9K-16T/8-B	16	SFP+
Carte de ligne DX 10GE à 24 ports, optimisation du transport de paquets	A9K-24X10GE-TR	24	SFP+
Carte de ligne DX 10GE à 24 ports, optimisation du service de périphérie	A9K-24X10GE-SE	24	SFP+
Carte de ligne 10GE/1GE à 24 ports, optimisation	A9K-24X10GE-1G-TR	24	SFP+ (ports 10GE)
Remarque La carte de ligne 10GE/1GE à 24 ports accepte les modules SFP et SFP+.			SFP (ports GE)
Carte de ligne 10GE/1GE à 24 ports, optimisation	A9K-24X10GE-1G-SE	24	SFP+ (ports 10GE)
au service de peripherie			SFP (ports GE)
accepte les modules SFP et SFP+.			
Carte de ligne 10GE/1GE à 24 ports, modèle de	A9K-24X10GE-1G-CM	24	SFP+ (ports 10GE)
Consommation			SFP (ports GE)
accepte les modules SFP et SFP+.			

I

Carte de ligne Ethernet ou adaptateur MPA Cisco	Référence produit	Nombre de ports	Type de module
Carte de ligne 10GE à 36 ports, optimisation du transport de paquets	A9K-36X10GE-TR	36	SFP+
Carte de ligne 10GE à 36 ports, optimisation du service de périphérie	A9K-36X10GE-SE	36	SFP+
Carte de ligne GE à 40 ports	A9K-40GE-B	40	SFP
Carte de ligne étendue GE à 40 ports	A9K-40GE-E	40	SFP
Carte de ligne à petite file d'attente GE à 40 ports	A9K-40GE-L	40	SFP
Carte de ligne GE à 40 ports, optimisation du transport de paquets	A9K-40GE-TR	40	SFP
Carte de ligne GE à 40 ports, optimisation du service de périphérie	A9K-40GE-SE	40	SFP
Carte de ligne 10GE/1GE à 48 ports, optimisation du transport de paquets	A9K-48X10GE-1G-TR	48	SFP+ (ports 10GE)
Remarque La carte de ligne 10GE/1GE à 48 ports accepte les modules SFP et SFP+.			SFP (ports GE)
Carte de ligne 10GE/1GE à 48 ports, optimisation du service de périphérie	A9K-48X10GE-1G-SE	48	SFP+ (ports 10GE)
Remarque La carte de ligne 10GE/1GE à 48 ports accepte les modules SFP et SFP+.			SFP (pons GE)
Carte de ligne 10GE/1GE à 48 ports, modèle de consommation	A9K-48X10GE-1G-CM	48	SFP+ (ports 10GE)
Remarque La carte de ligne 10GE/1GE à 48 ports accepte les modules SFP et SFP+.			SFF (poils GE)
Carte de ligne DX 100GE à 1 port, optimisation du transport de paquets	A9K-1X100GE-TR	2	CFP
Carte de ligne DX 100GE à 1 port, optimisation du service de périphérie	A9K-1X100GE-SE	1	CFP
Carte de ligne DX 100GE à 2 ports, optimisation du transport de paquets	A9K-2X100GE-TR	2	CFP
Carte de ligne DX 100GE à 2 ports, optimisation du service de périphérie	A9K-2X100GE-SE	2	CFP
Carte de ligne DX 100GE à 2 ports, optimisation du service de périphérie	A9K-2X100GE-SE	2	CFP
Carte de ligne 100GE à 4 ports, optimisation du transport de paquets	A9K-4X100GE-TR	4	СРАК

Carte de ligne Ethernet ou adaptateur MPA Cisco	Référence produit	Nombre de ports	Type de module
Carte de ligne 100GE à 4 ports, optimisation du service de périphérie	A9K-4X100GE-SE	4	СРАК
Carte de ligne 100GE à 8 ports, optimisation du transport de paquets	A9K-8X100GE-TR	8	СРАК
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie	A9K-8X100GE-SE	8	СРАК
Carte de ligne 100GE à 8 ports, modèle de consommation optimisé	A9K-8X100GE-CM	8	СРАК
Carte de ligne 100GE à 8 ports, optimisation du service de périphérie (version LAN)	A9K-8X100GE-L-SE	8	СРАК
Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10GE avec modules CFP2 et SFP+, optimisation du transport de paquets	A9K-400GE-DWDM-TR	2 x 100 GE 20x10 GE	CFP2 (ports 100GE) SFP+ (ports 10GE)
Carte de ligne 100GE à 4 ports	A9K-4X100GE	4	QSFP28
Carte de ligne 100GE à 12 ports	A99-12X100GE	12	QSFP28
Carte de ligne modulaire 80 gigaoctets, optimisation du transport de paquets	A9K-MOD80G-TR		
Carte de ligne modulaire 80 gigaoctets, optimisation du service de périphérie	A9K-MOD80G-SE		
Carte de ligne modulaire 160 gigaoctets, optimisation du transport de paquets	A9K-MOD160-TR		
Carte de ligne modulaire 160 gigaoctets, optimisation du service de périphérie	A9K-MOD160G-SE		
Carte de ligne modulaire 200 gigaoctets, optimisation du transport de paquets	A9K-MOD200-TR		
Carte de ligne modulaire 200 gigaoctets, optimisation du service de périphérie	A9K-MOD200-SE		
Carte de ligne modulaire 400 gigaoctets, optimisation du transport de paquets	A9K-MOD400-TR	_	
Carte de ligne modulaire 400 gigaoctets, optimisation du service de périphérie	A9K-MOD400-SE		
Carte de ligne modulaire 400 gigaoctets, optimisation du modèle de consommation	A9K-MOD400-CM		
Adaptateur MPA GE à 20 ports	A9K-MPA-20X1GE	20	SFP
Adaptateur MPA GE à 32 ports	A9K-MPA-32X1GE	32	SFP, CSFP

I

Carte de ligne Ethernet ou adaptateur MPA Cisco	Référence produit	Nombre de ports	Type de module
Adaptateur MPA 10GE à 8 ports	A9K-MPA-8X10GE	8	SFP+
Adaptateur MPA 10GE à 4 ports	A9K-MPA-4X10GE	4	XFP
Adaptateur MPA 10GE à 2 ports	A9K-MPA-2X10GE	2	XFP
Adaptateur MPA 40GE à 2 ports	A9K-MPA-2X40GE	2	QSFP+
Adaptateur MPA 10GE à 2 ports	А9К-ЕР-2Т	2	XFP
Adaptateur MPA 40GE à 1 port	A9K-MPA-1X40GE	1	QSFP+
Adaptateur MPA 100GE à 1 port	A9K-MPA-1x100GE	1	CFP2-DCO et CPAK
Adaptateur MPA 200GE à 1 port	A9K-MPA-1X200GE	1	CFP2-DCO
Adaptateur MPA 100GE à 2 ports	A9K-MPA-2x100GE	2	CFP2-DCO et CPAK
Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+	A9K-MPA-20x10GE	20	SFP+
Carte de ligne 10GE/1GE double débit à 48 ports et 7 fabrics, optimisation du service de périphérie Remarque La carte de ligne 10GE/1GE à 48 ports accepte les modules SFP et SFP+.	A99-48X10GE-1G-SE	48	SFP+ (ports 10GE) SFP (ports GE)
Carte de ligne 10GE/1GE double débit à 48 ports et 7 fabrics, optimisation du transport de paquets Remarque La carte de ligne 10GE/1GE à 48 ports accepte les modules SFP et SFP+.	A99-48X10GE-1G-TR	48	SFP+ (ports 10GE) SFP (ports GE)
Carte de ligne 400G combinée, optimisation du transport	A9K-4HG-FLEX-TR	44	• 24 ports SFP+ • 16 ports SPF28
Carte de ligne 400G combinée, optimisation du service de périphérie	A9K-4HG-FLEX-SE]	• 4 ports QSFP28/QSFP+
Carte de ligne 400G combinée, optimisation du transport	A99-4HG-FLEX-TR		Remarque La carte de ligne a une
Carte de ligne 400G combinée, optimisation du service de périphérie	A99-4HG-FLEX-SE		bande passante totale de 400 Go.

\wedge	
Avertissement	Utilisez uniquement des modules optiques (SFP, SFP+, XFP, QSFP, CFP et CPAK) fournis par Cisco Systems dans les cartes de ligne Cisco ASR 9000. Chaque module possède un numéro de série interne qui contient des informations de sécurité programmées par le fabricant pour permettre au logiciel Cisco IOS XR d'identifier le module et de confirmer qu'il est en mesure de fonctionner correctement avec les cartes de ligne Ethernet. Les modules non approuvés (qui n'ont pas été achetés directement auprès de Cisco) fonctionneront, mais afficheront un message d'erreur indiquant que l'appareil n'est pas pris en charge.
Remarque	Il est fortement recommandé d'attendre 60 secondes avant d'insérer ou de retirer successivement les composants optiques. Si vous ne respectez pas cette recommandation, vous risquez d'endommager les composants optiques. Cela s'applique à tous les formats d'optique, tels que SFP, SFP+, XFP, QSFP, QSFP28, CFP, CFP2 et CPAK.
Remarque	Lors de l'insertion du module QSFP, choisissez le mode correspondant pour le port. Par exemple, sélectionnez le mode 1xFortyGigE pour les composants optiques 40G et 4xTenGigE pour les composants optiques 4x10G.
	Si les ports n'affichent pas le mode approprié et si des composants optiques sont insérés en mode 100G par défaut, une alarme se déclenche.
	Par conséquent, pour que les composants optiques fonctionnent correctement, il est important de choisir le mode opérationnel approprié.

Cartes de ligne 10 Gigabit Ethernet

Remarque

Toutes les cartes de ligne Ethernet sont équipées de voyants d'état des ports sur leurs façades. Chaque port SFP ou XFP dispose d'un voyant adjacent qui indique l'état du port associé. En outre, chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte (reportez-vous à la section Voyants de la carte de ligne, page 134).

Carte de ligne Ethernet combinée à 2 ports 10 Gigabit + 20 ports Gigabit Ethernet

La carte de ligne combinée à 2 ports 10GE + 20 ports GE fournit deux boîtiers pour les modules d'interface optique Ethernet XFP qui fonctionnent à un débit de 10 Gbit/s et 10 boîtiers superposés (20 au total) pour les modules optiques Ethernet SFP qui fonctionnent à un débit de 1 Gbit/s.

Les deux modules XFP peuvent être des connexions multimodes 10GE. Les 20 boîtiers SFP prennent en charge des émetteurs-récepteurs Gigabit Ethernet à fibre optique ou en cuivre.

La carte de ligne combinée à 2 ports 10GE + 20 ports GE est disponible en version de base, étendue et à petite file d'attente. Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier SFP et XFP sur la carte de ligne combinée à 2 ports 10GE + 20 ports GE dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port XFP ou SFP associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les voyants de la carte de ligne combinée à 2 ports 10GE + 20 ports GE.

Illustration 1 : Carte de ligne combinée à 2 ports 10 Gigabit Ethernet + 20 ports GE

1	Levier d'extraction (un sur deux)	6	Boîtier SFP 1GE port 18
2	Boîtier XFP 10GE port 0	7	Voyant d'état STATUS
3	Voyant d'état du port XFP (un par port XFP)	8	Boîtier SFP 1GE port 19
4	Boîtier SFP 1GE port 0	9	Boîtier SFP 1GE port 1
5	Voyant d'état du port SFP (un par port SFP)	10	Vis d'installation imperdable (une sur deux)

Remarque

La numérotation de l'interface démarre à zéro pour les ports GE et 10GE, cette carte de ligne dispose donc de ports identifiés en tant que Te0/x/0/0 et Gig0/x/0/0.

Pour obtenir la liste des composants optiques et des connecteurs utilisés par les deux ports 10GE sur la carte de ligne combinée à 2 ports 10GE + 20 ports GE et pour obtenir la liste de tous les modules SFP pris en charge, rendez-vous sur la page https://tmgmatrix.cisco.com/home.

Carte de ligne 10 Gigabit Ethernet à 8 ports avec surabonnement 2:1 et module XFP

La carte de ligne 10GE à 8 ports avec surabonnement 2:1 fournit huit boîtiers pour les modules d'interface optique Ethernet XFP qui fonctionnent à un débit de 10 Gbit/s. Les huit modules XFP peuvent être des connexions multimodes 10GE. La carte de ligne 10GE à 8 ports est une carte à débit de ligne 40 Gbit/s avec un débit de ligne maximum de 8 ports à 50 % (surabonnement 2:1).

Le surabonnement est dû à des paires de ports qui partagent le même processeur de réseau (NPU). Les paires de ports sont : (port 0:port 4), (port 1:port 5), (port 2:port 6) et (port 3:port 7).

La carte de ligne 10GE à 8 ports est disponible en version de base, étendue et à petite file d'attente. Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier XFP sur la carte de ligne 10GE à 8 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port XFP associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante présente la façade et les voyants de la carte de ligne 10GE à 8 ports.

Illustration 2 : Carte de ligne 10 Gigabit Ethernet à 8 ports avec surabonnement 2:1

1	Levier d'extraction (un sur deux)	4	Boîtier XFP port 7
2	Boîtier XFP port 0	5	Voyant d'état STATUS
3	Voyant d'état du port (un par port)	6	Vis d'installation imperdable (une sur deux)

Carte de ligne 10 Gigabit Ethernet à 4 ports avec module XFP

La carte de ligne 10 Gigabit Ethernet à 4 ports fournit quatre boîtiers pour des modules d'interface optique Ethernet XFP fonctionnant à un débit de 10 Gbit/s. Les quatre modules XFP peuvent être des connexions multimodes 10 Gigabit Ethernet. Pour connaître les modules émetteurs-récepteurs pris en charge, reportez-vous à la matrice de compatibilité du groupe de modules émetteurs-récepteurs (TMG). La carte de ligne 10GE à 4 ports est disponible en version de base, étendue et à petite file d'attente. Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier XFP sur la carte de ligne 10GE à 4 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port XFP associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante présente la façade et les voyants de la carte de ligne 10GE à 4 ports.

Illustration 3 : Carte de ligne 10 Gigabit Ethernet à 4 ports

1	Levier d'extraction (un sur deux)	4	Boîtier XFP port 3
2	Boîtier XFP port 0	5	Voyant d'état STATUS
3	Voyant d'état du port (un par port)	6	Vis d'installation imperdable (une sur deux)
Carte de ligne 10 Gigabit Ethernet à 8 ports 80 Gbit/s avec module XFP

La carte de ligne 10 Gigabit Ethernet à 8 ports 80 Gbit/s fournit huit boîtiers pour des modules d'interface optique Ethernet XFP fonctionnant à un débit de 10 Gbit/s. Les huit modules XFP peuvent être des connexions multimodes 10GE. La carte de ligne 10GE à 8 ports offre un débit de ligne de 80 Gbit/s.

La carte de ligne 10GE à 8 ports 80 Gbit/s est disponible en version de base, étendue et à petite file d'attente. Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier XFP sur la carte de ligne 10GE à 8 ports 80 Gbit/s dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port XFP associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140. Reportez-vous à la section Spécifications techniques, à la page 149 pour afficher la liste de tous les modules XFP pris en charge sur la carte de ligne 10GE à 8 ports 80 Gbit/s.

La figure suivante illustre la façade et les connecteurs de la carte de ligne 10GE à 8 ports 80 Gbit/s.

Illustration 4 : Carte de ligne 10 Gigabit Ethernet à 8 ports 80 Gbit/s

	1	Levier d'extraction (un sur deux)	4	Boîtier XFP port 7
ſ	2	Voyant d'état du port (un par port)	5	Voyant d'état de la carte de ligne

3 Boîtier XFP port 0	6	Vis d'installation imperdable (une sur deux)
----------------------	---	--

Carte de ligne Ethernet combinée à 4 ports 10 Gigabit + 16 ports GE avec modules SFP et SFP+

La carte de ligne combinée à 4 ports 10GE + 16 ports GE fournit quatre cages pour les modules d'interface optique Ethernet SFP+ qui fonctionnent à un débit de 10 Gbit/s et 8 cages superposées (16 au total) pour les modules optiques Ethernet SFP qui fonctionnent à un débit de 1 Gbit/s. Cette carte de ligne est disponible en version -SE (optimisation du service de périphérie) ou -TR (optimisation du transport de paquets). Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier SFP et SFP+ sur la carte de ligne combinée à 4 ports 10GE + 16 ports GE dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port SFP ou SFP+ associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les connecteurs de la carte de ligne combinée à 4 ports 10GE + 16 ports GE.

Remarque

La carte de ligne combinée à 4 ports 10GE + 16 ports GE est livrée avec 16 ports 1GE + 2 ports 10GE activés. Les deux ports 10GE qui sont activés par défaut sont les ports 16 et 17. Pour activer les deux autres ports 10GE, vous devez activer la licence. Après avoir acheté la licence, les ports 18 et 19 seront activés.

Pour savoir comment activer la licence, consultez le chapitre dédié aux droits logiciels du guide de configuration de la gestion système du routeur à services d'agrégation Cisco ASR 9000, version 5.3.x. Le numéro de produit de la licence pour la carte A9K-4T16GE-TR est A9K-2T-TR-LIC. Le numéro de produit de la licence pour la carte A9K-4T16GE-SE est A9K-2T-SE-LIC.

Illustration 5 : Carte de ligne combinée à 4 ports 10 Gigabit + 16 ports GE

1	Levier d'extraction (un sur deux)	6	Voyant d'état du port (un par port SFP+)
2	Boîtier SFP 1GE port 0	7	Voyant d'état de la carte de ligne
3	Voyant d'état du port (un par port SFP)	8	Boîtier SFP 1GE port 15
4	Boîtier SFP 1GE port 14	9	Boîtier SFP 1GE port 1
5	Boîtier SFP+ 10GE port 17	10	Vis d'installation imperdable (une sur deux)

Remarque

Les interfaces pour les ports GE de la carte de ligne sont numérotées de Gig0/x/0/0 à Gig0/x/0/15. Les interfaces pour les ports 10GE de la carte de ligne sont numérotées de tenGigE0/x/0/16 à tenGigE0/x/0/19.

Carte de ligne 10 Gigabit Ethernet à 16 ports avec surabonnement et module SFP+

La carte de ligne 10 Gigabit Ethernet (GE) à 16 ports avec surabonnement fournit deux boîtiers empilés de 2x4 pour les modules d'interface optique Ethernet SFP+. Les 16 modules SFP+ fonctionnent à un débit de 10 Gbit/s.

Le surabonnement est dû à des paires de ports qui partagent le même processeur de réseau (NPU). Les paires de ports sont : (port 0:port 8), (port 1:port 9), (port 2:port 10), (port 3:port 11), (port 4:port 12), (port 5:port 13), (port 6:port 14) et (port 7:port 15). La bande passante maximum par paire de ports qui partage un seul NPU est 14,62 Gbit/s (7,31 Gbit/s par port).

- Lorsque deux cartes RSP sont installées dans le routeur, la carte de ligne 10GE à 16 ports peut atteindre un débit supérieur au taux de surabonnement 2:1. Chaque paire de ports qui partage un NPU peut atteindre 7,31 Gbit/s par port, donc la bande passante maximum avec deux cartes RSP installées dans le système s'élève à 117 Gbit/s.
- Si une seule carte RSP est installée dans le routeur, la carte de ligne 10GE à 16 ports est une carte à débit de ligne 80 Gbit/s avec un débit de ligne maximum de 16 ports à 50 % (surabonnement 2:1).

La carte de ligne 10GE à 16 ports est disponible en version de base.

Chaque boîtier SFP+ sur la carte de ligne 10GE à 16 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port SFP+ associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les connecteurs de la carte de ligne 10GE à 16 ports.

Illustration 6 : Carte de ligne 10 Gigabit Ethernet à 16 ports avec surabonnement

1	Levier d'extraction (un sur deux)	5	Voyant d'état de la carte de ligne
2	Boîtier SFP+ port 0	6	Boîtier SFP+ port 15
3	Voyant d'état du port (un par port)	7	Boîtier SFP+ port 7
4	Boîtier SFP+ port 8	8	Vis d'installation imperdable (une sur deux)

Carte de ligne 10 Gigabit Ethernet à 24 ports avec module SFP+

La carte de ligne 10 Gigabit Ethernet (GE) à 24 ports fournit deux boîtiers empilés de 2x6 pour les modules d'interface optique Ethernet SFP+.

- Avec deux cartes RSP installées dans le routeur, la carte de ligne 10GE à 24 ports fonctionne au débit de ligne.
- Avec une seule carte RSP installée dans le routeur, la carte de ligne 10GE à 24 ports fonctionne à un débit de 220 Gbit/s.

Cette carte de ligne est disponible en version -SE (optimisation du service de périphérie) ou -TR (optimisation du transport de paquets).

Chaque boîtier SFP+ sur la carte de ligne 10GE à 24 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port SFP+ associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les connecteurs de la carte de ligne 10GE à 24 ports.

Illustration 7 : Carte de ligne 10 Gigabit Ethernet à 24 ports

	Levier d'extraction (un sur deux)	5	Boîtier SFP+ port 12
-	2 Vis d'installation imperdable (une sur deux)	6	Boîtier SFP+ port 23
	3 Boîtier SFP+ port 0	7	Voyant d'état de la carte de ligne
	4 Boîtier SFP+ port 11		

Carte de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 24 ports avec module SFP+ ou SFP

Le surabonnement sera pris en charge sur cette carte de ligne dans une prochaine version IOS XR 6.2.x.

La carte de ligne 10 Gigabit Ethernet (10GE)/Gigabit Ethernet (GE) à 24 ports possède vingt-quatre ports double débit qui acceptent les modules SFP 1GE ou SFP+ 10GE.

Remarque

La carte de ligne à 24 ports dispose d'un seul processeur de réseau (NPU). Si vous configurez plus de 20 ports 10GE par NPU, vous risquez de perdre la ligne sur tous les ports en fonction de la taille du paquet et du type de trafic. Reportez-vous à la section Configuration des cartes de ligne double débit pour découvrir comment déterminer le débit des ports.

La carte de ligne 1GE/10GE à 24 ports est disponible dans ces variantes :

- -SE (optimisation du service de périphérie)
- -TR (optimisation du transport de paquets)
- -CM (modèle de consommation)

Les variantes -SE et -TR offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration. La variante -CM est identique à la variante -SE, sauf que le modèle -CM suit un modèle de tarification basé sur la consommation pris en charge avec une licence Smart. Pour en savoir plus sur le modèle de tarification basé sur la consommation, consultez le chapitre dédié aux *droits logiciels* du *guide de configuration de la gestion système du routeur à services d'agrégation Cisco ASR 9000*.

Chaque boîtier SFP+ sur la carte de ligne 10GE/1GE à 24 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port SFP+ associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante présente les connecteurs et les voyants en façade de la carte de ligne 10GE/1GE à 24 ports.

Illustration 8 : Carte de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 24 ports

1	Levier d'extraction (un sur deux)	5	Boîtier SFP+ port 23
2	Boîtier SFP+ port 0	6	Boîtier SFP+ port 15
3	Boîtier SFP+ port 16	7	Vis d'installation imperdable (une sur deux)
4	Voyant d'état de la carte de ligne		

Carte de ligne 10 Gigabit Ethernet à 36 ports avec module SFP+

La carte de ligne 10 Gigabit Ethernet (GE) à 36 ports compte trente-six ports de module SFP+ 10 Gigabit Ethernet (10GE SFP). La figure suivante présente les connecteurs et les voyants en façade de la carte de ligne 10GE à 36 ports.

30

Illustration 9 : Façade de la carte de ligne 10 Gigabit Ethernet à 36 ports

1	Levier d'extraction (un sur deux)	6	Boîtier SFP+ port 23
2	Vis d'installation imperdable (une sur deux)	7	Boîtier SFP+ port 24
3	Boîtier SFP+ port 0	8	Boîtier SFP+ port 35
4	Boîtier SFP+ port 11	9	Voyant d'état de la carte de ligne
5	Boîtier SFP+ port 12		

Carte de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 48 ports avec module SFP+ ou SFP

Remarque

Le surabonnement sera pris en charge sur cette carte de ligne dans une prochaine version IOS XR 6.2.x.

La carte de ligne 10 Gigabit Ethernet (10GE)/Gigabit Ethernet (GE) à 48 ports compte quarante-huit ports double débit qui acceptent des modules 10GE SFP+ ou 1GE SFP.

Remarque

La carte de ligne à 48 ports dispose de deux processeurs de réseau (un pour chaque groupe de 24 ports). Si vous configurez plus de 20 ports 10GE par NPU, vous risquez de perdre la ligne sur tous les ports en fonction de la taille du paquet et du type de trafic. Reportez-vous à la section Configuration des cartes de ligne double débit pour découvrir comment déterminer le débit des ports.

La carte de ligne 1GE/10GE à 48 ports est disponible dans ces variantes :

- -SE (optimisation du service de périphérie)
- -TR (optimisation du transport de paquets)
- -CM (modèle de consommation)

Les variantes -SE et -TR offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration. La variante -CM est identique à la variante -SE, sauf que le modèle -CM suit un modèle de tarification basé sur la consommation pris en charge avec une licence Smart. Pour en savoir plus sur le modèle de tarification basé sur la consommation, consultez le chapitre dédié aux *droits logiciels* du *guide de configuration de la gestion système du routeur à services d'agrégation Cisco ASR 9000.*

Chaque boîtier SFP+ sur la carte de ligne 10GE/1GE à 48 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port SFP+ associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante présente les connecteurs et les voyants en façade de la carte de ligne 10GE/1GE à 48 ports.

Illustration 10 : Carte de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 48 ports

1	Levier d'extraction (un sur deux)	6	Boîtier SFP+ port 47
2	Boîtier SFP+ port 0	7	Boîtier SFP+ port 31
3	Boîtier SFP+ port 16	8	Boîtier SFP+ port 15
4	Boîtier SFP+ port 32	9	Vis d'installation imperdable (une sur deux)
5	Voyant d'état de la carte de ligne		

Carte de ligne Gigabit Ethernet à 40 ports avec module SFP

La carte de ligne Gigabit Ethernet (GE) à 40 ports fournit 20 boîtiers SFP superposés (40 au total) qui prennent en charge les émetteurs-récepteurs cuivre ou fibre optique.

La carte de ligne GE à 40 ports est disponible dans les versions suivantes : à petite file d'attente, étendue, de base et -SE (optimisation du service de périphérie) ou -TR (optimisation du transport de paquets) de nouvelle génération. Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier SFP sur la carte de ligne GE à 40 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port SFP associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les connecteurs de la carte de ligne GE à 40 ports.

1	Levier d'extraction (un sur deux)	5	Voyant d'état de la carte de ligne
2	Boîtier SFP port 0	6	Boîtier SFP port 39
3	Voyant d'état du port (un par port)	7	Boîtier SFP port 1
4	Boîtier SFP port 38	8	Vis d'installation imperdable (une sur deux)

Cartes de ligne 100 Gigabit Ethernet

À

Avertissement

Il est fortement recommandé d'attendre 60 secondes avant d'insérer ou de retirer successivement les composants optiques. Si vous ne respectez pas cette recommandation, vous risquez d'endommager les composants optiques. Cela s'applique à tous les formats d'optique, tels que SFP, SFP+, XFP, QSFP, QSFP28, CFP, CFP2 et CPAK.

Carte de ligne 100 Gigabit Ethernet à 1 port avec module CFP

La carte de ligne 100 Gigabit Ethernet (GE) à 1 port fournit un boîtier CFP pour un module d'interface optique Ethernet CFP fonctionnant à un débit de 100 Gbit/s. Le module CFP peut être une connexion multimode 100GE.

Cette carte de ligne est disponible en version -SE (optimisation du service de périphérie) ou -TR (optimisation du transport de paquets). Les deux versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration. Le boîtier CFP dispose d'un voyant de liaison visible en façade, comme indiqué à la section Voyants des cartes de ligne, à la page 140.

Le tableau suivant répertorie les composants optiques et les connecteurs pris en charge par la carte de ligne 100GE à 1 port.

Tableau 13 : Composants optiques CFP pris en charge par la carte de ligne Cisco 100GE à 1 port

Référence	Modules CFP 100 Gigabit Ethernet	Distance maximale
CFP-100G-LR4	Composants optiques longue portée 100GE via 4 canaux WDM (LR4) (fibre monomode)	10 km
CFP-100G-SR10	Composants optiques 100GE via 10 canaux optiques courte portée (SR10) (fibre multimode)	100 m

La figure suivante illustre la façade et le connecteur de la carte de ligne 100GE à 1 port.

Illustration 12 : Façade de la carte de ligne 100 Gigabit Ethernet à 1 port

Carte de	liane	100 Gio	ıabit	Ethernet	à 2	2 ports	avec	module	CFP

La carte de ligne 100 Gigabit Ethernet à 2 ports fournit deux boîtiers pour des modules d'interface optique Ethernet CFP fonctionnant à un débit de 100 Gbit/s. Les deux modules CFP peuvent être des connexions multimodes 100GE.

Cette carte de ligne est disponible en version -SE (optimisation du service de périphérie) ou -TR (optimisation du transport de paquets). Toutes les versions offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier CFP sur la carte de ligne 100GE à 2 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port CFP associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 2 ports.

Illustration 13 : Carte de ligne 100 Gigabit Ethernet à 2 ports

1	Levier d'extraction (un sur deux)	4	Connecteur CFP 100GE (deux sur deux)
2	Vis d'installation imperdable (une sur deux)	5	Voyant d'état de la carte de ligne
3	Connecteur CFP 100GE (un sur deux)		

Carte de ligne 100 Gigabit Ethernet à 4 ports avec CPAK

La carte de ligne 100GE à 4 ports est dotée de quatre boîtiers CPAK pour modules CPAK qui fonctionnent à un débit de 100 Gbit/s.

Cette carte de ligne est disponible en version -SE (optimisation du service de périphérie) et -TR (optimisation du transport de paquets). Les deux variantes offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Chaque boîtier CPAK sur la carte de ligne 100GE à 4 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port CPAK associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les connecteurs de la carte de ligne 100GE à 4 ports.

Illustration 14 : Carte de ligne 100 Gigabit Ethernet à 4 ports

1	Levier d'extraction (un sur deux)	4	Quatre connecteurs CPAK 100GE
2	Vis d'installation imperdable (une sur deux)	5	Voyant d'état

Carte de ligne 100 Gigabit Ethernet à 8 ports avec CPAK

La carte de ligne 100 Gigabit Ethernet (GE) à 8 ports est dotée de huit boîtiers CPAK pour modules CPAK qui fonctionnent à un débit de 100 Gbit/s.

Chaque boîtier CPAK sur la carte de ligne 100GE à 8 ports dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du port CPAK associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140. La figure suivante illustre la façade et les connecteurs de la carte de ligne 100GE à 8 ports.

Illustration 15 : Carte de ligne 100 Gigabit Ethernet à 8 ports

1	Levier d'extraction (un sur deux)	3	Huit connecteurs CPAK 100GE
2	Vis d'installation imperdable (une sur deux)	4	Voyant d'état

Cette carte de ligne est disponible en deux versions. La carte de ligne version LAN est disponible en variante -SE (optimisation du service de périphérie) uniquement. La carte de ligne version OTN est disponible en trois variantes :

- -SE (optimisation du service de périphérie)
- -TR (optimisation du transport de paquets)
- -CM (optimisation du modèle de consommation)

Les variantes -SE et -TR offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration. La variante -CM est identique à la variante -SE, sauf que le modèle -CM suit un modèle de tarification basé sur la consommation pris en charge avec une licence Smart. Pour en savoir plus sur le modèle de tarification basé sur la consommation, consultez le chapitre dédié aux *droits logiciels* du *guide de configuration de la gestion système du routeur à services d'agrégation Cisco ASR 9000.* Pour la variante -CM, vous devez acheter au moins 20 licences logicielles de base qui assurent chacune une bande passante de 10G. Il existe quatre types de licences logicielles de base selon les fonctionnalités du logiciel :

- IP/MPLS : pour les ports qui utilisent uniquement les fonctionnalités IP/MPLS du logiciel.
- IP/MPLS + L2VPN : pour les ports qui utilisent les fonctionnalités IP/MPLS avec EFP (Ethernet Flow Point) de couche 2 du logiciel.

- IP/MPLS + L3VPN : pour les ports qui utilisent les fonctionnalités IP/MPLS avec les routage et transfert virtuels (VRF) de couche 3 du logiciel.
- IP/MPLS + L2VPN + L3VPN : pour les ports qui utilisent les fonctionnalités IP/MPLS avec EFP de couche 2 et VRF de couche 3 du logiciel.

En outre, chaque licence logicielle de base est disponible dans deux versions : de base et avancée. Elles assurent, respectivement, une prise en charge inférieure et supérieure des fonctionnalités logicielles. Vous pouvez aussi éventuellement acheter des licences supplémentaires pour des fonctionnalités logicielles spécifiques qui ne sont pas incluses dans les licences de base. Ces licences supplémentaires sont disponibles par tranche de bande passante de 10G ou pour la totalité du routeur.

Remarque

Si vous installez des cartes de ligne 100 Gigabit Ethernet à 8 ports (modèles TR et SE) dans le châssis, assurez-vous d'installer des unités de ventilation V2 dans tous les connecteurs des unités de ventilation.

Carte de ligne 100 Gigabit Ethernet à 16 ports avec QSFP28/QSFP+

La carte de ligne 100 Gigabit Ethernet (GE) à 16 ports est dotée de seize ports pour modules QSFP28/QSFP+ qui fonctionnent à un débit de 100 Gbit/s.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28/QSFP+ de la carte de ligne dispose d'un voyant d'état visible en façade. Ces voyants sont décrits à la section Voyants des cartes de ligne, à la page 140.

Lorsque la carte de ligne 100GE à 16 ports avec QSFP28/QSFP+ est insérée dans un châssis Cisco ASR 9922, vous devez utiliser l'unité de ventilation V3 ASR 9922.

La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 16 ports.

Illustration 16 : Carte de ligne 100 Gigabit Ethernet à 16 ports avec QSFP28/QSFP+

1	Levier d'extraction (un sur deux)	3	Seize connecteurs 100GE QSFP28/QSFP+
2	Vis d'installation imperdable (une sur deux)	4	Voyant d'état

Carte de ligne 100 Gigabit Ethernet à 32 ports avec module QSFP28/QSFP+

La carte de ligne 100 Gigabit Ethernet (GE) à 32 ports est dotée de trente-deux ports pour modules QSFP28/QSFP+ qui fonctionnent à un débit de 100 Gbit/s.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28/QSFP+ de la carte de ligne dispose d'un voyant d'état visible en façade. Ces voyants sont décrits à la section Voyants des cartes de ligne, à la page 140.

Lorsque la carte de ligne 100GE à 32 ports avec module QSFP28/QSFP+ est insérée dans un châssis Cisco ASR 9922, vous devez utiliser l'unité de ventilation V3 ASR 9922. Sur une carte de ligne 100GE à 32 ports, le module QSFP+ n'est autorisé que des ports 0 à 20.

La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 32 ports.

Illustration 17 : Carte de ligne 100 Gigabit Ethernet à 32 ports avec module QSFP28/QSFP+

1	Levier d'extraction (un sur deux)	3	Trente-deux connecteurs 100GE QSFP28
2	Vis d'installation imperdable (une sur deux)	4	Voyant d'état

Carte de ligne 100 Gigabit Ethernet à 4 ports avec module QSFP28

La carte de ligne 100 Gigabit Ethernet (GE) à 4 ports est dotée de quatre ports pour modules QSFP28 qui fonctionnent à un débit de 100 Gbit/s.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28 de la carte de ligne dispose d'un voyant d'état visible en façade. Ces voyants sont décrits à la section Voyants des cartes de ligne, à la page 140. La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 4 ports.

Illustration 18 : Carte de ligne 100 Gigabit Ethernet à 4 ports avec module QSFP28

1	Levier d'extraction (un sur deux)	3	Quatre connecteurs 100GE QSFP28
2	Voyant d'état STATUS	4	Vis d'installation imperdable (une sur deux)

Remarque

Si la carte de ligne 100GE à 4 ports est insérée dans un châssis, il est important d'utiliser les panneaux de remplissage dotés de deux écrans [A9K-LC-FILR-V2]. Ainsi, vous optimisez le refroidissement et vous évitez les perturbations électromagnétiques.

Carte de ligne 100 Gigabit Ethernet à 12 ports avec module QSFP28

La carte de ligne 100 Gigabit Ethernet (GE) à 12 ports est dotée de douze ports pour modules QSFP28 qui fonctionnent à un débit de 100 Gbit/s.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28 de la carte de ligne dispose d'un voyant d'état visible en façade. Ces voyants sont décrits à la section Voyants des cartes de ligne, à la page 140. La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 12 ports.

Illustration 19 : Carte de ligne 100 Gigabit Ethernet à 12 ports avec module QSFP28

1	Levier d'extraction (un sur deux)	3	Douze connecteurs 100GE QSFP28
2	Voyant d'état STATUS	4	Vis d'installation imperdable (une sur deux)

N N

Remarque

La carte de ligne 100 Gigabit Ethernet à 12 ports avec QSFP28 est également prise en charge dans les environnements IOS XR 64 bits.

Remarque

Si la carte de ligne 100GE à 12 ports est insérée dans un châssis, il est important d'utiliser les panneaux de remplissage dotés de deux écrans [A9K-LC-FILR-V2]. Ainsi, vous optimisez le refroidissement et vous évitez les perturbations électromagnétiques.

Carte de ligne 100 Gigabit Ethernet à 32 ports avec module QSFP28/QSFP+

La carte de ligne 100 Gigabit Ethernet (GE) à 32 ports est dotée de trente-deux ports pour modules QSFP28/QSFP+ qui fonctionnent à un débit de 100 Gbit/s.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28/QSFP+ de la carte de ligne dispose d'un voyant d'état visible en façade. Ces voyants sont décrits à la section Voyants des cartes de ligne, à la page 140.

Lorsque la carte de ligne 100GE à 32 ports avec module QSFP28/QSFP+ est insérée dans un châssis Cisco ASR 9922, vous devez utiliser l'unité de ventilation V3 ASR 9922. Sur une carte de ligne 100GE à 32 ports, le module QSFP+ n'est autorisé que des ports 0 à 20.

La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 32 ports.

Illustration 20 : Carte de ligne 100 Gigabit Ethernet à 32 ports avec module QSFP28/QSFP+

1	Levier d'extraction (un sur deux)	3	Trente-deux connecteurs 100GE QSFP28
2	Vis d'installation imperdable (une sur deux)	4	Voyant d'état

Carte de ligne 100 Gigabit Ethernet à 20 ports avec QSFP28/QSFPDD

La carte de ligne 100 Gigabit Ethernet (GE) à 20 ports fournit :

- Quinze ports QSFP28 capables de prendre en charge le trafic Ethernet 10G, 40G et 100G.
- Cinq ports QSFP-DD prenant en charge le trafic Ethernet 10G, 40G, 100G, 200G et 400G.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28/QSFPDD de la carte de ligne dispose d'un voyant d'état visible en façade. Les voyants sont décrits dans Voyants des cartes de ligne.

Lorsque la carte de ligne 100GE à 20 ports avec module QSFP28/QSFPDD est insérée dans un châssis Cisco ASR 9922, vous devez utiliser l'unité de ventilation V3 ASR 9922.

La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 20 ports.

Illustration 21 : Carte de ligne 100 Gigabit Ethernet à 20 ports avec OSFP28/OSFPDD

1	Levier d'extraction (un sur deux)	4	Quinze connecteurs 100GE QSFP28
2	Cinq connecteurs 400GE QSFP-DD	5	Voyant d'état STATUS
3	Vis d'installation imperdable (une sur deux)		

Carte de ligne 100 Gigabit Ethernet à 8 ports avec QSFP28/QSFPDD

La carte de ligne 100 Gigabit Ethernet (GE) à 8 ports fournit :

- Six ports QSFP28 capables de prendre en charge le trafic Ethernet 10G, 40G et 100G.
- Deux ports QSFP-DD prenant en charge le trafic Ethernet 10G, 40G, 100G, 200G et 400G.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFP28/QSFPDD de la carte de ligne dispose d'un voyant d'état visible en façade. Les voyants sont décrits dans Voyants des cartes de ligne.

Lorsque la carte de ligne 100GE à 8 ports avec module QSFP28/QSFPDD est insérée dans un châssis Cisco ASR 9922, vous devez utiliser l'unité de ventilation V3 ASR 9922.

La figure suivante présente la façade et les voyants de la carte de ligne 100GE à 8 ports.

Illustration 22 : Carte de ligne 100 Gigabit Ethernet à 8 ports avec QSFP28/QSFPDD

1	Levier d'extraction (un sur deux)	4	Six connecteurs 100GE QSFP28
2	Deux connecteurs 400GE QSFP-DD	5	Voyant d'état STATUS
3	Vis d'installation imperdable (une sur deux)		

Cartes de ligne 400 Gigabit Ethernet

Â

Avertissement

Toutes les cartes de ligne Ethernet sont équipées de voyants d'état des ports sur leurs façades. Chaque port QSFPDD dispose d'un voyant adjacent qui indique l'état du port associé. En outre, chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte.

Cartes de ligne 400 Gigabit Ethernet à 10 ports avec QSFPDD

La carte de ligne 400 Gigabit Ethernet (GE) à 10 ports fournit dix ports pour les modules QSFPDD capables de prendre en charge le trafic Ethernet 10G, 40G, 100G, 200G et 400G.

Chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte. Chaque port QSFPDD de la carte de ligne dispose d'un voyant d'état visible en façade. Les voyants sont décrits dans Voyants des cartes de ligne.

Illustration 23 : Carte de ligne 400 Gigabit Ethernet à 10 ports avec OSFPDD

1	Vis d'installation imperdable (une sur deux)	3	Voyant d'état STATUS
2	Dix connecteurs 400GE QSFPDD	4	Levier d'extraction (un sur deux)

Cartes de ligne Ethernet IPoDWDM

Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10 Gigabit Ethernet avec modules CFP2 et SFP+

La carte de ligne IPodWDM combinée 2 ports 100G + 20 ports 10 Gigabit Ethernet avec modules CFP2 et SFP+ fournit deux boîtiers 2x5 superposés (20 ports au total) pour les modules d'interface optique Ethernet SFP+ et deux boîtiers d'émetteur-récepteur cohérents 100G CFP2. Cette carte de ligne est disponible uniquement en version -TR (optimisation du transport de paquets).

Chaque boîtier SFP+ et CFP2 dispose d'un voyant de liaison visible en façade. Ce voyant indique l'état du boîtier SFP+ ou CFP2 associé, comme décrit dans la section Voyants des cartes de ligne, à la page 140.

La figure suivante illustre la façade et les connecteurs de la carte de ligne.

Illustration 24 : Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10 Gigabit Ethernet avec modules CFP2 et SFP+

	070	
0 24 24 24 24 24 24 24 24 24 24 24 24 24	U	22
	E dia	15

Cartes de ligne multidébit

Les cartes de ligne sont équipées de voyants d'état des ports sur leurs façades. Chaque port d'interface dispose d'un voyant adjacent qui indique l'état du port associé. En outre, chaque carte de ligne comporte un seul voyant d'état qui indique un des trois états de la carte.

Carte de ligne multidébit 400G combinée

La carte de ligne multidébit combinée à 44 ports fournit les ports suivants :

- 24 ports SFP+ 10GE
- 16 ports SPF28 10GE ou 25GE
- 4 ports QSFP+ ou QSFP28 40GE ou 100GE

Remarque

La carte de ligne a une bande passante totale de 400 Go. Reportez-vous au Tableau 14 : Configurations des ports de cartes de ligne multidébit 400GE combinées pour connaître les configurations de ports prises en charge.

Illustration 25 : Carte de ligne multidébit 400G combinée

1	Vis d'installation imperdable (une sur deux)	4	16 ports SFP28 (2 groupes de 8)
2	Levier d'extraction (un sur deux)	5	4 ports QSFP28/QSFP+ (2 groupes de 2)
3	24 ports SFP+ (2 groupes de 12)	6	Voyant d'état

La carte de ligne multidébit 400GE combinée a une bande passante totale de 400GE. Les ports de carte de ligne utilisent le code couleur suivant :

- Les ports 0 à 5 (bleu), 10 à 15 (rouge), 20 à 25 (magenta), 30 à 35 (orange) prennent en charge les modules 10GE SFP+
- Les ports 6 à 9 (bleu), 16 à 19 (rouge), 26 à 29 (magenta), 36 à 39 (orange) prennent en charge les modules SFP28 10GE/25GE
- Les ports 40 (bleu), 41 (rouge), 42 (magenta), 43 (orange) prennent en charge les modules 40GE QSFP+ ou 100GE QSFP28

Remarque

Les optiques SFP28/QSFP+/QSFP28 d'un groupe de couleurs donné s'excluent mutuellement. Il n'est possible d'utiliser qu'un seul type d'optique à la fois.

Chaque groupe de ports de couleur prend en charge jusqu'à 100GE. Les configurations de port suivantes sont prises en charge :

Tableau 14 : Configurations des ports de cartes de ligne multidébit 400GE combinées

Groupe de couleurs		Bleu			Rouge			Magenta			Orange		
N° de port (optique)	0 à 5 (SFP+)	6 à 9 (SFP28)	40 (QSFP+/ QSFP28)	10 à 15 (SFP+)	16 à 19 (SFP28)	41 (QSFP+/ QSFP28)	20 à 25 (SFP+)	26 à 29 (SFP28)	42 (QSFP+/ QSFP28)	30 à 35 (SFP+)	36 à 39 (SFP28)	43 (QSFP+/ QSFP28)	Bande passante totale (GE)
Option 1	-	4x25/1x	40/1 x 100	_	4x25/1x	40/1 x 100	_	4x25/1x	40/1 x 100	_	4x25/1x	40/1 x 100	160-400
Option 2	-	4x25/1x	40/1 x 100	-	4x25/1x	40/1 x 100	-	4x25/1x	40/1 x 100	6 x 10	4 x 10	-	220-400

Groupe de couleurs		Bleu			Rouge			Magenta			Orange		
Option 3	_	4x25/1x4	40/1 x 100	_	4x25/1x	40/1 x 100	6 x 10	4 x 10	_	6 x 10	4 x 10	_	280-400
Option 4	-	4x25/1x4	40/1 x 100	6 x 10	4 x 10	-	6 x 10	4 x 10	-	6 x 10	4 x 10	-	340-400
Option 5	6 x 10	4 x 10	-	6 x 10	4 x 10	-	6 x 10	4 x 10	_	6 x 10	4 x 10	-	400

Pour obtenir la liste des modules optiques et des connecteurs utilisés par la carte de ligne multidébit 400GE combinée, ainsi que la liste de tous les modules d'émetteurs-récepteurs pris en charge, consultez le site https://tmgmatrix.cisco.com/home.

Cartes de ligne modulaires et adaptateurs MPA

Il existe quatre types de cartes de ligne modulaires :

- Carte de 80 Gbit/s
- Carte de 160 Gbit/s
- Carte de 200 Gbit/s
- Carte de 400 Gbit/s

Chaque type de carte est disponible en version -SE (optimisation du service de périphérie) et -TR (optimisation du transport de paquets). Les deux variantes offrent les mêmes fonctionnalités, mais affichent différentes capacités de mémoire tampon et une évolutivité différente de la configuration.

Les cartes de ligne modulaires de 400 gigabits ne prennent en charge que les adaptateurs MPA suivants :

- Adaptateur MPA 10GE à 2 ports avec module XFP
- Adaptateur MPA 10GE à 4 ports avec module XFP
- Adaptateur MPA 10GE à 8 ports avec module SFP+
- Adaptateur MPA 40GE à 2 ports avec module QSFP+
- Adaptateur MPA 40GE à 1 port avec module QSFP+
- Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+
- Adaptateur MPA 100 Gigabit Ethernet à 1 port avec CFP2-DCO et CPAK
- Adaptateur MPA 200 Gigabit Ethernet à 1 port avec CFP2-DCO
- Adaptateur MPA 100 Gigabit Ethernet à 2 ports avec CFP2-DCO et CPAK
- Adaptateur MPA GE à 32 ports avec MACsec

La figure suivante présente la façade de la carte de ligne modulaire sur laquelle est installé un adaptateur MPA Gigabit Ethernet à 20 ports dans la baie 1.

Illustration 26 : Carte de ligne modulaire (MLC)

La carte de ligne modulaire propose deux baies qui prennent en charge les adaptateurs MPA suivants :

Adaptateur MPA 100 Gigabit Ethernet à 1 port avec module CFP2

L'adaptateur MPA 100 Gigabit Ethernet (GE) à 1 port prend en charge le mode LAN/WAN/OTN et fournit un seul boîtier de module d'émetteur-récepteur CFP2 qui fonctionne à un débit de 100 Gbit/s. L'adaptateur MPA 100GE à 1 port est pris en charge dans les baies 0 et 1 des cartes de ligne modulaires 400 Gigabit (A9K-MOD400-SE, A9K-MOD400-TR) et des cartes de ligne modulaires 200 Gigabit (A9K-MOD200-SE, A9K-MOD200-TR).

Cet adaptateur MPA prend en charge la dérivation 2X40 et 10X10.

Remarque

- La version V02 du module CFP2-DCO a été introduite. La version V02 du module optique prend en charge la technologie Staircase FEC. Staircase FEC est une norme du secteur pour la communication optique à haut débit. Les informations d'ID de version du module optique peuvent être obtenues avec la commande show inventory.
- Cet adaptateur MPA ne prend pas en charge la dérivation 1X40.
- La technologie optique cohérente numérique (DCO) CFP2 est prise en charge avec les versions matérielles suivantes (ID de version) :

ID de produit des cartes de ligne	ID de produit des adaptateurs MPA	Version matérielle de l'adaptateur MPA (ID de version)
A9K-MOD200-TR	A9K-MPA-1x100GE	V03
A9K-MOD200-SE		
A9K-MOD400-TR		
A9K-MOD400-SE		

Le boîtier CFP2 sur l'adaptateur MPA dispose d'un voyant de liaison (A/L) visible en façade. Il indique l'état du port CFP2 associé, tandis que le voyant d'état indique l'état de l'adaptateur MPA.

Tableau 15 : Comportement du voyant en présence du type d'interface 100G

Voyant du port	Statut
Lumière éteinte	Le port est arrêté.
Rouge	L'interface 100G est désactivée.
Vert	L'interface 100G est activée.
Alternativement vert et orange	L'interface 100G est activée et achemine du trafic.

Tableau 16 : Comportement du voyant si la dérivation est configurée

Voyant du port	Statut
Lumière éteinte	Les ports sont arrêtés.
Rouge	La liaison est arrêtée pour au moins un des ports activés.
Vert	Au moins un port est activé et la liaison est active sur tous les ports activés.
Alternativement vert et orange	Au moins un port est activé et la liaison est active sur tous les ports activés.

Vous pouvez utiliser un adaptateur CFP2 pour connecter les émetteurs-récepteurs CPAK à l'adaptateur MPA. Le routeur détecte uniquement un module d'émetteur-récepteur CPAK connecté et ne détecte pas l'adaptateur CFP2 physique intermédiaire. La commande show inventory présente le module d'émetteur-récepteur CPAK connecté.

Ce tableau répertorie les adaptateurs CFP2 et les modules CPAK pris en charge :

Adaptateur CFP2	Module d'émetteur-récepteur CPAK pris en charge
CVR-CFP2-CPAK4	CPAK-100G-LR4
	CPAK-100G-ER4L
	CPAK-100G-CWDM4
CVR-CFP2-CPAK10	CPAK-100G-SR10
	CPAK-10X10G-LR
	CPAK-10X10G-ERL

<u>/</u>

Avertissement

Si vous raccordez un module CPAK non pris en charge à un adaptateur CFP2, vous risquez d'endommager l'adaptateur CFP2. Lisez attentivement l'étiquette relative à l'ID de produit apposée sur l'adaptateur CFP2.

Avertissement

Nous vous recommandons d'attendre 60 secondes avant d'insérer ou de retirer successivement les composants optiques. Si vous ne respectez pas cette recommandation, vous risquez d'endommager les composants optiques.

Avertissement

/!\

Les surfaces métalliques des modules CPF2-DCO peuvent atteindre des températures élevées et ne doivent donc pas être manipulées à mains nues.

Pour plus d'informations sur le retrait du module CFP2-DCO, reportez-vous à la section Retrait en toute sécurité des modules CFP2-DCO, à la page 92.

Adaptateur MPA 200 Gigabit Ethernet à 1 port avec CFP2-DC0

L'adaptateur MPA 200 Gigabit Ethernet (GE) à 1 port prend en charge le mode OTN et propose un seul boîtier de module d'émetteur-récepteur CFP2-DCO qui fonctionne à un débit de 100 Gbit/s ou 200 Gbit/s. L'adaptateur MPA 200GE à 1 port est pris en charge dans les baies 0 et 1 des cartes de ligne modulaires 400 Gigabit (A9K-MOD400-SE, A9K-MOD400-TR) et seulement sur la baie 0 des cartes de ligne modulaires 200 Gigabit (A9K-MOD200-SE, A9K-MOD200-TR).

Remarque

 La version V02 du module CFP2-DCO a été introduite. La version V02 du module optique prend en charge la technologie Staircase FEC. Staircase FEC est une norme du secteur pour la communication optique à haut débit. Les informations d'ID de version du module optique peuvent être obtenues avec la commande show inventory.

• Cet adaptateur MPA ne permet pas les dérivations.

L'adaptateur MPA fournit un port d'émetteur-récepteur CFP2-DCO qui peut fonctionner à 100GE (inclus) ou 200GE avec la licence de mise à niveau CFP2-LIC-UPG-200G. Le débit 200GE est pris en charge en combinant deux interfaces 100G à l'arrière, nécessitant l'attribution de deux adresses MAC/IP distinctes.

Remarque

La technologie optique cohérente numérique (DCO) CFP2 est prise en charge avec les versions matérielles suivantes (ID de version) :

ID de produit des cartes de ligne	ID de produit des adaptateurs MPA	Version matérielle de l'adaptateur MPA (ID de version)
A9K-MOD200-TR	A9K-MPA-1x200GE	V00
A9K-MOD200-SE		
A9K-MOD400-TR		
A9K-MOD400-SE		

Le connecteur CFP2 sur l'adaptateur MPA dispose de deux voyants de liaison (A/L) visible en façade. Ces voyants indiquent l'état du port CFP2 associé, tandis que le voyant d'état indique celui de l'adaptateur MPA.

Le tableau suivant présente le comportement des voyants lorsque le type d'interface est configuré sur 100G :

Tableau 17 : Comportement du voyant en présence du type d'interface 100G

Voyant du port	Statut
Lumière éteinte	Le port est arrêté.
Rouge	L'interface 100G est désactivée.

Voyant du port	Statut
Vert	L'interface 100G est activée.
Alternativement vert et orange	L'interface 100G est activée et achemine du trafic.

Â	
Avertissement	Si vous raccordez un module CPAK non pris en charge à un adaptateur CFP2, vous risquez d'endommager l'adaptateur CFP2. Lisez attentivement l'étiquette relative à l'ID de produit apposée sur l'adaptateur CFP2.
Avertissement	Nous vous recommandons d'attendre 60 secondes avant d'insérer ou de retirer successivement les composants optiques. Si vous ne respectez pas cette recommandation, vous risquez d'endommager les composants optiques.
\wedge	
vertissement	Les surfaces métalliques des modules CPF2-DCO peuvent atteindre des températures élevées et ne doivent donc pas être manipulées à mains nues. Une étiquette d'avertissement de surface brûlante est apposée sur le panneau avant de l'adaptateur MPA dans lequel le module optique est inséré.
	Pour plus d'informations sur le retrait du module CFP2-DCO, reportez-vous à la section Retrait en toute sécurité des modules CFP2-DCO, à la page 92.

Adaptateur MPA 100 Gigabit Ethernet à 2 ports avec module CFP2

L'adaptateur MPA 100 Gigabit Ethernet (GE) à 2 ports prend en charge le mode LAN/WAN/OTN et fournit deux boîtiers de module d'émetteur-récepteur CFP2 qui fonctionnent à un débit de 100 Gbit/s.

L'adaptateur MPA 100GE à 2 ports est pris en charge dans les baies 0 et 1 des cartes de ligne modulaires 400 Gigabit (A9K-MOD400-SE, A9K-MOD400-TR, A9K-MOD400-CM) et dans la baie 0 des cartes de ligne modulaires 200 Gigabit (A9K-MOD200-SE, A9K-MOD200-TR).

Cet adaptateur MPA prend en charge la dérivation 2X40 et 10X10.

Remarque

- La version V02 du module CFP2-DCO a été introduite. La version V02 du module optique prend en charge la technologie Staircase FEC. Staircase FEC est une norme du secteur pour la communication optique à haut débit. Les informations d'ID de version du module optique peuvent être obtenues avec la commande show inventory.
- Cet adaptateur MPA ne prend pas en charge la dérivation 1X40.
- La technologie optique cohérente numérique (DCO) CFP2 est prise en charge avec les versions matérielles suivantes (ID de version) :

ID de produit des cartes de ligne	ID de produit des adaptateurs MPA	Version matérielle de l'adaptateur MPA (ID de version)
A9K-MOD200-TR	A9K-MPA-2x100GE	V04
A9K-MOD200-SE		
A9K-MOD400-TR		
A9K-MOD400-SE		
A9K-MOD400-CM	A9K-MPA-2x100GE-CM	V02

Chaque boîtier CFP2 sur l'adaptateur MPA dispose d'un voyant de liaison (A/L) visible en façade. Il indique l'état du port CFP2 associé, tandis que le voyant d'état indique l'état de l'adaptateur MPA.

Illustration 29 : Adaptateur MPA 100 Gigabit Ethernet à 2 ports avec module CFP2

1	Voyant d'état	3	Voyant A/L (Actif/Liaison)
2	Voyant A/L (Actif/Liaison)		
Le tableau suivant présente le comportement des voyants lorsque le type d'interface est configuré sur 100G :

Tableau 18 : Comportement du voyant en présence du type d'interface 100G

Voyant du port	État
Lumière éteinte	Le port est arrêté.
Rouge	L'interface 100G est désactivée.
Vert	L'interface 100G est activée.
Alternativement vert et orange	L'interface 100G est activée et achemine du trafic.

Le tableau suivant présente le comportement des voyants lorsqu'une dérivation est configurée :

Tableau 19 : Comportement du voyant si la dérivation est configurée

Voyant du port	État
Lumière éteinte	Les ports sont arrêtés.
Rouge	La liaison est arrêtée pour au moins un des ports activés.
Vert	Au moins un port est activé et la liaison est active sur tous les ports activés.
Alternativement vert et orange	Le trafic est acheminé sur au moins un port activé et les ports désactivés sont mis hors tension.

Vous pouvez utiliser un adaptateur CFP2 pour connecter les émetteurs-récepteurs CPAK à l'adaptateur MPA. Le routeur détecte uniquement un module d'émetteur-récepteur CPAK connecté et ne détecte pas l'adaptateur CFP2 physique intermédiaire. La commande show inventory présente le module d'émetteur-récepteur CPAK connecté.

Ce tableau répertorie les adaptateurs CFP2 et les modules CPAK pris en charge :

Adaptateur CFP2	Module d'émetteur-récepteur CPAK pris en charge
CVR-CFP2-CPAK4	CPAK-100G-LR4
	CPAK-100G-ER4L
	CPAK-100G-CWDM4
CVR-CFP2-CPAK10	CPAK-100G-SR10
	CPAK-10X10G-LR
	CPAK-10X10G-ERL

Â

Avertissement

Si vous raccordez un module CPAK non pris en charge à un adaptateur CFP2, vous risquez d'endommager l'adaptateur CFP2. Lisez attentivement l'étiquette relative à l'ID de produit apposée sur l'adaptateur CFP2.

\triangle	
Avertissement	Nous vous recommandons d'attendre 60 secondes avant d'insérer ou de retirer successivement les composants optiques. Si vous ne respectez pas cette recommandation, vous risquez d'endommager les composants optiques.
\wedge	
Avertissement	Les surfaces métalliques des modules CPF2-DCO peuvent atteindre des températures élevées et ne doivent donc pas être manipulées à mains nues.
	Pour plus d'informations sur le retrait du module CFP2-DCO, reportez-vous à la section Retrait en toute sécurité des modules CFP2-DCO, à la page 92.
Adaptateur N	MPA Gigabit Ethernet à 20 ports avec module SFP
	L'adaptateur MPA Gigabit Ethernet (GE) à 20 ports fournit 10 boîtiers SFP superposés (20 au total) qui prennent en charge les émetteurs-récepteurs Gigabit Ethernet cuivre ou fibre optique.
	Chaque boîtier SFP sur l'adaptateur MPA GE à 20 ports dispose d'un voyant de liaison (A/L) visible en façade. Le voyant A/L indique l'état du port SFP associé, comme présenté dans le tableau <i>Voyants de l'adaptateur MPA</i> <i>Gigabit Ethernet à 20 ports</i> . Reportez-vous à la section Spécifications techniques, à la page 149, pour obtenir

Remarque

Cet adaptateur MPA n'est pas compatible avec la carte de ligne MOD400, modèle de consommation.

La figure suivante présente l'adaptateur MPA GE à 20 ports et les voyants correspondants.

la liste de tous les modules SFP pris en charge sur l'adaptateur MPA 20x1GE.

Illustration 30 : Adaptateur MPA Gigabit Ethernet à 20 ports

Tableau 20 : Voyants de l'adaptateur MPA Gigabit Ethernet à 20 ports

Désignation du voyant	Couleur	État	Signification	
A/L	Éteint	Éteint	Le port n'est pas activé.	
	Vert	Allumé	Le port est activé et la liaison fonctionne.	
			Le voyant A/L (Active/Link) de l'adaptateur MPA clignote en vert et en orange en présence de trafic.	
	Orange	Allumé	Le port est activé et la liaison ne fonctionne pas.	
ÉTAT	Éteint	Éteint	L'adaptateur MPA est hors tension.	
	Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.	
	Orange	Allumé	L'adaptateur MPA est sous tension et l'alimentation est correcte ; la configuration de l'adaptateur MPA est en cours.	

Adaptateur MPA 10 Gigabit Ethernet à 2 ports avec module XFP

L'adaptateur MPA 10 Gigabit Ethernet à 2 ports fournit deux boîtiers pour des modules d'interface optique Ethernet XFP fonctionnant à un débit de 10 Gbit/s. Les deux modules XFP peuvent être des connexions monomodes ou multimodes 10GE.

Chaque boîtier XFP sur l'adaptateur MPA 10GE à 4 ports dispose d'un voyant de liaison (A/L) visible en façade. Le voyant A/L (Active/Link) indique l'état du port XFP associé, comme présenté dans le tableau ci-dessous *Voyants de l'adaptateur MPA 10 Gigabit Ethernet à 2 ports* et un voyant d'état STATUS pour l'adaptateur MPA, comme illustré dans la figure suivante.

Illustration 31 : Adaptateur MPA 10 Gigabit Ethernet à 2 ports

Tableau 21 : Voyants de l'adaptateur MPA 10 Gigabit Ethernet à 2 ports

Désignation du voyant	Couleur	État	Signification	
A/L	Éteint	Éteint	Le port n'est pas activé.	
	Vert	Allumé	Le port est activé et la liaison fonctionne.	
			Le voyant A/L (Active/Link) de l'adaptateur MPA clignote en vert et en orange en présence de trafic.	
	Rouge	Allumé	Le port est activé et la liaison ne fonctionne pas.	
ÉTAT	Éteint	Éteint	L'adaptateur MPA est hors tension.	

Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.
Orange	Allumé	L'adaptateur MPA est sous tension et l'alimentation est correcte ; la configuration de l'adaptateur MPA est en cours.

Adaptateur MPA 10 Gigabit Ethernet à 4 ports avec module XFP

L'adaptateur MPA 10 Gigabit Ethernet (GE) à 4 ports fournit quatre boîtiers pour des modules d'interface optique Ethernet XFP fonctionnant à un débit de 10 Gbit/s. Les quatre modules XFP peuvent être des connexions monomodes ou multimodes 10 GE.

L'adaptateur MPA est équipé de deux types de voyants : un voyant de liaison A/L (Active/Link) pour chaque port et un voyant d'état STATUS de l'adapteur MPA, comme illustré dans la figure suivante. Le voyant A/L indique l'état du port XFP associé, comme présenté dans le tableau ci-dessous *Voyants de l'adaptateur MPA 10 Gigabit Ethernet à 4 ports*.

Illustration 32 : Adaptateur MPA 10 Gigabit Ethernet à 4 ports

Tableau 22 : Voyants de l'adaptateur MPA 10 Gigabit Ethernet à 4 ports

Désignation du voyant	Couleur	État	Signification
A/L	Éteint	Éteint	Le port n'est pas activé.

	Vert	Allumé	Le port est activé et la liaison fonctionne.		
			Le voyant A/L (Active/Link) de l'adaptateur MPA clignote en vert et en orange en présence de trafic.		
	Orange	Allumé	Le port est activé et la liaison ne fonctionne pas.		
ÉTAT	Éteint	Éteint	L'adaptateur MPA est hors tension.		
	Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.		
	Orange	Allumé	L'adaptateur MPA est sous tension et l'alimentation est correcte ; la configuration de l'adaptateur MPA est en cours.		

Adaptateur MPA 10 Gigabit Ethernet à 8 ports avec module SFP+

Remarque

Chaque boîtier SFP+ de l'adaptateur MPA 10GE à 8 ports est doté d'un voyant A/L (Active/Link) de la carte, comme illustré dans la figure suivante

Remarque

Cet adaptateur MPA n'est pas compatible avec la carte de ligne, modèle de consommation MOD400

L

Illustration 33 : Adaptateur MPA 10 Gigabit Ethernet à 8 ports

Tableau 23 : Voyants de l'adaptateur MPA 10 Gigabit Ethernet à 8 ports

Désignation du voyant	Couleur	État	Signification
A/L	Éteint	Éteint	Le port n'est pas activé.
	Vert	Allumé	Le port est activé et la liaison fonctionne.
	Orange	Allumé	Le port est activé et la liaison ne fonctionne pas.
ÉTAT	Éteint	Éteint	L'adaptateur MPA n'est pas alimenté.
	Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.
	Orange	Allumé	L'adaptateur MPA est sous tension et en cours de configuration.

Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+

L'adaptateur MPA 10 Gigabit Ethernet (GE) à 20 ports fournit deux boîtiers superposés 2x5 pour des modules d'interface optique Ethernet SFP+.

Chaque boîtier SFP+ de l'adaptateur MPA 10GE à 20 ports est doté d'un voyant A/L (Active/Link) visible en façade de la carte, comme illustré dans la figure suivante. Ce voyant indique l'état du port SFP+ associé, comme décrit dans la section Voyants de l'adaptateur MPA, à la page 140.

Illustration 34 : Adaptateur MPA 10 Gigabit Ethernet à 20 ports avec module SFP+

• L'état du voyant peut être incorrect si un port est en mode de bouclage interne sur l'interface Gigabit Ethernet pour 20x1EP. Le bouclage interne est utilisé à des fins de débogage.

Adaptateur MPA 40 Gigabit Ethernet à 1 port avec module QSFP+

L'adaptateur MPA 40 Gigabit Ethernet (GE) à 1 port fournit un boîtier pour un module d'interface optique Ethernet QSFP+ fonctionnant à une vitesse de 40 Gbit/s. Le module QSFP+ peut prendre en charge une connexion multimode 40GE ou une connexion monomode 40GE.

Chaque boîtier QSFP sur l'adaptateur MPA 40GE à 1 port dispose d'un voyant de liaison (A/L) visible en façade. Le voyant A/L indique l'état du port QSFP associé, comme présenté dans le tableau ci-dessous *Voyants de l'adaptateur MPA 40 Gigabit Ethernet à 1 port* et un voyant d'état, comme illustré dans la figure suivante.

Illustration 35 : Adaptateur MPA 40 Gigabit Ethernet à 1 port

Tableau 24 : Voyants de l'adaptateur MPA 40 Gigabit Ethernet à 1 port

Désignation du voyant	Couleur	État	Signification	
A/L	Éteint	Éteint	Le port n'est pas activé.	
	Vert	Allumé	Le port est activé et la liaison fonctionne.	
	Orange	Allumé	Le port est activé et la liaison ne fonctionne pas.	
ÉTAT	Éteint	Éteint	L'adaptateur MPA est hors tension.	
	Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.	
	Orange	Allumé	L'adaptateur MPA est sous tension et l'alimentation est correcte ; la configuration de l'adaptateur MPA est en cours.	

Adaptateur MPA 40 Gigabit Ethernet à 2 ports avec module QSFP+

L'adaptateur MPA 40 Gigabit Ethernet (GE) à 2 ports fournit deux boîtiers pour des modules d'interface optique Ethernet QSFP+ fonctionnant à un débit de 40 Gbit/s. Les deux modules QSFP+ peuvent être des connexions monomodes ou multimodes 40 Gigabit Ethernet.

Chaque boîtier QSFP sur l'adaptateur MPA dispose d'un voyant de liaison (A/L) visible en façade. Le voyant A/L indique l'état du port QSFP associé, comme présenté dans le tableau ci-dessous *Voyants de l'adaptateur MPA 40 Gigabit Ethernet à 2 ports* et un voyant d'état STATUS, comme illustré dans la figure suivante.

Remarque Cet adaptateur MPA n'est pas compatible avec la carte de ligne MOD400, modèle de consommation.

Tableau 25 : Voyants de l'adaptateur MPA 40 Gigabit Ethernet à 2 ports

Désignation du voyant	Couleur	État	Signification			
A/L	Éteint	Éteint	Le port n'est pas activé.			
	Vert	Allumé	Le port est activé et la liaison fonctionne.			
	Orange	Allumé	Le port est activé et la liaison ne fonctionne pas.			

Désignation du voyant	Couleur	État	Signification				
ÉTAT	Éteint	Éteint	L'adaptateur MPA est hors tension.				
	Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.				
	Orange	Allumé	L'adaptateur MPA est sous tension et l'alimentation est correcte ; la configuration de l'adaptateur MPA est en cours.				

Adaptateur MPA Gigabit Ethernet à 32 ports avec MACsec

L'adaptateur MPA Gigabit Ethernet (GE) à 32 ports prend en charge la sécurité MACsec. Cet adaptateur MPA a pour principale mission de fournir la fonctionnalité MACsec sur 32 ports 1GE via 16 modules Compact SFP (CSFP). Il utilise la technologie Compact SFP (CSFP) 1GE double canal afin d'augmenter la densité de ports. Outre CSFP, l'adaptateur MPA prend également en charge tous les autres types de modules SFP classiques.

Cet adaptateur MPA est pris en charge sur les cartes de ligne MOD200 et OD400.

Chaque boîtier SFP sur l'adaptateur MPA GE à 32 ports dispose d'un voyant de liaison (A/L) visible en façade. Ce voyant indique l'état du port SFP associé.

Illustration 37 : Ports SFP sur l'adaptateur MPA Gigabit Ethernet à 32 ports avec MACsec

	S	FP0	SF	FP1	SI	FP2	S	FP3		SF	FP4	SF	P5	S	FP6	SF	-P7
N° de port	0	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
		$\mathbb{A} \pmb{\nabla}$		$\mathbb{A} \mathbf{V}$	$\blacktriangle \mathbb{V}$	$\mathbb{A} \mathbf{V}$	$\blacktriangle \mathbb{V}$	$\mathbb{A} \pmb{\nabla}$						$\blacktriangle \mathbb{V}$	$\mathbb{A} \pmb{\nabla}$		$\mathbb{A} \mathbf{V}$
N° de port	31	30	29	28	27	26	25	24		23	22	21	20	19	18	17	16
	SF	P15	SF	P14	SF	P13	SF	P12	_	SF	P11	SF	P10	SF	P9	SF	P8

Le connecteur SFP 0 se trouve en haut tout à gauche pour finir par le connecteur SFP 7 tout à droite. Le connecteur SFP 8 se trouve en bas à droite pour finir par le connecteur SFP 15 tout à gauche. Si tous les composants optiques SFP sont branchés, les numéros de port sont tous pairs, entre 0 et 31 [par exemple : à partir du connecteur 0, 2, 4, 6, 8 jusqu'au connecteur 30].

355947

Il est possible de combiner des composants optiques SFP et CSFP dans cet adaptateur MPA. Si tous les connecteurs SFP sont équipés de modules SFP, le nombre de connecteurs est de 16.

Illustration 39 : Ports SFP et CSFP sur l'adaptateur MPA Gigabit Ethernet à 32 ports avec MACsec

Si tous les ports CSFP sont utilisés, les numéros de ports seront contigus du connecteur 0 à 31.

Illustration 40 : Ports CSFP sur l'adaptateur MPA Gigabit Ethernet à 32 ports avec MACsec

La figure suivante présente l'adaptateur MPA GE à 32 ports et les voyants correspondants.

Illustration 41 : Adaptateur MPA Gigabit Ethernet à 32 ports avec MACsec

	VE ADX.MPA.22X1GE	CLASS 1											8066
--	-------------------	---------	--	--	--	--	--	--	--	--	--	--	------

Désignation du voyant	Couleur	État	Signification
A/L Éteint Éteint			Le port n'est pas activé.
	Vert	Allumé	Le port est activé et la liaison fonctionne.
			Le voyant A/L (Active/Link) de l'adaptateur MPA clignote en vert et en orange en présence de trafic.
Rouge Allumé Le port est activé et la liaison ne fonctionne pas.			Le port est activé et la liaison ne fonctionne pas.

ÉTAT	Éteint	Éteint	L'adaptateur MPA est hors tension.
	Vert	Allumé	L'adaptateur MPA est prêt et opérationnel.
	Orange	Allumé	L'adaptateur MPA est sous tension et l'alimentation est correcte ; la configuration de l'adaptateur MPA est en cours.

Matrice de compatibilité pour les cartes de ligne MOD200 et MOD400

Les tableaux suivants répertorient les adaptateurs MPA pris en charge avec les cartes de ligne MOD200 (A9K-MOD200-SE, A9K-MOD200-TR) et MOD400 (A9K-MOD400-SE, A9K-MOD400-TR).

Tableau 26 : Adaptateurs MPA pris en charge sur les modèles A9K-MOD200-SE et A9K-MOD200-TR

Baie O	Baie 1
2x100G-MPA	Aucune
20x10G-MPA	
1x100G-MPA	1x100G-MPA
8x10G-MPA	8x10G-MPA
4x10G-MPA	4x10G-MPA
2x10G-MPA	2x10G-MPA
2x40G-MPA	2x40G-MPA
1x40G-MPA	1x40G-MPA
20x1G-MPA	20x1G-MPA
A9K-MPA-32X1GE	A9K-MPA-32X1GE

Tableau 27 : Adaptateurs MPA pris en charge sur les modèles A9K-MOD400-SE et A9K-MOD400-TR

Baie O	Baie 1
20x10G-MPA	20x10G-MPA
2x100G-MPA	2x100G-MPA
1x100G-MPA	1x100G-MPA
8x10G-MPA	8x10G-MPA
4x10G-MPA	4x10G-MPA
2x10G-MPA	2x10G-MPA
2x40G-MPA	2x40G-MPA
1x40G-MPA	1x40G-MPA
20x1G-MPA	20x1G-MPA
A9K-MPA-32X1GE	A9K-MPA-32X1GE

Remarque

Les modules CPAK 100G, CPAK-100G-ER4L et CPAK-100G-CWDM4, sont pris en charge sur les cartes de ligne 100G à partir de la version Version 6.3.2. Reportez-vous au tableau de prise en charge des modules CPAK pour en savoir plus.

Le tableau suivant répertorie les adaptateurs MPA pris en charge avec les cartes de ligne MOD400 (A9K-MOD400-CM), modèle de consommation.

Remarque

Les adaptateurs MPA, modèle de consommation, ne peuvent être utilisés qu'avec des cartes de ligne, modèle de consommation.

Tableau 28 : Adaptateurs MPA pris en charge sur A9K-MOD400-CM

Baie 0	Baie 1
A9K-MPA20X10GE-CM	A9K-MPA20X10GE-CM
A9K-MPA2X100GE-CM	A9K-MPA2X100GE-CM

Installation et retrait des cartes de ligne et des modules émetteurs-récepteurs

Ce chapitre présente les procédures à suivre pour installer et retirer des cartes de ligne et des modules émetteurs-récepteurs dans le routeur à services d'agrégation Cisco ASR 9000.

Pour en savoir plus sur l'installation et la configuration matérielle du routeur Cisco ASR 9000, consultez la page http://www.cisco.com/c/en/us/td/docs/routers/asr9000/hardware/installation/guide/asr9kHIGbk.html

- Sécurité, à la page 73
- Sécurité des appareils à laser, à la page 74
- Prévention des décharges électrostatiques, à la page 75
- Équipements et outils requis, à la page 76
- Retrait et installation d'une carte de ligne, à la page 76
- Installation et retrait d'une carte de ligne modulaire, à la page 83
- Installer et retirer des adaptateurs MPA, à la page 89
- Installation et retrait des modules SFP, à la page 100
- Installation et retrait des modules XFP, à la page 110
- Installation et retrait d'un module d'émetteur-récepteur CFP 100 Gigabit Ethernet, à la page 114
- Installer et retirer les modules émetteurs-récepteurs QSFP+/QSFP28, à la page 118
- Installation et retrait des modules d'adaptateur ou d'émetteur-récepteur CPAK, à la page 123
- Gestion des câbles pour carte de ligne, à la page 127
- Connecteurs et câbles, à la page 132

Sécurité

Avant d'installer ou de retirer une carte de ligne ou un module d'émetteur-récepteur, lisez les consignes de sécurité de la page http://www.cisco.com/c/en/us/td/docs/routers/asr9000/hardware/rcsi/regulatory/compliance/ asr9krcsi.html

Pour éviter de vous blesser ou d'endommager l'équipement :

- Pendant et après l'installation, assurez-vous que la zone de travail est dégagée et exempte de poussière. Ne laissez pas de poussière ou de débris pénétrer dans des composants laser.
- Ne portez pas de vêtements lâches, de bijoux et d'autres éléments susceptibles de se coincer dans le routeur lorsque vous travaillez sur les cartes de ligne.

 Utilisez l'équipement Cisco en toute sécurité conformément à ses caractéristiques et respectez les instructions d'utilisation.

Consignes relatives aux équipements électriques

Lorsque vous travaillez sur des équipements électriques, suivez les consignes ci-après :

- Avant de procéder à une intervention nécessitant l'accès à l'intérieur du châssis, repérez l'emplacement de l'interrupteur d'arrêt d'urgence du local dans lequel vous travaillez.
- Avant de déplacer le châssis, débranchez tous les câbles d'alimentation et tous les câbles externes.
- Ne travaillez pas seul dans des conditions de travail potentiellement dangereuses.
- Ne partez jamais du principe que le circuit est hors tension. Effectuez une vérification systématique.
- Ne faites rien qui puisse créer un danger pour autrui ou rendre l'équipement dangereux. Analysez minutieusement votre zone de travail et repérez les dangers potentiels : sols humides, câbles de rallonge non mis à la terre, absence de dispositifs de mise à la terre de sécurité, par exemple.

Sécurité des appareils à laser

Les cartes de ligne monomodes Ethernet (toutes les cartes de ligne) sont équipées d'un laser de classe 1. Les cartes de ligne multimodes Ethernet (Gigabit Ethernet) sont équipées d'un voyant de classe 1. Ces dispositifs émettent un rayonnement invisible. Ne regardez pas directement les ports opérationnels de la carte de ligne. Les avertissements suivants relatifs au laser s'appliquent aux cartes de ligne :

Produit laser de cla	sse 1. Consigne 1008
Produit avec voyar	t DEL de classe 1 (multimode). Consigne 123

Une fois débranches, les cables à fibre optique et certains connecteurs sont susceptibles d'émettre un rayonnement laser invisible. Ne regardez pas les faisceaux à l'œil nu ni à l'aide d'instruments optiques. Consigne 1051

Consignes de sécurité relatives aux lasers/voyants pour les adaptateurs MPA

Les émetteurs-récepteurs optiques monomodes du module utilisent un petit faisceau laser pour transmettre le signal lumineux vers le réseau en anneau. Lorsqu'aucun câble n'est connecté au port d'émission, ce dernier doit impérativement rester couvert. En général, les émetteurs multimodes utilisent des voyants DEL pour la transmission de signaux. Nous vous conseillons toutefois d'obturer les ports ouverts et de ne pas regarder à l'oeil nu à travers les différentes ouvertures (ports ouverts et autres). Le port d'ouverture monomode comporte une étiquette de mise en garde relative aux faisceaux laser, comme illustré dans la figure ci-dessous.

Illustration 42 : Étiquettes de mise en garde relatives aux faisceaux laser apposées sur le port monomode

Attention Une fois débranchés, les câbles à fibre optique et certains connecteurs sont susceptibles d'émettre un rayonnement laser invisible. Ne regardez pas les faisceaux à l'œil nu ni à l'aide d'instruments optiques. Consigne 1051

Attention

Produit laser de classe 1. Consigne 1008

Le port d'ouverture multimode comporte une étiquette de mise en garde relative aux voyants de classe 1, comme illustré dans la figure ci-dessous.

Illustration 43 : Étiquettes de mise en garde relatives aux voyants de classe 1 apposées sur le port multimode

PRODUKT MITKLASSE 1 LED PRODUKT MITKLASSE 1 LED PRODUKT AVEC VOYANT DEL DE QLASSE 1 ラス1 LED 製品 PRODUCTO LED DE LA CLASE

Attention Une fois débranchés, les câbles à fibre optique et certains connecteurs sont susceptibles d'émettre un rayonnement laser invisible. Ne regardez pas les faisceaux à l'œil nu ni à l'aide d'instruments optiques. Consigne 1051

Attention Produit av

Produit avec voyant DEL de classe 1 Consigne 1027

Prévention des décharges électrostatiques

Les chocs électrostatiques peuvent se produire lorsque les cartes et les composants électroniques ne sont pas manipulés correctement et peuvent entraîner des pannes totales ou intermittentes. Le blindage contre les interférences électromagnétiques fait partie intégrante de la carte de ligne et de l'adaptateur MPA. Cisco Systems recommande d'utiliser un bracelet antistatique à chaque fois que vous manipulez un équipement réseau ou l'un de ses composants.

Pour prévenir tout dommage causé par les chocs électrostatiques, respectez les consignes suivantes :

- Portez en permanence un bracelet antistatique au poignet ou à la cheville et vérifiez qu'il est suffisamment en contact avec la peau. Attachez l'extrémité du cordon à un connecteur ESD sur le routeur ou à une surface métallique nue du châssis.
- Évitez de toucher les cartes de circuits imprimés ou les broches des connecteurs. Lorsque vous insérez ou retirez des cartes, vous ne devez toucher que la façade ou la poignée en métal de la carte.

• Lorsque vous transportez une carte, ne touchez que la poignée en métal ou mettez-la dans un sac antistatique.

Avertissement	Pour éviter d'endommager les composants mécaniques de la carte, veillez à ne jamais saisir une carte de ligne, un adaptateur MPA ou un processeur de commutation du routage (RSP) par les vis d'installation imperdables ou les leviers d'extraction. Cela peut endommager ces composants et causer des problèmes au moment de l'insertion de la carte.
	• Après avoir retiré une carte de ligne ou un adaptateur MPA, posez-les face vers le haut sur une surface antistatique ou dans un sac antistatique. Si vous prévoyez de renvoyer le composant à l'usine, placez-le immédiatement dans un sachet antistatique.
	 Évitez tout contact entre les cartes de ligne ou les adaptateurs MPA et vos vêtements. Le bracelet antistatique protège les composants contre les tensions électrostatiques du corps uniquement. Les tensions électrostatiques présentes dans les vêtements peuvent également provoquer des dommages.
Avertissement	Pour plus de sécurité, vérifiez régulièrement la valeur de la résistance du bracelet antistatique. Elle doit être comprise entre 1 et 10 mégohms.

Équipements et outils requis

- Un tournevis plat ou cruciforme
- Un bracelet antistatique au poignet ou à la cheville et instructions d'utilisation
- Des câbles d'interface, pour raccorder la carte de ligne à un autre routeur ou à un commutateur
- Les modules SFP/XFP que vous devez installer (et qui ne sont pas encore installés)

Remarque

Si des équipements supplémentaires s'avèrent nécessaires, rendez-vous sur la page Cisco.com ou contactez un conseiller du service client, qui vous expliquera comment les commander.

Retrait et installation d'une carte de ligne

Cette section comprend les rubriques suivantes :

Consignes d'installation

Avertissement

Veillez à ne pas endommager le joint IEM (interférences électromagnétiques) installé le long de la façade de la carte. Tout dommage causé au joint IEM est susceptible d'affecter le respect des exigences en matière de compatibilité IEM du système.

- Chaque carte dispose d'une clé qui correspond à un logement approprié sur le côté du châssis (en haut de chaque logement de carte). Ce mécanisme de clé-logement évite l'insertion d'une carte dans un logement inadéquat. Il évite également l'insertion d'une carte à l'envers. Si une carte est insérée dans le mauvais logement ou à l'envers, la clé se bloque sur le guide-carte du châssis et ne glisse pas correctement dans le logement. Si la clé est bloquée, retirez la carte et recherchez le logement de carte correct.
- L'insertion et le retrait à chaud sont pris en charge, vous permettant d'installer une carte de ligne lorsque le routeur est en cours de fonctionnement. L'insertion et le retrait à chaud se font de manière transparente pour les utilisateurs du réseau, conservent toutes les informations de routage et garantissent la préservation des sessions. Nous vous recommandons de suivre la procédure d'arrêt normale avant de retirer une carte de ligne du châssis. Reportez-vous à la section Étapes de la procédure de retrait et d'installation à chaud d'une carte de ligne, à la page 83.

Remarque

 Lorsque vous effectuez une procédure d'arrêt normale sur une carte de ligne, les déroutements cefcFRUInserted et cefcFRURemoved ne sont pas générés.

- Lors de l'installation d'une carte de ligne, vous devez d'abord appuyer sur le bouton d'insertion et de retrait à chaud sur les leviers d'extraction supérieur et inférieur pour débloquer le loquet mécanique.
- Les différentes cartes du châssis sont toutes fixées au châssis lui-même à l'aide d'une paire de leviers d'extraction et de vis imperdables. Les deux leviers d'extraction libèrent la carte de son connecteur de fond de panier central. L'emplacement exact des leviers d'extraction et des vis imperdables peut varier légèrement selon la carte, mais ils sont généralement aux mêmes endroits : sur les extrémités supérieure et inférieure de la plaque de logement.

Avertissement

Lorsque vous installez une carte de ligne, serrez complètement les deux vis imperdables pour vous assurer que la carte est bien enclenchée dans le connecteur de fond de panier. Une carte mal enclenchée dans le fond de panier risque de ne pas fonctionner correctement, même si elle démarre.

 La carte BPID permet d'assurer le suivi de la fonction de retrait et d'installation à chaud en comptabilisant le nombre de fois qu'une carte est insérée dans chaque connecteur et en enregistrant le résultat dans la mémoire non volatile. L'insertion et le retrait à chaud sont surveillés pour toutes les cartes de ligne et RSP, et pour les unités de ventilation. Vous pouvez détecter l'insertion d'une carte grâce au contrôleur CBC (CAN Bus Controller) de la carte insérée. En effet, celui-ci démarre et envoie un message CBC qui est intercepté par la carte BPID. Sachez qu'une réinitialisation CBC ou la mise hors et sous tension d'une carte sera également interprétée comme une insertion de carte.

Une carte qui enregistre plus de 175 retraits et insertions à chaud déclenchera une alarme mineure au niveau de ce connecteur. Si le nombre d'OIR d'une carte dépasse 200, une alarme majeure est déclenchée au niveau du connecteur. Le nombre d'insertions d'unités de ventilation n'est pas surveillé.

Consultez les notes de version des routeurs à services d'agrégation Cisco ASR 9000 pour en savoir plus sur les commandes CLI qui permettent d'obtenir des informations sur l'insertion d'une carte et de les réinitialiser. La commande CLI indique si le châssis concerné est équipé de la version de BPID qui prend en charge le comptage des insertions et des retraits à chaud.

 Après avoir réinstallé une carte de ligne, le routeur télécharge automatiquement le logiciel nécessaire à partir du processeur RSP. Ensuite, le routeur ne met en ligne que les interfaces qui correspondent à la configuration actuelle et qui étaient activées précédemment par l'administrateur. Vous devez configurer toutes les autres à l'aide de la commande **configure**.

Retrait d'une carte de ligne

Si vous remplacez une carte de ligne défectueuse, retirez d'abord la carte existante, puis installez la nouvelle carte de ligne dans le même connecteur. Pour retirer une carte de ligne, consultez la figure ci-dessous ou référez-vous à Illustration 45 : Retrait d'une carte de ligne (routeur Cisco ASR 9922 illustré), à la page 80 et procédez comme suit :

1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.

2. Débranchez et retirez tous les câbles d'interface des ports. Veillez à prendre note des branchements actuels des câbles sur les ports de la carte de ligne.

3. Détachez le support de gestion des câbles de la carte de ligne.

4. Utilisez un tournevis pour desserrer les vis imperdables à chaque extrémité de la façade de la carte de ligne.

Illustration 45 : Retrait d'une carte de ligne (routeur Cisco ASR 9922 illustré)

a	Desserrez les vis	b	Faites pivoter les leviers d'extraction pour	c	Faites glisser la carte pour la
	imperdables.		sortir la carte du connecteur du fond de		sortir du châssis.
	-		panier.		

<u>/!</u>

Avertissement Lorsque vous retirez une carte de ligne, utilisez toujours les leviers d'extraction pour garantir que les broches du connecteur de la carte de ligne se déconnectent du fond de panier dans l'ordre logique qu'attend le routeur. Une carte de ligne qui n'est que partiellement enclenchée dans le fond de panier peut entraîner l'arrêt du routeur.

5. Pour dégager la carte de ligne du connecteur de fond de panier, faites pivoter simultanément les leviers d'extraction, en leur faisant suivre chacun une direction opposée.

6. Saisissez les leviers d'extraction et retirez la carte de ligne de moitié hors du connecteur.

7. Saisissez la carte de ligne et tirez-la doucement de façon à l'extraire du connecteur, en laissant votre autre main sous la carte pour la guider. Évitez de toucher la carte de circuits imprimés, les composants et les broches de connecteur de la carte de ligne.

8. Posez la carte de ligne sur un tapis antistatique. Si vous devez la renvoyer à l'usine, rangez-la immédiatement dans un sachet de protection antistatique.

9. Si le connecteur de la carte de ligne est voué à rester vide, installez un module vierge (numéro de produit A9K-LC-FILR) pour éviter l'accumulation de poussière dans le châssis et garantir une bonne circulation de l'air dans le compartiment de la carte de ligne. Fixez la carte de ligne vierge dans le châssis en serrant les vis imperdables.

- 3. Saisissez la façade de la carte de ligne d'une main et placez l'autre main sous le support métallique de la carte (pour la soutenir) (Illustration 44 : Retrait d'une carte de ligne (routeur Cisco ASR 9912 illustré), à la page 79 ou Illustration 45 : Retrait d'une carte de ligne (routeur Cisco ASR 9922 illustré), à la page 80). Positionnez la carte de façon à pouvoir l'insérer dans le connecteur du boîtier de la carte. Évitez de toucher la carte de circuits imprimés, les composants et les broches de connecteur de la carte de ligne.
- 4. Insérez doucement la carte de ligne dans le connecteur jusqu'à ce que les leviers d'extraction touchent les bords du boîtier de la carte, puis arrêtez lorsque les crochets des leviers d'extraction s'y accrochent. S'ils ne s'accrochent pas, essayez de réinsérer la carte jusqu'à ce qu'ils soient entièrement enclenchés.

Avertissement

Lorsque vous installez une carte de ligne, utilisez toujours les leviers d'extraction pour vous assurer que la carte est bien alignée sur le connecteur de fond de panier, que les broches du connecteur de la carte sont en contact avec le fond de panier dans le bon ordre et que la carte est enclenchée dans le fond de panier. Une carte mal enclenchée dans le fond de panier peut entraîner l'arrêt du routeur.

Remarque

Sur le routeur Cisco ASR 9922, les cartes de ligne de la partie inférieure du châssis (connecteurs 10 à 19) sont insérées à l'envers.

- 5. Faites pivoter simultanément les deux leviers d'extraction l'un vers l'autre jusqu'à ce qu'ils soient parallèles à la façade de la carte. Ainsi, la carte est bien enclenchée dans le fond de panier.
- Serrez la vis imperdable à chaque extrémité de la façade de la carte de ligne pour assurer une protection 6. appropriée contre les perturbations électromagnétiques et éviter que la carte de ligne ne se déconnecte partiellement du fond de panier. Serrez les vis imperdables à un couple de 10 + -1 po-lb.

Avertissement

Pour conserver un espace suffisant pour accueillir des cartes de ligne supplémentaires, serrez toujours les vis imperdables de chaque nouvelle carte avant d'en insérer d'autres. Ces vis garantissent une bonne installation dans le connecteur de fond de panier, évitent tout retrait accidentel et assurent une mise à la terre et une protection contre les perturbations électromagnétiques pour le routeur.

- 7. Installez le support de gestion des câbles. Reportez-vous à la section Installation d'un support de gestion des câbles pour carte de ligne, à la page 130.
- 8. Installez les câbles d'interface. Reportez-vous à la section Installation et retrait des câbles d'interface à fibre optique, à la page 134.
- Pour en savoir plus sur l'installation des modules SFP et XFP, reportez-vous aux sections Installation 9. et retrait des modules SFP, à la page 100 et Installation et retrait des modules XFP, à la page 110.
- 10. Pour obtenir de l'aide concernant l'installation du matériel, reportez-vous à la section Vérification et dépannage de l'installation de la carte de ligne, à la page 139.

Étapes de la procédure de retrait et d'installation à chaud d'une carte de ligne

L'insertion et le retrait à chaud sont pris en charge, vous permettant d'installer des cartes lorsque la carte de ligne est en cours de fonctionnement. Procédez comme suit pour retirer ou insérer une carte de ligne en utilisant la commande **shutdown** Cisco IOS XR.

- 1. Éteignez le connecteur de la carte de ligne avec la commande (admin-config) hw-module shutdown location 0/0/CPU0.
- 2. Vérifiez que les voyants sont maintenant éteints.
- 3. Retirez physiquement la carte de ligne à remplacer.
- 4. Insérez physiquement la carte de ligne de remplacement.
- 5. Réactivez la carte de ligne avec la commande (admin-config) no hw-module shutdown location 0/0/CPU0.

Installation et retrait d'une carte de ligne modulaire

Cette section comprend les rubriques suivantes :

Avant d'effectuer les procédures suivantes, lisez attentivement les consignes de sécurité. Reportez-vous aux sections Sécurité, à la page 73 et Prévention des décharges électrostatiques, à la page 75 respectivement.

Remarque

Certaines des procédures décrites dans les sections suivantes proposent une illustration d'un routeur Cisco ASR 9000 à 10 connecteurs pour expliquer le retrait et l'installation des cartes de ligne modulaires. Même si les boîtiers des cartes des routeurs à services d'agrégation Cisco ASR 9000 sont différents, l'utilisation des connecteurs et les processus d'installation et de retrait d'une carte de ligne modulaire sont fondamentalement les mêmes. Par conséquent, ce guide ne contient pas d'autres procédures, ni illustrations.

Équipements et outils requis

Pour retirer et installer des cartes de ligne modulaires et des adaptateurs MPA, vous devez disposer des outils et de l'équipement ci-après :

- Un tournevis plat ou cruciforme
- Un bracelet antistatique au poignet ou à la cheville et instructions d'utilisation
- Des câbles d'interface pour raccorder le SIP à un autre routeur ou à un commutateur

Manipulation d'une carte de ligne modulaire

Les cartes de ligne modulaires sont montées sur un support métallique et peuvent être endommagées par les chocs électrostatiques.

Avertissement

Manipulez toujours les cartes de ligne en les tenant par les bords et la poignée prévus à cet effet. Ne touchez pas les composants ni les broches des connecteurs.

Lorsqu'un logement est inutilisé, équipez-le d'un obturateur. Cela garantit la conformité du routeur aux exigences relatives aux émissions d'interférences électromagnétiques et assure une circulation efficace de l'air, dans les modules installés. Avant d'installer une carte de ligne modulaire dans un logement inutilisé, retirez l'obturateur.

Illustration 46 : Manipulation d'une carte de ligne modulaire

Instructions relatives à l'installation et au retrait d'une carte de ligne modulaire

 L'insertion et le retrait à chaud sont pris en charge, vous permettant de retirer et d'installer des cartes de ligne modulaires lorsque le routeur est en fonctionnement. L'insertion et le retrait à chaud se font de manière transparente pour les utilisateurs du réseau, conservent toutes les informations de routage et garantissent la préservation des sessions.

Remarque	Grâce à l'insertion et au retrait à chaud, il n'est pas nécessaire de notifier le logiciel ou de réinitialiser l'alimentation. Cependant, vous pouvez utiliser la commande « hw-module loc rack/slot/CPU0 maint » avant de retirer une carte de ligne modulaire.
۵	• Après avoir réinstallé une carte de ligne modulaire, le routeur télécharge automatiquement le logiciel nécessaire à partir du processeur de commutation de routage (RSP). Ensuite, le routeur ne met en ligne que les interfaces qui correspondent à la configuration actuelle et qui étaient activées précédemment par l'administrateur. Vous devez configurer toutes les autres à l'aide de la commande configure .
<u>_!\</u>	
Avertissement	Le routeur peut indiquer une défaillance matérielle si vous ne suivez pas les procédures adéquates. Ne retirez ou n'installez qu'une seule carte de ligne modulaire à la fois. Attendez au moins 15 secondes que le routeur finisse de traiter la tâche précédente avant de retirer ou d'installer une autre carte de ligne modulaire.
	• Les deux leviers d'extraction libèrent la carte de ligne modulaire de son connecteur de fond de panier.

enclencher correctement la carte dans son connecteur de fond de panier. Les leviers d'extraction s'alignent pour installer la carte dans les connecteurs du fond de panier.

Avertissement

Lorsque vous retirez une carte de ligne modulaire, utilisez toujours les leviers d'extraction pour garantir que les broches du connecteur se déconnectent du fond de panier dans l'ordre logique qu'attend le routeur. Une carte qui n'est que partiellement enclenchée dans le fond de panier peut entraîner l'arrêt du routeur. Lorsque vous installez une carte de ligne modulaire, utilisez toujours les leviers d'extraction pour vous assurer que la carte est bien alignée sur le connecteur de fond de panier, que les broches du connecteur sont en contact avec le fond de panier dans le bon ordre et que la carte est enclenchée dans le fond de panier. Une carte mal enclenchée dans le fond de panier l'arrêt du routeur.

Retrait d'une carte de ligne modulaire

Si vous remplacez une carte de ligne modulaire défectueuse, retirez d'abord la carte existante, puis installez la nouvelle carte de ligne modulaire dans le même connecteur. Pour retirer une carte de ligne modulaire, référez-vous à la figure ci-dessous et procédez comme suit :

- 1. Portez un bracelet antistatique au poignet et suivez les instructions d'utilisation.
- 2. Débranchez et retirez tous les câbles d'interface des ports. Veillez à prendre note des branchements actuels des câbles sur les ports des adaptateurs MPA ainsi que les emplacements des adaptateurs si vous les retirez.
- 3. Détachez le support de gestion des câbles de la carte de ligne modulaire.

Utilisez un tournevis pour desserrer les vis imperdables à chaque extrémité de la façade de la carte de ligne modulaire. (Voir la légende 1 sur la figure ci-dessous).

Illustration 47 : Installation et retrait d'une carte de ligne modulaire

<u>____</u>

Avertissement

Lorsque vous retirez une carte de ligne modulaire, utilisez toujours les leviers d'extraction pour garantir que les broches du connecteur se déconnectent du fond de panier dans l'ordre logique qu'attend le routeur. Une carte qui n'est que partiellement enclenchée dans le fond de panier peut entraîner l'arrêt du routeur.

- 1. Saisissez les deux leviers d'extraction de la carte et faites-les pivoter simultanément à 90 degrés par rapport à la façade du support de la carte afin de libérer la carte de ligne modulaire du connecteur de fond de panier (voir figure ci-dessus).
- 2. Saisissez les leviers d'extraction et retirez la carte de ligne de moitié hors du connecteur.
- **3.** Saisissez la carte de ligne modulaire par le centre et tirez-la doucement de façon à l'extraire du connecteur, en laissant votre autre main sous la carte pour la guider (voir figure ci-dessus). Évitez de toucher la carte de circuits imprimés, les composants et les broches de connecteur de la carte de ligne modulaire.
- 4. Posez la carte de ligne modulaire sur un tapis antistatique. Si vous devez la renvoyer à l'usine, rangez-la immédiatement dans un sachet de protection antistatique.
- 5. Si le connecteur de la carte de ligne modulaire est voué à rester vide, installez un module vierge pour éviter l'accumulation de poussière dans le châssis et garantir une bonne circulation de l'air dans le compartiment de la carte de ligne modulaire. Fixez la carte de ligne vierge dans le châssis en serrant les vis imperdables.

Installation d'une carte de ligne modulaire

La carte de ligne modulaire s'insère dans un connecteur de carte de ligne disponible et se connecte directement au fond de panier. Si vous installez une nouvelle carte de ligne modulaire, vous devez d'abord retirer le module vierge du connecteur disponible.

Guide d'installation de la carte de ligne Ethernet des routeurs à services d'agrégation Cisco ASR 9000

- 7. Installez les adaptateurs MPA et les modules SFP dans les adaptateurs MPA qui les utilisent. Reportez-vous à la section Installer et retirer des adaptateurs MPA, à la page 89.
- 8. Si vous remplacez une carte de ligne modulaire, installez l'adaptateur MPA dans les mêmes baies que celles relevées à l'étape 2 de la section Retrait d'une carte de ligne, à la page 78.
- 9. Installez les câbles d'interface.

Installer et retirer des adaptateurs MPA

Les sections suivantes décrivent comment installer ou retirer un adaptateur MPA sur le routeur à services d'agrégation Cisco ASR 9000.

Manipuler des adaptateurs MPA

Chaque circuit imprimé de l'adaptateur MPA est monté sur un support métallique et est susceptible d'être endommagé par les chocs électrostatiques.

Avertissement

Manipulez toujours l'adaptateur MPA par les bords et la poignée prévus à cet effet. Ne touchez pas les composants ni les broches des connecteurs de l'adaptateur MPA (voir figure ci-dessous).

Lorsqu'une baie est inutilisée, équipez-la d'un obturateur(A9K-MPA-FILR). Cela garantit la conformité du routeur ou du commutateur aux exigences relatives aux émissions d'interférences électromagnétiques et assure une circulation efficace de l'air dans les modules installés. Avant d'installer un adaptateur MPA dans une baie inutilisée, retirez l'obturateur.

Illustration 49 : Manipulation d'un adaptateur MPA

1	Support métallique	2	Carte de circuits imprimés
3	Ruban de mise à la terre		

Insertion et retrait à chaud

Les cartes de ligne modulaires et les adaptateurs MPA du routeur Cisco ASR 9000 prennent en charge la procédure d'insertion et de retrait à chaud (OIR). Les adaptateurs MPA peuvent être insérés ou retirés indépendamment de la carte de ligne sur laquelle ils sont installés. L'insertion et le retrait à chaud d'une carte de ligne modulaire sur laquelle des adaptateurs MPA sont installés sont également pris en charge.

Â

Avertissement

Cisco IOS XR 6.6.1 et les versions ultérieures prennent en charge la procédure d'insertion et de retrait à chaud (OIR) des adaptateurs de ports modulables (MPA) Cisco NCS 5500.

Les adaptateurs MPA Cisco NCS 5500 prennent en charge la procédure d'insertion et de retrait à chaud (OIR).

Ces adaptateurs prennent en charge les types suivants d'OIR :

• OIR logiciel

L'OIR logiciel utilise les commandes IOS XR **hw-module subslot** *rack/connecteur/sous-connecteur* **reload**, **hw-module subslot** *rack/connecteur/sous-connecteur* **shutdown** et **no hw-module subslot** *rack/connecteur/sous-connecteur* **shutdown** pour réaliser l'insertion et le retrait à chaud. Pour connaître la syntaxe des commandes, reportez-vous au chapitre Commandes d'administration des nœuds et de redondance matérielle du guide de référence des commandes de gestion système des routeurs à services d'agrégation Cisco ASR 9000.

• OIR géré

La procédure gérée de retrait et d'insertion à chaud des adaptateurs MPA se compose des étapes suivantes :

- Arrêtez l'adaptateur MPA avec la commande hw-module subslot rack/connecteur/sous-connecteur shutdown.
- · Vérifiez que les voyants sont maintenant éteints.
- Exécutez la commande do show platform pour vérifier que l'adaptateur MPA à retirer est désactivé.
- Retirez physiquement l'adaptateur MPA qui doit être remplacé.
- Insérez physiquement l'adaptateur MPA de remplacement.
- Réactivez l'adaptateur MPA avec la commande **no hw-module subslot** *rack/connecteur/sous-connecteur* **shutdown**.
- OIR matériel

La méthode d'OIR matériel consiste à retirer et à insérer à chaud physiquement des adaptateurs MPA sans faire usage de commandes logicielles. Trois types d'OIR matériel sont pris en charge :

- Si la baie est vide lors du démarrage de la carte de ligne modulaire du routeur Cisco ASR 9000, vous pouvez procéder comme suit :
 - Insérez un adaptateur MPA 20GE
 - Retirez, puis insérez un adaptateur MPA 20GE de remplacement
 - Insérez un adaptateur MPA 4 10GE
 - Retirez, puis insérez un adaptateur MPA 4 10GE de remplacement

- Si la carte de ligne modulaire démarre alors qu'un adaptateur MPA 20GE se trouve dans la baie, vous pouvez retirer celui-ci, puis en insérer un de remplacement (20GE ou 4 10GE).
- Si la carte de ligne modulaire démarre alors qu'un adaptateur MPA 4 10GE se trouve dans la baie, vous pouvez retirer celui-ci, puis en insérer un de remplacement (20GE ou 4 10GE).

Remarque

Cisco recommande d'attendre au moins 2 minutes avant d'effectuer des procédures successives de retrait et d'insertion à chaud d'un adaptateur MPA (OIR logiciel ou matériel). Si la baie est vide lors du démarrage de la carte de ligne modulaire du routeur Cisco ASR 9000, le mode par défaut est MPA 20GE.

Installer et retirer un adaptateur MPA

Cette section fournit des instructions détaillées sur l'installation et le retrait d'un adaptateur MPA dans une carte de ligne modulaire.

Remarque Lorsque vous avez retiré l'adaptateur MPA du connecteur, attendez 60 secondes avant de le réinsérer. Remarque Après avoir desserré les deux vis d'extraction, attendez 15 secondes avant de retirer l'adaptateur MPA du connecteur. Attention Au cours de la procédure, portez des bracelets de mise à la terre pour éviter d'endommager la carte par choc électrostatique. Pour éviter les risques d'électrocution, ne touchez pas le fond de panier directement avec les mains ni avec un outil métallique. Consigne 94 Pour retirer et installer un adaptateur MPA, procédez comme suit : 1. Pour insérer l'adaptateur MPA, repérez les rails de guidage situés à l'intérieur de la carte de ligne modulaire. Ils permettent de maintenir l'adaptateur MPA en place. Ils sont situés en haut à gauche et à droite du connecteur de l'adaptateur MPA et sont en retrait de 2,5 cm environ. 2. Faites glisser délicatement l'adaptateur MPA dans la carte de ligne modulaire, jusqu'à ce qu'il s'enclenche dans le connecteur d'interface. Lorsqu'il est enclenché, l'adaptateur MPA peut être légèrement en retrait du panneau avant. L'adaptateur MPA glisse facilement dans le connecteur s'il est correctement aligné sur les rails. Dans le cas Remarque contraire, ne forcez PAS. Retirez l'adaptateur MPA et repositionnez-le, en prenant soin de bien l'engager sur les rails. Poussez l'adaptateur MPA dans son connecteur jusqu'à entendre un clic. Continuez d'appuyer sur l'adaptateur MPA jusqu'à entendre un deuxième clic. L'adaptateur MPA ne sera correctement positionné qu'après le deuxième clic.

3. Pour installer parfaitement l'adaptateur MPA, utilisez un tournevis cruciforme numéro 2 afin de serrer les vis imperdables. Assurez-vous de serrer tout d'abord la vis de droite, puis celle de gauche.

Remarque

- Évitez de trop serrer les vis imperdables de l'adaptateur MPA lors de son installation. Serrez les vis imperdables de l'adaptateur MPA à un couple de 17 +/-1 pouces-livres.
 - 4. Pour retirer l'adaptateur MPA de la carte de ligne modulaire, utilisez un tournevis cruciforme numéro 2 pour desserrer les vis imperdables de l'adaptateur MPA. Assurez-vous de desserrer tout d'abord la vis de droite, puis celle de gauche.
 - 5. Saisissez l'adaptateur MPA et retirez-le de la carte de ligne modulaire. (Vous avez déjà débranché les câbles de l'adaptateur MPA.)

Installation et retrait des équipements optiques

Toute contamination de la connexion optique peut entraîner une panne du composant ou de l'ensemble du système. L'obstruction partielle ou totale du cœur, par une particule, crée de fortes réflexions inverses susceptibles d'entraîner l'instabilité du système laser. Il est indispensable d'inspecter, de nettoyer, puis de contrôler de nouveau les connexions à fibre optique, avant de les brancher.

Nettoyage des équipements optiques

Pour obtenir des informations sur le nettoyage des équipements optiques, consultez le document Procédures d'inspection et de nettoyage des connexions à fibre optique.

Retrait en toute sécurité des modules CFP2-DCO

Les modules CFP2-DCO en cours d'utilisation peuvent présenter des températures élevées. Par conséquent, nous vous recommandons de ne pas manipuler ces modules optiques à mains nues lorsque vous les retirez des ports des adaptateurs MPA.

Procédez comme suit pour retirer les modules CFP2-DCO d'un routeur en toute sécurité :

- 1. Utilisez la commande interface shutdown pour fermer le port dont vous souhaitez retirer le module CFP2-DCO, puis attendez 60 secondes.
- 2. Appuyez sur le loquet et retirez l'ensemble de câbles du module optique. Après avoir retiré les câbles, sortez le module CFP2-DCO.

Remarque

- Les modules CFP2-DCO peuvent être brûlants. Vous devez donc tirer sur le loquet pour retirer le module optique du port.
 - Nous vous recommandons d'utiliser un matériau isolé thermiquement pour manipuler le module optique lorsque vous le retirez du connecteur.
 - Lors du retrait des câbles optiques, veillez à ne pas trop bouger les câbles adjacents.

Illustration 50 : Retrait des modules CFP2-DCO

3. Après avoir retiré le module optique, couvrez le port avec un bouchon antipoussière CFP2.

Illustration 51 : Couverture du port avec un bouchon antipoussière CFP2

4. Fixez les câbles du module optique à un endroit approprié pour éviter qu'ils pendent dans les airs.

Contrôle de l'installation

Cette section décrit les procédures à suivre pour vérifier l'installation de l'adaptateur MPA et de la carte de ligne modulaire. Vous y trouverez des informations sur les sujets suivants :

Vérifier l'installation

Cette section explique comment vérifier l'installation des cartes de ligne modulaires et des adaptateurs MPA grâce à leurs voyants d'état et aux informations affichées sur le terminal de la console.

Une fois que toutes les interfaces ont été réinitialisées par le système, les voyants d'état de la carte de ligne modulaire et de l'adaptateur MPA s'allument en vert. Les voyants de port (C/A et A/L) sont susceptibles d'être
allumés (verts), selon vos connexions et votre configuration. L'écran de la console affiche un message, lorsque le système détecte les interfaces, au cours de leur réinitialisation.

L'exemple suivant présente les événements enregistrés par le système lorsque vous retirez une carte de ligne modulaire équipée d'un adaptateur MPA du connecteur de module 4 sur le routeur. Dans cet exemple, l'interface 0 (interface 4/0/0) de l'adaptateur MPA était sous tension et activée, lors du retrait de la carte de ligne modulaire du routeur. Notez que le système enregistre le fait que la carte de ligne modulaire a été retirée du connecteur 4 et que l'interface 4/0/0 passe à l'état *down* (hors tension).

```
RP/0/RSP0/CPU0:Dec 21 21:55:21.196 : invmgr[246]: %PLATFORM-INV-6-OIROUT : OIR: Node 0/4/CPU0
removed
RP/0/RSP0/CPU0:Dec 21 21:55:21.176 : invmgr[246]: %PLATFORM-INV-6-OIROUT : OIR: Node 0/4/0
removed
```

Lorsque vous réinsérez la carte de ligne modulaire sur laquelle l'adaptateur MPA est installé, le système active automatiquement l'interface qui a été mise hors tension (*down*) lors du retrait de la carte de ligne modulaire.

```
RP/0/RSP0/CPU0:Dec 21 21:55:50.318 : invmgr[246]: %PLATFORM-INV-6-OIRIN : OIR: Node 0/4/CPU0
inserted
...
RP/0/RSP0/CPU0:Dec 21 21:59:12.979 : shelfmgr[371]: %PLATFORM-SHELFMGR-6-NODE_STATE_CHANGE
: 0/4/0 A9K-MPA-4X10GE state:INITIALIZED
..
LC/0/4/CPU0:Dec 19 15:07:33.019 : ifmgr[196]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol
on Interface GigabitEthernet0/4/0/0, changed state to Up
```

Pour vérifier qu'une carte de ligne modulaire et un adaptateur MPA sont correctement installés, procédez comme suit :

- 1. Surveillez les messages de la console et vérifiez que le système détecte la carte de ligne modulaire, pendant la réinitialisation de chaque interface, comme suit :
 - Lorsqu'une carte de ligne modulaire est en cours d'initialisation, le voyant d'état s'allume tout d'abord en orange, pour indiquer que la carte de ligne modulaire est sous tension, mais qu'elle est en cours de configuration. Lorsque la carte de ligne modulaire est active, le voyant d'état passe au vert.
 - Les adaptateurs MPA suivent la même séquence après l'initialisation de la carte de ligne modulaire. Les voyants d'état des adaptateurs MPA s'allument en orange, puis passent au vert, une fois que les adaptateurs MPA sont activés.
 - **3.** Lorsque les voyants d'état de l'adaptateur MPA et de la carte de ligne modulaire sont allumés en vert, toutes les interfaces associées sont configurables.

Consultez le guide de démarrage du routeur Cisco ASR 9000 et le guide de configuration des composants matériels et des interfaces du routeur Cisco pour obtenir des instructions de configuration.

- Lorsqu'un adaptateur MPA ou une carte de ligne modulaire est remplacé par un module du même type (remplacement à chaud ou échange de matériel, par exemple), la configuration précédente est restaurée, dès l'activation de l'adaptateur MPA ou de la carte de ligne modulaire.
- Si aucun adaptateur MPA, ni aucune carte de ligne modulaire n'était installé précédemment dans le même connecteur ou sous-connecteur, la configuration de toutes les interfaces associées est vide.
- 2. Si les adaptateurs MPA et les cartes de ligne modulaires ne s'activent pas sous trois minutes, reportez-vous aux messages de la console système. Si rien n'indique qu'une mise à niveau d'un appareil programmable

par l'utilisateur (FPD) est en cours, reportez-vous à la section Vérification et dépannage de l'installation de la carte de ligne, à la page 139.

Remarque Les nouvelles interfaces ne sont pas disponibles avant de les avoir configurées.

Utilisation des commandes show pour vérifier l'état de la carte de ligne modulaire et de l'adaptateur MPA

Des commandes **show** sont utilisées dans le cadre de cette procédure pour vérifier que les nouveaux adaptateurs MPA sont configurés et fonctionnent correctement.

- 1. Pour afficher la configuration du système, utilisez la commande show running-config. Vérifiez que la configuration prend en compte les nouvelles interfaces MPA.
- 2. Utilisez la commande show diag pour afficher des informations sur les cartes de ligne modulaires installées.
- 3. Utilisez la commande show hw-module fpd location *rack/connecteur/sous-connecteur* pour vérifier les informations de version des adaptateurs MPA installés sur le système.

Remarque

Si un adaptateur MPA ne respecte pas la version minimale requise, l'appareil FPD devra sans doute être mis à jour. Pour plus d'informations, consultez le guide Cisco ASR 9000 Series Aggregation Services Router System Management Configuration Guide. En cas d'échec de la mise à jour, le module défectueux est mis hors tension et un message d'erreur est affiché sur la console système.

4. Utilisez la commande show platform pour vérifier l'état de toutes les cartes installées dans le châssis, notamment la carte de ligne modulaire et les adaptateurs MPA.

L'état de l'adaptateur MPA doit être « OK » et l'état de la carte de ligne modulaire doit être « IOS XR RUN » dans le résultat de la commande **show platform**.

5. Enfin, utilisez la commande **show version** pour obtenir des informations sur la version logicielle des cartes de ligne modulaires installées ainsi que sur les interfaces disponibles.

Utilisation des commandes show pour consulter des informations sur l'adaptateur MPA

Le tableau suivant décrit les commandes show que vous pouvez utiliser pour afficher des informations sur l'adaptateur MPA.

Tableau 29 : Utilisation de commandes show pour afficher des informations sur l'adaptateur MPA

Commande	Type d'informations fournies	
show running-config	Configuration d'exécution du routeur et interfaces disponibles dans le système	
show platform	Carte de ligne installée sur le routeur, et informations sur l'état, le connecteur et le type d'adaptateur MPA.	
show diag	Type d'adaptateur MPA installé dans le connecteur, nombre de ports, version matérielle, référence et contenu EEPROM.	

Commande	Type d'informations fournies
show hw-module fpd location rack/connecteur/sous-connecteur	Informations de version FPD des adaptateurs MPA dans le système
show version	Version du logiciel XR Cisco IOS, nom et source des fichiers de configuration, et images d'amorçage

Tableau 30	: Utilisation de	commandes show	pour afficher d	les informati	ons sur l'adaptateur N	1PA
					one car i aaaptateat ii	

Commande	Type d'informations fournies	Exemple
show controllers type rack/logement/sous-logement/port	État de la liaison réseau, contenu du registre et erreurs de la puce du contrôleur	show controllers Gigabit Ethernet 0/0/1/1
show interfaces type rack/logement/sous-logement/port	État de la ligne et du protocole de liaison des données d'un port spécifique de l'adaptateur MPA. Statistiques relatives au trafic de données envoyées et reçues par le port	show interfaces Gigabit Ethernet 0/0/1/1
now diagType d'adaptateur MPA installé dans le connecteur, nombre de ports, version matérielle, référence et contenu EEPROM.		show diag 0/0/1
show version	Images d'amorçage et version du logiciel XR Cisco IOS	show version

Remarque

Lorsqu'une carte de ligne modulaire est déplacée vers un nouveau connecteur, le système reconnaît les nouvelles interfaces, mais les laisse désactivées jusqu'à ce que vous les configuriez et que vous les activiez. Lorsqu'une nouvelle carte de ligne modulaire est insérée dans un connecteur dans lequel une autre carte de ligne modulaire était installée, les interfaces afficheront le même état que si vous aviez réinséré l'ancienne carte, à condition de réinstaller les adaptateurs MPA et les interfaces ainsi que leurs câbles dans la même configuration que les cartes de ligne modulaires précédentes.

L'exemple suivant présente les événements enregistrés par le système lorsque vous insérez une *nouvelle* carte de ligne modulaire dans le connecteur de module 4.

```
RP/0/RSP0/CPU0:Dec 21 21:55:50.318 : invmgr[246]: %PLATFORM-INV-6-OIRIN : OIR: Node 0/4/CPU0
inserted
...
RP/0/RSP0/CPU0:Dec 21 21:59:12.979 : shelfmgr[371]: %PLATFORM-SHELFMGR-6-NODE_STATE_CHANGE
: 0/4/0 A9K-MPA-4X10GE state:INITIALIZED
..
LC/0/4/CPU0:Dec 19 15:07:33.019 : ifmgr[196]: %PKT INFRA-LINEPROTO-5-UPDOWN : Line protocol
```

on Interface GigabitEthernet0/4/0/0, changed state to Up

Pour vérifier que la carte de ligne modulaire est installée correctement, procédez comme suit :

1. Surveillez les messages de la console et vérifiez que le système détecte la carte de ligne modulaire, pendant la réinitialisation de chaque interface, comme suit :

- Si vous avez installé une nouvelle carte de ligne modulaire, le voyant d'état STATUS devrait être allumé (vert). Le système devrait reconnaître toutes les nouvelles interfaces, mais les laisser *désactivées*.
- Si vous avez remplacé une carte de ligne modulaire, le voyant d'état devrait être allumé (vert). Les interfaces seront opérationnelles et afficheront le même état que si vous aviez réinstallé l'ancienne carte de ligne modulaire.
- 2. Vérifiez que le voyant d'état sur l'adaptateur MPA s'allume (vert) et reste allumé après la réinitialisation. Si le voyant d'état reste allumé, passez à l'étape 5. Si le voyant d'état ne reste pas allumé, passez à l'étape 3.
- **3.** Si le voyant d'état sur un adaptateur MPA ne s'allume pas, l'adaptateur MPA ou la carte de ligne modulaire n'est pas bien installé.
 - Retirez l'adaptateur MPA de la carte de ligne modulaire.
 - Inspectez l'adaptateur MPA. Vérifiez que les broches et les éléments ne sont pas tordus et qu'aucun objet susceptible de nuire à la connexion n'est coincé entre les deux éléments.
 - Faites glisser l'adaptateur MPA dans la carte de ligne modulaire jusqu'à ce qu'il s'enclenche correctement dans le connecteur d'interface. Lorsqu'il est enclenché dans la carte de ligne modulaire, l'adaptateur MPA peut être légèrement en retrait du panneau avant. Pour installer parfaitement l'adaptateur MPA, utilisez un tournevis cruciforme numéro 2 afin de serrer la vis de calage.

Remarque

e L'adaptateur MPA glisse facilement dans le connecteur s'il est correctement aligné sur les rails. Dans le cas contraire, ne forcez PAS. Retirez l'adaptateur MPA et repositionnez-le, en prenant soin de bien l'engager sur les rails.

• Après la réinitialisation du système, le voyant d'état sur l'adaptateur MPA devrait s'allumer et rester allumé. Si le voyant d'état reste allumé, passez à l'étape 5. Si ce n'est pas le cas, réinstallez l'adaptateur MPA dans un autre sous-connecteur de la carte de ligne modulaire.

Si le voyant d'état sur un adaptateur MPA ne s'allume pas après l'avoir réinstallé dans un autre sous-connecteur de la carte de ligne modulaire, passez à l'étape 4.

- 4. Si le voyant d'état sur un adaptateur MPA ne s'allume toujours pas, retirez l'adaptateur MPA de la carte de ligne modulaire, puis retirer la carte de ligne modulaire et installez-la dans un autre connecteur disponible sur le routeur. Attendez que le voyant d'état de la carte de ligne modulaire s'allume en vert.
 - Si le voyant d'état s'allume, le port du fond de panier du connecteur d'origine peut être défectueux.
 - Si le voyant d'état ne s'allume pas, retirez la carte de ligne modulaire et vérifiez que l'adaptateur MPA est bien inséré dans son connecteur. Retirez-le et réinstallez-le convenablement.
 - Si le voyant d'état ne s'allume toujours pas, mais si les autres voyants de l'adaptateur MPA s'allument pour indiquer une activité, passez à l'étape 5 pour continuer le contrôle de l'installation ; il est possible que le voyant d'état de l'adaptateur MPA ou que l'adaptateur MPA soit défectueux. Contactez un conseiller du service client pour signaler le problème et obtenir des instructions supplémentaires.
 - Si aucun voyant n'est allumé sur l'adaptateur MPA :
 - Vérifiez que l'adaptateur MPA est pris en charge sur la carte de ligne modulaire et qu'il s'agit de la version matérielle requise. Si l'adaptateur MPA n'est pas pris en charge ou s'il s'agit d'une

ancienne version matérielle, la commande show diag indique que la carte de ligne modulaire est désactivée.

- Si une autre carte de ligne modulaire est disponible dans le routeur, afin de tester votre adaptateur MPA, déplacez l'adaptateur MPA sur l'autre carte de ligne modulaire.
- La carte de ligne modulaire est peut-être défectueuse. Contactez un conseiller du service client pour signaler le problème et obtenir des instructions supplémentaires.

Remarque Si vous déplacez l'adaptateur MPA vers un autre sous-connecteur de la carte de ligne modulaire et s'il fonctionne, c'est sans doute le sous-connecteur de la carte de ligne modulaire qui a un problème. Contactez un conseiller du service client pour lui signaler un sous-connecteur défectueux. Si vous testez l'adaptateur MPA sur une autre carte de ligne modulaire et s'il fonctionne, la carte de ligne modulaire d'origine a probablement un problème qui doit être résolu. Contactez un conseiller du service client pour signaler le problème et obtenir des instructions supplémentaires.

5. Si l'adaptateur MPA est neuf et ne remplace pas un ancien modèle, configurez le nouvel adaptateur MPA en suivant les instructions du *guide de démarrage Cisco IOS XR pour le routeur Cisco ASR 9000* et du *guide de configuration des composants matériels et de l'interface du routeur à services d'agrégation Cisco ASR 9000*.

Remarque Les nouvelles interfaces ne sont pas disponibles avant de les avoir configurées.

6. Si la carte de ligne modulaire remplace un ancien modèle, utilisez les commandes show interfaces ou show controllers pour vérifier l'état des adaptateurs MPA. Reportez-vous à la section *Utilisation des commandes show pour vérifier l'état de la carte de ligne modulaire et de l'adaptateur MPA*.

Si vous avez remplacé une carte de ligne modulaire par une autre carte sur laquelle est installé un autre adaptateur MPA, le système reconnaît les interfaces de l'adaptateur MPA configuré précédemment mais ne reconnaît pas les nouvelles interfaces de l'adaptateur MPA. Les nouvelles interfaces restent désactivées jusqu'à ce que vous les configuriez.

- 7. Lorsque les interfaces sont activées, vérifiez l'activité de chaque adaptateur MPA en observant le voyant Carrier.
- 8. Si le voyant Carrier ne s'allume pas et si un câble est connecté au port de l'interface, vérifiez le branchement du câble et assurez-vous qu'il est bien inséré dans le connecteur.
- 9. Répétez les étapes 1 à 8 pour vérifier que les autres cartes de ligne modulaires sont bien installées.

Si vous rencontrez d'autres problèmes que vous n'arrivez pas à résoudre, contactez le centre d'assistance technique (reportez-vous à la section *Obtenir de la documentation et envoyer une demande de service*) ou un conseiller du service client pour obtenir de l'aide.

Pour configurer la nouvelle interface, reportez-vous à la section *Guide de configuration des composants* matériels et des interfaces du routeur à services d'agrégation Cisco ASR 9000.

Vérification de la connectivité réseau à l'aide de la commande ping

Cette section décrit succinctement la commande **ping**. La commande **ping** vous permet de contrôler qu'un port d'adaptateur MPA fonctionne correctement et de vérifier le chemin entre un port spécifique et des dispositifs connectés à différents points du réseau. Après avoir vérifié que le système et la carte de ligne modulaire ont bien démarré et sont opérationnels, cette commande vous permet de vérifier l'état des ports de l'adaptateur MPA.

Pour plus d'informations sur la mise en service et la configuration du routeur Cisco ASR 9000, Cisco A9K-MOD160G et Cisco A9K-MOD80G-H, consultez le *Guide de mise en route du routeur à services d'agrégation Cisco ASR 9000* et le *Guide de configuration des composants matériels et de l'interface du routeur à services d'agrégation Cisco ASR 9000*. Pour en savoir plus sur la syntaxe de la commande, consultez les guides cités dans la section Obtenir de la documentation et envoyer une demande de service qui vous expliqueront en détail la commande et vous donneront des exemples.

La commande **ping** envoie une requête d'écho à un appareil distant dont vous spécifiez l'adresse IP. Après avoir envoyé une série de signaux, la commande attend l'écho des signaux de la part du périphérique distant, durant un intervalle de temps spécifié. Chaque signal renvoyé est matérialisé par un point d'exclamation (!), sur le terminal de console ; chaque signal qui n'est pas renvoyé dans le délai imparti est matérialisé par un point (.). Si une série de points d'exclamation (!!!!!!) s'affiche, la connexion est bonne ; si une série de points (....) ou les messages [timed out] ou [failed] s'affichent, la connexion n'a pas été établie.

Voici un exemple d'envoi réussi de la commande **ping** vers un serveur distant dont l'adresse IP est 10.1.1.60 :

```
Router# ping 10.1.1.60
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoes to 10.1.1.60, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/15/64 ms
Router#
```

En cas d'échec de connexion, vérifiez que vous disposez de l'adresse IP correcte de l'appareil de destination et que ce dernier est actif (sous tension), puis exécutez à nouveau la commande **ping**.

Installation et retrait des modules SFP

Avant de retirer ou d'installer un module SFP ou SFP+, lisez les informations de cette section et les instructions de sécurité dans la section Sécurité des appareils à laser, à la page 74.

Avertissement

Protégez la carte de ligne en équipant le logement du module optique d'un cache propre pour module SFP/SFP+ (A9K-SFP10G-COVER), comme illustré dans la figure ci-dessous, si le logement doit rester vide.

Illustration 52 : Cache pour module SFP/SFP+

Après avoir débranché les câbles, protégez vos modules SFP ou SFP+ en les équipant de caches antipoussière propres. Avant de les rebrancher sur les ports optiques d'un autre module, nettoyez les surfaces optiques des câbles à fibre optique. Pour garantir le bon fonctionnement des modules SFP ou SFP+, ne laissez pas la poussière ni d'autres contaminants s'accumuler dans les ports optiques.

Avertissement

Il est vivement recommandé de ne pas installer ni retirer le module SFP ou SFP+ lorsqu'un câble à fibre optique y est relié. Vous risqueriez d'endommager le câble, le connecteur du câble ou les interfaces optiques du module. Débranchez tous les câbles avant de retirer ou d'installer un module SFP ou SFP+. Le retrait et l'insertion des modules peuvent réduire leur durée de vie utile. N'effectuez ces opérations qu'en cas d'absolue nécessité.

Quatre types de dispositifs de verrouillage sont utilisés pour installer les modules SFP et SFP+ dans un port et les en retirer. Ils sont décrits dans les sections suivantes :

Remarque

Lorsque vous installez un module SFP ou SFP+, vous devez entendre la broche triangulaire dans la partie inférieure du module s'enclencher dans l'orifice du logement, ce qui vous indiquera qu'il est correctement enclenché et fixé dans son logement. Enclenchez et fixez correctement chaque module SFP ou SFP+ dans son logement dans la carte de ligne, en appuyant fermement sur chacun d'eux.

Module SFP ou SFP+ à boucle de verrouillage

Le module SFP ou SFP+ à boucle de verrouillage est équipé d'une boucle que l'on actionne pour retirer ou installer le module (reportez-vous à la figure ci-dessous).

Illustration 53 : Module SFP ou SFP+ à boucle de verrouillage

Installation d'un module SFP ou SFP+ à boucle de verrouillage

Pour installer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Fermez la boucle de verrouillage avant d'insérer le module SFP.
- 3. Positionnez le module SFP dans l'alignement du port, puis faites-le glisser dans le port (reportez-vous à la figure ci-dessous).

Illustration 54 : Installer un module SFP à boucle de verrouillage dans un port

Lorsque vous installez un module SFP ou SFP+, vous devez entendre la broche triangulaire dans la partie inférieure du module SFP s'enclencher dans l'orifice du logement, ce qui vous indiquera qu'il est correctement enclenché et fixé dans son logement. Enclenchez et fixez correctement chaque module SFP dans son logement de la carte de ligne, en appuyant fermement sur chacun d'eux.

Retrait d'un module SFP ou SFP+ à boucle de verrouillage

Pour retirer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Débranchez et retirez tous les câbles d'interface des ports. Veillez à prendre note des branchements actuels des câbles sur les ports de la carte de ligne.
- 3. Ouvrez la boucle de verrouillage du module SFP en la relevant avec l'index, comme illustré à la figure ci-dessous. Si la boucle de verrouillage est bloquée et qu'il est impossible de l'ouvrir avec l'index, utilisez un petit tournevis plat ou tout autre instrument long et étroit pour l'ouvrir.
- 4. Saisissez le module SFP entre le pouce et l'index, puis retirez-le délicatement du port, comme illustré dans la figure ci-dessous.

Illustration 55 : Retirer un module SFP ou SFP+ à boucle de verrouillage

- 5. Posez le module SFP sur un tapis antistatique. Si vous devez le renvoyer à l'usine, rangez-le immédiatement dans un sachet de protection antistatique.
- 6. Protégez la carte de ligne en équipant le logement du module optique de caches propres, si le logement doit rester vide.

Module SFP ou SFP+ à languette de verrouillage Mylar

Les modules SFP ou SFP+ de ce type sont équipés d'une languette. Pour extraire le module de son port, tirez sur cette dernière, comme illustré dans la figure suivante.

Illustration 56 : Module SFP ou SFP+ à languette de verrouillage Mylar

Installation d'un module SFP ou SFP+ à languette de verrouillage Mylar

Pour installer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Positionnez le module SFP dans l'alignement du port, puis enfoncez-le, comme illustré dans la figure suivante.

Illustration 57 : Installation d'un module SFP à languette de verrouillage Mylar

rque Lorsque vous installez un module SFP, vous devez entendre la broche triangulaire dans la partie inférieure du module SFP s'enclencher dans l'orifice du logement, ce qui vous indiquera qu'il est correctement enclenché et fixé dans son logement. Enclenchez et fixez correctement chaque module SFP dans son logement de la carte de ligne, en appuyant fermement sur chacun d'eux.

Retrait d'un module SFP ou SFP+ à languette de verrouillage Mylar

Pour retirer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- Débranchez et retirez tous les câbles d'interface des ports. Veillez à prendre note des branchements actuels des câbles sur les ports de la carte de ligne.
- **3.** Pour l'extraire du port, tirez délicatement sur la languette, vers le bas, puis retirez le module SFP, comme illustré dans la figure suivante.

Illustration 58 : Retrait d'un module SFP à languette de verrouillage Mylar

- 4. Posez le module SFP sur un tapis antistatique. Si vous devez le renvoyer à l'usine, rangez-le immédiatement dans un sachet de protection antistatique.
- 5. Protégez la carte de ligne en équipant le logement du module optique de caches propres, si le logement doit rester vide.

Remarque

Lorsque vous tirez sur la languette pour extraire le module SFP, effectuez un mouvement rectiligne vers l'extérieur, pour que le module reste parallèle au port. Ne tordez pas et ne tirez pas la languette : vous risqueriez de la détacher du module SFP.

Module SFP ou SFP+ à bouton de verrouillage

Les modules SFP ou SFP+ de ce type sont équipés d'un bouton sur lequel vous pouvez appuyer pour retirer le module de son port, comme illustré dans la figure suivante.

Illustration 59 : Module SFP ou SFP+ à bouton de verrouillage

Installation d'un module SFP à bouton de verrouillage

Pour installer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Positionnez le module SFP dans l'alignement du port, puis enfoncez-le jusqu'à ce que le bouton de verrouillage s'enclenche, comme illustré dans la figure suivante. N'appuyez pas sur le bouton de verrouillage lorsque vous insérez le module SFP : vous risqueriez d'extraire le module SFP du port.

Illustration 60 : Installation d'un module SFP ou SFP+ à bouton de verrouillage

Retrait d'un module SFP ou SFP+ à bouton de verrouillage

Pour retirer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Débranchez et retirez tous les câbles d'interface des ports. Veillez à prendre note des branchements actuels des câbles sur les ports de la carte de ligne.
- **3.** Appuyez délicatement sur le bouton de verrouillage situé à l'avant du module SFP, jusqu'à ce qu'il s'enclenche et que le mécanisme de verrouillage s'active, pour libérer le module SFP du port (voir figure ci-dessous).

Illustration 61 : Retrait d'un module SFP ou SFP+ à bouton de verrouillage d'un port

- 4. Tenez le bouton de verrouillage entre le pouce et l'index, puis retirez doucement le module SFP de son port.
- 5. Posez le module SFP sur un tapis antistatique. Si vous devez le renvoyer à l'usine, rangez-le immédiatement dans un sachet de protection antistatique.
- 6. Protégez la carte de ligne en équipant le logement du module optique de caches propres, si le logement doit rester vide.

Module SFP ou SFP+ à languette à glissière

Les modules SFP ou SFP+ de ce type sont équipés d'une languette située sous l'avant du module. Celle-ci permet d'extraire le module du port (voir figure ci-dessous).

Illustration 62 : Module SFP ou SFP+ à languette à glissière

Installation d'un module SFP ou SFP+ à languette à glissière

Pour installer ce type de module SFP dans une carte de ligne, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Positionnez le module SFP dans l'alignement du port, puis poussez-le délicatement pour l'enfoncer dans le connecteur (reportez-vous à la figure ci-dessous).

Illustration 63 : Installation d'un module SFP ou SFP+ à languette à glissière

Remarque

Lorsque vous installez un module SFP, vous devez entendre la broche triangulaire dans la partie inférieure du module SFP s'enclencher dans l'orifice du logement, ce qui vous indiquera qu'il est correctement enclenché et fixé dans son logement. Enclenchez et fixez correctement chaque module SFP dans son logement de la carte de ligne, en appuyant fermement sur chacun d'eux.

Retrait d'un module SFP ou SFP+ à languette à glissière

Pour retirer ce type de module SFP ou SFP+, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Débranchez et retirez tous les câbles d'interface des ports. Veillez à prendre note des branchements actuels des câbles sur les ports de la carte de ligne.
- 3. Saisissez le module SFP entre le pouce et l'index.
- 4. Avec le pouce, poussez la languette à glissière située sous l'avant du module SFP, dans la direction de la carte de ligne, pour dégager le module de son port (voir figure ci-dessous).

Illustration 64 : Actionnement de la languette à glissière

5. Une fois que vous avez poussé la languette, retirez délicatement le module SFP du port, comme illustré dans la figure ci-dessous.

Avertissement

Avant de retirer le module, vous devez pousser la languette à glissière. Si vous tentez de retirer le module SFP sans avoir poussé la languette, vous risquez d'endommager le module.

Illustration 65 : Retrait d'un module SFP ou SFP+ à languette à glissière

- 6. Posez le module SFP sur un tapis antistatique. Si vous devez le renvoyer à l'usine, rangez-le immédiatement dans un sachet de protection antistatique.
- 7. Protégez la carte de ligne en équipant le logement du module optique de caches propres, si le logement doit rester vide.

Installation et retrait des modules XFP

Le module d'émetteur-récepteur XFP 10 Gigabit Ethernet est un appareil d'entrée/sortie (E/S) remplaçable à chaud, qui se branche sur les ports 10GE (voir figure ci-dessous). Le module d'émetteur-récepteur XFP relie le circuit électrique du système au réseau optique.

Illustration 66 : Module d'émetteur-récepteur XFP 10 Gigabit Ethernet

Remarque

e Le connecteur LC double des modules émetteurs-récepteurs XFP prend en charge les câbles d'interface réseau avec face polie de type PC (Physical Contact) ou UPC (Ultra-Physical Contact). Le connecteur LC double des modules émetteurs-récepteurs XFP ne prend pas en charge les câbles d'interface réseau avec face polie de type APC (Angle Polished Connector).

Avertissement

Il est vivement recommandé de ne pas installer ni retirer le module XFP lorsqu'un câble à fibre optique y est relié. Vous risqueriez d'endommager le câble, le connecteur du câble ou les interfaces optiques du module. Débranchez tous les câbles avant de retirer ou d'installer un module XFP. Le retrait et l'insertion des modules peuvent réduire leur durée de vie utile. N'effectuez ces opérations qu'en cas d'absolue nécessité.

Installation d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet

Illustration 67 : Installation du module d'émetteur-récepteur XFP 10 Gigabit Ethernet

8. Réinstallez immédiatement le bouchon antipoussière dans l'orifice optique de l'émetteur-récepteur XFP. Ne retirez pas le bouchon antipoussière tant que vous n'êtes pas prêt à brancher le câble d'interface réseau.

Remarque

Les émetteurs-récepteurs XFP 10-Gigabit sont rainurés pour guider l'insertion.

Retrait d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet

Avertissement

Les émetteurs-récepteurs XFP sont sensibles à l'électricité statique. Lorsque vous manipulez des émetteurs-récepteurs XFP ou que vous touchez les modules, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre.

Pour retirer un émetteur-récepteur XFP, procédez comme suit :

- 1. Débranchez le câble d'interface réseau des connecteurs de l'émetteur-récepteur XFP. Remettez immédiatement le bouchon antipoussière dans le connecteur LC du câble à fibre optique.
- 2. Faites pivoter vers le haut la boucle de verrouillage de l'émetteur-récepteur XFP, pour le libérer du logement (voir figure ci-dessous).
- Faites glisser l'émetteur-récepteur XFP hors de son logement. Faites pivoter la boucle de verrouillage vers le bas et installez immédiatement un bouchon antipoussière dans les orifices optiques de l'émetteur-récepteur (voir figure ci-dessous).

4. Placez immédiatement l'émetteur XFP dans un sachet antistatique.

Illustration 68 : Retrait d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet

Câblage d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet

Remarque

que Avant de retirer les bouchons antipoussière et d'effectuer un branchement optique, procédez comme suit :

- Ne retirez les bouchons de protection antipoussière des connecteurs des câbles optiques non branchés et des orifices optiques des émetteurs-récepteurs qu'au moment d'effectuer un branchement.
- Avant de réaliser un branchement, contrôlez et nettoyez systématiquement les faces optiques du connecteur LC. Reportez-vous à la section Nettoyage des connecteurs à fibre optique.
- Lorsque vous branchez et débranchez un câble à fibre optique, tenez toujours la gaine du connecteur LC.

Pour câbler un module d'émetteur-récepteur XFP 10 Gigabit Ethernet :

- Retirez les bouchons antipoussière des connecteurs LC du câble optique d'interface réseau (Illustration 67 : Installation du module d'émetteur-récepteur XFP 10 Gigabit Ethernet, à la page 112). Mettez les bouchons antipoussière de côté.
- 2. Contrôlez les faces optiques du connecteur LC et nettoyez-les.
- 3. Retirez les bouchons antipoussière des orifices optiques de l'émetteur-récepteur XFP.

 Connectez immédiatement les connecteurs LC du câble optique d'interface réseau au module d'émetteur-récepteur XFP (voir figure ci-dessous pour voir le câblage du module d'émetteur-récepteur XFP).

Illustration 69 : Câblage d'un module d'émetteur-récepteur XFP 10 Gigabit Ethernet

Installation et retrait d'un module d'émetteur-récepteur CFP 100 Gigabit Ethernet

Cette section explique comment installer, raccorder et retirer les modules émetteurs-récepteurs Cisco CFP (C Form-factor Pluggable) 100 Gigabit. Ces modules sont des périphériques d'entrée/sortie (E/S) remplaçables à chaud qui relient les circuits électriques du port de module du système à un réseau cuivre ou à fibre optique.

Présentation

Les modules émetteurs-récepteurs CFP 100 Gigabit Ethernet Cisco sont des appareils d'entrée/sortie (E/S) remplaçables à chaud, qui se branchent sur les ports 100 Gigabit Ethernet du module.

Remarque

Remarque : les connecteurs SC doubles sur les émetteurs-récepteurs CFP optiques prennent en charge les câbles d'interface réseau avec face polie de type PC (Physical Contact) ou UPC (Ultra-Physical Contact). Les connecteurs SC doubles des émetteurs-récepteurs CFP optiques ne prennent pas en charge les câbles d'interface réseau avec face polie de type APC (Angle Polished Connector).

Illustration 70 : Émetteur-récepteur CFP

1	Vis d'installation imperdables	2	Bouchon protecteur du logement pour fibre optique
3	Logement pour fibre optique de transmission, connecteur SC	4	Logement pour fibre optique de réception, connecteur SC

Outils requis

Vous devez utiliser ces outils pour installer le module d'émetteur-récepteur CFP :

- Petit tournevis plat pour retirer le capot du port de l'émetteur-récepteur CFP.
- Un bracelet antistatique ou un autre dispositif personnel de mise à la terre, pour éviter les chocs électrostatiques.
- Des outils de nettoyage de la face optique de la fibre et l'équipement nécessaire à l'inspection de celle-ci. Pour plus d'informations sur l'inspection et le nettoyage des connexions à fibre optique, consultez la section Nettoyage des connecteurs à fibre optique.

Installation d'un module d'émetteur-récepteur CFP

Avertissement

nt Les émetteurs-récepteurs CFP sont sensibles à l'électricité statique. Lorsque vous manipulez des émetteurs-récepteurs CFP ou que vous touchez les modules, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre.

Pour installer un émetteur-récepteur CFP, procédez comme suit :

1. Retirez l'émetteur-récepteur CFP de son emballage de protection.

2. Vérifiez l'étiquette sur le corps de l'émetteur-récepteur CFP pour vous assurer que le modèle est compatible avec le réseau utilisé.

3. Retirez les bouchons antipoussière des ports optiques de l'émetteur-récepteur CFP et mettez-les de côté.

4. Alignez le module CFP sur le connecteur de l'émetteur-récepteur de votre module réseau, puis faites-le glisser jusqu'à ce que la bride du joint anti-interférence de l'émetteur-récepteur CFP soit en contact avec le panneau avant du module (voir figure ci-dessous).

Illustration 71 : Installation d'un module d'émetteur-récepteur CFP

5. Appuyez fermement à l'avant de l'émetteur-récepteur CFP avec votre pouce pour l'enclencher complètement dans le connecteur. (voir figure ci-dessous.)

Illustration 72 : Insertion du module d'émetteur-récepteur CFP dans son connecteur

6. Serrez délicatement les deux vis d'installation imperdables sur l'émetteur-récepteur pour le fixer dans son connecteur (voir figure ci-dessous).

Illustration 73 : Fixation d'un module d'émetteur-récepteur CFP

7. Réinstallez le bouchon antipoussière dans l'orifice optique de l'émetteur-récepteur CFP jusqu'à ce que vous soyez prêt à fixer le câble d'interface réseau.

8. Lorsque vous êtes prêt à fixer le câble réseau, retirez les bouchons antipoussière, inspectez et nettoyez les extrémités du connecteur à fibre optique, puis branchez immédiatement les connecteurs du câble d'interface réseau dans l'orifice optique de l'émetteur-récepteur CFP (voir figure ci-dessous).

Pour plus d'informations sur l'inspection et le nettoyage des connexions à fibre optique, consultez la section *Nettoyage des connexions à fibre optique*.

Illustration 74 : Câblage d'un module d'émetteur-récepteur CFP optique avec des connecteurs SC

Retrait d'un module d'émetteur-récepteur CFP

Avertissement Les émetteurs-récepteurs CFP sont sensibles à l'électricité statique. Lorsque vous manipulez des émetteurs-récepteurs CFP ou que vous touchez les modules, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre. Attention Produit laser de classe 1. Consigne 1008

Bouchons anti-poussière des orifices optiques

Installer et retirer les modules émetteurs-récepteurs QSFP+/QSFP28

Cette section explique comment installer, raccorder et retirer les modules émetteurs-récepteurs QSFP+ (Quad Small Form-Factor Pluggable Plus) 40 gigabits et QSFP28 100 gigabits. Ces modules sont des périphériques d'entrée/sortie (E/S) remplaçables à chaud qui relient les circuits électriques du port de module du système à un réseau cuivre ou à fibre optique.

Présentation

Le module d'émetteur-récepteur QSFP+ 40 Gigabit Ethernet (GE) ou QSFP28 100 Gigabit Ethernet est un module à fibre optique parallèle remplaçable à chaud doté de 4 canaux d'émission et de réception optiques indépendants. Ces canaux peuvent être reliés à un autre émetteur-récepteur QSFP+ 40 Gigabits ou être divisés en quatre émetteurs-récepteurs SFP+ 10 Gigabits distincts. Le module d'émetteur-récepteur QSFP+ relie le circuit électrique du système à un réseau optique externe.

La figure suivante illustre le module d'émetteur-récepteur QSFP+ optique 40 gigabits. L'émetteur-récepteur est utilisé principalement dans les applications de courte portée dans les commutateurs, les routeurs et les data centers, où il fournit une densité plus élevée que les modules SFP+. L'émetteur-récepteur optique QSFP28 100 Gigabit Ethernet est similaire à l'émetteur-récepteur optique QSFP 40 Gigabit Ethernet.

Illustration 76 : Module d'émetteur-récepteur QSFP+ 40 gigabits (optique)

1	Corps de l'émetteur-récepteur QSFP+ 40GBASE	3	Connexion électrique au circuit du module
2	Boucle de verrouillage		

Équipements et outils requis

Vous devez disposer de ces outils pour installer les modules émetteurs-récepteurs QSFP+ 40 gigabits/QSFP28 100 gigabits :

- Un bracelet antistatique ou autre dispositif personnel de mise à la terre, pour prévenir les chocs électrostatiques.
- Un tapis antistatique ou une mousse antistatique pour poser l'émetteur-transmetteur.
- Des outils de nettoyage de la face optique de la fibre et l'équipement nécessaire à l'inspection de celle-ci.

Pour obtenir plus d'informations sur le contrôle et le nettoyage des connexions à fibre optique, reportez-vous à la section Nettoyage des connecteurs à fibre optique, à la page 136.

Installer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits

Le module d'émetteur-récepteur QSFP+ ou QSFP28 peut disposer d'une boucle de verrouillage ou d'une languette de retrait. Ce document décrit les procédures d'installation pour les deux types de verrous.

Avertissement

Le module d'émetteur-récepteur QSFP+ QSFP28 est sensible à l'électricité statique. Lorsque vous manipulez des modules émetteurs-récepteurs QSFP+ ou QSFP28, ou que vous touchez les modules du système, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre.

Pour installer un module QSFP+ ou QSFP28, procédez comme suit :

- 1. Attachez un bracelet antistatique à votre poignet et fixez-le à un point de mise à la terre sur le châssis ou le rack.
- 2. Retirez le module d'émetteur-récepteur QSFP+ ou QSFP28 de son emballage de protection.
- **3.** Examinez l'étiquette sur le boîtier du module d'émetteur-récepteur QSFP+ ou QSFP28 afin de vérifier que vous possédez le modèle adapté à votre réseau.
- Pour des modules émetteurs-récepteurs optiques QSFP+ ou QSFP28, retirez le cache antipoussière optique et mettez-le de côté.
- **5.** Pour les modules émetteurs-récepteurs QSFP+ ou QSFP28 équipés d'une boucle de verrouillage, tenez l'émetteur-récepteur de façon à ce que la boucle de verrouillage soit en position verticale.

Placez le module d'émetteur-récepteur QSFP+ ou QSFP28 face au logement correspondant sur le module, puis insérez délicatement l'émetteur-récepteur QSFP+ ou QSFP28 dans le logement jusqu'à ce qu'il entre en contact avec le connecteur électrique (reportez-vous à la figure ci-dessous).

6. Pour les modules émetteurs-récepteurs QSFP+ ou QSFP28 équipés d'une languette de retrait, tenez l'émetteur-récepteur de façon à placer l'étiquette d'identification sur le dessus.

Placez le module d'émetteur-récepteur QSFP+ ou QSFP28 face au logement correspondant sur le module, puis insérez-le délicatement dans le logement jusqu'à ce qu'il entre en contact avec le connecteur électrique.

Illustration 77 : Installer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits (illustration d'un émetteur-récepteur optique à boucle de verrouillage)

7. Appuyez fermement sur la façade du module d'émetteur-récepteur QSFP+ ou QSFP28 avec votre pouce pour insérer complètement l'émetteur-récepteur dans le logement du module (reportez-vous à la figure ci-dessous).

 \triangle

Avertissement

Si la boucle de verrouillage n'est pas correctement enclenchée, le module d'émetteur-récepteur QSFP+ ou QSFP28 risque de se déconnecter accidentellement.

Illustration 78 : Insérer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits (illustration d'un émetteur-récepteur optique à boucle de verrouillage)

8. Pour des modules émetteurs-récepteurs optiques QSFP+ ou QSFP28, réinstallez le bouchon antipoussière dans l'orifice optique des émetteurs-récepteurs QSFP+ ou QSFP28 jusqu'à ce que vous soyez prêt à fixer le câble d'interface réseau. Ne retirez pas le bouchon antipoussière tant que vous n'êtes pas prêt à brancher le câble d'interface réseau.

Fixation du câble réseau optique

Avant de retirer les bouchons antipoussière et d'effectuer un branchement optique, procédez comme suit :

- Ne retirez les bouchons antipoussière des connecteurs des câbles optiques non branchés et des orifices optiques des émetteurs-récepteurs qu'au moment d'effectuer un branchement.
 - Avant de réaliser un branchement, contrôlez et nettoyez les faces optiques du connecteur MPO. Reportez-vous à la section Nettoyage des connecteurs à fibre optique, à la page 136.
 - Veillez à saisir le connecteur MPO par le boîtier uniquement pour brancher ou débrancher un câble à fibre optique.

Remarque

Les modules émetteurs-récepteurs QSFP+ 40 gigabits ou QSFP28 sont verrouillés pour éviter toute insertion incorrecte.

Remarque

Les connecteurs MPO (Multiple-Fiber Push-On) des modules émetteurs-récepteurs optiques QSFP+ ou QSFP28 prennent en charge les câbles d'interface réseau avec face polie de type PC (Physical Contact) ou UPC (Ultra-Physical Contact). Les connecteurs MPO des modules émetteurs-récepteurs optiques QSFP+ ou QSFP28 ne prennent pas en charge les câbles d'interface réseau avec face de type APC (Angle-Polished Contact).

- 1. Retirez les bouchons antipoussière des connecteurs MPO du câble d'interface réseau optique. Mettez les bouchons antipoussière de côté.
- Contrôlez les faces optiques du connecteur MPO et nettoyez-les. Reportez-vous à la section Nettoyage des connecteurs à fibre optique, à la page 136.
- Retirez les bouchons antipoussière des orifices optiques du module d'émetteur-récepteur QSFP+ ou QSFP28.
- 4. Fixez immédiatement les connecteurs MPO du câble d'interface réseau au module d'émetteur-récepteur QSFP+ ou QSFP28 (reportez-vous à la figure ci-dessous).

Illustration 79 : Raccorder un module d'émetteur-récepteur OSFP+ 40 gigabits ou OSFP28

Retirer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits

Avertissement Le module d'émetteur-récepteur QSFP+ QSFP28 est sensible à l'électricité statique. Lorsque vous manipulez des modules émetteurs-récepteurs QSFP+ ou QSFP28, ou que vous touchez les modules, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre.

Pour retirer un module d'émetteur-récepteur QSFP+ ou QSFP28, procédez comme suit :

- 1. Pour les modules émetteurs-récepteurs optiques QSFP+ ou QSFP28, débranchez le câble d'interface réseau du connecteur de l'émetteur-récepteur QSFP+ ou QSFP28.
- 2. Pour les modules émetteurs-récepteurs QSFP+ ou QSFP28 équipés d'une boucle de verrouillage (reportez-vous à la figure suivante, vue de dessus) :
 - 1. Faites pivoter la boucle de verrouillage vers le bas pour la placer en position horizontale.
 - 2. Installez immédiatement le bouchon antipoussière dans l'orifice optique des émetteurs-récepteurs.

- Saisissez l'émetteur-récepteur QSFP+ ou QSFP28 par les côtés et retirez-le de l'interface de connexion en le faisant glisser.
- **3.** Pour les émetteurs-récepteurs QSFP+ ou QSFP28 équipés d'une languette de retrait (reportez-vous à la figure suivante, vue de dessous) :
 - 1. Installez immédiatement le bouchon antipoussière dans l'orifice optique de l'émetteur-récepteur.
 - 2. Saisissez la languette et tirez délicatement dessus pour dégager l'émetteur-récepteur du logement.
 - 3. Faites glisser l'émetteur-récepteur hors de son logement.
- 4. Placez le module d'émetteur-récepteur QSFP+ ou QSFP28 dans un sac antistatique.

Illustration 80 : Retirer le module d'émetteur-récepteur QSFP+ 40 gigabits ou QSFP28 100 gigabits

Installation et retrait des modules d'adaptateur ou d'émetteur-récepteur CPAK

Cette section explique comment installer, raccorder et retirer les modules émetteurs-récepteurs optiques enfichables CPAK.

Vue d'ensemble du module CPAK

Le module d'émetteur-récepteur CPAK Cisco est un appareil d'entrée/sortie remplaçable à chaud qui se branche sur un port Cisco des cartes de ligne 100 Gigabit Ethernet à 4 et 8 ports (reportez-vous aux sections Carte de ligne 100 Gigabit Ethernet à 4 ports avec CPAK, à la page 38 et Carte de ligne 100 Gigabit Ethernet à 8 ports avec CPAK, à la page 38). Les modules disposent de 82 broches au total (40 broches sur la ligne supérieure et 42 sur la ligne inférieure) sur l'interface électrique et d'un connecteur SC MPO (Multifiber Push-On) ou duplex sur l'interface optique.

Les types de modules CPAK suivants sont pris en charge :

• CPAK 100GBASE-SR10

Il assure des liaisons de 100 Gbit/s via des câbles nappe à 24 fibres avec terminaisons par connecteur MPO/MTP. Il peut aussi être utilisé en mode 10 x 10 Gbit/s avec un câble nappe de dérivation

duplex connecté à dix interfaces optiques 10GBASE-SR et propose en option une dérivation vers des interfaces 2x40G. Le module prend en charge les liaisons de 100 et 150 m sur câbles multifibres OM4 et OM3 optimisés par laser. Les débits OTN sont également pris en charge.

• CPAK 100GBASE-SR4

Il prend en charge des liaisons jusqu'à 70 m (100 m) via des câbles fibre multimodes OM3 (OM4) avec connecteurs MPO-12. Il assure principalement des liaisons optiques 100G à large bande passante sur un câble fibre parallèle à 12 fibres avec terminaisons par connecteurs multifibres MPO-12. Le module CPAK-100GE-SR4 prend en charge un débit Ethernet 100GBase. Ce module ne prend en charge que le mode LAN 100G ; le mode OTN et la dérivation ne sont pas pris en charge.

CPAK 100GBASE-LR4

Ce module est principalement conçu pour les liaisons optiques de 100 Gbit/s sur une fibre optique monomode standard (SMF, G.652) avec connecteurs SC. Sa puissance nominale est inférieure à 5,5 W.

Conformément à la norme IEEE 802.3ba, le module LR4 prend en charge les liaisons jusqu'à 10 km via un câble fibre monomode standard SMF, G.652. Il transmet un signal de données agrégées de 100 Gbit/s sur quatre longueurs d'onde avec multiplexage en longueur d'onde (WDM) fonctionnant à un débit nominal de 25 Gbit/s par voie en mode LAN. Les débits OTU4 sont également pris en charge. Le multiplexage et démultiplexage optiques des quatre longueurs d'onde sont gérés à l'intérieur du module.

Illustration 81 : Exemple de module d'émetteur-récepteur CPAK 100 Gigabit Ethernet

• CPAK 10x10G-LR

Utilisé en mode 10 x 10 Gbit/s avec un câble nappe de dérivation duplex SMF connecté à dix interfaces optiques 10GBASE-LR. Il prend en charge des liaisons jusqu'à 10 km via un câble SMF standard, G.652. Le module assure des liaisons conformes de 10 Gbit/s et éventuellement des liaisons de 40 Gbit/s pour les applications CPAK-à-CPAK.

CPAK 100GBASE-PSM4

Le module Cisco CPAK-100G-PSM4 prend en charge les liaisons allant jusqu'à 500 mètres sur une connexion à fibre optique à mode simple (SMF) à l'aide de connecteurs MPO. Le signal 100 Gigabit Ethernet est transporté par 12 fibres parallèles terminées par des connecteurs MPO multifibres. Ce module ne prend en charge que le mode LAN 100G ; le mode OTN et la dérivation ne sont pas pris en charge.

Module d'adaptateur CPAK

Le module d'adaptateur CPAK est remplaçable à chaud et joue le rôle d'hôte physique pour un module d'émetteur-récepteur QSFP+ 40GE. Il permet également de connecter un module d'émetteur-récepteur QSFP+ 40GE à un port CPAK. Du point de vue du module d'émetteur-récepteur, le module d'adaptateur CPAK correspond à l'appareil hôte. Du point de vue du port CPAK, le module d'adaptateur correspond au module d'émetteur-récepteur CPAK. Le module d'adaptateur CPAK est alimenté uniquement

si un émetteur-récepteur QSFP+ est branché. Par conséquent, le routeur ne détecte l'adaptateur CPAK que lorsque l'adaptateur est connecté à un module d'émetteur-récepteur QSFP.

Illustration 82 : Module d'adaptateur CPAK

Outre l'hébergement physique du module d'émetteur-récepteur QSFP+, l'adaptateur CPAK propose les fonctions suivantes :

- Il assure le contrôle d'appel, la régulation de la tension et le filtrage de l'alimentation.
- Il gère les signaux bas débit CPAK et QSFP+ et enregistre les mappages.
- Il signale les resynchronisations conditionnelles.
- Il arrête les canaux inutilisés (canaux 4 à 9).

Pour activer l'adaptateur CPAK et le module QSFP, vous devez configurer l'interface de dérivation 1X40 avec la commande **hw-module location rack/slot/CPU0** en mode de configuration globale. Exemple :

```
Router# configure terminal
Router(config)# hw-module location 0/1/CPU0 port 3 breakout 1xFortyGigE
Router(config)# commit
```

Remarque

Le mode de dérivation 2x40G n'est pas pris en charge.

Le module d'adaptateur CPAK ne prend en charge que les modules émetteurs-récepteurs QSFP+ 40GE suivants :

- QSFP-40G-LR4
- QSFP-40GE-LR4
- QSFP-40G-ER

Installation et retrait du module CPAK

Equipements et outils requis

Vous devez utiliser ces outils pour installer le module d'adaptateur ou d'émetteur-récepteur CPAK :

- Un bracelet antistatique ou autre dispositif personnel de mise à la terre, pour prévenir les chocs électrostatiques.
- Un tapis antistatique ou une mousse antistatique pour poser l'émetteur-transmetteur.

• Des outils de nettoyage de la face optique de la fibre et l'équipement nécessaire à l'inspection de celle-ci.

Pour obtenir plus d'informations sur le contrôle et le nettoyage des connexions à fibre optique, reportez-vous à la section Nettoyage des connecteurs à fibre optique, à la page 136.

Installation des modules d'adaptateur ou d'émetteur-récepteur CPAK

Â	
Avertissement	Le module d'adaptateur ou d'émetteur-récepteur CPAK est sensible à l'électricité statique. Lorsque vous manipulez des modules CPAK ou que vous touchez les modules du système, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre.
	Pour installer un module d'adaptateur ou d'émetteur-récepteur CPAK, procédez comme suit :
	1. Attachez un bracelet antistatique à votre poignet et fixez-le à un point de mise à la terre sur le châssis ou le rack.
	2. Retirez le module CPAK de son emballage de protection.
	3. Contrôlez l'étiquette sur le corps du module CPAK pour vous assurer que le modèle est compatible avec le réseau utilisé.
	4. Retirez le cache antipoussière de l'orifice optique et mettez-le de côté.
	5. Placez le module CPAK face au connecteur ouvert et faites-le glisser doucement jusqu'à ce qu'il entre en contact avec le connecteur électrique.
	6. Appuyez fermement à l'avant du module CPAK avec votre pouce pour enclencher complètement le module dans le connecteur.
\triangle	
Avertissement	Si la boucle de verrouillage n'est pas correctement enclenchée, le module d'adaptateur ou d'émetteur-récepteur CPAK risque de se déconnecter accidentellement.
	Réinstallez le bouchon antipoussière dans l'orifice optique du module d'adaptateur ou d'émetteur-récepteur CPAK jusqu'à ce que vous sovez prêt à fixer le câble d'interface réseau. Ne retirez pas

Fixation du câble réseau optique

Avant de retirer les bouchons antipoussière et d'effectuer un branchement optique, procédez comme suit :

le bouchon antipoussière tant que vous n'êtes pas prêt à brancher le câble d'interface réseau.

- Ne retirez les bouchons antipoussière des connecteurs des câbles optiques non branchés et des orifices optiques des émetteurs-récepteurs qu'au moment d'effectuer un branchement.
- Avant de réaliser un branchement, contrôlez et nettoyez les faces optiques du connecteur MPO. Reportez-vous au conseil de l'étape 2 dans la prochaine procédure pour obtenir un lien vers le livre blanc concernant le nettoyage et l'inspection de la fibre optique.
- Veillez à saisir le connecteur MPO par le boîtier uniquement pour brancher ou débrancher un câble à fibre optique.

Remarque	Pour le module CPAK-100G-SR10, les connecteurs MPO (Multiple-fiber Push-On) utilisent les câbles d'interface réseau avec face polie de type PC (Physical Contact) ou UPC (Ultra-Physical Contact). Le module CPAK-10X10G-LR peut uniquement utiliser les câbles d'interface réseau avec face polie de type APC (Angle-Polished Contact) (typique des assemblages MPO à fibre optique monomodes).			
Remarque	Cisco fournit également un panneau de dérivation à fibre optique. Le panneau de dérivation est un boîtier qui protège et gère les câbles à fibre optique sur les routeurs Cisco ASR 9000. Pour obtenir des instructions détaillées concernant l'installation et le montage du panneau de dérivation, consultez la page http://www.cisco.com/c/en/us/td/docs/routers/ncs6000/breakout_panel/ncs_breakoutpanel.html			
	 Retirez les bouchons antipoussière des connecteurs MPO du câble d'interface réseau optique. Mettez les bouchons antipoussière de côté. Contrôlez les faces optiques du connecteur MPO et nettoyez-les. Pour nettoyer le connecteur, vous pouvez acheter un nettoyant de connecteur MPO, tel que le nettoyant US Conec 7104 IBC In-Bulhead Adapter Cleaner d'un fournisseur tiers. 			
	3. Retirez les bouchons antipoussière des orifices optiques du module CPAK.			
	4. Branchez immédiatement les connecteurs MPO du câble d'interface réseau sur le module CPAK.			
Retrait des mod	ules d'adaptateur ou d'émetteur-récepteur CPAK			
\triangle				
Avertissement	Le module d'adaptateur ou d'émetteur-récepteur CPAK est sensible à l'électricité statique. Lorsque vous manipulez des modules d'adaptateur ou d'émetteur-récepteur CPAK, ou que vous touchez les modules, portez systématiquement un bracelet antistatique ou un dispositif similaire de mise à la terre.			
	Pour retirer un module CPAK, procédez comme suit :			
	1. Débranchez le câble d'interface réseau du connecteur du module CPAK.			
	2. Installez immédiatement le bouchon antipoussière dans l'orifice optique du module.			

- 3. Saisissez la languette et tirez délicatement dessus pour dégager le module du logement.
- 4. Faites glisser le module hors du logement.
- 5. Mettez le module CPAK dans un sac antistatique.

Gestion des câbles pour carte de ligne

Les routeurs Cisco ASR 9000 sont équipés d'un système de gestion des câbles. Ce système permet de disposer correctement les câbles d'interface qui entrent et sortent du routeur, et d'éviter toute courbure excessive.

Le système de gestion des câbles comprend les composants suivants :

- Une unité de gestion des câbles montée sur le châssis du routeur Cisco ASR 9010. Pour obtenir plus d'informations, reportez-vous à la section http://www.cisco.com/c/en/us/td/docs/routers/asr9000/hardware/ installation/guide/asr9kHIGbk.html.
- Un support de gestion des câbles qui se connecte à la carte de ligne.

 Des supports de gestion des câbles qui se fixent sur les côtés du châssis du routeur (Cisco ASR 9006 uniquement).

 Remarque
 Les illustrations dans cette section présentent un seul type de carte de ligne, mais les procédures de gestion des câbles des cartes de ligne dans cette section sont identiques, quelle que soit la carte de ligne.

 Matrix
 Une courbure excessive des câbles d'interface peut endommager ces derniers.

Plateau de gestion des câbles

Un plateau de gestion des câbles est monté dans la partie supérieure du châssis du routeur Cisco ASR 9010 pour acheminer les câbles d'interface jusqu'à la carte RSP et aux cartes de ligne. La figure suivante illustre un acheminement classique des câbles dans le plateau de gestion des câbles. Le plateau est équipé d'un capot articulé qui peut être soulevé pour accéder plus facilement aux séparateurs de gestion des câbles.

Illustration 83 : Exemple d'acheminement des câbles dans le plateau de gestion des câbles du routeur Cisco ASR 9010

1	Capot articulé (en position	2	Câbles acheminés dans le
	levée)		plateau

Chaque carte de ligne possède son propre logement d'acheminement des câbles dans le compartiment des câbles. Par exemple, la figure ci-dessus illustre les câbles acheminés vers la carte de ligne 3 dans le connecteur 3 dans un routeur Cisco ASR 9010.

Supports de gestion des câbles pour routeur

Le routeur Cisco ASR 9006 fournit un support de gestion des câbles de chaque côté du châssis. La figure suivante illustre un acheminement standard des câbles pour le routeur Cisco ASR 9006.

Chaque carte de ligne possède son propre logement d'acheminement des câbles dans les supports de gestion des câbles du routeur Cisco ASR 9006. Par exemple, la figure suivante présente les câbles acheminés vers la carte de ligne 0 dans le connecteur 3 et vers la carte de ligne 2 dans le connecteur 5.

Illustration 84 : Exemple d'acheminement des câbles dans les supports de gestion des câbles du routeur Cisco ASR 9006

Support de gestion des câbles pour carte de ligne

Cette section présente le support de gestion des câbles pour carte de ligne. La figure suivante illustre le support de gestion des câbles pour carte de ligne relié à une carte de ligne Gigabit Ethernet à 40 ports.

43050

Remarque

Lorsqu'il est livré avec des cartes de ligne de rechange, le support de gestion des câbles n'est pas relié à la carte de ligne. Vous devez le fixer à la carte de ligne avant d'insérer la carte dans le routeur.

Avertissement

N'utilisez pas le support de gestion des câbles comme une poignée pour retirer ou installer la carte de ligne. Le support de gestion des câbles est conçu pour maintenir les câbles d'interface et peut casser si vous l'utilisez pour pousser, tirer ou transporter la carte de ligne après l'avoir retirée du routeur.

Installation d'un support de gestion des câbles pour carte de ligne

Pour installer un support de gestion des câbles pour carte de ligne, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Positionnez le support de gestion des câbles sur l'avant de la façade de la carte de ligne.
- 3. Insérez et serrez la ou les vis imperdables pour fixer le support (voir figure ci-dessus).
- 4. En commençant par le port de la carte de ligne le plus proche du support, branchez chaque câble d'interface sur le port prévu (voir Illustration 85 : Support de gestion des câbles, à la page 130).
Illustration 86 : Installation et retrait du support de gestion des câbles

Retrait d'un support de gestion des câbles pour carte de ligne

Pour retirer un support de gestion des câbles pour carte de ligne, procédez comme suit (voir Installation d'un support de gestion des câbles pour carte de ligne, à la page 130) :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Prenez note des connexions actuelles des câbles d'interface aux ports sur chaque carte de ligne.
- **3.** En commençant par le câble d'interface du port inférieur sur la carte de ligne, débranchez le câble de l'interface de la carte de ligne.
- **4.** Répétez l'étape 3 pour tous les autres câbles d'interface, en procédant de bas en haut, puis passez à l'étape 5.
- 5. Desserrez la vis de fixation imperdable sur le support de gestion des câbles et retirez le support de la carte de ligne (Illustration 86 : Installation et retrait du support de gestion des câbles, à la page 131).

Pour en savoir plus sur la connexion et la déconnexion des câbles d'interface, reportez-vous à la section *Installation et retrait des câbles d'interface à fibre optique*.

Connecteurs et câbles

Interfaces Gigabit Ethernet

Modules SFP Gigabit Ethernet

La carte de ligne Gigabit Ethernet (GE) à 40 ports et les ports Gigabit Ethernet de la carte de ligne combinée à 2 ports 10GE + 20 ports GE utilisent des modules SFP. Le module d'émetteur-récepteur optique laser Gigabit Ethernet est un module SFP (Small Form-Factor Pluggable) remplaçable sur site qui se branche dans le connecteur (ou boîtier) situé sur la carte de ligne et fournit l'interface optique Gigabit Ethernet (voir figure ci-dessous). Le module possède deux interfaces optiques : transmission laser (TX) et réception laser (RX) ainsi qu'une interface électrique (vers la carte de ligne).

Les modules SFP+ utilisés sur la carte de ligne avec surabonnement 10GE à 16 ports sont des modules SFP améliorés.

Illustration 87 : Module SFP et câble à fibre optique

1	Côté composants de la carte de ligne	4	Réception (RX)
2	Joint anti-interférences	5	Surface supérieure du module SFP
3	Transmission (TX)		

Les modules SFP disposent de connecteurs LC. La seule restriction s'applique aux ports qui doivent répondre aux caractéristiques à l'autre extrémité du câble (longueur d'onde courte ou longue) et aux câbles qui ne doivent pas dépasser la longueur stipulée pour des communications fiables.

Les caractéristiques relatives aux transmissions à fibre optique identifient deux types de fibre optique : SMF (monomode) et MMF (multimode). La distance maximum pour des installations monomodes dépend de la quantité de perte de lumière sur le chemin de fibre. Si, dans votre environnement, la lumière doit se déplacer environ à la distance maximale standard, vous devez utiliser un réflectomètre temporel optique (OTDR) pour mesurer la perte de puissance.

Avertissement

Utilisez exclusivement les modules SFP et SFP+ fournis par Cisco Systems avec votre carte de ligne Ethernet. Chaque module possède une mémoire interne EEPROM de série qui contient des informations de sécurité programmées par le fabricant pour permettre au logiciel Cisco IOS XR d'identifier le module et de confirmer qu'il est en mesure de fonctionner correctement avec les cartes de ligne Ethernet Cisco. Les modules SFP ou SFP+ non approuvés (c'est-à-dire ceux qui n'ont pas été achetés directement auprès de Cisco Systems) ne sont pas compatibles avec les cartes de ligne Ethernet. Pour vérifier la version du module installé, reportez-vous à la section Contrôle des modules d'émetteurs-récepteurs, à la page 146.

Modules XFP 10 Gigabit Ethernet

La carte de ligne 10 Gigabit Ethernet à 8 ports avec surabonnement 2:1, la carte de ligne 10GE à 4 ports et la carte de ligne 10GE à 8 ports 80 Gbit/s utilisent des câbles à fibre optique monomodes. La distance maximum pour des installations monomodes dépend de la quantité de perte de lumière sur le chemin de fibre. Si, dans votre environnement, la lumière doit se déplacer environ à la distance maximale standard, vous devez utiliser un réflectomètre temporel optique (OTDR) pour mesurer la perte de puissance.

Câbles d'interface à fibre optique

En fonction de la carte de ligne (voir section Comparaison des cartes de ligne Ethernet et des adaptateurs MPA), utilisez un câble d'interface à fibre optique monomode ou multimode avec des connecteurs de type LC pour connecter une interface Ethernet de la carte de ligne de votre routeur Cisco ASR 9000 à une autre interface Ethernet, à un routeur ou à un commutateur.

Cisco Systems ne propose pas de câbles à fibre optique. Vous pouvez vous adresser à des fournisseurs de câbles.

Les types de câbles suivants sont utilisés pour connecter votre routeur à un autre routeur ou à un commutateur :

- Monomode : généralement de couleur jaune.
- Multimode : généralement de couleur grise ou orange. Les câbles multimodes sont des câbles multifibres qui acheminent 12 canaux de données sur fibre.
- Connecteur LC (Lucent Connector) : reportez-vous aux figures ci-dessous Connecteur de câble LC unidirectionnel et Connecteur de câble LC duplex.

Vous pouvez utiliser deux câbles avec connecteurs unidirectionnels ou un câble avec deux connecteurs.

Attention

Une fois débranchés, les câbles à fibre optique et certains connecteurs sont susceptibles d'émettre un rayonnement laser invisible. Ne regardez pas les faisceaux à l'œil nu ni à l'aide d'instruments optiques. Consigne 1051

Illustration 88 : Connecteur de câble LC unidirectionnel

Illustration 89 : Connecteur de câble LC duplex

Les connecteurs des câbles à fibre optique doivent être exempts de poussière, d'huile ou autres contaminants. Avant de connecter le câble à la carte de ligne, nettoyez minutieusement les connecteurs à fibre optique à l'aide d'un chiffon imbibé d'alcool ou d'un autre nettoyant approprié. Reportez-vous à la section Nettoyage des connecteurs à fibre optique, à la page 136 pour en savoir plus. Le connecteur du câble peut être livré avec un cache antipoussière. Si c'est le cas, retirez le cache antipoussière avant de connecter le câble au port de la carte de ligne.

Installation et retrait des câbles d'interface à fibre optique

Cette section explique comment installer et retirer des câbles d'interface à fibre optique pour connecter votre routeur à un autre routeur ou à un commutateur.

Remarque

Même si les cartes de ligne sont différentes, le processus d'installation et de retrait des câbles d'interface est essentiellement le même pour chaque carte. Par conséquent, cette publication ne contient pas d'autres procédures, ni illustrations.

Installation des câbles d'interface à fibre optique

Pour installer des câbles à fibre optique, vous pouvez utiliser deux connecteurs LC (Illustration 88 : Connecteur de câble LC unidirectionnel, à la page 134) ou un connecteur LC duplex (Illustration 89 : Connecteur de câble LC duplex, à la page 134).

emarque	Les câbles à fibre optique sont disponibles auprès de fournisseurs de câbles. Cisco ne commercialise pas ces câbles.
Attention	Une fois débranchés, les câbles à fibre optique et certains connecteurs sont susceptibles d'émettre un rayonnement laser invisible. Ne regardez pas les faisceaux à l'œil nu ni à l'aide d'instruments optiques. Consigne 1051
Attention	Produit laser de classe 1. Consigne 1008
Attention	Produit avec voyant DEL de classe 1. Consigne 1027
emarque	Les connecteurs des câbles à fibre optique doivent être exempts de poussière, d'huile ou autres contaminants. Avant de connecter le câble à la carte de ligne, nettoyez minutieusement les connecteurs à fibre optique à l'aide d'un chiffon imbibé d'alcool ou d'un autre nettoyant approprié. Pour plus d'informations, reportez-vous à la rubrique Nettoyage des connecteurs à fibre optique, à la page 136.
	Pour installer un câble, suivez ces étapes :
	1. Retirez le cache antipoussière s'il y en a un.
	2. Alignez l'extrémité du câble sur le port approprié. Observez la relation des câbles Rx et Tx.
	3. Branchez un câble fibre entre le port de la carte de ligne et l'appareil auquel la carte de ligne est connectée.
	4. Insérez le connecteur du câble à fibre optique jusqu'à ce qu'il s'enclenche.
	5. Répétez ces étapes pour réaliser l'ensemble du câblage.
emarque	Les connecteurs des câbles à fibre optique doivent être exempts de poussière, d'huile ou autres contaminants. Nettoyez minutieusement les connecteurs à fibre optique à l'aide d'un chiffon imbibé d'alcool ou d'un autre

Retrait des câbles d'interface à fibre optique

Pour retirer les câbles d'interface de la carte de ligne, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Appuyez sur le loquet de déconnexion à ressort pour débrancher les connecteurs du câble d'interface des ports de l'interface de la carte de ligne.

Â	
Attention	Une fois débranchés, les câbles à fibre optique et certains connecteurs sont susceptibles d'émettre un rayonnement laser invisible. Ne regardez pas les faisceaux à l'œil nu ni à l'aide d'instruments optiques. Consigne 1051
Remarque	Il n'est pas nécessaire de retirer les câbles d'interface du support de gestion des câbles pour carte de ligne.
	3. Insérez un bouchon antipoussière dans un port optique qui n'est pas utilisé.
	4. Utilisez un tournevis pour desserrer la vis d'installation imperdable du support de gestion des câbles pour carte de ligne.
	5. Retirez le support de gestion des câbles pour carte de ligne et les câbles à fibre optique de la carte de ligne.

 Retirez le support de gestion des câbles pour carte de ligne et les câbles à fibre optique de la carte de ligne, puis conservez-le dans un endroit sûr.

Nettoyage des connecteurs à fibre optique

Les connecteurs optiques permettent de relier ensemble deux fibres optiques. Lorsque ces connecteurs sont utilisés dans un système de communications, il est essentiel de bénéficier d'une connexion de qualité. S'ils ne sont pas correctement nettoyés et branchés, ils peuvent être endommagés. Lorsqu'ils sont sales ou endommagés, les connecteurs à fibre optique peuvent être à l'origine de communications non reproductibles ou imprécises.

Les connecteurs optiques diffèrent des connecteurs électriques ou à micro-ondes. Dans un système à fibre optique, la lumière est transmise à travers un cœur de fibre extrêmement étroit. Du fait que les cœurs de fibre ont un diamètre maximum de 62,5 microns et que les particules de poussière mesurent d'un dixième de micron à plusieurs microns de diamètre, la poussière et la contamination de l'extrémité du cœur peuvent donc nuire aux performances de l'interface de connexion entre les deux cœurs. C'est pourquoi le connecteur doit être aligné de façon précise et son interface ne doit contenir aucun corps étranger.

La perte de connexion et la perte d'insertion sont des caractéristiques essentielles pour les performances d'un connecteur optique. La perte de retour est également un facteur important. La perte de retour détermine la quantité de lumière réfléchie : plus la réflexion est faible, meilleure est la connexion. Les meilleurs connecteurs de contact physique présentent des pertes de retour supérieures à -40 dB, bien que la plupart d'entre eux affichent généralement des performances comprises entre -20 et -30 dB.

La qualité de la connexion dépend de deux facteurs : le type de connecteur et le respect des techniques appropriées de nettoyage et de connexion. De nombreuses pertes de lumière sont dues à des connecteurs optiques sales. Vérifiez que les connecteurs sont toujours propres et laissez les bouchons antipoussière en place, lorsque les connecteurs ne sont pas utilisés.

Avant d'installer tout type de câble ou de connecteur, utilisez un tampon non pelucheux imbibé d'alcool du kit de nettoyage pour nettoyer la férule, le tube ou le cône de protection entourant le cœur de la fibre et la surface de la face optique de la fibre.

En règle générale, nettoyez les connecteurs chaque fois que vous constatez une perte de lumière significative inexpliquée. Pour nettoyer les connecteurs optiques, utilisez une cassette de nettoyage de la fibre optique CLETOP et suivez les instructions d'utilisation du fabricant.

Si vous n'avez pas de cassette de nettoyage CLETOP, procédez de la façon suivante :

Câbles en cuivre type RJ-45 10/100/1000BASE-T

Pour une carte de ligne Ethernet équipée d'émetteurs-récepteurs SFP cuivre, utilisez un câble compatible EIA/TIA 568 avec des connecteurs RJ-45 et un câblage MDI (voir figure ci-dessous) pour connecter votre routeur Cisco ASR 9000 à un autre routeur ou à un commutateur.

Remarque

Les câbles compatibles EIA/TIA 568 avec un câblage MDI et des connecteurs RJ-45 sont disponibles auprès de nombreux revendeurs. Cisco Systems ne commercialise pas ces câbles.

Remarque

Pour répondre aux exigences relatives à la résistance à la foudre à l'intérieur des bâtiments (Telcordia GR-1089-CORE, version II, révision 01, février 1999), vous devez utiliser un câblage blindé pour connecter les ports des émetteurs-récepteurs SFP cuivre. Le câble blindé comporte des connecteurs blindés à ses deux extrémités, le matériau de blindage étant relié aux deux connecteurs.

Illustration 90 : Connecteur du câble RJ-45

Retrait et installation des câbles en cuivre type RJ-45 10/100/1000BASE-T

Cette section explique comment installer et retirer des câbles en cuivre RJ-45 pour connecter votre routeur à un autre routeur ou à un commutateur.

Installation des câbles RJ-45

Insérez le connecteur RJ-45 dans un port ouvert jusqu'à ce que vous entendiez un clic et qu'il s'enclenche. Branchez un câble entre chaque interface de carte de ligne et l'appareil auquel la carte de ligne est connectée.

Retrait des câbles RJ-45

Pour retirer les câbles de la carte de ligne, procédez comme suit :

- 1. Portez un bracelet antistatique au poignet ou à la cheville et suivez les instructions d'utilisation.
- 2. Débranchez les connecteurs du câble d'interface des ports de l'interface de la carte de ligne.

Remarque

e Il n'est pas nécessaire de retirer les câbles d'interface du support de gestion des câbles pour carte de ligne.

- 3. Utilisez un tournevis pour desserrer la vis d'installation imperdable du support de gestion des câbles pour carte de ligne.
- 4. Retirez le support de gestion des câbles pour carte de ligne et les câbles à fibre optique de la carte de ligne, puis conservez-le dans un endroit sûr.

CHAPITRE J

Vérification et dépannage de l'installation de la carte de ligne

Ce chapitre contient des informations sur les sujets suivants :

- Vérification et dépannage de l'installation de la carte de ligne, à la page 139
- Configuration et dépannage des interfaces de carte de ligne, à la page 142

Vérification et dépannage de l'installation de la carte de ligne

Les sections suivantes expliquent comment vérifier et dépanner les installations de cartes de ligne :

Le dépannage à l'aide des commandes Cisco IOS XR est décrit brièvement dans la section Configuration et dépannage des interfaces de carte de ligne, à la page 142.

Processus de démarrage initial

Remarque

e Toutes les nouvelles cartes de ligne sont désactivées par défaut par l'administrateur. Les voyants d'état des ports restent éteints jusqu'à ce que vous configuriez les interfaces et que vous utilisiez la commande « no shutdown ».

Dans le cadre d'un processus de démarrage normal de la carte de ligne, les événements suivants se produisent :

- 1. La carte de ligne est alimentée et commence à exécuter le logiciel d'initialisation.
- 2. La carte de ligne effectue des vérifications internes et se prépare à accepter le logiciel Cisco IOS XR du module RSP.
- 3. Le module RSP charge la carte de ligne avec son logiciel Cisco IOS XR.

Pour vérifier que la carte de ligne fonctionne correctement, procédez comme suit :

- 1. Vérifiez que le voyant d'état de la carte est allumé (vert), ce qui indique que la carte fonctionne correctement.
- 2. Vérifiez que le voyant d'état du port concerné est allumé (vert fixe ou clignotant) pour vous assurer qu'il est bien actif. Si le voyant d'état du port est éteint, vérifiez que l'interface associée n'est pas arrêtée.
- **3.** Si l'une des conditions ci-dessus n'est pas remplie, reportez-vous à la section Dépannage avancé de la carte de ligne, à la page 148 pour identifier les éventuels problèmes.

Voyants des cartes de ligne

Les voyants d'état de la carte de ligne ou des ports sur la carte de ligne en façade vous permettent de vérifier le bon fonctionnement ou de résoudre un problème. Le tableau suivant décrit les voyants d'état de la carte et des ports.

Tableau 31 : Voyants d'état des ports et de la carte de ligne

Voyants d'état des ports (un par port)				
Vert L'état du port est actif et une liaison de couche physique valide a été établie.				
Clignotant	Une activité de ligne se produit. Le voyant clignote comme suit : vert-orange-vert.			
Rouge	Le port est activé, mais une perte de liaison ou une défaillance SFP/XFP s'est produite.			
Éteint Le port a été fermé par l'administrateur.				
Voyant d'état (un par carte)				
Vert	La carte de ligne a démarré correctement et est prête à laisser passer le trafic.			
Orange, fixe	La carte de ligne est en cours de démarrage. Lorsque le logiciel Cisco IOS XR est chargé, le voyant passe au vert.			
Orange, clignotant	Une erreur de configuration logicielle s'est produite et empêche la carte de ligne de transmettre du trafic. Il est possible que la carte de ligne transmette quand même du trafic, mais qu'il soit détérioré.			
Rouge	La carte de ligne a rencontré une erreur matérielle et ne laisse pas passer le trafic.			
Éteint	La carte de ligne est hors tension. Il se peut que le voyant s'éteigne temporairement lors du passage entre les états décrits ci-dessus, bien que la carte de ligne ne soit pas hors tension.			

Voyants de l'adaptateur MPA

Les adaptateurs MPA sont équipés de deux types de voyants : un voyant A/L pour chaque port et un voyant d'état STATUS pour l'adaptateur MPA. Le tableau suivant décrit les voyants de l'adaptateur MPA.

Tableau 32 : Voyants de l'adaptateur MPA

Couleur	État	Signification			
Voyant A/L (un par port)					
Éteint	Éteint	Le port a été fermé par l'administrateur.			
Vert	Allumé	Le port est activé par l'administrateur et la liaison fonctionne.			
Rouge	Allumé	Le port est activé par l'administrateur et la liaison ne fonctionne pas.			
Clignotant	Allumé	Une activité de ligne se produit. Le voyant clignote comme suit : vert-orange-vert.			

Couleur	État	Signification		
Voyant d'état STATUS (un par carte)				
Éteint	Éteint	L'adaptateur MPA est hors tension.		
Rouge	Allumé	L'adaptateur MPA a rencontré une erreur matérielle.		
Orange	Allumé	L'adaptateur MPA est sous tension et il y a de l'activité.		
Vert	Allumé	L'adaptateur MPA est prêt et opérationnel, mais il n'y a pas d'activité.		

Résolution des problèmes d'installation

Remarque

Proutes les nouvelles cartes de ligne sont désactivées par défaut par l'administrateur. Les voyants d'état restent éteints jusqu'à ce que vous configuriez les interfaces et que vous utilisiez la commande no « shutdown ».

Si le voyant d'état de la carte ou le voyant d'état d'un port ne s'allume pas, le problème est lié à l'installation de la carte de ligne ou à une panne matérielle. Pour vérifier que la carte de ligne est correctement installée, procédez comme suit :

- Si le voyant d'état d'un port ne s'allume pas (aucune activité), mais si le voyant d'état de la carte est allumé, vérifiez que la séquence d'initialisation s'est bien achevée. Si c'est le cas, vérifiez que l'interface n'est pas désactivée. Si l'interface n'est pas désactivée, le problème est sans doute lié aux circuits du voyant d'état du port ; contactez donc un conseiller du service client pour obtenir de l'aide.
- 2. Si le voyant d'état de la carte ne s'allume pas, vérifiez les connexions du routeur en procédant comme suit :
 - 1. Vérifiez que le connecteur de la carte de ligne est bien enclenché dans le fond de panier. Desserrez les vis d'installation imperdables et faites pivoter fermement les leviers d'extraction l'un vers l'autre jusqu'à ce qu'ils soient parallèles à la façade de la carte de ligne. Serrez les vis d'installation imperdables.
 - Vérifiez que tous les câbles de données et les cordons d'alimentation sont bien branchés aux deux extrémités.
 - 3. Vérifiez que tous les composants de la carte sont bien fixés dans leurs connecteurs.

Après la réinitialisation de la carte de ligne, le voyant d'état de la carte de ligne devrait s'allumer. S'il s'allume, l'installation est terminée ; s'il ne s'allume pas, passez à l'étape suivante.

- 3. Si le voyant d'état de la carte ne s'allume toujours pas, retirez la carte de ligne et essayez de l'installer dans un autre connecteur disponible.
- 4. Si le voyant d'état de la carte s'allume lorsqu'elle est installée dans le nouveau connecteur, c'est sans doute le port du fond de panier du connecteur initial de la carte de ligne qui est défectueux.
- 5. Si le voyant d'état de la carte ne s'allume toujours pas, interrompez l'installation. Contactez un conseiller du service client pour signaler un défaut matériel et obtenir des instructions supplémentaires.
- 6. Si un message d'erreur s'affiche sur le terminal au cours de l'initialisation de la carte de ligne, consultez la publication de référence appropriée pour connaître les définitions des messages d'erreur.

Si vous rencontrez d'autres problèmes impossibles à résoudre, contactez un conseiller du service client Cisco pour obtenir de l'aide.

Remarque

Si vous effectuez une insertion ou un retrait à chaud du module SFP ou XFP sans arrêter l'interface, un message d'avertissement s'affiche sur l'appareil de console.

Configuration et dépannage des interfaces de carte de ligne

Une fois que la personne qui a installé le matériel a vérifié le bon fonctionnement de la nouvelle carte de ligne en observant les voyants, l'administrateur réseau peut configurer la nouvelle interface. Les sections suivantes fournissent des informations sur la configuration et le dépannage des cartes de ligne :

Paramètres de configuration

Le tableau suivant répertorie les paramètres de configuration d'interface par défaut qui sont définis lorsqu'une interface est activée sur une carte de ligne Gigabit Ethernet ou 10 Gigabit Ethernet. Pour plus d'informations sur ces paramètres, consultez la documentation du logiciel XR Cisco IOS.

Tableau 33 : Paramètres de configuration d'interface par défaut

Paramètre	Entrée du fichier de configuration	Valeur par défaut		
Contrôle de flux	flow-control	Sortie activée		
		Entrée désactivée		
MTU	mtu	1 514 octets pour les trames normales		
		1 518 octets pour les trames balisées IEEE 802.1Q		
		1 522 octets pour les trames Q-in-Q		
Adresse MAC	mac address	Adresse BIA (Burned-In Address) matérielle		

Adresse de l'interface de la carte de ligne

Un routeur Cisco ASR 9000 identifie une adresse d'interface par le numéro du rack, le numéro du connecteur de la carte de ligne, le numéro de l'instance et le numéro du port, au format rack/*connecteur*/instance/*port*. Le paramètre de rack est réservé aux systèmes à plusieurs racks. Il est donc toujours défini sur 0 (zéro) pour le routeur Cisco ASR 9000. Les connecteurs de carte de ligne sont numérotés de 0 à 7 (routeur Cisco ASR 9010) ou de 0 à 3 (routeur Cisco ASR 9006).

Les numéros d'instance sont réservés aux cartes équipées de sous-connecteurs. Ce paramètre est actuellement toujours défini sur 0 (zéro) pour les cartes de ligne de la gamme Cisco ASR 9000. Les ports sur la carte de ligne sont numérotés 0, 1, 2, etc. Par exemple, l'adresse rack/*connecteur*/instance/*port* du quatrième port d'une carte de ligne installée dans le connecteur de carte de ligne 1 est 0/1/0/3. Même si la carte de ligne ne contient qu'un seul port, vous devez utiliser la notation rack/*connecteur*/instance/*port*.

Utilisation des commandes de configuration

L'interface de ligne de commande (ILC) du logiciel XR Cisco IOS comprend différents modes de commande. Pour configurer une carte de ligne, vous devez activer le mode correct, puis saisir les commandes dont vous avez besoin.

Lors de votre première connexion, vous passez automatiquement en mode d'exécution. Saisissez ensuite la commande **configure** pour accéder au mode de configuration, puis la commande **interface** pour passer en mode de configuration d'interface, et précisez l'interface. Vous vous trouvez maintenant dans le mode de commande qui vous permet de configurer la nouvelle interface. Munissez-vous des données nécessaires, notamment de l'adresse IP de l'interface.

Configuration de base des cartes de ligne

Cette procédure permet de créer une configuration de base, qui active une interface et spécifie un routage IP. Il se peut également que vous deviez exécuter d'autres sous-commandes de configuration en fonction des exigences relatives à votre configuration système.

Cet exemple montre comment configurer les paramètres de base d'une carte de ligne :

1. Passez en mode d'exécution :

```
Username: username
Password: password
RP/0/RSP0/CPU0:router#
```

2. Vérifiez l'état de chaque port en exécutant la commande show interface :

RP/0/RSP0/CPU0:router# show interface

3. Passez en mode de configuration globale et précisez que le terminal de la console sera la source des commandes de configuration :

RP/0/RSP0/CPU0:router# configure terminal

4. À l'invite, spécifiez la nouvelle interface à configurer en exécutant la commande **interface**, suivie du *type* (par exemple, **gigabitethernet** ou **tengige**) et de *rack/connecteur/instance/port* (rack de la carte de ligne, numéro du connecteur, numéro du sous-connecteur, numéro du port). Pour rappel, les valeurs du rack et du sous-connecteur du routeur Cisco ASR 9000 sont toujours égales à 0 (zéro). Par exemple, pour configurer le port 4 sur une carte de ligne 10 Gigabit Ethernet à 8 ports dans le connecteur de carte de ligne 1 :

RP/0/RSP0/CPU0:router# interface tengige 0/1/0/3

Vous basculez en mode de configuration d'interface.

5. Attribuez à l'interface une adresse IP et un masque de sous-réseau, à l'aide de la sous-commande de configuration **ipv4 address**, comme dans l'exemple suivant :

RP/0/RSP0/CPU0:router(config-if)# ipv4 address 10.1.2.3 255.255.255.0

6. Modifiez l'état pour activer l'interface :

RP/0/RSP0/CPU0:router(config-if)# no shutdown

La commande **no shutdown** transmet une commande **enable** à la carte de ligne. Elle fait également en sorte que la carte de ligne se configure automatiquement sur la base des commandes de configuration les plus récentes qu'elle a reçues.

7. Si vous souhaitez désactiver le protocole de découverte Cisco (CDP), qui n'est pas requis, utilisez cette commande :

```
RP/0/RSP0/CPU0:router(config-if) # no cdp
```

8. Ajoutez toute autre sous-commande de configuration nécessaire pour activer les protocoles de routage et ajuster les caractéristiques d'interface. Voici quelques exemples de sous-commandes :

```
RP/0/RSP0/CPU0:router(config-if)# flow-control ingress
RP/0/RSP0/CPU0:router(config-if)# mtu 1448
RP/0/RSP0/CPU0:router(config-if)# mac-address 0001.2468.ABCD
```

9. Après avoir ajouté toutes les sous-commandes de configuration pour terminer la configuration, exécutez la commande **commit** pour appliquer toutes les modifications apportées à la configuration en cours.

```
RP/0/RSP0/CPU0:router(config-if)# commit
```

10. Appuyez sur **Ctrl-Z** pour quitter le mode de configuration. Si vous n'avez pas exécuté la commande **commit**, vous serez invité à le faire :

```
RP/0/RSP0/CPU0:router(config-if)#
Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:
```

Répondez **yes** pour valider, **no** pour quitter le menu sans valider ou **cancel** pour ne pas quitter (par défaut).

11. Enregistrez la nouvelle configuration dans la mémoire:

```
RP/0/RSP0/CPU0:router# copy run
disk0:/config/running/alternate_cfg:/
router.cfg
Destination file name (control-c to abort): [/router.cfg]?
The destination file already exists. Do you want to overwrite? [no]: yes
Building configuration.
223 lines built in 1 second
[OK]
```

Le système affiche un message OK une fois que la configuration a été stockée.

Configuration des cartes de ligne double débit

La procédure suivante vise à configurer le débit du port sur les cartes de ligne 10 Gigabit Ethernet/Gigabit Ethernet à 48 ports :

1. Passez en mode de configuration globale et précisez que le terminal de la console sera la source des commandes de configuration :

RP/0/RSP0/CPU0:router# configure terminal

2. Spécifiez le mode du port :

```
RP/0/RSP0/CPU0:router(config)# hw-module location 0/5/CPU0 port-mode
4x10,8x1,12x10,12x1,12x10
```

3. Exécutez la commande **commit** pour valider toutes les modifications apportées à la configuration en cours :

```
RP/0/RSP0/CPU0:router(config)# commit
```

Contrôle des modules d'émetteurs-récepteurs

Utilisez la commande **show inventory all** afin d'afficher des informations sur les modules SFP ou XFP pour tous les modules émetteurs-récepteurs actuellement installés dans le routeur. Pour afficher des informations sur un module SFP ou XFP particulier, vous pouvez utiliser la commande **show inventory location** *ID-connecteur*.

Le résultat de ces commandes répertorie des informations telles que l'ID de logement, le type d'émetteur-récepteur, la description, l'ID de produit, la version et le numéro de série.

Par exemple, pour afficher des informations sur tous les modules du routeur :

```
RP/0/RSP0/CPU0:router# show inventory all
NAME: "module 0/RSP0/CPU0", DESCR: "ASR9K Fabric, Controller, 4G memory"
PID: A9K-RSP-4G , VID: V01, SN: P3B-2
NAME: "module compact-Flash 0/RSP0/CPU0", DESCR: " CompactFlash"
PID: cFLASH , VID: N/A, SN: 00000000301
NAME: "module 0/1/CPU0", DESCR: "40-Port GE Line Card, Requires SFPs"
PID: A9K-40GE-B , VID: V01, SN: FOC123081J6
NAME: "module mau 0/1/CPU0/2", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
PID: SFP-GE-S
                     , VID: V01 , SN: FNS12210HLY
NAME: "module mau 0/1/CPU0/3", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
PID: SFP-GE-S
                      , VID: V01 , SN: FNS12210HMJ
NAME: "module mau 0/1/CPU0/7", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
PID: SFP-GE-S
                     , VID: V01 , SN: FNS12210HM4
NAME: "module mau 0/1/CPU0/8", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
PID: SFP-GE-S
                      , VID: V01 , SN: FNS12210HML
NAME: "module mau 0/1/CPU0/18", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
                     , VID: V01 , SN: FNS123605YZ
PID: SFP-GE-S
NAME: "module mau 0/1/CPU0/23", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
PID: SFP-GE-S , VID: V01 , SN: FNS12210HM6
NAME: "module mau 0/1/CPU0/30", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
                      , VID: V01 , SN: FNS123605ZX
PID: SFP-GE-S
NAME: "module mau 0/1/CPU0/31", DESCR: "1000BASE-SX SFP (DOM), MMF, 550/220m"
                      , VID: V01 , SN: FNS123605YW
PID: SFP-GE-S
NAME: "module 0/4/CPU0", DESCR: "8-Port 10GE DX Line Card, Requires XFPs"
PTD: A9K-8T/4-B
                     , VID: V1D, SN: FOC123081JA
NAME: "module mau 0/4/CPU0/0", DESCR: "Multirate 10GBASE-LR and OC-192/STM-64 S"
```

```
PID: XFP-10GLR-OC192SR , VID: V02, SN: ONT1207108S
NAME: "module mau 0/4/CPU0/1", DESCR: "Multirate 10GBASE-LR and OC-192/STM-64 S"
PID: XFP-10GLR-OC192SR , VID: V02, SN: ONT1211104V
NAME: "module mau 0/4/CPU0/3", DESCR: "Multirate 10GBASE-LR and OC-192/STM-64 S"
PID: XFP-10GLR-OC192SR , VID: V02, SN: ONT121110NF
NAME: "module mau 0/4/CPU0/5", DESCR: "Multirate 10GBASE-LR and OC-192/STM-64 S"
PID: XFP-10GLR-OC192SR , VID: V02, SN: ONT121110LW
RP/0/RSP0/CPU0:router#
```

Pour afficher des informations sur un seul module d'émetteur-récepteur :

```
RP/0/RSP0/CPU0:router# show inventory location 0/4/CPU0/0
NAME: "module 0/4/CPU0", DESCR: "8-Port 10GE DX Line Card, Requires XFPs"
PID: A9K-8T/4-B , VID: V1D, SN: FOC123081JA
NAME: "module mau 0/4/CPU0/0", DESCR: "Multirate 10GBASE-LR and OC-192/STM-64 S"
PID: XFP-10GLR-OC192SR , VID: V02, SN: ONT1207108S
RP/0/RSP0/CPU0:router#
```

L'exemple suivant présente les informations relatives au module SFP+ pour deux cartes de ligne 10GE à 16 ports :

```
RP/0/RSP0/CPU0:router# show inventory all
Tue Mar 23 18:10:17.401 UTC
NAME: "module 0/RSP0/CPU0", DESCR: "ASR9K Fabric, Controller, 4G memory"
PID: A9K-RSP-4G , VID: V01, SN: FOC1319825E
NAME: "module compact-Flash 0/RSP0/CPU0", DESCR: " CompactFlash"
PID: cFLASH
                      , VID: N/A, SN: 00000000301
NAME: "module 0/0/CPU0", DESCR: "16-Port 10GE DX Medium Queue Line Card, Requires SFPs"
PID: A9K-16T/8-B
                      , VID: V01, SN: FOC135180R6
NAME: "module mau GigabitEthernet0/0/CPU0/5", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                      , VID: N/A, SN: ECL121900JA
NAME: "module mau GigabitEthernet0/0/CPU0/13", DESCR: "10GBASE-LR SFP+ Module for SMF"
                      , VID: V01 , SN: ECL1338022R
PID: SFP-10G-LR
NAME: "module 0/2/CPU0", DESCR: "16-Port 10GE DX Medium Queue Line Card, Requires SFPs"
PID: A9K-16T/8-B , VID: V01, SN: FOC135180R9
NAME: "module mau GigabitEthernet0/2/CPU0/0", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                      , VID: N/A, SN: ECL121900JZ
NAME: "module mau GigabitEthernet0/2/CPU0/1", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                      , VID: N/A, SN: ECL121900JY
NAME: "module mau GigabitEthernet0/2/CPU0/3", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                      , VID: V01 , SN: ONT132600B5
NAME: "module mau GigabitEthernet0/2/CPU0/5", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                     , VID: V01 , SN: ECL132603DM
NAME: "module mau GigabitEthernet0/2/CPU0/7", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                      , VID: N/A, SN: ECL121900JM
NAME: "module mau GigabitEthernet0/2/CPU0/8", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR , VID: N/A, SN: ECL121900KS
NAME: "module mau GigabitEthernet0/2/CPU0/9", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR , VID: N/A, SN: ECL121900KN
NAME: "module mau GigabitEthernet0/2/CPU0/10", DESCR: "10GBASE-LR SFP+ Module for SMF"
PID: SFP-10G-LR
                      , VID: N/A, SN: ECL121900JJ
NAME: "module mau GigabitEthernet0/2/CPU0/14", DESCR: "10GBASE-LR SFP+ Module for SMF"
                      , VID: N/A, SN: ECL121900JR
PID: SFP-10G-LR
RP/0/RSP0/CPU0:router#
```

Dépannage avancé de la carte de ligne

Cette section décrit brièvement les commandes de dépannage avancées qui peuvent être utilisées en cas de défaillance d'une carte de ligne.

Remarque Dans cette section, nous partons du principe que vous disposez des connaissances de base pour utiliser les commandes du logiciel XR Cisco IOS.

Ces commandes doivent vous permettre de déterminer la nature du problème qui affecte la carte de ligne. La première étape consiste à identifier la cause de la défaillance de la carte de ligne ou des erreurs de console affichées.

Pour déterminer la carte concernée par le problème, il est essentiel de consulter le résultat de ces commandes :

- show logging
- show diag slot
- show context location slot

Outre ces commandes show, vous devez recueillir les informations suivantes :

- Journaux de console et informations Syslog : ces informations sont essentielles lorsque plusieurs symptômes se produisent. Si le routeur est configuré pour envoyer des journaux à un serveur Syslog, vous pouvez consulter des informations sur les événements qui se sont produits. Dans le cas des journaux de console, il est préférable d'être connecté directement au routeur sur le port de console avec la journalisation activée.
- Données supplémentaires : la commande show tech-support compile un grand nombre de commandes différentes, dont show version, show running-config, **show tech ethernet**, **show tech pfi** et show stacks. Ces informations sont requises dans le cadre de la résolution des problèmes avec le centre d'assistance technique Cisco (Cisco TAC).

Pour obtenir des exemples d'utilisation de ces commandes et connaître le résultat, consultez le Guide de dépannage des routeurs Cisco ASR 9000.

Remarque

Il est important de recueillir les données de la commande show tech-support avant d'effectuer un rechargement ou de couper, puis de remettre le courant. Si vous ne respectez pas cette consigne, vous risquez de perdre toutes les informations relatives au problème. La sortie de ces commandes varie légèrement en fonction de la carte de ligne utilisée. Cependant, les informations de base sont les mêmes.

Spécifications techniques

Cette annexe répertorie les caractéristiques des cartes de ligne Ethernet pour le routeur à services d'agrégation Cisco ASR 9000.

- Valeurs relatives à la consommation électrique de la carte de ligne Ethernet, à la page 149
- Dimensions physiques de la carte de ligne Ethernet, à la page 152
- Caractéristiques des modules émetteurs-récepteurs, à la page 152

Valeurs relatives à la consommation électrique de la carte de ligne Ethernet

Tableau 34 : Valeurs relatives à la consommation électrique de la carte de ligne Ethernet

Description	Valeurs relatives à la consommation électrique
Carte de ligne combinée à 2 ports 10 Gigabit Ethernet + 20 ports Gigabit Ethernet	315 W à 25 °C (77 °F)
	326 W à 40 °C (104 °F)
	335 W à 55 °C (131 °F)
Carte de ligne 10 Gigabit Ethernet à 4 ports	310 W à 25 °C (77 °F)
	320 W à 40 °C (104 °F)
	350 W à 55 °C (131 °F)
Carte de ligne combinée à 4 ports 10 Gigabit Ethernet + 16 ports Gigabit Ethernet	225 W à 25 °C (77 °F)
	250 W à 40 °C (104 °F)
	275 W à 55 °C (131 °F)
Carte de ligne 10 Gigabit Ethernet à 8 ports avec surabonnement 2:1	310 W à 25 °C (77 °F)
	320 W à 40 °C (104 °F)
	350 W à 55 °C (131 °F)

Description	Valeurs relatives à la consommation électrique
Carte de ligne 10 Gigabit Ethernet à 8 ports 80 Gbit/s	565 W à 25 °C (77 °F)
	575 W à 40 °C (104 °F)
	630 W à 55 °C (131 °F)
Carte de ligne 10 Gigabit Ethernet à 16 ports avec surabonnement	565 W à 25 °C (77 °F)
	575 W à 40 °C (104 °F)
	630 W à 55 °C (131 °F)
Carte de ligne 10 Gigabit Ethernet à 24 ports	775 W à 25 °C (77 °F)
	850 W à 40 °C (104 °F)
	895 W à 55 °C (131 °F)
Carte de ligne 10 Gigabit Ethernet/1 Gigabit Ethernet à 24 ports (-TR, -SE, -CM)	420 W à 27 °C (81 °F)
	550 W à 40 °C (104 °F)
	560 W à 50 °C (122 °F)
Carte de ligne 10 Gigabit Ethernet à 36 ports	775 W à 25 °C (77 °F)
	850 W à 40 °C (104 °F)
	895 W à 55 °C (131 °F)
Carte de ligne 10 Gigabit Ethernet/1 Gigabit Ethernet à 48 ports (-TR, -SE, -CM)	700 W à 27 °C (81 °F)
	810 W à 40 °C (104 °F)
	850 W à 50 °C (122 °F)
Carte de ligne Gigabit Ethernet à 40 ports	310 W à 25 °C (77 °F)
	320 W à 40 °C (104 °F)
	350 W à 55 °C (131 °F)
Carte de ligne 100 Gigabit Ethernet à 1 port	800 W à 25 °C (77 °F)
	875 W à 40 °C (104 °F)
	920 W à 55 °C (131 °F)
Carte de ligne 100 Gigabit Ethernet à 2 ports	800 W à 25 °C (77 °F)
	875 W à 40 °C (104 °F)
	920 W à 55 °C (131 °F)
Carte de ligne 100 Gigabit Ethernet à 4 ports (version OTN)	1 000 W à 27 °C (81 °F)
	1 050 W à 40 °C (104 °F)
	1 100 W à 50 °C (122 °F)

I

Description	Valeurs relatives à la consommation électrique
Carte de ligne 100 Gigabit Ethernet à 8 ports (version LAN)	1 050 W à 27 °C (81 °F)
	1 100 W à 40 °C (104 °F)
	1 150 W à 50 °C (122 °F)
Carte de ligne 100 Gigabit Ethernet à 8 ports (version OTN)	1 100 W à 27 °C (81 °F)
	1 150 W à 40 °C (104 °F)
	1 200 W à 50 °C (122 °F)
Carte de ligne 100 Gigabit à 4 ports	450 W à 27 °C (80,6 °F)
	475 W à 40 °C (104 °F)
	500 W à 55 °C (122 °F)
Carte de ligne 100 Gigabit Ethernet à 12 ports	1 170 W à 27 °C (80,6 °F)
	1 150 W à 40 °C (104 °F)
	1 200 W à 50 °C (122 °F)
Carte de ligne 100 Gigabit Ethernet à 16 ports (-TR ou -CM)	675 W à 27 °C (81 °F)
	700 W à 40 °C (104 °F)
	750 W à 50 °C (122 °F)
Carte de ligne 100 Gigabit Ethernet à 16 ports (-SE)	1 125 W à 25 °C (77 °F)
	1 150 W à 40 °C (104 °F)
	1 225 W à 55 °C (131 °F)
Carte de ligne 100 Gigabit Ethernet à 32 ports (-TR ou -CM)	1 325 W à 27 °C (81 °F)
	1 350 W à 40 °C (104 °F)
	1 425 W à 50 °C (122 °F)
Carte de ligne modulaire à 2 NPU 80 Gbit/s (-TR ou -SE)	350 W à 25 °C (77 °F)
	400 W à 40 °C (104 °F)
	420 W à 55 °C (131 °F)
Carte de ligne modulaire à 4 NPU 160 Gbit/s (-TR ou -SE)	350 W à 25 °C (77 °F)
	400 W à 40 °C (104 °F)
	420 W à 55 °C (131 °F)
Carte de ligne modulaire 400 Gbit/s (-TR ou -SE)	520 W à 25 °C (77 °F)
	560 W à 40 °C (104 °F)
	600 W à 55 °C (131 °F)

Description	Valeurs relatives à la consommation électrique
Carte de ligne modulaire à 4 NPU (-TR ou -SE)	520 W à 25 °C (77 °F)
	590 W à 40 °C (104 °F)
	620 W à 55 °C (131 °F)
Carte de ligne IPoDWDM combinée à 2 ports 100G + 20 ports 10GE avec modules CFP2 et SFP+	520 W à 25 °C (77 °F)
(-TR)	560 W à 40 °C (104 °F)
	600 W à 55 °C (131 °F)

<u>/</u>]\

Avertissement

Assurez-vous que la configuration du châssis est conforme aux allocations de puissance requises. Il est important de vérifier correctement la configuration, sans quoi un état imprévisible risque de se produire en cas de défaillance de l'une des unités d'alimentation. Pour obtenir de l'aide, contactez votre représentant commercial local.

Dimensions physiques de la carte de ligne Ethernet

Pour connaître les caractéristiques physiques, consultez les fiches techniques relatives aux cartes de ligne Cisco ASR 9000 :

https://www.cisco.com/c/en/us/products/routers/asr-9000-series-aggregation-services-routers/ datasheet-listing.html

Caractéristiques des modules émetteurs-récepteurs

Pour les modules émetteurs-récepteurs pris en charge, reportez-vous à la matrice de compatibilité du groupe de modules émetteurs-récepteurs (TMG) :

https://tmgmatrix.cisco.com/home

Pour obtenir les descriptions et les caractéristiques des modules émetteurs-récepteurs, consultez les fiches techniques :

Fiches techniques

Caractéristiques des connecteurs à 38 broches des modules QSFP 40 Gigabit et QSFP28 100 Gigabit

Broche	Signal	Broche	Signal	Broche	Signal	Broche	Signal
1	GND	11	SCL	21	RX2n	31	Réservé
2	TX2n	12	SDA	22	RX2p	32	GND

Broche	Signal	Broche	Signal	Broche	Signal	Broche	Signal
3	TX2p	13	GND	23	GND	33	TX3p
4	GND	14	RX3p	24	RX4n	34	TX3n
5	TX4n	15	RX3n	25	RX4p	35	GND
6	TX4p	16	GND	26	GND	36	TX1p
7	GND	17	RX1p	27	ModPrsL	37	TX1n
8	ModSelL	18	RX1n	28	IntL	38	GND
9	LPMode_Reset	19	GND	29	VccTx		
10	VccRx	20	GND	30	Vcc1		

Caractéristiques des broches des connecteurs MPO-12

La figure suivante présente les broches et les numéros de la fibre optique correspondant au connecteur mâle MPO-12 (Multifiber Push-On) CPAK.

Remarque

Dans la figure suivante, les broches du connecteur mâle MPO se trouvent côté CPAK, les connecteurs MPO du câble seront donc femelles.

Illustration 91 : Brochage du connecteur 100 Gigabit MPO-12

Si vous regardez le réceptacle du module CPAK alors que la clé mécanique est au-dessus, les fibres sont numérotées de 12 à 1 (de gauche à droite). Les fibres 12, 11, 10 et 9 sont utilisées pour les signaux Tx optiques. Les fibres 4, 3, 2 et 1 sont utilisées pour les signaux Rx optiques.

Types de connecteurs CPAK

Numéro de produit CPAK	Débit	Distance	Mode	Types de connecteurs
CPAK-100G-SR10	100 G 10x10 G SR 2x40 G SR4	100 m	Multimode	MPO-24 vers MPO-24 (100G) MPO-24 vers dérivation LC (10x10G) MPO-24 vers dérivation MPO-12 (2X40G)
CPAK-100G-SR4	100 G	70 m (OM3) 100 m (OM4)	Multimode	MPO-12
CPAK-100G-LR4	100 G	10 m	Monomode	SC
CPAK-10x10G-LR	10 G	10 m	Monomode	MPO-24 vers derivation LC

Caractéristiques des broches des connecteurs MPO-24

Les figures suivantes présentent le brochage et les numéros de la fibre optique correspondant au connecteur mâle MPO-24 (Multifiber Push-On) CPAK en mode 100G et 2X40G.

&

Remarque

Dans les figures suivantes, les broches du connecteur mâle MPO se trouvent côté CPAK, les connecteurs MPO du câble seront donc femelles.

Illustration 92 : Brochage du connecteur 100 Gigabit MPO-24

Si vous regardez le réceptacle du module CPAK alors que la clé mécanique est au-dessus, les fibres sont numérotées comme suit :

- Ligne du haut, de gauche à droite : les fibres sont numérotées de 12 à 1. Les fibres 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 sont utilisées pour les signaux Rx optiques (canaux 9 à 0).
- Ligne du bas, de gauche à droite : les fibres sont numérotées de 24 à 13. Les fibres 23, 22, 21, 20, 19, 18, 17, 16, 15 et 14 sont utilisées pour les signaux Tx optiques.

				С	lé mé	caniqu	.ie				
			1_3	1_2	1_1	1_0	0_3	0_2	0_1	0_0	
12	11	10	9	8	7	6	5	4	3	2	1
\oslash	\oslash	\oslash	0	0	0	\bigcirc	0	0	0	0	0
0	0	0	0	0	\bigcirc	0	0	0	0	0	0
24	23	22	21	20	19	18	17	16	15	14	13
			1_3	1_2	1_1	1_0	0_3	0_2	0_1	0_0	

Illustration 93 : Brochage du connecteur 100 Gigabit MPO-24 (mode 2X40)

Si vous regardez le réceptacle du module CPAK alors que la clé mécanique est au-dessus, les fibres sont numérotées comme suit :

- Ligne du haut, de gauche à droite : les fibres sont numérotées de 12 à 1. Les fibres 9, 8, 7, 6, 5, 4, 3, 2 sont utilisées pour les signaux Rx optiques.
- Ligne du bas, de gauche à droite : les fibres sont numérotées de 24 à 13. Les fibres 21, 20, 19, 18, 17, 16, 15 et 14 sont utilisées pour les signaux Tx optiques.

Câbles de dérivation CPAK

Un module optique CPAK peut être configuré comme suit : 1 port 100GE fixe, 2 ports 40G ou 10 ports 10GE à l'aide d'un câble de dérivation à fibre optique. Le câble de dérivation contient plusieurs fibres (chacune dans sa propre gaine) entourées d'une gaine commune. Les sections suivantes décrivent les configurations de dérivation 2X40G pour les modules optiques CPAK-10x10-LR et CPAK-100G-SR10.

Remarque

Cisco ne fournit pas de câbles de dérivation. Vous pouvez vous en procurer auprès de fournisseurs tiers.

Dérivation 2X40G CPAK-100G-SR10

La figure suivante illustre la dérivation 2X40G pour le module optique CPAK-100G-SR10. Dans cet exemple, le trunk MPO à 24 fibres se divise en deux connecteurs MPO-12 à 12 fibres pour deux connexions 40G (interface 0 et interface 1).

Illustration 94 : Dérivation 2x40GE pour module optique CPAK-100G-SR10

Le tableau suivant présente le brochage du connecteur côté 100G. Les broches 1, 10, 11, 12, 13, 22, 23 et 24 ne sont pas utilisées.

Connecteur		Logement de module				
ID de connecteur	ID de fibre	Fibre du logement	Voie de l'interface 40G	TX/RX		
MPO1	F1	1	_	—		
MPO2	F2	2	0_0	RX		
MPO3	F3	3	0_1	RX		
MPO4	F4	4	0_2	RX		
MPO5	F5	5	0_3	RX		
MPO6	F6	6	1_0	RX		
MPO7	F7	7	1_1	RX		
MPO8	F8	8	1_2	RX		

Tableau 35 : Broches du câble en Y 100G vers 2X40G (côté 100G)

Connecteur		Logement de modul	e	
ID de connecteur	ID de fibre	Fibre du logement	Voie de l'interface 40G	TX/RX
MPO9	F9	9	1_3	RX
MPO10	F10	10	_	—
MPO11	F11	11	_	—
MPO12	F12	12	_	—
MPO13	F13	13	—	—
MPO14	F14	14	0_0	TX
MPO15	F15	15	0_1	TX
MPO16	F16	16	0_2	TX
MPO17	F17	17	0_3	TX
MPO18	F18	18	1_0	TX
MPO19	F19	19	1_1	TX
MPO20	F20	20	1_2	TX
MPO21	F21	21	1_3	TX
MPO22	F22	22	_	—
MPO23	F23	23	_	—
MPO24	F24	24	—	—

Le tableau suivant présente les brochages de l'interface 0 40G et de l'interface 1 40G. Pour les deux interfaces, les broches 5, 6, 7 et 8 ne sont pas utilisées.

Tableau 36 : Broches du câble en Y 100G vers 2X40G (côté 40G)

Interface 0 40G						
Connecteur		Logement de module				
ID de connecteur	ID de fibre	Fibre du logement	Voie de l'interface 40G	TX/RX		
MPO1	F14	1	0_0	RX		
MPO2	F15	2	0_1	RX		
МРО3	F16	3	0_2	RX		
MPO4	F17	4	0_3	RX		

MPO5	F13	5		
MPO6	F23	6		
MPO7	F24	7	—	
MPO8	F1	8	—	—
MPO9	F5	9	0_3	ТХ
MPO10	F4	10	0_2	ТХ
MPO11	F3	11	0_1	ТХ
MPO12	F2	12	0_0	ТХ
Interface 1 40G				
Connecteur		Logement de modu	le	
ID de connecteur	ID de fibre	Fibre du logement	Voie de l'interface 40G	TX/RX
MPO1	F18	1	1_0	RX
MPO1 MPO2	F18 F19	1 2	1_0 1_1	RX RX
MPO1 MPO2 MPO3	F18 F19 F20	1 2 3	1_0 1_1 1_2	RX RX RX
MPO1 MPO2 MPO3 MPO4	F18 F19 F20 F21	1 2 3 4	1_0 1_1 1_2 1_3	RX RX RX RX
MPO1 MPO2 MPO3 MPO4 MPO5	F18 F19 F20 F21 F22	1 2 3 4 5	1_0 1_1 1_2 1_3 —	RX RX RX RX —
MPO1 MPO2 MPO3 MPO4 MPO5 MPO6	F18 F19 F20 F21 F22 F12	1 2 3 4 5 6	1_0 1_1 1_2 1_3 —	RX RX RX RX — —
MPO1 MPO2 MPO3 MPO4 MPO5 MPO6 MPO7	F18 F19 F20 F21 F22 F12 F11	1 2 3 4 5 6 7	1_0 1_1 1_2 1_3 <	RX RX RX
MPO1 MPO2 MPO3 MPO4 MPO5 MPO6 MPO7 MPO8	F18 F19 F20 F21 F22 F12 F11 F10	1 2 3 4 5 6 7 8	1_0 1_1 1_2 1_3 <	RX RX RX RX — — — —
MPO1 MPO2 MPO3 MPO4 MPO5 MPO6 MPO7 MPO8 MPO9	F18 F19 F20 F21 F22 F12 F11 F10 F9	1 2 3 4 5 6 7 8 9	1_0 1_1 1_2 1_3 - - - - 1_3 1_3 1_3 1_3 1_3 1_3 1_3 - 1_3	RX RX RX - - - - TX
MPO1 MPO2 MPO3 MPO4 MPO5 MPO6 MPO7 MPO8 MPO9 MPO10	F18 F19 F20 F21 F22 F12 F11 F10 F9 F8	1 2 3 4 5 6 7 8 9 10	1_0 1_1 1_2 1_3 - - 1_3 1_1 1_2 1_3 1_2 1_3 1_3 1_3 1_2	RX RX RX TX TX
MPO1 MPO2 MPO3 MPO4 MPO5 MPO6 MPO7 MPO8 MPO9 MPO10 MPO11	F18 F19 F20 F21 F22 F12 F11 F10 F9 F8 F7	1 2 3 4 5 6 7 8 9 10 11	1_0 1_1 1_2 1_3 - - 1_3 1_1 1_2 1_3 1_2 1_13 1_2 1_13 1_2 1_11	RX RX RX TX TX TX

Dérivation 2X40 CPAK-10x10G-LR

La figure suivante illustre la dérivation 2X40G pour le module optique CPAK-10x10-LR. Une dérivation fibre APC (angle-polished connector) MPO-24 vers des fibres SM LC 10x10G est utilisée sur chaque module CPAK. Seules les 8 premières fibres sont utilisées dans cette dérivation. Deux groupes de 4 voies sont acheminés (le cas échéant) vers un panneau de brassage LC intermédiaire.

Le module CPAK-10X10G-LR peut uniquement utiliser les câbles d'interface réseau avec face polie de type APC (Angle-Polished Contact).

Illustration 95 : La dérivation fibre pour module CPAK vers CPAK 10x10LR (mode 2x40G en option)